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MOTIVATING EXAMPLE

Customer satisfaction survey

Questionnaire – respondents (customers) give scores from least to most satisfied

Blocks of similar questions (correlated variables)

Each customer represents a company

Individual scores are important!
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MOTIVATING EXAMPLE

Customer satisfaction survey

Questionnaire – respondents (customers) give scores from least to most satisfied

Blocks of similar questions (correlated variables)

Each customer represents a company

Individual scores are important!

⇒ Finding reasonable substitutes for missing values is of high interest
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INCOMPLETE DATA

Consider correlated incomplete data

DEF. Imputation (filling in, substitution) is a strategy for completing missing values

in data with plausible estimates.

Little & Rubin (1987)

• Imputation might seem like an unimportant distinction.

• There are many situations where the non-response mechanism needs to be

considered explicitly, since it is of scientific interest itself.

• It makes sense to consider imputation of missing values separately from mod-

elling data.
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FRAMEWORK

Let Y = (Y1, . . . , Yv) be the random vector with correlated components Yj

Consider data with n subjects

Y = (Y1, ...,Yv), Yj =











y1j

.

.

.

ynj











, j = 1, . . . , v

Ordered missingness: the columns of data matrix are sorted starting from the

column with least missing values to the column with most missing values

Assume that first k (k ≥ 2) components are complete, then

Y = (Yc,Ym)

Y
c = (Y1, . . . ,Yk) – complete data,

Y
m = (Yk+1, . . . ,Yv) – incomplete data.
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DEPENDENCE between variables

Y c = (Y1, . . . , Yk), Yk+1

Correlation matrix: R = (rij), rij = corr(Yi, Yj), i, j = 1, . . . , k + 1

Partition of correlation matrix

R =





Rk r

rT 1





Rk – the correlation matrix of complete part Y c = (Y1, ..., Yk)

r =











r1,k+1

.

.

.

rk,k+1











– the vector of correlations between Y c and Yk+1.
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PROBLEM SETTING

We use the idea of imputing a missing value based on conditional distribution of

missing value conditioned to the observed values.

The joint distribution may be unknown, but using the copula function it is possible

to find approximate joint and conditional distributions.

H. Joe (2001): ”... if there is no natural multivariate family with a given parametric

family for the univariate margins, a common approach has been through copulas”
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COPULA

In 1959 Sklar introduced a new class of functions which he called copulas.

Sklar: if Q is a bivariate distribution function with margins F (x), G(y), then there

exist a copula C such that

Q(x, y) = C(F (x), G(y)).

⇒ copula links joint distribution function to their one-dimensional marginals.

DEF. A copula is a function C : [0, 1]2 → [0, 1] which satisfies:

• for every u, v in [0, 1], C(u, 0) = 0 = C(0, v), and C(u, 1) = u, C(1, v) = v;

• for every u1, u2, v1, v2 in [0, 1] such that u1 ≤ u2, v1 ≤ v2,

C(u2, v2) − C(u2, v1) − C(u1, v2) + C(u1, v1) ≥ 0

Example: product copula Π(u, v) = uv characterizes independent random variables

when the distribution functions are continuous.
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GAUSSIAN COPULA APPROACH (1)

DEFINITION:

Let R be a symmetric, positive definite matrix with diag(R) = (1, 1, . . . , 1)T and Φk+1

be the k +1-variate normal distribution function with correlation matrix R, then the

multivariate GAUSSIAN COPULA is defined as

C(u1, . . . , uk+1;R) = Φk+1(Φ−1(u1), . . . , Φ−1(uk+1);R)

uj ∈ (0, 1), j = 1, . . . , k + 1

Joint multivariate distribution function:

FY (y1, . . . , yk+1;R) =

= [C[F1(y1), . . . , Fk+1(yk+1);R] = Φ(k+1)[Φ
−1(F1(y1)), . . . , Φ−1(Fk+1(yk+1))]
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GAUSSIAN COPULA APPROACH (2)

