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Cluster analysis

Exploratory data analysis tools which aim is to find clusters in a

large set of data (many observations and often many variables).



Supervised Classification

Statistical decision methods which aim is to design a classifier to

assign in the future unlabelled observations to one of the classes

defined a priori.



The mixture model

Data x = (x1, . . . ,xn) in Rnd are assumed to arise from a mixture

p(xi | K, θK) =
K

∑

k=1

pkφ(xi | ak)

• the pk’s are the mixing proportions (0 < pk < 1 for all k = 1, . . . , K

and
∑

k pk = 1)

• φ(. | ak) denotes a parameterized density (usually the d-

dimensional Gaussian density) with parameter ak,

• θK = (p1, . . . , pK−1, a1, . . . , aK).

A mixture model involves label data z = (z1, . . . , zn) which are binary

vectors with zik = 1 if and only if xi arises from component k.

Those indicator vectors define a partition P = (P1, . . . , PK) of data x

with Pk = {xi | zik = 1}.



Model selection

Choosing a parsimonious model in a collection of models: The prob-

lem is to solve the bias-variance dilemma.

• A too simple model leads to a large approximation error.

• A too complex model leads to a large estimation error.

Standard criteria of model selection are AIC and BIC criteria. Both

criteria are penalized likelihood criteria.



AIC vs. BIC

AIC(m) = −2 log p(x|θ̂m) + 2νm,

BIC(m) = −2 log p(x|θ̂m) + νm log(n),

where

• x = (x1, . . . , xn) denote the data of pdf p(x)

• A model m is characterized with the pdf p(x|θm).

• θ̂m = arg maxθm
p(x|θm)

• νm = is the number of parameters of model m.



Rationale for AIC (1)

Find (m∗, θ0
m∗) ∈M minimizing

KL(p,p(.|θ0
m)) = E[log p(x)]− E[log p(x|θm)]

It is equivalent to find (m∗, θ0
m∗) such that

θ0
m∗ = arg max E[log p(x|θm)].

For fixed m, the maximum likelihood estimate θ̂m is a consistent

estimator of θ0
m from SLLN. But, KL(p,p(.|θ̂m)) is an optimistic es-

timate of KL(p,p(.|θ0
m)).

This optimistic bias is

Dm = Exx′[log p(x′)− log p(x′|θ̂m)]

where x′ is an observation independent of data x.



Rationale for AIC (2)

Denoting

Km = Var[
∂ log p(x|θ0

m)

∂θ
],

Jm = E[
∂2 log p(x|θ0

m)

∂θ∂θt ]

and

qm = trace(KmJ−1
m ),

we have

2nDm∗ = 2KL(p,p(.|θ̂m∗)) + 2qm∗ + O(n−1/2).

If there is m∗ ∈ M such that p = p(.|θ0
m∗) then Km∗ = Jm∗ and

qm∗ = νm∗.

This assumption is made to get the AIC approximation of the de-

viance 2Dm.



AIC asymptotic properties

• If p ∈ M, AIC and cross validation estimation of the expected

deviance provide asymptotically the same model selection.

• In a regresssion framework: yi = f(xi) + εi for i = 1, . . . , n

– If the number of models with the same dimension does not

grow too fast, then the mean squared error of the selected

model with AIC is asymptotically equivalent to the smallest

error which can be get with M.

– AIC is minimax optimal.

• AIC is not consistent.



Rationale for BIC (1)

BIC is a Bayesian criterion. It is approximating asymptotically the

integrated likelihood of the model m

p(x|m) =

∫

p(x|θm)π(θm)dθm,

π(θm) being a prior distribution for parameter θm.

This integrated likelihood is a predictive score which allows to

compare two models with the Bayes factor B21:

p(m2|x)

p(m1|x)
=

p(x|m2)

p(x|m1)

p(m2)

p(m1)



Rationale for BIC (2)

BIC is making use of the Laplace approximation for the integrated

likelihood of model m
∫

Rd
exp(nL(u))du = exp (nL(u∗))

2π

n

d/2
| − L′′(u∗)|−1/2 + O(n−1)

with L : Rd −→ R is a C2 function with unique maximum u∗. Here

L(θm) =
1

n
[log p(x|θm) + log π(θm)].

