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The Future

Schweizer (1985): ”Distributions are the numbers of the future”
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Types of Data

Classical Data Value X :
- A single point in p-dimensional space
E.g., X = 17, X = 2.1, X = blue

Symbolic Data Value Y :
- Hypercube or Cartesian product of distributions

in p-dimensional space
I.e. Y = list, interval, modal in structure

Modal data:
Histogram,
empirical distribution function,
probability distribution,
model, ...

Weights:
Relative frequencies
capacities,
credibilities,
necessities,
possibilities, ...
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Symbolic Data

How do symbolic data arise?

1 Aggregated data by classes or groups.
Research interest : classes or groups

2 Natural symbolic data.
Pulse rate : 64± 2=[62,66].
Daily temperature : [55,67].

3 Published data : census data.

4 Symbolic data : range, list, and distribution, etc.
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Literature Review

1 Clustering for classical data - CART, Breiman et al. (1984)

2 Clustering for symbolic data.
Agglomerative algorithm and dissimilarity measures for non-modal categorical and
interval-valued data: Gowda and Diday (1991)
Pyramid clustering: Brito (1991, 1994), Brito and Diday (1990)
Spatial pyramids: Raoul Mohamed (2009)
Divisive monothetic algorithm for intervals: Chavent (1998,2000)
Divisive algorithms for histograms: Kim (2009)
Decision trees for non-modal dependent variables: Périnel (1996, 1999), Limam
(2005), Winsberg et al. (2006),...
......

Decision tree for interval data and modal dependent variable (STREE): Seck (2010)
(a CART methodology for symbolic data)
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(2005), Winsberg et al. (2006),...
......

Decision tree for interval data and modal dependent variable (STREE): Seck (2010)
(a CART methodology for symbolic data)

Seck Symbolic Decision Tree



The Data

We have observations Ω = {ω1, . . . , ωn}, where ωi has realization
Yi = (Yi1, . . . ,Yip), i = 1, . . . , n.

Modal multinominal (Modal categorical):
Yij = {mijk , pijk ; k = 1, . . . , si},

∑si
k=1 pijk = 1,

with mijk ∈ Oj = {mj1, . . . ,mjs}, j = 1, . . . , p i = 1, . . . , n.
(Take si = s, wlg.)

Multi-valued (non-modal):
Yij = {mijk , k = 1, . . . , si}, i.e., pijk = 1/s or 0,

with mijk ∈ Oj , j = 1, . . . , p, i = 1, . . . , n.

Intervals:
Yi = ([ai1, bi1], . . . , [aip , bip ]),

with aij , bij ∈ Rj , j = 1, . . . , p, i = 1, . . . , n.

Nominal (classical categorical):
Special case of modal multinominal with si = 1, p1 = 1; write

Yij ≡ mij1 = δij , δij ∈ Oj .

Classical continuous variable:
Special case of interval with aij = [aij , aij ] for aij ∈ Rj .
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STREE Algorithm

Have at r th stage the partition Pr = (C1, . . . ,Cr )
Discrimination criterion: D(N) - explains partition of node N as in CART analysis
Homogeneity criterion: H(N) - inertia associated with explanatory variables as in pure
hierarchy tree analysis
We take the mixture, for α > 0, β > 0,

I = αD(N) + βH(N) with α+ β = 1.

The D(N) is taken as the Gini measure (as in CART)

D(N) =
∑
i 6=f

pipf = 1−
∑

i=1,...,r

p2
i

with pi = ni/n, ni = card(N
⋂

Ci ), n = card(N);
the H(N) is

H(N) =
∑

ωi1
∈Ω

∑
ωi2
∈Ω

pi1pi2

2µ
d2(ωi1 , ωi2 )

where d(ωi1 , ωi2 ) is a distance measure between ωi1 and ωi2 , pi is the weight

associated with ωi and µ =
∑N

i=1 pi .

Select the partition C = {C1, C2} for which the reduction in I is greatest; i.e.,
maximize ∆I = I (C)− I (C1, C2).
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Decision Tree - Distance Measures

The homogeneity criterion H(N)

H(N) =
∑

ωi1
∈Ω

∑
ωi2
∈Ω

pi1pi2

2µ
d2(ωi1 , ωi2 )

where d(ωi1 , ωi2 ) is a distance measure between ωi1 and ωi2 , pi is the weight

associated with ωi and µ =
∑N

i=1 pi .

The STREE algorithm uses

Modal categorical variables - L1 distance:
dj (ωi1 , ωi2 ) =

∑
k∈O |pi1jk − pi2jk |;

or, L2 distance:
dj (ωi1 , ωi2 ) =

∑
k∈O(pi1jk − pi2jk )2

Interval variables - Hausdorff distance:
dj (ωi1 , ωi2 ) = max(|ai1j − ai2j |, |bi1j − bi2j |)

Classical categorical variables - (0, 1) distance:

dj (ωi1 , ωi2 ) =

{
0, if mi1j = mi2j

1, if mi1j 6= mi2j

Classical continuous variables - Euclidean distance:
dj (ωi1 , ωi2 ) = (ai1j − ai2j )

2

Hence,
d(ωi1 , ωi2 ) =

∑p
j=1 dj (ωi1 , ωi2 ).
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Decision Tree - Cut Points

Cut points: Take Modal categorical case – Recall
Yij = {mijk , pijk ; k = 1, . . . , si},

∑si
k=1 pijk = 1, (Take si = s, wlg.)

with mijk ∈ Oj = {mj1, . . . ,mjs}, j = 1, . . . , p i = 1, . . . , n.