Conditional probability density function (see Käärik and Käärik (2009))

fZk+1|Z1,...,Zk
(zk+1|z1, . . . , zk;R) =

exp{−
(zk+1−r

T
R

−1

k
zk)2

2(1−rT R
−1

k
r)

}

√

2π(1 − rT R
−1
k

r)
(1)

Zj = Φ−1[Fj(Yj)], j = 1, . . . , k + 1 – standard normal r.v.-s from Yj

zk = (z1, . . . , zk)T
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GAUSSIAN COPULA APPROACH (2)

Conditional probability density function (see Käärik and Käärik (2009))

fZk+1|Z1,...,Zk
(zk+1|z1, . . . , zk;R) =

exp{−
(zk+1−r

T
R

−1

k
zk)2

2(1−rT R
−1

k
r)

}

√

2π(1 − rT R
−1
k

r)
(1)

Zj = Φ−1[Fj(Yj)], j = 1, . . . , k + 1 – standard normal r.v.-s from Yj

zk = (z1, . . . , zk)T

As a result we have the (conditional) probability density function of a normal random

variable with expectation r
T
R

−1
k

zk and variance 1 − r
T
R

−1
k

r:

E(Zk+1|Z1 = z1, . . . , Zk = zk) = r
T
R

−1
k

zk, (2)

V ar(Zk+1|Z1 = z1, . . . , Zk = zk) = 1 − r
T
R

−1
k

r. (3)
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IMPUTATION FORMULA

The formula (2) leads us to the general formula of replacing the missing value zk+1

by the estimate ẑk+1 using the conditional mean imputation

ẑk+1 = r
T
R

−1
k

zk (4)

r – the vector of correlations between (Z1, . . . , Zk) and Zk+1

R
−1
k

– the inverse of the correlation matrix of (Z1, . . . , Zk)

zk = (z1, . . . , zk)T – the vector of complete observations for the subject which has

missing value zk+1.
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IMPUTATION FORMULA

The formula (2) leads us to the general formula of replacing the missing value zk+1

by the estimate ẑk+1 using the conditional mean imputation

ẑk+1 = r
T
R

−1
k

zk (4)

r – the vector of correlations between (Z1, . . . , Zk) and Zk+1

R
−1
k

– the inverse of the correlation matrix of (Z1, . . . , Zk)

zk = (z1, . . . , zk)T – the vector of complete observations for the subject which has

missing value zk+1.

From expression (3) we obtain the (conditional) variance of imputed value as follows

(σ̂k+1)2 = 1 − r
T
R

−1
k

r (5)

These results for dropouts are proved by Käärik and Käärik (2009)
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DEPENDENCE STRUCTURES

Start from a simple correlation structure, depending on one parameter only.

(1) The compound symmetry (CS) or the constant correlation structure, when the

correlations between all measurements are equal, rij = ρ, i, j = 1, . . . , m, i 6= j.

(2) The first order autoregressive correlation structure (AR), when the observations

on the same subject that are closer are more highly correlated than measurements

that are further apart, rij = ρ|j−i|, i, j = 1, . . . , m, i 6= j.
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DEPENDENCE STRUCTURES

Start from a simple correlation structure, depending on one parameter only.

(1) The compound symmetry (CS) or the constant correlation structure, when the

correlations between all measurements are equal, rij = ρ, i, j = 1, . . . , m, i 6= j.

(2) The first order autoregressive correlation structure (AR), when the observations

on the same subject that are closer are more highly correlated than measurements

that are further apart, rij = ρ|j−i|, i, j = 1, . . . , m, i 6= j.

Imputation strategy in the case of an existing CS correlation structure is studied in

detail in Käärik and Käärik (2009).

