Two kurtosis measures in a simulation study

Anna Maria Fiori

Department of Quantitative Methods for

Economics and Business Sciences

University of Milano-Bicocca

anna.fiori@unimib.it

CNAM, Paris

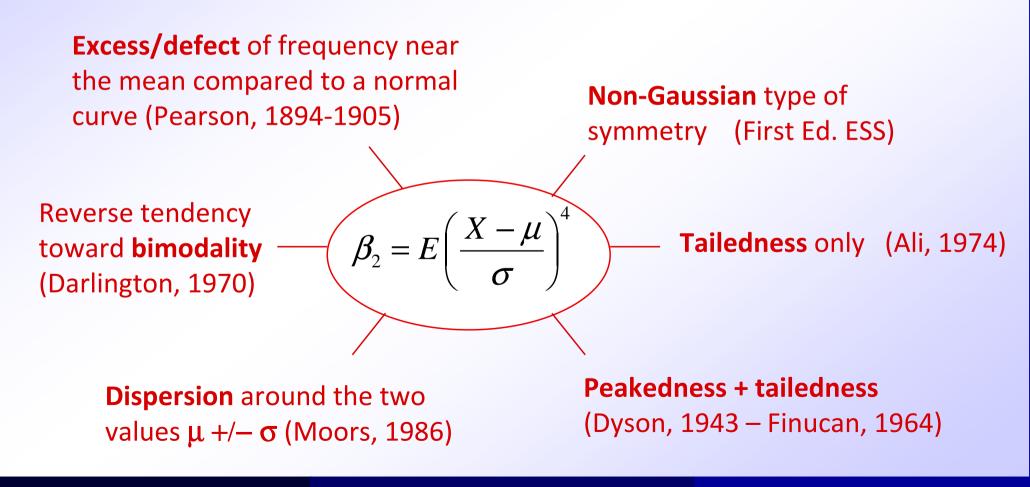
COMPSTAT 2010

August 23, 2010

- The IF (SIF) and its role in kurtosis studies
- From inequality (Lorenz) ordering to right/left kurtosis measures
- Two kurtosis measures: SIF comparison / numerical experiments

Background

From Pearson (1905) onwards statistics textbooks have defined kurtosis operationally as **the characteristic of a distribution measured by its standardized fourth moment**. However...



```
Anna M. Fiori
```

Two kurtosis measures...

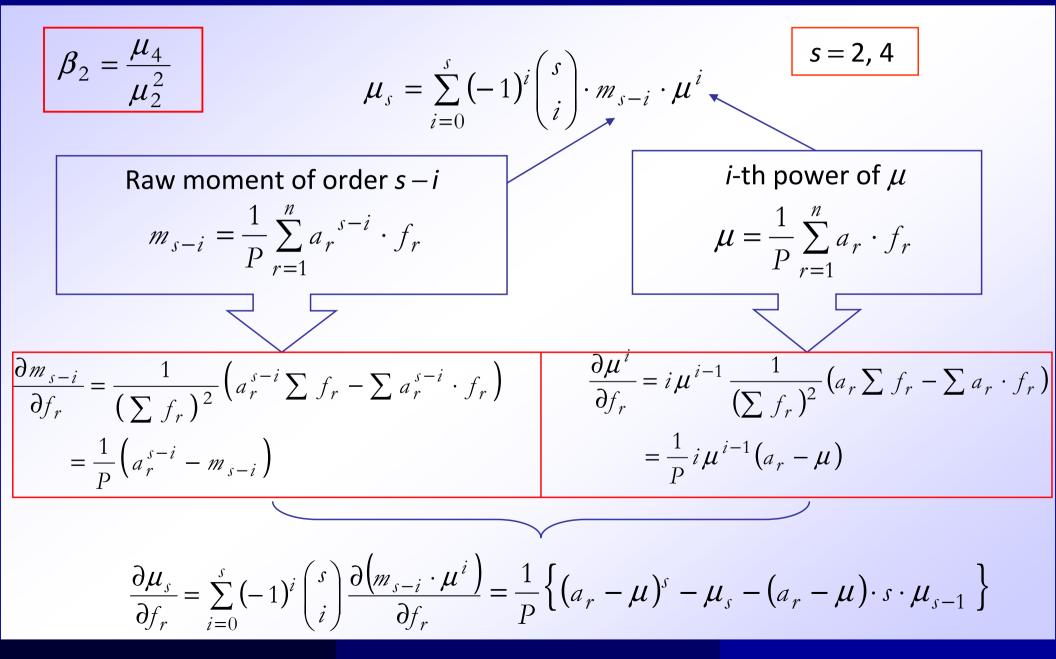
Kurtosis and the IF An early intuition of L. Faleschini

