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Learning from data

From tables to structured data...

Models: classification, regression, clustering...
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Data mining and social networks

Relations, interactions→ structure

Examples:
Web
Semantic networks
Electronic mail
Instant messaging (IM)
Forums
Telecommunications
(cellphones, ...)
Biology
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Social networks data is everywhere

Call networks
Email networks
Movie networks
Coauthor networks
Affiliation networks
Friendship networks
Organizational networks
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Firms increasingly are collecting data
on explicit social networks of consumers
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Another example: Twitter Social Network

(2007, Bruno Peeters, Belgium)
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Applications & problems

Social networks: community and structure (animation, targeted
marketing)
WWW: search, information retreival (group web sites or
documents)
Targeted marketing: identify groups of customers or products to
make recommandations (targeted advertising, viral marketing)
Personalization (interfaces, services)
Epidemiology
Fraud detection
Security (counterterrorism)
...
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Marketing & recommandation: the long tail

Chris Anderson, The Long Tail, Wired, Issue 12.10 - October 2004

E. Viennet (L2TI) Learning in Social Networks 6/5/2009 9 / 47



Marketing, recommandation and SN
Need for personalized recommandations !

> 50% of people do research online before purchasing electronics
personalized recommendations based on prior purchase patterns
and ratings Amazon, “people who bought x also bought y”

I MovieLens, “based on ratings of users like you...”
I Epinions, “based on the opinions of the raters you trust...”

We are more influenced by our friends than by strangers !

68% of consumers consult friends
and family before purchasing home
electronics (Burke 2003)
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Some interesting problems for data miners...

Caracterize networks
Model diffusion of information (for, e.g., viral marketing)
Model evolution (link creation)
Extract information for learning (node classification)
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Our objectives today...

1 Give some insight about Social Network Analysis
2 Present some recent advances in community detection
3 Define the node classification problem
4 Show how to define kernels for graph data
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Typical size of datasets used in the field

Number of nodes
e-mails of a lab (2 months) ≈ 1000
e-mails (2 years) ≈ 50000
Friendship among bloggers 4.4 millions
Cellular phone calls (CDR) ≈ 20 millions
IM communications 240 millions

Sparse networks: number of links proportional to the number of nodes.
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What’s different about networked data ?

A social netwok is a graph, but:
nodes can have attributes
edges (links) may be weighed and/or directed, or not
so, the similarity between two nodes is = f (attributes, links)

the network’s graph is not a simple random graph (special
structural properties)

Nodes are not i.i.d. !
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Small world effect
The shortest path between two random nodes is on average small.

This property is related to the distribution of the degrees of the nodes:
scale-free network (Barabasi, 2000)

P(degree = k) ∝ k−γ

random graph scale-free graph
(Albert et al, 2000)
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Common properties characterizing nodes or links
Clustering coefficient
Related to the number of neighbors of a node which are linked
together (triangles) (Watts et Strogatz, 1998)

Betweenness
Number of shortest paths passing through a given edge (or node)

(Newman 2004)
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Part 2

Detection of communities in networks
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Communities in networks

(P. Pons, 2007)

Finding communities = partition the graphe in N clusters

Identify = finding the (small) communauty around a given node
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Model-based clustering for social networks

Modelize simultanously the distribution of nodes attributes and
positions in “social space”: latent variable model

Representation of the social network
The matrix Yij describes the links between nodes.
Z = zi ∈ Rd gives the positions of the nodes in social space Rd “social
space”.
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Model-based clustering (continued): the model

Handcock & Raftery, 2006
n nodes, Y = yij adjacency matrix (“sociomatrix”).
Links are considered as independents:

P(Y |Z ,X , β) =
∏
i 6=j

P(yij |zi , zj , xij , β)

where
X : attributes of nodes (or of pair (i , j))
β : parameters of the model

Modelization by logistic regression:

logit(yij = 1|zi , zj , xij , β) = βT
0 xij − β1|zi − zj |

with 1
n
∑

i |zi |2 = 1
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Model-based clustering (continued)

Clustering via modelization of the coordinates zi by gaussian mixture:

zi ∝
G∑

g=1

λg exp(−
|zi − µg |2

2σ2
g

) with λg > 0 and
∑

λg = 1

G number of clusters, fixed a priori

Estimation of parameters : maximum likelyhood or bayesian (markov
chain or Monte Carlo)
 estimation is computationally costly
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Model-based clustering (continued): application

The choice of the number of clusters G can be posed as a model
selection problem (e.g. BIC criteria) slow !

Links between monks

Sociological study: “friendship” between
monks
18 nodes (monks)
 3 groups of monks (match those
identified by sociologists)

E. Viennet (L2TI) Learning in Social Networks 6/5/2009 22 / 47



Model-based clustering (continued): application 2

Links between teenagers in a school

Relations between
71 adolescents
(here 6 clusters)
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Model-based clustering: conclusions

Complex methods (heavy computations) giving precise results
Take in account both links and attributes at the same time
Restricted to problems of small size !

=⇒ we will now focus on “structural” methods (using only links)
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Criteria: Modularity

Mesure the quality of a clustering of the graph in c communities

Q =
∑

i

(dii − (
∑

j

dij)
2)

D matrix c × c, with elements dij giving the proportion of edges linking
nodes from community i to nodes of community j

Q ∈ [−1,1] measures the density of links inside communities
compared to links between communities
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Finding structural communities
Lot of recent work and progress...