Moreover, the posterior mode θ∗m is approximated with θ̂m and the

Hessian of L is approximated with the Fisher information evaluated

at θ̂m. Thence

log p(x|m) = BIC(m) + O(1).

If the prior pdf π is a normal distribution N(θ̂m, I−1
θm

) then

log p(x|m) = BIC(m) + O(n−1/2)



BIC asymptotic properties

• BIC is consistent: If there exists m∗ such that p = p(.|m∗) then

for n large enough, BIC selects m∗.

• The existence of m∗ is not necessary to design BIC and a good

behavior of BIC can be expected if p ≈ p(.|m∗).

• In a regresssion framework: yi = f(xi) + εi for i = 1, . . . , n, BIC is

not minimax optimal.

• BIC does not lead to a prediction asymptotically optimal for non

parametric regression problems.



The practice

• Bias of Monte Carlo numerical experiments.

• Different practical behavior according to the modelling setting.

– Assessing the number of components K in a Gaussian mixture

model:

AIC has a high tendency to overestimate K.

BIC has a more satisfactory behavior.

– Model selection in Regression: AIC is almost equivalent to the

Mallows Cp criterion.

– AIC is a reference criterion to assess the order of ARMA mod-

els, BIC is not.



Motivation of the present talk

• Assuming that the data arose from one of the models in com-

petition is unrealistic and can be misleading when using AIC or

BIC.

• A common feature of standard penalized likelihood criteria is to

not take into account the modelling purpose.

• Our opinion is that taking account of the modelling purpose when

selecting a model would lead to use data-driven penalisations

favoring useful and parsimonious models.

• This view point is exploited in a classification context.



Model-based cluster analysis

•Model-based clustering (MBC) consists of assuming that the data

come from a source with several subpopulations.

• Each subpopulation is modeled separetaly.

• The overall population is a mixture of these subpopulations.

• The resulting model is a finite mixture model.



The mixture model

Data x = (x1, . . . ,xn) in Rnd are assumed to arise from a mixture

p(xi | K, θK) =
K

∑

k=1

pkφ(xi | ak)

• the pk’s are the mixing proportions (0 < pk < 1 for all k = 1, . . . , K

and
∑

k pk = 1)

• φ(. | ak) denotes a parameterized density (usually the d-

dimensional Gaussian density) with parameter ak,

• θK = (p1, . . . , pK−1, a1, . . . , aK).

A mixture model involves missing data z = (z1, . . . , zn) which are

binary vectors with zik = 1 if and only if xi arises from component k.



An hidden structure model

The mixture model is an incomplete data structure model:

The complete data are

y = (y1, . . . ,yn) = ((x1, z1), . . . , (xn, zn))

where the missing data are z = (z1, . . . , zn), with zi = (zi1, . . . , ziK) are

binary vectors such that zik = 1 iff xi arises from group k.

The z’s define a partition P = (P1, . . . , PK) of the observed data x

with Pk = {xi | zik = 1}.



Multivariate Gaussian Mixture (MGM)

Multidimensional observations x = (x1, . . . ,xn) in Rd are assumed to

be a sample from a probability distribution with density

f(xi | K, θ) =
K

∑

k=1

pkφ(xi |mk, Σk)

where the pk’s are the mixing proportions and φ(. | mk, Σk) denotes

a Gaussian density with mean mk and variance matrix Σk.

This is the most popular model for clustering of quantitative data.



Discrete Data

Observations to be classified are described with d discrete variables.

Each variable j has mj response levels.

Data are represented in the following way:

(x1, . . . ,xn) where xi = (x
jh
i ; j = 1, . . . , d; h = 1, . . . ,mj) with

{

x
jh
i = 1 if i has response level h for variable j

x
jh
i = 0 otherwise.