First: For each k in turn, order pijk from smallest to largest.

There are Lk ≤ n distinct values of pjkr , r = 1, . . . , Lk .

Then, cut point for this modality (mjk ) is the probability
cjkr = (pjkr + pjk,r+1)/2, r = 1, . . . , Lk − 1, k = 1, . . . , s.

There are
∑s

k=1(Lk − 1)possible partitions for each j .

Similarly, take pairs (mijk1
, mijk2

) with probability (pijk1
+ pijk2

) = pijk1k2
.

Repeat previous process using now these probabilities pijk1k2
, for the Lk1k2

distinct
probabilities among the s(s + 1)/2 possible pairs.

Likewise, take sets of three, four,. . . , (s − 1) of the s values of mijk , k = 1, . . . , s in Oj .

The total number of possible cuts points is L. It can be shown that
maxL = (n − 1)

∑s−1
q=1

(s
q

)
= (n − 1)2(2s−1 − 1).
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Decision Tree - Cut Points

Cut points: Take Intervls case – Recall
Yi = ([ai1, bi1], . . . , [aip , bip ]),

with aij , bij ∈ Rj , j = 1, . . . , p, i = 1, . . . , n.

First: For each j , let Dj = {djr , r = 1, . . . , L} be the set of n aij and n bij values,
ordered from smallest to largest. Thus, e.g.,

dj1 = mini∈Ω(aij ), djL = mini∈Ω(bij ), j = 1, . . . , p.

There are L ≤ 2n distinct values of djr , r = 1, . . . , L.

The cut points are
cjr = (djr + dj,r+1)/2, r = 1, . . . , L
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Decision Tree - Example

Fisher (1936): IRIS dataset -
150 observations, 50 for each species versicolor, virginica, setosa

Y1 = Sepal Length, Y2 = Sepal Width, Y3 = Petal Length, Y4 = Petal Width
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Decision Tree

Fisher (1936): IRIS dataset -
150 observations, 50 for each species setosa, versicolor, virginica

Y1 = Sepal Length, Y2 = Sepal Width, Y3 = Petal Length, Y4 = Petal Width

Clustered into 30 sets of observations, by k-means clustering method

Table 1: Fisher’s Iris Data as Intervals

Concept Speciesa Sepal length Sepal width Petal length Petal width
ω1 {1, 1.0} [4.8, 5.4] [3.3, 3.8] [1.5, 1.9] [0.2, 0.6]
. . .
ω4 {1,1.0} [4.5, 4.5] [2.3, 2.3] [1.3, 1.3] [0.3, 0.3]
. . .
ω12 {2,.9; 3,.1} [4.9, 5.7] [2.5, 3.0] [4.1, 4.5] [1.2, 1.7]
. . .
ω30 {2,1.0} [6.2, 6.3] [2.2, 2.3] [4.4, 4.5] [1.3, 1.5]

aSpecies identified by 1,2,3 for setosa, versicolor, virginica, respectively.

Species – modal categorical data: Yu = {yk , pk ; k = 1, . . . , su}, u = 1, . . . ,m
Y1, Y2, Y3,Y4 – interval data: Yuj = [auj , buj ], j = 1, . . . , p, u = 1, . . . ,m
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Decision Tree

Pure Decision Tree on 30 IRIS intervals: α = 0

1

2

3 4

5

6 7

species: setosa, versicolor, virginica
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Decision Tree

Pure CART Tree on original 150 IRIS observations: α = 0

1

2 3 4 5 6 7

8

species: setosa, versicolor, virginica
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Decision Tree

Pure DIV Tree on 30 IRIS intervals: α = 1

1 2 3 4 5 6 7 8

species: setosa, versicolor, virginica
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Decision Tree
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Decision Tree

Trees on 30 IRIS intervals:

1

2

3 4

5

6 7

Pure Decision Tree: α = 0

1 2 3 4 5 6 7 8
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Decision Tree

Trees on original 150 IRIS observations:

1

2 3 4 5 6 7

8

Pure Decision Tree: α = 0

1 2 3 4 5 6 7 8

Pure DIV Tree: α = 1
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Decision Tree

Comparison of STREE and CART Algorithms
Randomly divided 150 observations into

Training subset (size n1), and

Test subset (size n2), with

n1 + n2 = n = 150

Several sets of (n1, n2)

1. For CART:
Run CART algorithm on the n1 observations in Training subset

1. For STREE:
First find 30 clusters from the n1 observations in Training subset
Run decision tree analysis (α = 0) on the 30 clusters

2. Test tree on the n1 observations in Test subset

3. Obtain number of misclassifications

4. Repeat 10 times for each (n1, n2)

5. Calculate average number of misclassifications for each (n1, n2) and
for each Algorithm
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Decision Tree

Comparison of STREE and CART Average Misclassifications for Test subsets (n2)

n1 = Size of Training subset, n2 = Size of Test subset
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