A Decision Tree for Interval-valued Data with Modal Dependent Variable

Djamal Seck¹, Lynne Billard², Edwin Diday³ and Filipe Afonso⁴

¹Departement de Mathematiques et Informatique, Université Cheikh Anta Diop de Dakar, Senegal djamal.seck@ucad.edu.sn ²Department of Statistics, University of Georgia, Athens GA 30605 USA lynne@stat.uga.edu ³ CEREMADE, University of Paris Dauphine 75775 Paris Cedex 16 France edwin.diday@ceremade.dauphine.fr ⁴ Syrokko, Aéropôle de Roissy, Bat. Aéronef, 5 rue de Copenhague, 95731 Roissy Charles de Gaulle Cedex France, afonso@syrokko.com

COMPSTAT - August 2010

Schweizer (1985): "Distributions are the numbers of the future"

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Classical Data Value X: - A single point in *p*-dimensional space E.g., X = 17, X = 2.1, X = blue

э

< ∃⇒

Classical Data Value X: - A single point in *p*-dimensional space E.g., X = 17, X = 2.1, X = blue

Symbolic Data Value Y:

- Hypercube or Cartesian product of distributions in *p*-dimensional space

I.e. Y =list, interval, modal in structure

Classical Data Value X: - A single point in *p*-dimensional space E.g., X = 17, X = 2.1, X = blue

Symbolic Data Value Y:

 Hypercube or Cartesian product of distributions in *p*-dimensional space
 I.e. Y = list, interval, modal in structure

Modal data: Histogram, empirical distribution function, probability distribution, model, ...

Classical Data Value X: - A single point in *p*-dimensional space E.g., X = 17, X = 2.1, X = blue

Symbolic Data Value Y:

 Hypercube or Cartesian product of distributions in *p*-dimensional space
 I.e. Y = list, interval, modal in structure

Modal data: Histogram, empirical distribution function, probability distribution, model, ... Weights: Relative frequencies capacities, credibilities, necessities, possibilities, ...

-

How do symbolic data arise?

Aggregated data by classes or groups.

• Research interest : classes or groups

2 Natural symbolic data.

- Pulse rate : 64 ± 2=[62,66].
- Daily temperature : [55,67].

O Published data : census data.

9 Symbolic data : range, list, and distribution, etc.

Olustering for classical data - CART, Breiman et al. (1984)

Olustering for symbolic data.

- Agglomerative algorithm and dissimilarity measures for non-modal categorical and interval-valued data: Gowda and Diday (1991)
- Pyramid clustering: Brito (1991, 1994), Brito and Diday (1990)
- Spatial pyramids: Raoul Mohamed (2009)
- Divisive monothetic algorithm for intervals: Chavent (1998,2000)
- Divisive algorithms for histograms: Kim (2009)
- Decision trees for non-modal dependent variables: Périnel (1996, 1999), Limam (2005), Winsberg et al. (2006),...

•

Olustering for classical data - CART, Breiman et al. (1984)

Olustering for symbolic data.

- Agglomerative algorithm and dissimilarity measures for non-modal categorical and interval-valued data: Gowda and Diday (1991)
- Pyramid clustering: Brito (1991, 1994), Brito and Diday (1990)
- Spatial pyramids: Raoul Mohamed (2009)
- Divisive monothetic algorithm for intervals: Chavent (1998,2000)
- Divisive algorithms for histograms: Kim (2009)
- Decision trees for non-modal dependent variables: Périnel (1996, 1999), Limam (2005), Winsberg et al. (2006),...
-
- Decision tree for interval data and modal dependent variable (STREE): Seck (2010) (a CART methodology for symbolic data)

We have observations $\Omega = \{\omega_1, \dots, \omega_n\}$, where ω_i has realization $\mathbf{Y}_i = (Y_{i1}, \dots, Y_{ip}), i = 1, \dots, n.$