For the ordered missing data with CS correlation structure, we had the following

imputation formula

ẑCS
k+1 =

ρ

1 + (k − 1)ρ

k
∑

j=1

zj , (6)

z1, . . . , zk – the observed values for the subject with missing value zk+1.
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AR STRUCTURE

Lemma 1. Let Z = (Z1, . . . , Zk+1) be a random vector with standard normal com-

ponents and let the corresponding correlation matrix have AR correlation structure

with correlation coefficient ρ. Then the following assertions hold:

E(Zk+1|Z1 = z1, . . . , Zk = zk) = E(Zk+1|Zk = zk) = ρzk, (7)

V ar(Zk+1|Z1 = z1, . . . , Zk = zk) = 1 − ρ2. (8)

By Lemma 1, the conditional mean imputation formula for standardized measure-

ments with an AR structure has the simple form

ẑAR
k+1 = ρzk, (9)

zk – the last observed value for the subject

The corresponding variance is

(σ̂AR
k+1)2 = 1 − ρ2 (10)
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IMPUTATION ALGORITHM
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IMPUTATION ALGORITHM

Step 1. Sort the columns of the data matrix to get ordered missing data, fix

Yk+1 (column with the least number of missing values) as the starting point for

imputation.
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IMPUTATION ALGORITHM

Step 1. Sort the columns of the data matrix to get ordered missing data, fix

Yk+1 (column with the least number of missing values) as the starting point for

imputation.

Step 2. Estimate the marginal distribution functions of Y1, . . . , Yk, Yk+1.
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IMPUTATION ALGORITHM

Step 1. Sort the columns of the data matrix to get ordered missing data, fix

Yk+1 (column with the least number of missing values) as the starting point for

imputation.

Step 2. Estimate the marginal distribution functions of Y1, . . . , Yk, Yk+1.

Step 3. Estimate the correlation structure between variables Y1, . . . , Yk, Yk+1. If

we can accept the hypothesis of compound symmetry or autoregressive structure,

estimate the Spearman’s correlation coefficient ρ. If there is no simple correlation

structure, estimate R by an empirical correlation matrix.
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IMPUTATION ALGORITHM

Step 1. Sort the columns of the data matrix to get ordered missing data, fix

Yk+1 (column with the least number of missing values) as the starting point for

imputation.

Step 2. Estimate the marginal distribution functions of Y1, . . . , Yk, Yk+1.

Step 3. Estimate the correlation structure between variables Y1, . . . , Yk, Yk+1. If

we can accept the hypothesis of compound symmetry or autoregressive structure,

estimate the Spearman’s correlation coefficient ρ. If there is no simple correlation

structure, estimate R by an empirical correlation matrix.

Step 4. In the case of CS correlation structure, use imputation formula (6). In

the case of AR correlation structure, use imputation formula (9) and estimate the

variance of the imputed value using formula (10). If there is no simple correlation

structure, then use general formulas (4) and (5).
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IMPUTATION ALGORITHM

Step 1. Sort the columns of the data matrix to get ordered missing data, fix

Yk+1 (column with the least number of missing values) as the starting point for

imputation.

Step 2. Estimate the marginal distribution functions of Y1, . . . , Yk, Yk+1.

Step 3. Estimate the correlation structure between variables Y1, . . . , Yk, Yk+1. If

we can accept the hypothesis of compound symmetry or autoregressive structure,

estimate the Spearman’s correlation coefficient ρ. If there is no simple correlation

structure, estimate R by an empirical correlation matrix.

Step 4. In the case of CS correlation structure, use imputation formula (6). In

the case of AR correlation structure, use imputation formula (9) and estimate the

variance of the imputed value using formula (10). If there is no simple correlation

structure, then use general formulas (4) and (5).

