Eliciting GAI preference models with binary attributes aided by association rule mining

Sergio Queiroz - CIn/UFPE srmq@cin.ufpe.br

Why preferences?

Acting on behalf of a user...

Why preferences? (2)

- Simple goals aren't enough
 - They are rigid: do or die! (ex.: solve a puzzle)
- The world can be highly unknown
 - We can't know ahead of time if our ultimate goal is achievable
- So, what can we do?
 - We can go to the second best alternative
 - But what is "second best"?
 - And what if "second best" is infeasible?

How to do it?

- May be easy if there is a natural way to rank the alternatives
 - One objective with a natural order
 - Optimize cost, optimize quality
 - But, what about optimize both?
 - Adequate to very small sets of alternatives
 - Canarius Palace Hotel > Youth Hostel > A Bench at "Parque da Jaqueira"

But...

- Find the best vacation trip advertised in the web
 - Large space of alternatives
 - Lots of trip propositions advertised on the web
 - I don't want to view or compare all of them
 - Multiple objectives may be involved
 - Flight time, price, activities
 - Uncertainty about the feasible outcomes
 - Are there any offers for "one week in Tahiti" for under 200EUR out there?

Decisions in large spaces...

- Space of alternatives = Cartesian product
 - $X = X_1 \times X_2 \times ... \times X_n$ X_i finite domain of possible values
 - If each attribute domain has p values, size p^n
 - Represent preferences in extension needs a huge memory space
 - n = 10, p = 10 → 10 GB; n = 10, p = 20 → 10 TB
- Decision-making is very difficult (too many alternatives)

What we do...

- Take advantage of the structure of the preferences
 - Informally: User preferences have a lot of regularity (patterns) in terms of X
 - Formally: User preferences induce a significant amount of preferential independence over X
- Compact representations
- Benefits
 - Easier to elicit (construct) the model
 - Possibility to build efficient algorithms to exploit the model

Utility Functions

- Space of alternatives: $X = X_1 \times X_2 \times ... \times X_n$
- Appreciation (utility) of an alternative $x \in X$
 - $u: X \mapsto \mathbb{R}$

• Additive model
$$u(x) = \sum_{i=1}^{n} u_i(x_i)$$

- Simple and efficient: $p^n \rightarrow p \times n$
- Independence between attributes

I prefer to drink red wine when I eat steak but to drink white wine when I eat fish.

Utility Functions

- Space of alternatives: $X = X_1 \times X_2 \times ... \times X_n$
- Appreciation (utility) of an alternative $x \in X$
 - $u: X \mapsto \mathbb{R}$

• Additive model
$$u(x) = \sum_{i=1}^{n} u_i(x_i)$$

- Simple and efficient: $p^n \rightarrow p \times n$
- Independence between attributes

I prefer to drink red wine when I eat steak but to drink white wine when I eat fish.

Generalized Additive Independence (GAI)

• Definition (Fishburn, 70; Baccus and Groove 95)

•
$$X = X_1 \times X_2 \times ... \times X_n$$

• C_1 , ..., C_k subsets of $N = \{1, ..., n\}$ such as $N = \bigcup_{i=1}^k C_i$, $X_{C_i} = \{X_j : j \in C_i\}$; $u_i : X_{C_i} \to \mathbb{R}$

A GAI utility function over X can be written in the form:

$$u(x_1,...,x_n) = \sum_{i=1}^k u_i(x_{C_i})$$

Example:
$$u(x_1, x_2, x_3, x_4) = u_1(x_1) + u_2(x_2, x_3) + u_3(x_3, x_4)$$

A Big problem:

- How to elicit a GAI model
 - Construct the model by asking questions about the decision maker preferences
 - They should be simple
 - They should be in a small number
- Inter-dependencies between attributes
 - Elicitation of each utility subterm separately is impracticable

Some relief: GAI Networks

•
$$u(x_1, x_2, x_3, x_4) = u_1(x_1, x_2) + u_2(x_2, x_3) + u_3(x_2, x_4)$$

Ellipse = clique

Rectangle = separator

Some relief: GAI Networks

• $u(x_1, x_2, x_3, x_4) = u_1(x_1, x_2) + u_2(x_2, x_3) + u_3(x_2, x_4)$

Ellipse = clique

Rectangle = separator

Running intersection property:
For any pair of cliques (C₁, C₂ with nonempty intersection S,

Some relief: GAI Networks

•
$$u(x_1, x_2, x_3, x_4) = u_1(x_1, x_2) + u_2(x_2, x_3) + u_3(x_2, x_4)$$

Ellipse = clique

Rectangle = separator

- Running intersection property: For any pair of cliques (C_1, C_2) with nonempty intersection S, S is a subset of every clique and separator on the path between C_1 and C_2
- Junction trees: constraint/Bayesian network literature

Why Junction Trees to Represent GAI functions

- Algorithmic efficacy in choice, ranking
 - Family of variable elimination algorithms
- Also allows elicitation with local questions

Elicitation under Certainty with GAI Networks - Notions

Cliques ordered from exterior to interior ones

- Elicitation in three phases
 - Values given the instantiation of the separator
 - Intraclique
 - Intercliques

A problem that remains...

- What if the number of attributes is too high?
 - As even if they are all independent, I don't want to express my preferences over all of them
- Example
 - Visiting touristic sites in Paris
 - Binary attributes: touristic sites
 - ex.: Tour Eiffel, Musée du Louvre,...
 - (we found more than 200 of them)
 - Binary values: 0 (don't visit), 1 (visit)

Mining association rules to the rescue!

- Set of touristic sites: $I = \{i_1, i_2, ..., i_n\}$
- Set of trips to this destination: D
 - Each element of *D* (a trip) is a set of items $T \subseteq I$
- Associated mining problem
 - Set of literals: I
 - Set of transactions: T
 - Each transaction is the set of touristic sites in a trip
- Rules $X \Rightarrow Y$ (where $X \subset I$, $Y \subset I$ and $X \cap Y = \emptyset$)
 - People that visit items in X also visit items in Y

Coming to a non-linear 0-1 Knapsack problem

Maximize
$$u(x_1, ..., x_n) = \sum_{i=1}^k u_i(x_{C_i})$$
 decomposable function
$$\sum_{j=1}^n w_j x_j \leqslant c,$$

- • u_i is the utility function for the user preferences
- • w_{i} is the time needed to visit item j
- • x_j in {0, 1} (visit or not item j)
- •c total time available in the trip

Coming to a non-linear 0-1 Knapsack problem

Maximize
$$u(x_1, ..., x_n) = \sum_{i=1}^k u_i(x_{C_i})$$
 decomposable function under the constraint $\sum_{j=1}^n w_j x_j \leqslant c$,

- • u_i is the utility function for the user preferences
- • w_{i} is the time needed to visit item j
- • x_j in {0, 1} (visit or not item j)
- •c total time available in the trip

We developed an efficient procedure that uses GAI-networks to solve this kind of knapsack problem

Gvisite? A real application

Create a new trip

Lets travel!

To get started, tell us where are you going.

City name: paris

Your travel bag:

Drop items here

For your 2 days in Paris, you should visit:

Catacombes (Les)

Perspectives

- Development of methods that use more natural elicitation questions
- Take care of the evolution of preferences in this kind of model
- Collective recommendation
 - Privacy
 - Non-manipulability