	Faleschini <i>(Statistica,</i> 1948)	Hampel (1968) – Ruppert (1987)				
Background & method	• Take a frequency distribution: $\{a_r, f_r; \Sigma f_r = P\}$	• Consider a probability distribution <i>F</i> and the functional $\beta_2 = \beta_2(F)$				
	 "To investigate the behaviour of β₂ when a frequency f_r is altered, we compute the partial 	 "How does β₂ change if we throw in an additional observation at some point x?" 				
	derivative of β_2 wrt f_r''	• Contaminated distribution: $F_{\varepsilon} = (1 - \varepsilon) F + \varepsilon \delta_{x}$ (0 < ε < 1)				
result	$\frac{\partial \beta_2}{\partial f_r} = \frac{1}{P} \left[\left(\chi_r^2 - \beta_2 \right)^2 - \beta_2 (\beta_2 - 1) - 4\gamma_1 \chi_r \right]$	$IF_{\beta_2,F}(x) = \lim_{\varepsilon \downarrow 0} \frac{\beta_2(F_{\varepsilon}) - \beta_2(F)}{\varepsilon}$				
Main re	where: $\chi_r = \frac{a_r - \mu}{\sigma}; \gamma_1 = \frac{\mu_3}{\sigma^3}$	$= (\chi^2 - \beta_2)^2 - \beta_2 (\beta_2 - 1) - 4\gamma_1 \chi$ with: $\chi = \frac{x - \mu}{\sigma}$				

Anna M. Fiori

Two kurtosis measures...

Kurtosis and the IF Faleschini's derivative – computational details

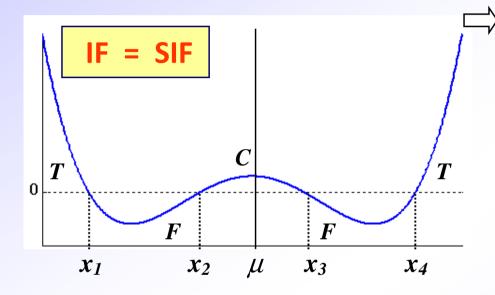


Anna M. Fiori

Two kurtosis measures...

Kurtosis and the IF Kurtosis explained

In the symmetric case:
$$IF(x; F, \beta_2) = (z^2 - \beta_2)^2 - \beta_2(\beta_2 - 1)$$



KURTOSIS = peakedness + tailedness but β_2 is dominated by tailweight Quartic function with four real roots:

$$x_{1,2,3,4} = \mu \pm \sigma \sqrt{\beta_2 \pm \sqrt{\beta_2 (\beta_2 - 1)}}$$

Unbounded Local maximum: β_2 at $x = \mu$ Minima: $\beta_2 (1 - \beta_2)$ at $x = \mu \pm \sigma \sqrt{\beta_2}$

This IF suggests that β_2 is likely to be overestimated by sample kurtosis for x distant from μ , but underestimated at intermediate values of x

Anna M. Fiori

Two kurtosis measures...

Kurtosis and the IF The normal case and sample kurtosis

$$\frac{\partial \beta_2}{\partial f_r} = \frac{1}{P} \left[(z_r^2 - 3)^2 - 6 \right] = \frac{1}{P} \left[\left(\frac{a_r - \mu}{\sigma} \right)^4 - 6 \left(\frac{a_r - \mu}{\sigma} \right)^2 + 3 \right]$$
 <- IF = SIF
Assuming the normality of $\hat{\beta}_{2n}$ for
large *n*, one can use the value $\beta_2 = 3$
to estimate the probability that *x* (*a_r*)
lies in intervals where IF(*x*; β_2) is
positive or negative.
Roots of the quartic:
 $a_r^{(1)} = \mu - 2,334\sigma$ $a_r^{(3)} = \mu + 0,742\sigma$
 $a_r^{(2)} = \mu - 0,742\sigma$ $a_r^{(4)} = \mu + 2,334\sigma$

