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Agenda

0 Introduction to Social Networks
e Detection of communities in networks
9 Node classification

° Kernel methods for graphs
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Learning from data

From tables to structured data...

Deptn

a
A

work and no play makes Jack a dull boy
1 work and no play nakes Jack s dull boy

B

11 work and no play nakes Jack a dull boy
AU work and no play nakes Jack s dull boy

A1 work and o play nakes Jack a dull boy
AT work and no play nakes Jack & dull boy

ALL_work and o play nekes Jack a Gull boy |
work o oo oy makee Jacie o Gt

UL vork and no play makes Jack a dull boy
11 work and no play nakes Jack a dull boy

AU work and no play nakes Jack & dull boy
AL vork and no play Rakes Jack a gull boj

AU work and 1o play nakes Jack a dull boy
10 work and o play nakes Jack a dull boy
ATL work and no play nakes Jack a dull boy
AT work

<texte id="exemple">
<titre>Un document</titre>
<partie>
<par>
Ceci est la premiére partie
<fpar>
</partie>
<partie>

Models: classification, regression, clustering...

E. Viennet

Learning in Social Networks 6/5/2009

3/47



Data mining and social networks

Relations, interactions — structure

Examples:
@ Web
@ Semantic networks
@ Electronic mail
@ Instant messaging (IM)
@ Forums

@ Telecommunications
(cellphones, ...)

@ Biology
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Social networks data is everywhere

@ Call networks

@ Email networks

@ Movie networks

@ Coauthor networks

@ Affiliation networks

@ Friendship networks

@ Organizational networks

E. Viennet (L2TI) Learning in Social Networks 6/5/2009 5/47



Firms increasingly are collecting data
on explicit social networks of consumers
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Ayserin

Another example: Twitter Social Network
1
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Twitter Friends van Belgische Twitteraars
Learning in Social Networks
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Applications & problems

@ Social networks: community and structure (animation, targeted
marketing)

@ WWW: search, information retreival (group web sites or
documents)

Targeted marketing: identify groups of customers or products to
make recommandations (targeted advertising, viral marketing)

@ Personalization (interfaces, services)
@ Epidemiology

@ Fraud detection
°
°

Security (counterterrorism)
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Marketing & recommandation: the long tail
| nnazoncon J  NErFuX

Online services carry far more inventory than traditional retailers. TOTAL INVENTORY: . TOTAL INVENTORY: . TOTAL IVENTORY:
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Chris Anderson, The Long Tail, Wired, Issue 12.10 - October 2004
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Marketing, recommandation and SN
Need for personalized recommandations !

@ > 50% of people do research online before purchasing electronics

@ personalized recommendations based on prior purchase patterns
and ratings Amazon, “people who bought x also bought y’

» MovielLens, “based on ratings of users like you...”
» Epinions, “based on the opinions of the raters you trust...”

We are more influenced by our friends than by strangers !

68% of consumers consult friends
and family before purchasing home
electronics (Burke 2003)
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Some interesting problems for data miners...

@ Caracterize networks

@ Model diffusion of information (for, e.g., viral marketing)
@ Model evolution (link creation)

@ Extract information for learning (node classification)
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Our objectives today...

@ Give some insight about Social Network Analysis

© Present some recent advances in community detection
© Define the node classification problem

© Show how to define kernels for graph data
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Typical size of datasets used in the field

Number of nodes

e-mails of a lab (2 months) ~ 1000
e-mails (2 years) ~ 50000
Friendship among bloggers 4.4 millions
Cellular phone calls (CDR) ~ 20 millions
IM communications 240 millions

Sparse networks: number of links proportional to the number of nodes.
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What's different about networked data ?

A social netwok is a graph, but:
@ nodes can have attributes
@ edges (links) may be weighed and/or directed, or not
@ so, the similarity between two nodes is = f(attributes, links)

@ the network’s graph is not a simple random graph (special
structural properties)

Nodes are not i.i.d. !
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Small world effect
The shortest path between two random nodes is on average small.

This property is related to the distribution of the degrees of the nodes:
scale-free network (Barabasi, 2000)

P(degree = k) o k7

random graph

scale-free graph
(Albert et al, 2000)
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Common properties characterizing nodes or links
Clustering coefficient

Related to the number of neighbors of a node which are linked
together (triangles) (Watts et Strogatz, 1998)

Betweenness
Number of shortest paths passing through a given edge (or node)

(Newman 2004)

v
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Part 2

Detection of communities in networks
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Communities in networks

(P. Pons, 2007)

@ Finding communities = partition the graphe in N clusters
@ I|dentify = finding the (small) communauty around a given node

E. Viennet (L2TI)
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Model-based clustering for social networks

Modelize simultanously the distribution of nodes attributes and
positions in “social space’: latent variable model