Modal multinominal (Modal categorical):

$$\begin{array}{l} \mathsf{Y}_{ij} = \{m_{ijk}, \, p_{ijk}; \, k = 1, \dots, s_i\}, \ \sum_{k=1}^{s_i} p_{ijk} = 1, \\ \text{with } m_{ijk} \in \mathcal{O}_j = \{m_{j1}, \dots, m_{js}\}, \, j = 1, \dots, p \ i = 1, \dots, n. \\ (\mathsf{Take} \ s_i = s, \, \mathsf{wlg.}) \end{array}$$

Multi-valued (non-modal):

$$Y_{ij} = \{m_{ijk}, k = 1, \dots, s_i\}, \text{ i.e., } p_{ijk} = 1/s \text{ or } 0, \\ \text{with } m_{ijk} \in \mathcal{O}_j, j = 1, \dots, p, i = 1, \dots, n.$$

Intervals:

$$\mathbf{Y}_i = ([a_{i1}, b_{i1}], \dots, [a_{ip}, b_{ip}]),$$

with $a_{ij}, b_{ij} \in \mathcal{R}_j, \ j = 1, \dots, p, \ i = 1, \dots, n.$

Nominal (classical categorical):

Special case of modal multinominal with $s_i = 1$, $p_1 = 1$; write

$$Y_{ij} \equiv m_{ij1} = \delta_{ij}, \ \delta_{ij} \in \mathcal{O}_j.$$

Classical continuous variable:

Special case of interval with $a_{ij} = [a_{ij}, a_{ij}]$ for $a_{ij} \in \mathcal{R}_j$.

(日)、

- < ∃ >

3

STREE Algorithm

Have at r^{th} stage the partition $P_r = (C_1, \ldots, C_r)$

Discrimination criterion: D(N) - explains partition of node N as in CART analysis Homogeneity criterion: H(N) - inertia associated with explanatory variables as in pure hierarchy tree analysis

We take the mixture, for $\alpha > 0, \ \beta > 0$,

$$I = \alpha D(N) + \beta H(N)$$
 with $\alpha + \beta = 1$.

The D(N) is taken as the Gini measure (as in CART)

$$D(N) = \sum_{i \neq f} p_i p_f = 1 - \sum_{i=1,\dots,r} p_i^2$$

with $p_i = n_i/n$, $n_i = card(N \cap C_i)$, n = card(N); the H(N) is

$$H(N) = \sum_{\omega_{i_1} \in \Omega} \sum_{\omega_{i_2} \in \Omega} \frac{p_{i_1} p_{i_2}}{2\mu} d^2(\omega_{i_1}, \omega_{i_2})$$

where $d(\omega_{i_1}, \omega_{i_2})$ is a distance measure between ω_{i_1} and ω_{i_2} , p_i is the weight associated with ω_i and $\mu = \sum_{i=1}^{N} p_i$.

イロン 不同と 不同と 不同とう

STREE Algorithm

Have at r^{th} stage the partition $P_r = (C_1, \ldots, C_r)$

Discrimination criterion: D(N) - explains partition of node N as in CART analysis Homogeneity criterion: H(N) - inertia associated with explanatory variables as in pure hierarchy tree analysis

We take the mixture, for $\alpha > 0, \ \beta > 0$,

$$I = \alpha D(N) + \beta H(N)$$
 with $\alpha + \beta = 1$.

The D(N) is taken as the Gini measure (as in CART)

$$D(N) = \sum_{i \neq f} p_i p_f = 1 - \sum_{i=1,\ldots,r} p_i^2$$

with $p_i = n_i/n$, $n_i = card(N \cap C_i)$, n = card(N); the H(N) is

$$H(N) = \sum_{\omega_{i_1} \in \Omega} \sum_{\omega_{i_2} \in \Omega} \frac{p_{i_1} p_{i_2}}{2\mu} d^2(\omega_{i_1}, \omega_{i_2})$$

where $d(\omega_{i_1}, \omega_{i_2})$ is a distance measure between ω_{i_1} and ω_{i_2} , p_i is the weight associated with ω_i and $\mu = \sum_{i=1}^{N} p_i$.