COMPSTAT 2010

Anna M. Fiori

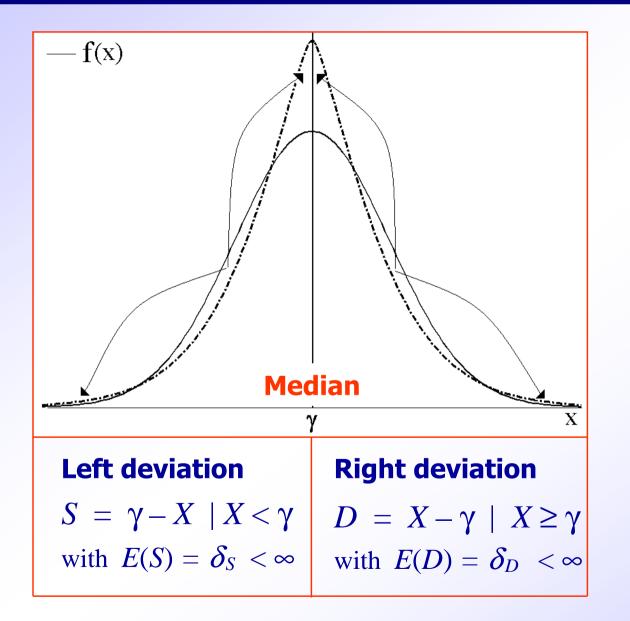
Kurtosis and the IF The normal case and sample kurtosis

$$\frac{\partial \beta_2}{\partial f_r} = \frac{1}{P} \left[(z_r^2 - 3)^2 - 6 \right] = \frac{1}{P} \left[\left(\frac{a_r - \mu}{\sigma} \right)^4 - 6 \left(\frac{a_r - \mu}{\sigma} \right)^2 + 3 \right] \\ \hline \text{There are two intervals (flanks) of substantial probability (22% each) in which the IF has relatively large negative values (minimum = - 6) \\ \hline \text{These possibly correspond to smaller values of sample kurtosis} \\ \hline \text{-S Consistent with underestimation of } \beta_2 \text{ by sample kurtosis (on average) and undercoverage of confidence intervals for } \beta_2 \\ \hline \text{Model of }$$

COMPSTAT 2010

Anna M. Fiori

Kurtosis by inequality Zenga (ESS, 2006); Fiori (Comm. Statist., 2008)



Separate analysis of D and S:

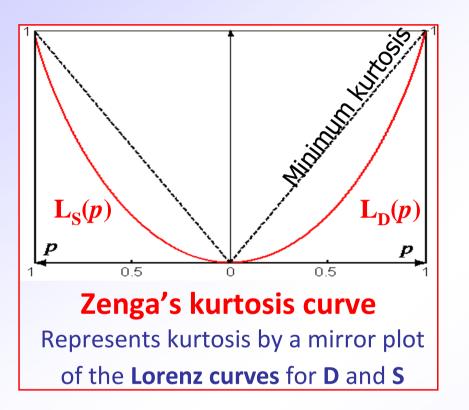
Kurtosis-increasing transformations

Non-egalitarian transfers on D and S for fixed γ , $\delta_{\rm D}$, $\delta_{\rm S}$

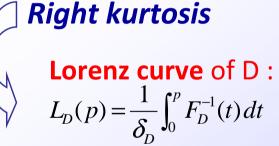
Anna M. Fiori

Two kurtosis measures...

Kurtosis by inequality Zenga's kurtosis ordering (ESS, 2006)



Left kurtosis Lorenz curve of S : $L_{S}(p) = \frac{1}{\delta_{S}} \int_{0}^{p} F_{S}^{-1}(t) dt$