Representation of the social network

The matrix Yj; describes the links between nodes.
Z = z; € R9 gives the positions of the nodes in social space R? “social
space”.
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Model-based clustering (continued): the model

Handcock & Raftery, 2006

nnodes, Y = y; adjacency matrix (“sociomatrix”).
Links are considered as independents:

P(Y|Z,X,8) = || Pilzi. z, x;, 3)
i#]
where
@ X : attributes of nodes (or of pair (/,))

@ [ : parameters of the model

Modelization by logistic regression:

Ioglt(.ylj = 1‘Zi’zjaxij75) = ﬁgxlj — B ’Zi - Zj‘
with 13, |z? = 1
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Model-based clustering (continued)

Clustering via modelization of the coordinates z; by gaussian mixture:
G |z — Mg|2 ;
Zix > Mg exp(—=5—57-) with Ag > 0 and > Ag=1

g=1 %9
G number of clusters, fixed a priori
Estimation of parameters : maximum likelyhood or bayesian (markov

chain or Monte Carlo)
~ estimation is computationally costly
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Model-based clustering (continued): application

The choice of the number of clusters G can be posed as a model
selection problem (e.g. BIC criteria) ~ slow !

Links between monks

Sociological study: “friendship” between
monks

18 nodes (monks)
~ 3 groups of monks (match those
identified by sociologists)
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Model-based clustering (continued): application 2

Links between teenagers in a school

Relations between
71 adolescents

e
(here 6 clusters)
2
"
J
. T T T . T T
-15 -10 05 00 05 1.0 15
Fig. 7. Bayesian estimates of pos r clusters and latent positions for the friendship network in the ado-
lescent health school: latent cluster shown by colour with actual grades shown as numbers
v
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Model-based clustering: conclusions

@ Complex methods (heavy computations) giving precise results
@ Take in account both links and attributes at the same time
@ Restricted to problems of small size !

= we will now focus on “structural” methods (using only links)
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Criteria: Modularity

Mesure the quality of a clustering of the graph in ¢ communities
Q=Y (di— ()
i J

D matrix ¢ x ¢, with elements dj; giving the proportion of edges linking
nodes from community i to nodes of community |

Q € [—-1, 1] measures the density of links inside communities
compared to links between communities
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Finding structural communities
Lot of recent work and progress...

Méthods based on (betweenness)

First attempt: Newman & Girvan (2004)
@ Repeat:

@ compute betweeness of edges
@ cut most important edge

@ until no more edges

For a sparse graph of size n nodes:

? .

Newman & Girvan 2004 O(n®) " ;;’” e
oo 9.0
Newman 2004 O(r?) &%gﬁf%‘&; Le
Wakita & Tsurumi 2007 O(nlog?n) = ﬂ%,#;& 3
Blondel et al. (Louvain) 2008 linear ? Gt P S
dibe®®
~ less than 5 minutes for 1 million nodes, or 40 minutes for 23 millions
E. Viennet (L2TI)
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Finding communities: Louvain method

B )

Local
optimization i f
of modularity Fusion o

communities
1 , Kbkl
Q=- {Aij - %]6(05, ;)

2m

Local optimization by switching labels considering only neighborhood
of each node.

Blondel et al., Fast unfolding of communites in large networks, 2008
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Hierarchical communities and modularity

ol LA

From Newman & Girvan, 2004

E. Viennet (L2TI)
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Example (scientists collaboration network)

Node size: Betweenness

Shape: Newman-Girvan

From K. Martin et M. Avnet, 2006.
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|dentification of communities
Look for a neighborhood (micro-community) around a given node
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Identifying communities: a physical approach
(Wu & Huberman)

Consider the graph as an electrical circuit %
Kirchhoff’s law on node C:

Z’—Z

i=1

V
70 -0

If w; weight of edge, define R;; = W,-j_1

Fix the tension at two nodes: V4 =1, Vo, =0 Then

ZVa,, a,1 fori=3,....n
k; . degre of node /, a; adjacency matrix
This linear equations system can be solved in O(n®) (slow).
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Fast approximate solution

Iterative method:
QfixVi=1,Vo=-..=V,=0 (in O(V))
@ update tension of each node (in O(E))
© repeat step 22

@ Precision after step 2 depends only on the number of iteration, not
on graph size

@ In practice, convergence after about 10 iterations
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Part 3

Node classification: learn from your neighboors...
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Node classification

Applications: marketing (churn, influence), text categorization, ...
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Node classification

Relaxaﬁon /abe//ng (Angelova et al 2006)

F1 score grows by 33% vs using only nodes attributes

=> importants gains on various applications
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Node classification: a simple & fast approach

RL is slow on large graphs

Idea: to classify nodes based on attributes and "position" in graph,
just add new attributes:

@ local graph characteristics (see above: degree, triangles, ...)
@ attributes describing the community to which the node belongs

——Random  ——Wizand Al variobies  ——Oniy reguir isbles

0e7[7/7
06

AL
A

S S S
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Node classification: a simple & fast approach

RL is slow on large graphs

Idea: to classify nodes based on attributes and "position" in graph,
just add new attributes:

@ local graph characteristics (see above: degree, triangles, ...)
@ attributes describing the community to which the node belongs

Exemple: KXEN on Telco customers churn

——Random ——Wizad =—mAllvatisties ——Orly reguiar arisbles

1

Two models:
@ regular vars only
@ + social network vars

08

06 1

04

Most significant variable:
number of "friends” ,‘
who churned ! LT FE LSS
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Example: text categorization

BD Clients
(Informations sur client)

Informations
"Réseau Social"

Envoi d'une requéte

Bonjour,

j'ai un probléme avec le Zorglub du

Catégorisation
Behmiblick de gauche. g

Je suis blah blah blah du message
et blah blah blih

j—3 Routage
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Text categorization (continued)

Recherche
des
communautés

Catégorisation
du message

N e — Classe
(modéle statistique, du document
eg SVM)

Représentation
du contenu textuel
(sac de mots)

Indice de communauté

585

Documents a catégoriser,
groupés en "communautés"
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Application: bug triage (Bugzilla)

Bug tracker for Eclipse project

@ Network of developpers

@ 10 000 bug reports, 2100 users

@ 50 000 links: users working on same
bug

@ Goal: associate the bug to a software

Modularity

d | Level Communities
evelopper T | = 026
2 16 0.36
3 14 0.37
Method Performance
TF-IDF — SVM 32%
TF-IDF + Author Community — SVM | 38%
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Kernel methods for graphs
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Feature space and kernels
Projection in feature space: transformation ¢

Kernel K(x,y) =< ¢(x),o(y) >

Non linear SVM : j = Y~ a;K(x;, X) + b
iesv
= “kernel trick” also used with a lot of models, like PCA, Discriminant
Analysis, PLS, ...
= can be applied to problems where no explicit vectorial
representation of data points (strings of symbols, trees, ...)
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Defining new kernels
Admissibility condition
@ symetry: k(x,y) = k(y, x)
@ semi-definite positive: > > cicik(x;, X;) > 0

On can define kernels based on existing kernels:

combination:  K(X,y) = WaKa(X,y),YWs >0

D
composition:  k(x,y) =>_ ][] ko(xa,ys) (Haussler 1999)
d—1

Exemples: kernels for sequences, trees, graphs
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Defining new kernels
Admissibility condition
@ symetry: k(x,y) = k(y, x)
@ semi-definite positive: > > cicik(x;, X;) > 0

On can define kernels based on existing kernels:

combination:  K(X,y) = WaKa(X,y),YWs >0

D
composition:  k(x,y) =>_ ][] ko(xa,ys) (Haussler 1999)
d—1

Exemples: kernels for sequences, trees, graphs

A simple exemple: a kernel for trees

o 2 1
ﬁ k(1) =" ke(ci, 6)

i=0 j=0
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Kernel for graph node categorization

K positive semi-definite:

Vh, Y Y hfeK(x,x') > 0
X X

Following Haussler (1999), one can write:

e = nleoo(1+¢)” (1)
62
= I-|—5H-|—§H2-|—--- 2)

H self-adjoint = K = e/ positive semi-definite.
Parameter 5 controls the “locality” of the obtained kernel (diffusion on the
graph).
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Diffusion kernel

-1 sii~j
Graph Laplacian: L=D—-A, L=< d sii=j
0 sinon

Graph laplacians are often encountered in graph theory

yw,whHw = ) (W — w))?
(ij)<E

Note:

%\U = pAWV : heat diffusion equation

f K=e%" ona d%Kﬂ = —LKjp : heat diffusion on the graph (Kondor & Lafferty
2002).

Ks(i, ) can be seen as the energy injected in i received in j, with diffusion parameter g3
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Diffusion kernel: implementation

K(O) = I
ko) = Jm (1)

Difficulty: K is a dense matrix, even if L is sparse
=- hard to use on large graphs

But interesting results have been obtained: exemple on “WebKB”
dataset:

- 8275 web pages, 7 classes (# universities)
- error rates varies from 8 to 15%, ignoring page content (texts) !

Also: applications to transductive learning (suggested by Gartner et
Smola 2007).
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Summary

@ SNA pose new challenges to the data mining community (non iid
data, structure)

@ New industrial applications leads to huge volumes of networked
data, with a lot of value

@ Designing new methods and algorithms is urgent !
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Thank you !
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