Select the partition $C = \{C_1, C_2\}$ for which the reduction in I is greatest; i.e., maximize $\Delta I = I(C) - I(C_1, C_2)$.

イロト 不得下 不足下 不足下 一日

Decision Tree - Distance Measures

The homogeneity criterion H(N)

$$H(N) = \sum_{\omega_{i_1} \in \Omega} \sum_{\omega_{i_2} \in \Omega} \frac{p_{i_1} p_{i_2}}{2\mu} d^2(\omega_{i_1}, \omega_{i_2})$$

where $d(\omega_{i_1}, \omega_{i_2})$ is a distance measure between ω_{i_1} and ω_{i_2} , p_i is the weight associated with ω_i and $\mu = \sum_{i=1}^N p_i$.

∢ ≣ ≯

э

Decision Tree - Distance Measures

The homogeneity criterion H(N)

$$H(N) = \sum_{\omega_{i_1} \in \Omega} \sum_{\omega_{i_2} \in \Omega} \frac{p_{i_1} p_{i_2}}{2\mu} d^2(\omega_{i_1}, \omega_{i_2})$$

where $d(\omega_{i_1}, \omega_{i_2})$ is a distance measure between ω_{i_1} and ω_{i_2} , p_i is the weight associated with ω_i and $\mu = \sum_{i=1}^{N} p_i$. The STREE algorithm uses

Modal categorical variables - L_1 distance: $d_j(\omega_{i_1}, \omega_{i_2}) = \sum_{k \in \mathcal{O}} |p_{i_1jk} - p_{i_2jk}|;$ or, L_2 distance: $d_j(\omega_{i_1}, \omega_{i_2}) = \sum_{k \in \mathcal{O}} (p_{i_1jk} - p_{i_2jk})^2$ Interval variables - Hausdorff distance: $d_j(\omega_{i_1}, \omega_{i_2}) = \max(|a_{i_1j} - a_{i_2j}|, |b_{i_1j} - b_{i_2j}|)$ Classical categorical variables - (0, 1) distance: $d_j(\omega_{i_1}, \omega_{i_2}) = \begin{cases} 0, & \text{if } m_{i_1j} = m_{i_2j} \\ 1, & \text{if } m_{i_1j} \neq m_{i_2j} \end{cases}$ Classical categorical variables - U, 1) distance: $d_j(\omega_{i_1}, \omega_{i_2}) = \begin{cases} 0, & \text{if } m_{i_1j} = m_{i_2j} \\ 1, & \text{if } m_{i_1j} \neq m_{i_2j} \end{cases}$

Classical continuous variables - Euclidean distance: $d_i(\omega_i, \omega_b) = (a_{i,i} - a_{i,j})^2$

Decision Tree - Distance Measures

The homogeneity criterion H(N)

$$H(N) = \sum_{\omega_{i_1} \in \Omega} \sum_{\omega_{i_2} \in \Omega} \frac{p_{i_1} p_{i_2}}{2\mu} d^2(\omega_{i_1}, \omega_{i_2})$$

where $d(\omega_{i_1}, \omega_{i_2})$ is a distance measure between ω_{i_1} and ω_{i_2} , p_i is the weight associated with ω_i and $\mu = \sum_{i=1}^{N} p_i$. The STREE algorithm uses

Hence,

$$d(\omega_{i_1}, \omega_{i_2}) = \sum_{j=1}^{p} d_j(\omega_{i_1}, \omega_{i_2}).$$

First: For each k in turn, order p_{ijk} from smallest to largest.

There are $L_k \leq n$ distinct values of $p_{jkr}, r = 1, \ldots, L_k$.