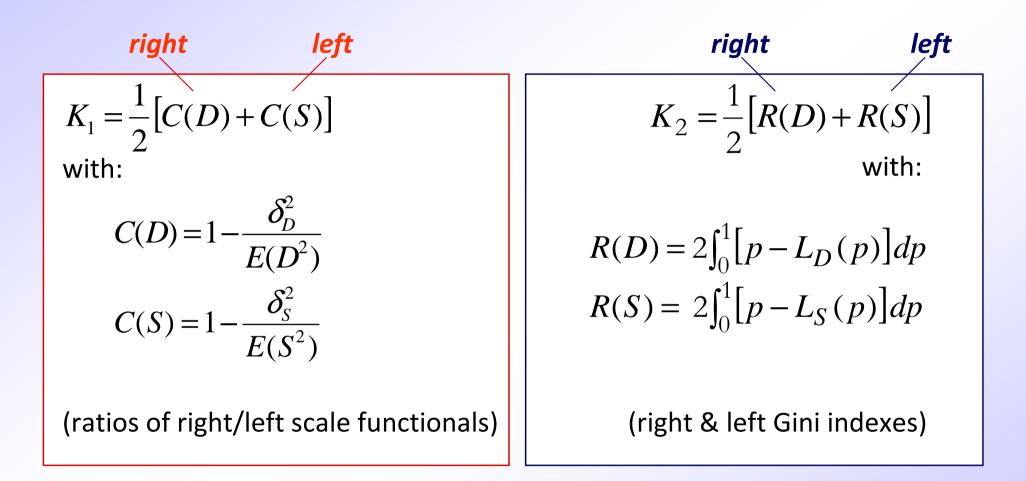


- Unified treatment of symmetric and asymmetric distributions
- Kurtosis ordering defined via nested Lorenz curves
- Liu, Parelius and Singh (Ann. Statist., 1999) in a multivariate setting

Anna M. Fiori

Two kurtosis measures...

Kurtosis by inequality Zenga's kurtosis measures (ESS, 2006)



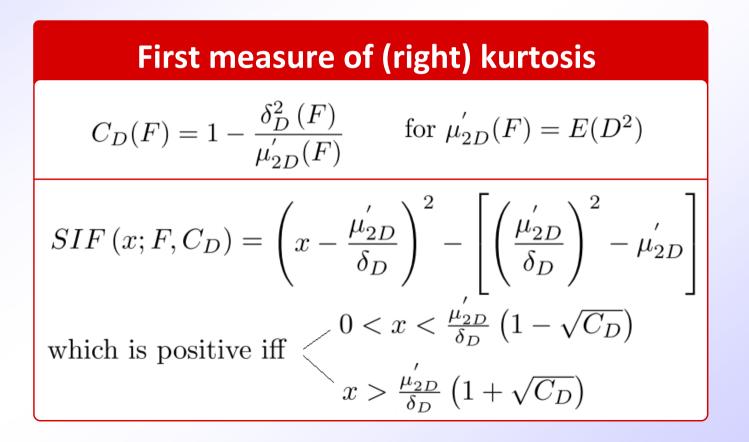
Normalized measures, with values between 0 (minimum kurtosis) and 1 (maximum kurtosis)

Anna M. Fiori

Two kurtosis measures...

Kurtosis measures A look at the SIF

- Symmetric distribution ($\gamma = 0$): $F_{\varepsilon} = (1 \varepsilon) F + \varepsilon G$ for $0 \le \varepsilon \le 1$ Symmetric contaminant (Ruppert, 1987): $= 0.5 (\delta_x + \delta_{-x})$
- Symmetric contaminant (Ruppert, 1987):



Anna M. Fiori

Two kurtosis measures...

Second measure of (right) kurtosis

$$R_D(F) = \frac{\Delta_D(F)}{2\delta_D(F)}$$

where $\Delta(F)$ stands for the Gini mean difference: $\Delta(F) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |x - y| \, dF(x) \, dF(y)$

$$SIF(x; F, R_D) = \frac{1}{\delta_D} \left[\delta_{D,x} - R_D \left(x + \delta_D \right) \right]$$

where $\delta_{D,x}(F) = E \left[|X - x| \mid X > 0 \right]$

Anna M. Fiori

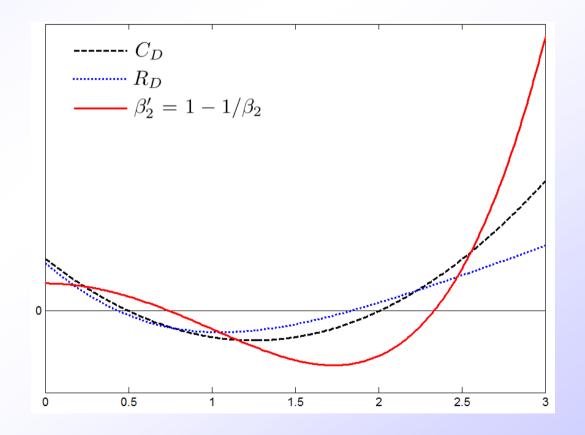
Two kurtosis measures...

All the measures are increased by contamination in the tails and at the center and are decreased by contamination in the shoulders/flanks.

Having unbounded SIF, they are sensitive to the location of tail outliers as well as their frequency. However, conventional kurtosis is much more sensitive (quartic SIF).