The standard latent class model (LCM)

Data are supposed to arise from a mixture of g multivariate multi-

nomial distributions with pdf

f(xi; θ) =

g
∑

k=1

pkmk(xi; αk) =
∑

k

pk

∏

j,h

(α
jh
k )x

jh
i

where

• α
jh
k is denoting the probability that variable xj has level h if object

i in cluster k, and αk = (α
jh
k ; j = 1, . . . , p; h = 1, . . . , mj),

• p = (p1, . . . , pg) is denoting the vector of mixing proportions of the

g latent clusters,

• θ = (pk, αk, k = 1, . . . , g) denoting the vector parameter of the

latent class model to be estimated.

Latent class model is assuming that the variables are conditionnally

independent knowing the latent clusters.



First Interest of MBC

Many versatile or parsimonious models available



MGM: The variance matrix eigenvalue decomposition

Σk = VkD
t
kAkDk

where

• Vk = |Σk)|1/d defines the component volume (d is the dimension

of the observation space),

• Dk the matrix of eigenvectors of Σ defines the component orien-

tation

• Ak the diagonal matrix of normalised eigenvalues defines the com-

ponent shape.

By allowing some of these quantities to vary between components,

we get different and easily interpreted models.



28 different models
Following Banfield & Raftery (1993) or Celeux & Govaert (1995),

a large range of 28 versatile (from the most complex to the sim-

plest one) models derived from this eigenvalue decomposition can

be considered.

• The general family: Assuming equal or free proportions, volumes

orientations and shapes leads to 16 different models.

• The diagonal family: Assuming in addition that the component

variances matrices are diagonal leads to 8 models.

• The spherical family: Assuming in addition that the component

variance matrices are proportional to the identity matrix leads to

4 models.



LMC: a Reparameterization

α←→ (a, ε)

where binary vector ak = (a1
k, . . . , a

d
k) provides the mode levels in

cluster k for variable j

(ajh) =

{

1 if h = arg maxh αjh

0 otherwise.

and the ε
j
k can be regarded as scattering values.

(εjh) =

{

1− αjh if ajh = 1

αjh if ajh = 0.

For instance, if α
j = (0.7, 0.2, 0.1), the new parameters are aj = (1, 0, 0)

and ε
j = (0.3, 0.2, 0.1).



Five latent class models

Denoting h(ij) the level of object i for the variable j, the model can

be written

f(xi; θ) =
∑

k

pk

∏

j

(

(1− ε
jh(jk)
k )x

jh(jk)
i (ε

jh(ij)
k )x

jh(ij)
i −x

jh(jk)
k

)

.

Using this form, it is possible to impose various constraints to the

scattering parameters ε
jh
k . The models we consider are the following

• the standard latent class model [ε
jh
k ]: The scattering is depending

upon clusters, variables and levels.

• [ε
j
k]: The scattering is depending upon clusters and variables but

not upon levels.

• [εk]: The scattering is depending upon clusters, but not upon

variables.

• [εj]: The scattering is depending upon variables, but not upon

clusters.

• [ε]: The scattering is constant upon variables and clusters.



Maximum likelihood estimation

The EM algorithm is the reference tool to derive the ML estimates

in a mixture model.

• E step Compute the conditional probabilities tik, i = 1, . . . , n,

k = 1, . . . , K that xi arises from the kth component for the current

value of the mixture parameters.

•M step Update the mixture parameter estimates maximising the

expected value of the completed likelihood. It leads to weight

the observation i for group k with the conditional probability tik.



Assessing a mixture model

• In an unsupervised setting, the question is: Choose a sensible

mixture model with an adequate number of components.

• But, a good answer to this question depends of the focus of the

mixture model.



Choosing a mixture model in density
estimation context

In a Bayesian perspective, a classical way for choosing a model is

to select the model maximizing the integrated likelihood,

f(x | K) =

∫

f(x | K, θ)π(θ | K)dθ,

f(x | K, θ) =
n

∏

i=1

f(xi | K, θ),

π(θ | K) being a non or weakly informative prior distribution on θ. It

can be approximated with the BIC criterion

log f(x | K) ≈ log f(x | K, θ̂)−
νK

2
log(n),

where θ̂ is the m.l. estimate of θ and νK is the number of free

parameters of the model. Simulation experiments (see Roeder and

Wasserman 1997) show that BIC works well at a practical level.



