

Evaluation of DNA Mixtures Accounting for Sampling Variability

Yuk-Ka Chung Dept. of Statistics and Actuarial Science University of Hong Kong yukchung@hku.hk

Joint work: Y. Q. Hu, D. G. Zhu, W. K. Fung

Outline

- Bayesian model
- Example
- Conclusion and future works

DNA Profile

• Set of numbers representing the genetic characteristics of an individual

D19S433	vWA	ΤΡΟΧ
13 / 14	14 / 17	11 / 11
D18S51	D5S818	FGA
13 / 16	10 / 11	23.2 / 25

- Crime stain M
- Reference samples K
 - = (V, S)
 - Victim V, Suspect S
- Evidentiary value

$$LR = \frac{P(M, K | H_p)}{P(M, K | H_d)} = \frac{P(M | K, H_p)}{P(M | K, H_d)}$$

Rape case in HK

Locus	Mixture	Victim	Suspect	Frequency
D5S818	7		7	0.035
	10	10		0.252
	13	13		0.165

 H_p : the victim and the suspect were contributors $P(M \mid K, H_p) = 1$

Rape case in HK

Locus	Mixture	Victim	Suspect	Frequency
D5S818	7		7	0.035
	10	10		0.252
	13	13		0.165

 H_d : the victim and one unknown were contributors

$$P(M | K, H_d) = p_7^2 + 2p_7 p_{10} + 2p_7 p_{13} = 0.0306$$

Rape case in HK

Locus	Mixture	Victim	Suspect	Frequency	
D5S818	7		7	0.035	Estimated
	10	10		0.252	
	13	13		0.165	J database D

 H_{p} : the victim and the suspect were contributors

 H_d : the victim and one unknown were contributors

$$LR = \frac{1}{0.0306} = 32.7$$

Rape case in HK

Locus	Mixture	Victim	Suspect	Frequency
D5S818	7		7	0.050
	10	10		0.252
	13	13		0.165

 H_p : the victim and the suspect were contributors

 H_d : the victim and one unknown were contributors

$$LR = \frac{1}{0.0442} = 22.6$$

31% reduction

Sampling Variability

- Underestimate the allele frequencies
- "Overstate the strength of the evidence against the defendant" (Balding, 1995)
- Bayesian approaches on identification cases
 - Balding (1995)
 - Balding & Donnelly (1995)
 - Foreman *et al*. (1997)
 - Curran et al. (2002)
 - Corradi et al. (2003)

- Database D with n individuals
- Reference samples (*K*, *D*)
- Evidential value

$$LR = \frac{P(M, K, D | H_p)}{P(M, K, D | H_d)}$$

- Allele frequencies $x_{\theta} = (x_{\theta,1}, x_{\theta,2}, ..., x_{\theta,l})$
- Dirichlet prior $Dir(x_{\theta} | \alpha)$

$$P(M, K, D | H) = \int_{\chi_{\theta}} P(M, K, D | x_{\theta}, H) Dir(x_{\theta} | \alpha) dx_{\theta}$$
$$= \int_{\chi_{\theta}} P(M | x_{\theta}, K, H) P(K, D | x_{\theta}) Dir(x_{\theta} | \alpha) dx_{\theta}$$
Probability by "plug-in" approach Product multinomial

Rape case in HK

Locus	Mixture	Victim	Suspect	Frequency in D
D5S818	7		7	n ₇
	10	10		<i>n</i> ₁₀
	13	13		n ₁₃

 H_p : the victim and the suspect were contributors

 H_d : the victim and one unknown were contributors

$$\alpha = (1 \quad 1 \quad \dots \quad 1)'$$

$$LR = \frac{(12+2n)(13+2n)}{(3+n_7)(12+n_7+2n_{10}+2n_{13})}$$

Rape case in HK

	Frequency in D	Suspect	Victim	Mixture	Locus
	20	7		7	D5S818
<i>n</i> = 284	143		10	10	
	94		13	13	

 H_p : the victim and the suspect were contributors H_d : the victim and one unknown were contributors

$$LR = 28.96$$

Rape case in HK

	Frequency in D	Suspect	Victim	Mixture	Locus
	70	7		7	D5S818
<i>n</i> = 100	504		10	10	
	331		13	13	