Then, cut point for this modality (m_{jk}) is the probability $c_{jkr} = (p_{jkr} + p_{jk,r+1})/2, r = 1, \dots, L_k - 1, k = 1, \dots, s.$

There are $\sum_{k=1}^{s} (L_k - 1)$ possible partitions for each *j*.

(4 回) (4 回) (4 回)

3

First: For each k in turn, order p_{ijk} from smallest to largest.

There are $L_k \leq n$ distinct values of $p_{jkr}, r = 1, \ldots, L_k$.

Then, cut point for this modality (m_{jk}) is the probability $c_{jkr} = (p_{jkr} + p_{jk,r+1})/2, r = 1, \dots, L_k - 1, k = 1, \dots, s.$

There are $\sum_{k=1}^{s} (L_k - 1)$ possible partitions for each *j*.

Similarly, take pairs (m_{ijk_1}, m_{ijk_2}) with probability $(p_{ijk_1} + p_{ijk_2}) = p_{ijk_1k_2}$.

Repeat previous process using now these probabilities $p_{ijk_1k_2}$, for the $L_{k_1k_2}$ distinct probabilities among the s(s + 1)/2 possible pairs.

▲□▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ - ヨー のなべ

First: For each k in turn, order p_{ijk} from smallest to largest.

There are $L_k \leq n$ distinct values of $p_{jkr}, r = 1, \ldots, L_k$.

Then, cut point for this modality (m_{jk}) is the probability $c_{jkr} = (p_{jkr} + p_{jk,r+1})/2, r = 1, \dots, L_k - 1, k = 1, \dots, s.$

There are $\sum_{k=1}^{s} (L_k - 1)$ possible partitions for each *j*.

Similarly, take pairs (m_{ijk_1}, m_{ijk_2}) with probability $(p_{ijk_1} + p_{ijk_2}) = p_{ijk_1k_2}$.

Repeat previous process using now these probabilities $p_{ijk_1k_2}$, for the $L_{k_1k_2}$ distinct probabilities among the s(s + 1)/2 possible pairs.

Likewise, take sets of three, four,..., (s-1) of the s values of m_{ijk} , k = 1, ..., s in \mathcal{O}_i .

The total number of possible cuts points is *L*. It can be shown that $maxL = (n-1)\sum_{a=1}^{s-1} {s \choose a} = (n-1)2(2^{s-1}-1).$

▲ロト ▲圖 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - の Q ()

Cut points: Take IntervIs case – Recall $\mathbf{Y}_i = ([a_{i1}, b_{i1}], \dots, [a_{ip}, b_{ip}]),$ with $a_{ij}, b_{ij} \in \mathcal{R}_j, \ j = 1, \dots, p, \ i = 1, \dots, n.$

First: For each j, let $\mathcal{D}_j = \{d_{jr}, r = 1, ..., L\}$ be the set of $n a_{ij}$ and $n b_{ij}$ values, ordered from smallest to largest. Thus, e.g.,

$$d_{j1} = min_{i \in \Omega}(a_{ij}), \quad d_{jL} = min_{i \in \Omega}(b_{ij}), \quad j = 1, \dots, p.$$

There are $L \leq 2n$ distinct values of $d_{jr}, r = 1, \ldots, L$.

The cut points are

 $c_{jr} = (d_{jr} + d_{j,r+1})/2, r = 1, \dots, L$

< 🗇 🕨

< ∃ →

Fisher (1936): IRIS dataset -

150 observations, 50 for each species versicolor, virginica, setosa

 Y_1 = Sepal Length, Y_2 = Sepal Width, Y_3 = Petal Length, Y_4 = Petal Width

Decision Tree

Fisher (1936): IRIS dataset -

150 observations, 50 for each species setosa, versicolor, virginica

 $Y_1 =$ Sepal Length, $Y_2 =$ Sepal Width, $Y_3 =$ Petal Length, $Y_4 =$ Petal Width