Step 5. Repeat step 4 until all missing values in column Yk+1 are imputed. If

k < m − 1, then take k = k + 1, take a new Yk+1, estimate the marginal distribution

of Yk+1 and go to step 3. In the following steps the imputed values are treated as

if they were observed.
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CASE STUDY: INCOMPLETE CS DATA

Questionnaire where the respondents (customers) are requested to give scores (in

our example on a scale from 0 to 10, from least to most satisfied)

We are focusing on a group of five questions (from 20 customers) directly related

to customer satisfaction.

We have complete data and we will delete the values from one variable step by step

and analyze the reliability of the proposed method.
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IMPUTATION (1)

The imputation study has the following general steps:

1. Estimation of marginal distributions.

Kolmogorov-Smirnov and Anderson-Darling tests for normality did not reject the

normality assumption.
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IMPUTATION (1)

The imputation study has the following general steps:

1. Estimation of marginal distributions.

Kolmogorov-Smirnov and Anderson-Darling tests for normality did not reject the

normality assumption.

2. Estimation of the correlation structure.

Calculation of the ’working’ correlation matrix gave us Spearman’s ρ̂ = 0.784 as an

estimate of the parameter of the AR-structure.
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IMPUTATION (2)

3. Estimation of the missing values.

To validate the imputation algorithm we repeat the imputation procedure for every

value in the data column Y5.

Modified formulas (for nonstandard normal variables instead of (9) and (10)):

ẑAR
k+1 = ρ

sk+1

sk

(zk − Z̄k) + Z̄k+1, (11)

Z̄k, Z̄k+1 – the mean values of data columns Zk+1 and Zk respectively

sk+1 and sk – the corresponding standard deviations

(σ̂AR
k+1)2 = s2

k+1(1 − ρ2). (12)
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QUALITY OF IMPUTATION

L1 error (absolute distance between the observed and imputed value)

e1 = 0.641

L2 error (root mean square distance)

e2 = 0.744
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RESULTS

4. Estimation of the variance of imputed values.

No y5 ẑAR
5 0.95 CI No y5 ẑAR

5 0.95 CI

1 6 6.77 (5.12; 8.41) 11 8 7.57 (5.89; 9.24)

2 8 8.52 (6.84; 10.19) 12 4 5.43 (3.89; 6.97)

3 9 8.46 (6.79; 10.13) 13 7 6.68 (5.01; 8.35)

4 6 5.85 (4.21; 7.50) 14 5 6.89 (5.28; 8.49)

5 9 8.46 (6.79; 10.13) 15 10 9.30 (7.66; 10.95)

6 10 9.30 (7.66; 10.95) 16 8 8.52 (6.84; 10.19)

7 10 9.30 (7.66; 10.95) 17 7 6.68 (5.01; 8.35)

8 10 9.30 (7.66; 10.95) 18 8 8.52 (6.84; 10.19)

9 9 8.46 (6.79; 10.13) 19 7 7.62 (5.95; 9.29)

10 9 8.46 (6.79; 10.13) 20 9 9.40 (7.73; 11.07)

y5 – the observed value, ẑAR
5 – the corresponding imputed value

0.95 CI – 0.95-level confidence interval based on the normal approximation
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SUMMARY

It is important to remember that the imputation methodology does not give us

qualitatively new information but enables us to use all available information about

the data with maximal efficiency.

In general, most of the missing data handling methods deal with incomplete data

primarily from the perspective of estimation of parameters and computation of test

statistics rather than predicting the values for specific cases. We, on the other hand,

are interested in small sample sizes where every value is essential and imputation

results are of scientific interest itself.

The results of this study indicate that in the empirical context of the current study

the algorithm performs well for modeling missing values in correlated data.

As importantly, the following advantages can be pointed out.

(1) The marginals of variables do not have to be normal, they can even be different.

(2) The simplicity of formulas (9)–(12).
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REMARKS

The class of copulas is wide and growing, the copula approach used here can be

extended to the case of other copulas.

Choosing a copula to fit the given data is an important but difficult problem.

In some cases analytical solutions are not available (copula density might not exist).

These relevant problems obviously merit further research.
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