The magnitude of *min SIF* is considerably larger for conventional kurtosis.

Anna M. Fiori

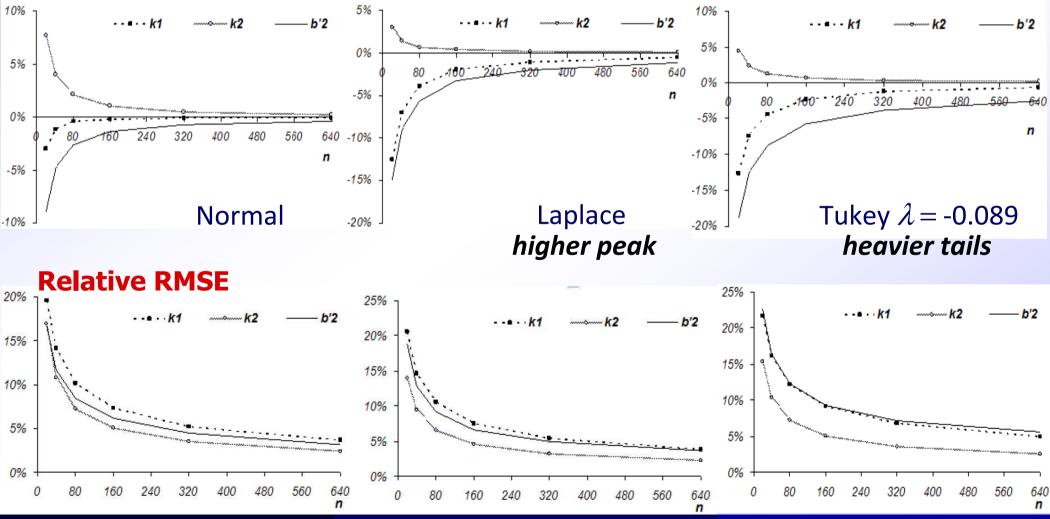


Two kurtosis measures...

Kurtosis measures Monte Carlo experiment (N = 20,000; n = 20 to 640)

 $\begin{array}{|c|c|c|c|c|c|} \hline {\bf Distribution} & {\bf K}_1 & {\bf K}_2 & \beta_2' \\ \hline {\rm Normal} & 0.3634 & 0.4142 & 0.6667 \\ \hline {\rm Laplace} & 0.5 & 0.5 & 0.8333 \\ \hline {\rm Tukey\ lambda} & 0.4614 & 0.4638 & 0.8418 \\ \end{array}$

Relative bias



Anna M. Fiori

Two kurtosis measures...

 K_2

0.1848

0.2591

Bootstrap confidence intervals at 95% level (percentile method) B = 2,000 bootstrap resamples; N = 10,000 replications

				n = 40			n = 160		
Empirical	\sim		Normal	Laplace	Lambda	Normal	Laplace	Lambda	
Empirical	\rightarrow	K_1	0.9879	0.8420	0.8561	0.9700	0.8702	0.8710	
coverage		K_2	0.9877	0.9770	0.9903	0.9760	0.9620	0.9597	
		β_2'	0.8825	0.5500	0.3573	0.8810	0.6520	0.4760	
r	~		n = 40			n = 160			
A			Normal	Laplace	Lambda	Normal	Laplace	Lambda	
Average	\rightarrow	K_1	0.2112	0.2302	0.2300	0.1036	0.1278	0.1331	

0.0826

0.1363

0.0899

0.1416

0.1914

0.2756

 \succ K₂ is the measure which is likely to be estimated with the highest accuracy

0.1901

0.2608

The sample performance of K₂ improves as the parent distribution becomes more peaked (Laplace)

Anna M. Fiori

length

Two kurtosis measures...

0.0914

0.1611

- Rigorous asymptotic inference for the new measure K₂, possibly in view of practical (financial?) applications of right/left kurtosis
- Check compatibility between the inequality-based concept of kurtosis and some robust (e.g. quantile-based) measures recently proposed in literature (Groeneveld, 1998; Schmid & Trede, 2003; Brys, Hubert & Struyf, 2006; Kotz & Seier, 2007; ...)

Two kurtosis measures in a simulation study

Anna Maria Fiori

Department of Quantitative Methods for

Economics and Business Sciences

University of Milano-Bicocca

anna.fiori@unimib.it

COMPSTAT 2010

August 23, 2010

CNAM, Paris