Clustered into 30 sets of observations, by k-means clustering method

* 国家 * 国家

< □ > < 同 >

∃ 𝒫𝔅

Decision Tree

Fisher (1936): IRIS dataset -

150 observations, 50 for each species setosa, versicolor, virginica

 $Y_1 = \text{Sepal Length}, Y_2 = \text{Sepal Width}, Y_3 = \text{Petal Length}, Y_4 = \text{Petal Width}$

Clustered into 30 sets of observations, by k-means clustering method

Species ^a	Sepal	length	Sepal	width	Petal	length	Petal	width
{1, 1.0}	[4.8,	5.4]	[3.3,	3.8]	[1.5,	1.9]	[0.2,	0.6]
$\{1, 1.0\}$	[4.5,	4.5]	[2.3,	2.3]	[1.3,	1.3]	[0.3,	0.3]
{2,.9; 3,.1}	[4.9,	5.7]	[2.5,	3.0]	[4.1,	4.5]	[1.2,	1.7]
{2,1.0}	[6.2,	6.3]	[2.2,	2.3]	[4.4,	4.5]	[1.3,	1.5]
	Species ^a {1, 1.0} {1,1.0} {2,.9; 3,.1} {2,1.0}	Species ^a Sepal {1, 1.0} [4.8, {1,1.0} [4.5, {2,.9; 3,.1} [4.9, {2,1.0} [6.2,	Species ^a Sepal length {1, 1.0} [4.8, 5.4] {1,1.0} [4.5, 4.5] {2,.9; 3,.1} [4.9, 5.7] {2,1.0} [6.2, 6.3]	Species ^a Sepal length Sepal {1, 1.0} [4.8, 5.4] [3.3, 1] {1,1.0} [4.5, 4.5] [2.3, 1] {2,.9; 3,.1} [4.9, 5.7] [2.5, 6.3] {2,1.0} [6.2, 6.3] [2.2, 1.2]	Species ^a Sepal length Sepal width $\{1, 1.0\}$ $[4.8, 5.4]$ $[3.3, 3.8]$ $\{1,1.0\}$ $[4.5, 4.5]$ $[2.3, 2.3]$ $\{2,.9; 3,.1\}$ $[4.9, 5.7]$ $[2.5, 3.0]$ $\{2,1.0\}$ $[6.2, 6.3]$ $[2.2, 2.3]$	Species ^a Sepal length Sepal width Petal $\{1, 1.0\}$ $[4.8, 5.4]$ $[3.3, 3.8]$ $[1.5, -1.5]$ $\{1, 1.0\}$ $[4.5, 4.5]$ $[2.3, 2.3]$ $[1.3, -1.5]$ $\{2,.9, 3,.1\}$ $[4.9, 5.7]$ $[2.5, 3.0]$ $[4.1, -1.5]$ $\{2,1.0\}$ $[6.2, 6.3]$ $[2.2, 2.3]$ $[4.4, -1.5]$	Species ^a Sepal length Sepal width Petal length $\{1, 1.0\}$ $[4.8, 5.4]$ $[3.3, 3.8]$ $[1.5, 1.9]$ $\{1, 1.0\}$ $[4.5, 4.5]$ $[2.3, 2.3]$ $[1.3, 1.3]$ $\{2,.9, 3,.1\}$ $[4.9, 5.7]$ $[2.5, 3.0]$ $[4.1, 4.5]$ $\{2,1.0\}$ $[6.2, 6.3]$ $[2.2, 2.3]$ $[4.4, 4.5]$	Species ³ Sepal length Sepal width Petal length Petal {1, 1.0} [4.8, 5.4] [3.3, 3.8] [1.5, 1.9] [0.2, 1.1] {1,1.0} [4.5, 4.5] [2.3, 2.3] [1.3, 1.3] [0.3, 1.3] {2,.9; 3,.1} [4.9, 5.7] [2.5, 3.0] [4.1, 4.5] [1.2, 1.2] {2,1.0} [6.2, 6.3] [2.2, 2.3] [4.4, 4.5] [1.3, 1.3]

Table 1: Fisher's Iris Data as Intervals

^aSpecies identified by 1,2,3 for setosa, versicolor, virginica, respectively.