Assessing K in a clustering context

Assessing the number of components K is an important but difficult

problem.

Mixture modelling can be regarded as a semi parametric tool for

density estimation purpose or as a model for cluster analysis.

• In the density estimation context, BIC is doing the job quite well.

• In the cluster analysis context, since BIC does not take into ac-

count the clustering purpose for assessing K, BIC has a tendency

to overestimate K regardless of the separation of the clusters.

To overcome this limitation, it can be advantageous to choose K

in order to get the mixture giving rise to partitioning data with the

greatest evidence.



The ICL criterion: definition

It leads to consider the integrated likelihood of the complete data

(x, z) (or integrated completed likelihood),

p(x, z | K) =

∫

ΘK

p(x, z | K, θ)π(θ | K)dθ,

where

p(x, z | K, θ) =
n

∏

i=1

p(xi, zi | K, θ)

with

p(xi, zi | K, θ) =

K
∏

k=1

p
zik
k [φ(xi | ak)]zik .

To approximate this integrated complete likelihood, a BIC-like ap-

proximation is possible. It leads to the criterion

ICL(K) = log p(x, ẑ | K, θ̂)−
νK

2
log n,

where the missing data have been replaced by their most probable

value for parameter estimate θ̂.



Behavior of the ICL criterion

Roughly speaking criterion ICL is the criterion BIC penalized by the

estimated mean entropy

E(K) = −
K

∑

k=1

n
∑

i=1

tik log tik ≥ 0,

tik denoting the conditional probability that xi arises from the kth

mixture component (1 ≤ i ≤ n and 1 ≤ k ≤ K).

Because of this additional entropy term, ICL favors K values giving

rise to partitioning the data with the greatest evidence.

• ICL appears to provide a stable and reliable estimate of K for real

data sets and also for simulated data sets from mixtures when

the components are not too much overlapping.

• But ICL, which is not aiming to discover the true number of mix-

ture components, can underestimate the number of components

for simulated data arising from mixture with poorly separated

components.



BIC vs. ICL: an illustration
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Supervised classification

• The problem of supervised classification is to assign a d-

dimensional vector x to one class from g classes C1, . . . , Cg.

• A decision function, called a classifier, δ(x) : Rd → {1, . . . , g} is to

be designed from a learning sample (xi, zi), i = 1, . . . , n,

xi being the description vector of observation i on d variables

and zi denoting the label indicator vector of observation i:

zik =

{

1 if i ∈ Ck
0 otherwise



Generative and Discriminative approaches

• The generative approach is representing the class conditional

densities with a parametric model p(x|m, zk = 1, θm) for k = 1, . . . , g.

• Examples of generative classifiers are Linear Discriminant Anal-

ysis, Quadratic Discriminant Analysis.

• The discriminative approach is representing the conditional prob-

ability of a class with a semi parametric or a non parametric

model.

• Examples of discriminative classifiers are Logistic Regression,

Classification trees (CART), Support Vector Machines (SVM), k

neearest neighbors, . . .



The generative approach

• The parameter θm of the parametric model p(x|m, zk = 1, θm)

for k = 1, . . . , g is estimated from the learning sample (xi, zi), i =

1, . . . , n.

• Then the classifier consists of assigning an observation x to the

class k maximizing the estimated conditional probability of a class

p(zk = 1|m,x, θ̂m).

• It leads to set δ(x) = j if and only if

j = arg max
k

pkp(x|m, zk = 1, θ̂m),

θ̂m being the ml estimate of the class conditional parameters θ

and pk being the prior probability of class k.



Model selection in supervised classification

It is often of interest to consider a large collection of models with

different numbers of parameters and to select the model expected

to provide the lowest actual error rate.

•Minimizing the v-fold cross-validated error rate can be regarded

as a nearly optimal solution. But it is highly CPU time consuming

and the choice of v can be sensitive.

• An alternative is BIC which takes the form

BIC(m) = log p(x, z|m, θ̂m)−
νm

2
log(n),

νm being the dimension of θm. But, BIC measures the fit of the

model m to the data (x, z) rather than its ability to produce a

reliable classifier. . .