 H_p : the victim and the suspect were contributors H_d : the victim and one unknown were contributors

$$LR = 31.58 \longrightarrow 32.7$$

"plug-in" probability P(M | x_θ, K, H) as a linear combination of the Q-function (Fung & Hu, 2008)

$$Q(j, B \mid x_{\theta}) = \sum_{M \setminus B \subset C \subset M} (-1)^{|M \setminus C|} \left(\sum_{i \in C} x_{\theta, i}\right)^{J}$$

 Probability of *j* random alleles that all belong to *M* and explain all alleles in *B*

$$P(B \subset X \subset M)$$

4

- $M = \{ 7, 10, 13 \}, V = \{ 10, 13 \}, S = \{ 7, 7 \}$
- H_d : V and one unknown were contributors

$$P(M \mid x_{\theta}, K, H_d) = Q(2, \{7\})$$

• $H_{d'}$: V and one relative of S were contributors

$$P(M | x_{\theta}, K, H_{d'}) = k_0 Q(2, \{7\}) + 2k_1 Q(1, \phi) + k_2 Q(0, \phi)$$

 k_i : Kinship coefficients

- Suspect is typed but prosecution involves a close relative
- Suspect may be unavailable for typing and a close relative is typed
- *H* : the victim, one relative *R* of a typed person *T* and other x 1 unknowns were contributors

- *H* : the victim, one relative *R* of $T = t_1 t_2$ and other x - 1 unknowns were contributors
- U set of alleles in *M* but absent in known contributors declared in *H*

$$P(M | x_{\theta}, K, H) = k_0 Q(2x, U) + k_1 I_M(t_1) Q(2x - 1, U \setminus \{t_1\}) + k_1 I_M(t_2) Q(2x - 1, U \setminus \{t_2\}) + k_2 I_M(t_1) I_M(t_2) Q(2x - 2, U \setminus \{t_1, t_2\})$$

Modified Q-function

 $P(M, K, D \mid H) = \int_{\mathcal{X}_{\theta}} P(M \mid x_{\theta}, K, H) P(K, D \mid x_{\theta}) Dir(x_{\theta} \mid \alpha) dx_{\theta}$

$$Q^*(j,B) = \int_{\chi_{\theta}} Q(j,B \mid x_{\theta}) P(K,D \mid x_{\theta}) Dir(x_{\theta} \mid \alpha) dx_{\theta}$$

Replacing Q(.,.|x_θ) in P(M | x_θ, K, H) by Q*(.,.) gives P(M, D, K | H)

Modified Q-function

$$Q^*(j,B) \propto \frac{\Gamma(\alpha_{\bullet} + 2k + 2n)}{\Gamma(\alpha_{\bullet} + 2k + 2n + j)} \sum_{M \setminus B \subset C \subset M} (-1)^{|M \setminus C|} \frac{\Gamma(\alpha_C + n_{C,K \cup D} + j)}{\Gamma(\alpha_C + n_{C,K \cup D})}$$

$$\frac{\Gamma(r+j)}{\Gamma(r)} = r(r+1)\cdots(r+j-1)$$

- Closed-form formula
- Easy to be implemented by computer program
- No simulation or approximation is need
- Does not increase computational complexity

Numerical Example

Rape case in HK

Locus	Mixture	Victim	Suspect	Frequency
FGA	18		18	0.025
	19		19	0.065
	24	24		0.166
	26	26		0.048
D5S818	7		7	0.035
	10	10		0.252
	13	13		0.165
D8S1179	12	12		0.118
	16		16	0.098

Numerical Example

- H_p : the victim and the suspect were contributors
- H_d : the victim and one unknown were contributors
- $H_{d'}$: the victim and a relative of the suspect were contributors
- Illustration: hypothetical database D with fixed allele frequencies and different sample sizes

LR of H_p : the victim and the suspect are contributors vs H_d : the victim and one unknown are contributors

Summary

- Bayesian approach provides conservative evaluation of DNA mixtures
- Can be implemented efficiently by modifying existing plug-in formulae
- Incorporate subpopulation models to handle cases involving different ethnic groups
- Consideration of allele drop-out

Thank You!