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Abstract Methods based on kernel density estimation have been used in a wide
variety of real-world discrimination problems. This work reviews some classical
statistical methods that are frequently used in supervised learning: logistic regres-
sion, k-Nearest Neighbour, normal based linear and quadratic classifiers; and a non-
parametric one: the kernel classifier. Applications with real data sets are used to
compare the classification methods. Our results show that the kernel method out-
performs the classical approachs in many situations.
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1 Introduction

Consider data {x˜1, . . . , x˜n}, where x˜i ∈ Rp, i = 1, . . . , n, as a realization of a random
sample, and let an element of the set {fj(x˜), j = 1, . . . , J} be the density associated with
x˜i. Let πj, j = 1, . . . , J , be the classes’ prior probabilities, i.e. πj = P (x˜j ∈ Πj) where
Πj denotes the jth class. Then, using Bayes’ Theorem, the posterior probability of the
observation x˜i being from the jth class, is

P (x˜j ∈ Πj|x˜i = x˜) =
πjfj(x˜)∑J
j=1 πjfj(x˜)

.

According to Bayes’ formula, we allocate an observation to the class with highest
posterior probability:

x˜ is allocated to the class Πj if Πj = arg max
j∈{1,...,J}

πjfj(x˜).

Often the prior probabilities πj are known, or simply estimated using π̂j = nj/n,

j = 1, . . . , J , with
∑J

j=1 nj = n. Classical parametric approachs make assumptions about
the densities fj. Usually, the data is assumed to have a normal distribution, however, this
assumption is very restrictive. With non-parametric discriminant analysis we relax this
assumption and thus are able to tackle more complex cases.

The kernel approach for discrimination is to estimate the density fj of each class Πj

and allocate an observation according to the rule:

x˜ is allocated to the class Πj if Πj = arg max
j∈{1,...,J}

π̂j f̂j(x˜),
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where f̂j(x˜) is the kernel density estimate corresponding to the jth class.
The kernel density estimator of f at the point x˜ ∈ Rp is (see [1, 3] for further details)

f̂(x˜) = f̂(x˜; H) = n−1

n∑
i=1

KH(x˜− x˜i),

where the scale factor H is a symmetric positive definite p×p matrix called the smoothing
parameter or bandwidth matrix, and KH = |H|−1K(H−1x˜), where K : Rp → R is called
the kernel; usually K is a symmetric probability density function.

2 Numerical Results

In this section, we will present some numerical results with real and simulated data
sets. The real data set (labelled “salmon data”) obtained from [2] contains information
on growth ring diameters (freshwater and marine water) of 100 salmon fish coming from
Alaskan or Canadian water. A random sample (n = 50) was used as training sample and
the remaining observations were used as test sample. The simulated data set (labelled
“synthetic data”) is a two-class classification problem. We generate training and testing
samples, both with size n = 100, from normal mixture densities:
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The kernel discriminant (KD) was compared with the normal linear (LD) and quadratic
discriminants (QD). The misclassification rates are shown in the following table. The
results show that the kernel classifier have better performance than the other methods.

Table 1: Misclassification rates on test samples

Misclassification rate (%)
Discriminant salmon data synthetic data

LD 10 31
QD 10 35
KD 08 19

References

[1] Duong, T.: Bandwidth Selectors for Multivariate Kernel Density Estimation. PhD
Thesis, University of Western Australia, School od Mathematics and Statistics. (2004)

[2] Johnson, R. A. & Wichern, D. W.: Applied Multivariate Statistical Analysis. Prentice-
Hall, New York. (1998)

[3] Scott, D. W.: Multivariate Density Estimation: Theory, Practice, and Visualization.
John Wiley & Sons, New York. (1992)

Workshop Franco-Brasileiro sobre Mineração de Dados 24 Workshop Franco-Brésilien sur la fouille de données


