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We aim at presenting the most standard approaches to the approximation of Bayes factors.
The Bayes factor is a fundamental procedure that stands at the core of the Bayesian theory of
testing hypotheses, at least in the approach advocated by both Jeffreys (1939) and by Jaynes
(2003). Given an hypothesis H0 : θ ∈ Θ0 on the parameter θ ∈ Θ of a statistical model, with
density f(y|θ), under a compatible prior of the form

π(Θ0)π0(θ) + π(Θc
0)π1(θ) ,

the Bayes factor is defined as the posterior odds to prior odds ratio, namely

B01(y) =
π(Θ0|y)
π(Θc

0|y)

/
π(Θ0)
π(Θc

0)
=
∫

Θ0

f(y|θ)π0(θ)dθ
/∫

Θc
0

f(y|θ)π1(θ)dθ .

Model choice can be considered from a similar perspective, since, under the Bayesian paradigm
(see, e.g., Robert 2001), the comparison of models

Mi : y ∼ fi(y|θi), θi ∼ πi(θi), θi ∈ Θi, i ∈ I ,

where the family I can be finite or infinite, leads to posterior probabilities of the models under
comparison such that

P (M = Mi|y) ∝ pi

∫
Θi

fi(y|θi)πi(θi)dθi ,

where pi = P(M = Mi) is the prior probability of model Mi.
We consider some of the most common Monte Carlo solutions used to approximate a

generic Bayes factor or its fundamental component, the evidence

mi =
∫

Θi

πi(θi)fi(y|θi) dθi ,

aka the marginal likelihood. Longer entries can be found in Carlin and Chib (1995), Chen
et al. (2000), Robert and Casella (2004), or Friel and Pettitt (2008). We only briefly mention
trans-dimensional methods issued from the revolutionary paper of Green (1995), since our goal
is to demonstrate that within-model simulation methods allow for the computation of Bayes
factors and thus avoids the additional complexity involved in trans-dimensional methods.

Our focus is on methods that are based on importance sampling strategies, including:
crude Monte Carlo, MLE based importance sampling, bridge and harmonic mean sampling
(Gelman and Meng 1998), as well as Chib’s method based on the exploitation of a functional
equality (Chib 1995). We demonstrate how all these methods can be efficiently implemented
for testing the significance of a predictive variable in a probit model (Albert and Chib 1993).
We compare their performances on a real dataset.
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Plan of the tutorial:

• Introduction on Bayesian model choice

• The Pima Indian benchmark model

• The basic Monte Carlo solution

• Usual importance sampling approximations

• Bridge sampling methodology

• Harmonic mean approximations

• Exploiting functional equalities
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