The Bayesian Entropy Criterion

The classifier related to model m is designed from the conditional

likelihood p(z|m,x, θm).

Thus, instead of choosing the model maximizing the integrated

likelihood, we propose to select a relevant model by maximizing the

integrated conditional likelihood

p(z|m,x) =

∫

p(z|m,x, θm)π(θm|x)dθm,

π(θm|x) being the posterior distribution of θm knowing x. Acting in

such a way, we are measuring the ability of model m to answer the

classification task rather than its fit to the data (x, z).

The BEC criterion is approximating log p(z|m,x).



Computing BEC (1)

We have

p(z|m,x) =
p(x, z|m)

p(x|m)

with

p(x, z|m) =

∫

p(x, z|m, θm)π(θm)dθm,

p(x|m) =

∫

p(x|m, θm)π(θm)dθm.



Computing BEC (2)

Both log-integrals can be approximated with the BIC criterion:

log p(x, z|m) = log p(x, z|m, θ̂m)−
νm

2
log n + O(1)

log p(x|m) = log p(x|m, θ̃m)−
νm

2
log n + O(1),

with

θ̂m = arg max
θm

p(x, z|m, θm),

θ̃m = arg max
θm

p(x|m, θm)

νm being the dimension of the vector parameter θm. Thus

log p(z|m,x) = log p(x, z|m, θ̂m)− log p(x|m, θ̃m) + O(1).

And, the BEC criterion is

BEC = log p(x, z|m, θ̂m)− log p(x|m, θ̃m).



Why the name BEC?

Denoting tik(m, θ̂m) the conditional probability that xi arises from

class k in model m with ml parameter estimate θ̂m, we have

log p(z|m,x, θ̂) =
n

∑

i=1

log tizi
(m, θ̂m)

which can be regarded as the entropy of the classification z.

And, our criterion is related to this term.

This is the reason why we called it Bayesian Entropy Criterion

(BEC).



Deriving θ̃

The criterion BEC needs to compute θ̃m = arg maxθm
p(x|m, θm).

Since, for i = 1, . . . , n,

p(xi|m, θm) =

g
∑

k=1

p(zik = 1|m, θm)p(xi|zik = 1, m, θm),

θ̃ is the ml estimate of a finite mixture distribution.

• It can be derived from the EM algorithm initiated with θ̂.

•Moreover, when the learning data set has been obtained through

the diagnosis paradigm, the proportions in the mixture distribu-

tion are fixed: pk = card{i such that zik = 1}/n for k = 1, . . . , g.

• Thus θ̃ would be estimated in a stable and reliable way.



Alternative criteria?

A BIC-like approximation of log p(y|x)

log p(y|x) ≈ log p(y|x, θ?
m)−

νm

2
log n,

where

θ?
m = arg max

θm

p(y|x, θm),

is not valid since the posterior distribution π(θm|x) depends on n.

In a discriminative approach of classification for which x is assumed

to be not dependent on θ this BIC-like approximation would be valid.



BEC as a penalized likelihood criterion

BEC = log p(y|x, θ̂m)−
(

log p(x|θ̃m)− log p(x|θ̂m)
)

.

log p(x|θ̃m)− log p(x|θ̂m) is positive because θ̃ maximizes the marginal

likelihood p(x|θm). This penalty is minimum when θ̂ = θ̃. Its implicit

dependency on the model complexity is now illustrated

Spherical variance matrix

log p(y|x,θ^) = −3.6

Free variance matrix

log p(y|x,θ^) = −3.3

pen = 0.1 pen = 0.9



Asymptotic behavior of BEC (1)

Proposition 1

If the sample joint distribution belongs to exactly one model m∗ in

a finite family of candidate models {m1, . . . ,mM},

and under standard regularity conditions on the model family,

Then BEC criterion selects m∗ with probability one as the sample

size n of the training set tends to infinity.



Asymptotic behavior of BEC (2)

Proposition 2 Assuming that the true distribution p(x,y) belongs

to two nested models m and m′, with ν and ν ′ parameters, for any

ε > 0, we have for n large enough

E(BEC(m))− E(BEC(m′)) < ε.