Méthods based on (betweenness)

First attempt: Newman & Girvan (2004)
Repeat:

1 compute betweeness of edges
2 cut most important edge

until no more edges

For a sparse graph of size n nodes:

Newman & Girvan 2004 O(n3)
Newman 2004 O(n2)

Wakita & Tsurumi 2007 O(n log2 n)
Blondel et al. (Louvain) 2008 linear ?

 less than 5 minutes for 1 million nodes, or 40 minutes for 23 millions
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Finding communities: Louvain method

Local optimization by switching labels considering only neighborhood
of each node.

Blondel et al., Fast unfolding of communites in large networks, 2008
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Hierarchical communities and modularity

From Newman & Girvan, 2004
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Example (scientists collaboration network)

From K. Martin et M. Avnet, 2006.
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Identification of communities
Look for a neighborhood (micro-community) around a given node
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Identifying communities: a physical approach
(Wu & Huberman)

Consider the graph as an electrical circuit
Kirchhoff’s law on node C:

n∑
i=1

Ii =
n∑

i=1

VDi − VC

R
= 0

If wij weight of edge, define Rij = w−1
ij

Fix the tension at two nodes: V1 = 1,V2 = 0 Then

Vi =
1
ki

n∑
j=3

Vjaij +
1
ki

ai1 for i = 3, . . . ,n

ki : degre of node i , aij adjacency matrix
This linear equations system can be solved in O(n3) (slow).
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Fast approximate solution

Iterative method:
1 fix V1 = 1,V2 = · · · = Vn = 0 (in O(V ))
2 update tension of each node (in O(E))
3 repeat step 22

Precision after step 2 depends only on the number of iteration, not
on graph size
In practice, convergence after about 10 iterations
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Part 3

Node classification: learn from your neighboors...
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Node classification

Applications: marketing (churn, influence), text categorization, ...

?

?
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Node classification

Relaxation labeling (Angelova et al 2006)

F1 score grows by 33% vs using only nodes attributes

=> importants gains on various applications
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Node classification: a simple & fast approach
RL is slow on large graphs

Idea: to classify nodes based on attributes and "position" in graph,
just add new attributes:

local graph characteristics (see above: degree, triangles, ...)
attributes describing the community to which the node belongs

Exemple: KXEN on Telco customers churn

Two models:
1 regular vars only
2 + social network vars

Most significant variable:
number of "friends"
who churned !
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Example: text categorization
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Text categorization (continued)
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Application: bug triage (Bugzilla)

Bug tracker for Eclipse project

Network of developpers
10 000 bug reports, 2100 users
50 000 links: users working on same
bug
Goal: associate the bug to a software
developper

Level Communities Modularity
0 2081 0.01
1 229 0.26
2 16 0.36
3 14 0.37

Method Performance
TF-IDF→ SVM 32%
TF-IDF + Author Community→ SVM 38%
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Part 4

Kernel methods for graphs
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Feature space and kernels
Projection in feature space: transformation Φ

X F

O

O

O

O

O

X

X

X
X

X

Φ(X)

Φ(X) Φ(X)

Φ(X)

Φ(X)

Φ(Ο)

Φ(Ο)

Φ(Ο)

Φ(Ο)

Φ

Φ(Ο)

Kernel K (x , y) =< φ(x), φ(y) >

Non linear SVM : ŷ =
∑
i∈SV

αiK (xi , x) + b

⇒ “kernel trick” also used with a lot of models, like PCA, Discriminant
Analysis, PLS, ...

⇒ can be applied to problems where no explicit vectorial
representation of data points (strings of symbols, trees, ...)
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Defining new kernels
Admissibility condition

symetry: k(x , y) = k(y , x)

semi-definite positive:
∑∑

cicjk(xi , xj) ≥ 0

On can define kernels based on existing kernels:

combination: k(x , y) =
∑

wα kα(x , y) ,∀wα ≥ 0

composition: k(x , y) =
∑ D∏

d=1

kd (xd , yd ) (Haussler 1999)

Exemples: kernels for sequences, trees, graphs

A simple exemple: a kernel for trees

t t ′

c0 c1 c2 c′0 c′1

k(t , t ′) =
2∑

i=0

1∑
j=0

kc(ci , cj)
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Kernel for graph node categorization

K positive semi-definite:

∀fx ,
∑

x

∑
x ′

fx fx ′K (x , x ′) ≥ 0

Following Haussler (1999), one can write:

eβH = lim
n→∞

(1 +
βH
n

)n (1)

= I + βH +
β2

2!
H2 + · · · (2)

H self-adjoint⇒ K = eβH positive semi-definite.
Parameter β controls the “locality” of the obtained kernel (diffusion on the
graph).
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Diffusion kernel

Graph Laplacian: L = D − A, L =


−1 si i ∼ j
di si i = j
0 sinon

Graph laplacians are often encountered in graph theory

∀w ,wTHw =
∑

(i,j)∈E

(wi − wj)
2

Note:
∂
∂t Ψ = µ∆Ψ : heat diffusion equation

If K = eβH , on a d
dβKβ = −LKβ : heat diffusion on the graph (Kondor & Lafferty

2002).

Kβ(i, j) can be seen as the energy injected in i received in j , with diffusion parameter β
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Diffusion kernel: implementation

K (0) = I

K (β) = lim
s→∞

(
I +

βL
s

)s

Difficulty: K is a dense matrix, even if L is sparse

⇒ hard to use on large graphs

But interesting results have been obtained: exemple on “WebKB”
dataset:

- 8275 web pages, 7 classes (6= universities)
- error rates varies from 8 to 15%, ignoring page content (texts) !

Also: applications to transductive learning (suggested by Gärtner et
Smola 2007).
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Summary

SNA pose new challenges to the data mining community (non iid
data, structure)
New industrial applications leads to huge volumes of networked
data, with a lot of value
Designing new methods and algorithms is urgent !
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Thank you !
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