▲□▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ - ヨー のなべ

Decision Tree

Fisher (1936): IRIS dataset -

150 observations, 50 for each species setosa, versicolor, virginica

 $Y_1 =$ Sepal Length, $Y_2 =$ Sepal Width, $Y_3 =$ Petal Length, $Y_4 =$ Petal Width

Clustered into 30 sets of observations, by k-means clustering method

Concept	Species ^a	Sepal	length	Sepal	width	Petal	length	Petal	width
ω_1	$\{1, 1.0\}$	[4.8,	5.4]	[3.3,	3.8]	[1.5,	1.9]	[0.2,	0.6]
ω_4	{1,1.0}	[4.5,	4.5]	[2.3,	2.3]	[1.3,	1.3]	[0.3,	0.3]
		-		-		-		-	
ω_{12}	{2,.9; 3,.1}	[4.9,	5.7]	[2.5,	3.0]	[4.1,	4.5]	[1.2,	1.7]
		•		• •					
ω_{30}	{ 2 , 1 . 0 }	[6.2,	6.3]	[2.2,	2.3]	[4.4,	4.5]	[1.3,	1.5]

Table 1: Fisher's Iris Data as Intervals

^aSpecies identified by 1,2,3 for *setosa*, *versicolor*, *virginica*, respectively.

Species – modal categorical data: $Y_u = \{y_k, p_k; k = 1, \dots, s_u\}, u = 1, \dots, m$ Y_1, Y_2, Y_3, Y_4 – interval data: $Y_{uj} = [a_{uj}, b_{uj}], j = 1, \dots, p, u = 1, \dots, m$

▲□▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ - ヨー のなべ

Pure Decision Tree on 30 IRIS intervals: $\alpha = 0$

イロト イポト イヨト イヨト

э

Pure CART Tree on original 150 IRIS observations: $\alpha = 0$

イロト イポト イヨト イヨト

э

Pure DIV Tree on 30 IRIS intervals: $\alpha = 1$

イロト イポト イヨト イヨト

Pure DIV Tree on original 150 IRIS observations: $\alpha = 1$

イロト イポト イヨト イヨト

Trees on 30 IRIS intervals:

Pure Decision Tree: $\alpha = 0$

Pure DIV Tree: $\alpha = 1$

イロン イ団と イヨン イヨン

Trees on original 150 IRIS observations:

Pure Decision Tree: $\alpha = 0$

イロン イ団と イヨン イヨン

æ

Pure DIV Tree: $\alpha = 1$

Comparison of STREE and CART Algorithms Randomly divided 150 observations into

Training subset (size n_1), and

Test subset (size n_2), with

 $n_1 + n_2 = n = 150$

Several sets of (n_1, n_2)

1. For CART:

Run CART algorithm on the n_1 observations in Training subset

1. For STREE:

First find 30 clusters from the n_1 observations in Training subset Run decision tree analysis ($\alpha = 0$) on the 30 clusters

- 2. Test tree on the n_1 observations in Test subset
- 3. Obtain number of misclassifications
- 4. Repeat 10 times for each (n_1, n_2)
- 5. Calculate average number of misclassifications for each (n_1, n_2) and for each Algorithm

< ∃ →

Comparison of STREE and CART Average Misclassifications for Test subsets (n₂)

 $n_1 = \text{Size of Training subset}, \quad n_2 = \text{Size of Test subset}$

\sim Merci Bien \sim

< /□ > < Ξ

∢ ≣ ≯

\sim Merci Bien \sim \sim Thank You \sim

Partial support from National Science Foundation gratefully acknowledged

∃ ⊳