Actually, 2[BEC(m)-BEC(m′)] tends in distribution to χ
′2
δν
− χ2

δν
with δν = ν′ − ν

→ It induces a plateau rule.



Computational cost of BEC

Roughly speaking, computing BEC is equivalent to Half Sampling.

And Half Sampling is the crudest and fastest version of cross vali-

dation.



An Illustrative Monte Carlo experiment (1)

• 500 samples of n = 120 points from two classes with equal prior

probabilities have been generated with the following class condi-

tional densities:

X|Z1 = 1 ∼ N

([

0
0

]

,

[

2 0.5
0.5 1

])

and

X|Z2 = 1 ∼ N

([

∆
0

]

,

[

1 0.5
0.5 2

])

.

• Two models different from the true one are considered.

– The first model DIAG is considering a Gaussian class condi-

tional distribution with a diagonal variance matrix,

– the second model BALL is considering a Gaussian class con-

ditional distributions with a spherical variance matrix.

• The performances of criteria BEC and BIC are compared.



An Illustrative Monte Carlo experiment (2)

model err BIC BEC BIC choice(%) BEC choice(%)

∆ = 1 DIAG 0.250 502.331 64.108 24 98
∆ = 1 BALL 0.268 500.422 69.665 76 2

∆ = 3.5 DIAG 0.070 502.331 22.067 24 94
∆ = 3.5 BALL 0.076 500.422 26.120 76 6

∆ = 5 DIAG 0.019 502.331 6.081 24 84
∆ = 5 BALL 0.023 500.422 8.310 76 16

∆ = 7 DIAG 0.002 502.331 0.458 24 80
∆ = 7 BALL 0.004 500.422 1.046 76 20

∆ = 10 DIAG 0.000 502.331 0.001 24 60
∆ = 10 BALL 0.000 500.422 0.002 76 40
Column err gives the error rate evaluated on a test sample of size

50,000.



Illustration of the plateau rule
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In each plot the full line gives the variations of -BEC whose values

appears on the left scale and the dashed line gives the variations of

the classification error rate for a test sample of size 50,000. The

error rate are given on the right scale.



Experiments on real data sets

The EDDA family of models
It is a family of Gaussian classification models using the variance

matrix eigenvalue decomposition of class k, k=1,. . . ,g

Σk = VkD
t
kAkDk

where

• Vk = |Σk)|1/d defines the component volume (d is the dimension

of the observation space),

• Dk the matrix of eigenvectors of Σ defines the class orientation

• Ak the diagonal matrix of normalized eigenvalues defines the class

shape.

By allowing some of these quantities to vary between classes, 14

different and easily interpreted models are get.



14 different models
The models proposed in EDDA are

• The general family: Assuming equal or free volumes orientations

and shapes leads to 8 different models.

• The diagonal family: Assuming in addition that the class variance

matrices are diagonal leads to 4 models.

• The spherical family: Assuming in addition that the class variance

matrices are proportional to the identity matrix leads to 2 models.

In the original version (Bensmail and Celeux, JASA 1996) one of

the 14 models is selected by minimizing the cross-validated error

rate.



Conditions of Experiments

• Six benchmark data sets from statlog.

• For avoiding numerical problems, we restricted the data sets to

the four first axes of PCA.

• For assessing the performances of the classifiers, a test error rate

has been commputed from test data sets selected at random.

This operation has been repeated 20 times.

• The criteria in competition are BIC, AIC, BEC, CV3.

– CV3 is a three-fold cross validation procedure.



Australian dataset

2 classes, 200 training data, 490 test data (Selected randomly 100

times)

10 variables reduced in 4 dimensions by PCA

model ν BIC AIC BEC CV3 test error

λI 10 0 0 0 0 0.293
λkI 13 0 0 0 0 0.289
λB 13 0 9 32 28 0.23
λkB 14 0 0 1 1 0.264
λBk 16 0 0 0 0 0.287
λkBk 17 93 0 0 0 0.276

λDtAD 19 0 23 38 36 0.229

λkD
tAD 20 0 0 0 1 0.261

λDt
kADk 25 0 68 25 34 0.23

λkD
t
kADk 26 0 0 3 0 0.258

λDt
kAkDk 28 0 0 0 0 0.291

λkD
t
kAkDk 29 7 0 1 0 0.274



A collection of benchmark data sets
Dataset K N d BIC AIC BEC CV3 oracle

Abalone 3 4177 7 47.3 47.4 46.1 45.9 45.4
Bupa 2 345 6 37.5 38.3 33.5 34.6 31.6
Haberman 2 306 3 25.0 25.0 25.1 24.9 23.7
Pageblocks 5 5473 10 4.4 4.4 2.8 2.8 2.5
Teaching 3 151 5 63.8 63.3 63.8 61.1 56.9
Australian 2 690 14 26.3 26.4 22.6 22.8 21.9
Diabetes 2 768 8 26.0 25.6 23.9 24.2 23.0
German 2 1000 20 25.3 25.4 25.1 24.9 24.0
Heart 2 270 10 17.5 18.3 17.6 17.3 15.6



Model selection in computer vision (1)

• Object categorization problem: Finding images containing a mo-

torbike.

• Training data set of 826 images, Test data set of 900 images.

• Each image is categorized into a 1000-dimensional vector.

• Generative model: each class is modelled with a mixture of di-

agonal Gaussian distributions.

• The problem is to find a suitable number of components to de-

scribe each class.



Model selection in computer vision (2)

Mixtures were learned with 1 to 5 clusters for the motorbike images

and with 1 to 7 clusters for the background images.

−-BIC (×105)
R1

R2 1 2 3 4 5
1 -9.111 -9.227 -9.255 -9.263 -9.264
2 -9.260 -9.257 -9.126 -9.243 -9.271
3 -9.279 -9.281 -9.275 -9.273 -9.126
4 -9.242 -9.270 -9.278 -9.279 -9.275
5 -9.272 -9.122 -9.239 -9.267 -9.275
6 -9.276 -9.271 -9.269 -9.115 -9.231
7 -9.259 -9.267 -9.268 -9.264 -9.261

−BEC (×103)
R1

R2 1 2 3 4 5
1 3.06 1.18 0.91 0.75 0.63
2 1.35 1.27 6.24 1.09 0.75
3 0.51 0.46 0.46 0.39 6.93
4 1.99 0.80 0.52 0.48 0.37
5 0.32 7.95 2.35 0.80 0.53
6 0.45 0.34 0.29 8.57 2.44
7 0.91 0.58 0.51 0.38 0.32

CV10 error rate (×100)
R1

R2 1 2 3 4 5
1 7.19 9.04 6.61 4.98 6.95
2 6.95 7.42 9.04 7.18 6.61
3 6.26 5.91 4.98 4.75 9.62
4 7.42 6.61 5.79 5.45 4.87
5 4.75 9.85 6.84 5.79 5.68
6 5.33 4.29 4.09 11.47 6.61
7 5.91 6.14 5.79 4.72 4.72

Test error rate (×100)
R1

R2 1 2 3 4 5
1 6.26 8.34 5.56 6.49 4.85
2 5.56 5.10 7.76 6.72 5.91
3 5.91 5.33 5.56 4.87 8.69
4 6.95 5.68 5.56 5.21 5.21
5 4.98 9.50 6.84 5.45 5.91
6 4.87 4.52 3.84 10.08 6.84
7 5.33 6.03 4.75 4.85 4.59



Examples of misclassified images



Discussion

• Taking into of the modelling purpose is an interesting view to

select a reliable and useful model.

• This point of view lead to criteria with data driven penalties: It

is a desirable feature of model selection criteria.

• Taking account of the model purpose is interesting when assess-

ing a model, but it does not seem to be useful when estimating

a model.

– In supervised classification, maximizing the conditional likeli-

hood from a generative model, lead to difficult optimisation

problems with unstable solutions.

• In a small sample setting, a full Bayesian approach embedding the

derivation of a classification entropy in the predictive approach

to model selection is desirable.
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