Real-time Ranking of
Electrical Feeders using
Expert Advice
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The Problem

® Distribution feeder failures result in
automatic feeder shutdown
> called “Open Autos” or O/As

® O/As stress networks, control centers, and
field crews

© O/As are expensive ($ millions annually)

© Proactive replacement is much cheaper
and safer than reactive repair

© How do we know which feeders to fix?




Some facts about feeders and

failures

® mostly 0-5 failures
per day

® more in the
summer

® strong seasonality
effects L
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Feeder data

@ Static data
> Compositional/structural
> Electrical
® Dynamic data
> Outage history (updated daily)

> Load measurements (updated every 15
minutes)

© Roughly 200 attributes for each feeder
> New ones are still being added.
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Machine Learning Approach

@Leverage Con Edison’s domain
knowledge and resources

@Learn to rank feeders based on failure
susceptibility

©How?
> Assemble data
> Train ranking model based on past data

> Re-rank frequently using model on current
data




Feeder Ranking Application

@Goal: rank feeders according to failure
susceptibility
> Highrisk placed near the top

Application Structure
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Decision Support GUI
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Simple Solution

®@Supervised batch-learning algorithms
> Use past data to train a model
> Re-rank frequently using this model on current
data
@Use the best performing learning
algorithm
> How do we measure performance?

> MartiRank - boosting algorithm by [Long &
Servedio, 2005]

+ Use MartiRank for dynamic feeder ranking

13

Performance Metric

® Normalized average rank of failed
feeders

> rank( failure,)

- #failures = #feeders
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Performance Metric Example

ranking outages

D rank((failure,)

- #failures = #feeders

Real-time ranking with MartiRank

@MartiRank is a “batch” learning
algorithm

@Deal with changing system by:




Real-time ranking with MartiRank

How to measure performance
over time

® Every ~15 minutes, generate new ranking
based on current model and latest data




Using MartiRank for real-time
ranking of feeders

@MartiRank seems to work well, but..
> User decides when to re-train
> User decides how much data to use for re-
training
> Performance degrades over time
@®@Want to make system automatic
> Do not discard all old models
> Let the system decide which models to use
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Learning from expert advice

@Consider each model as an expert

®Each expert has associated weight

> Reward/penalize experts with good/bad
predictions

> Weight is a measure of confidence in expert’s
prediction

®@Predict using weighted average of top-
scoring experts
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Learning from expert advice

®@Advantages
> Fully automatic
> Adaptive

> Can use many types of underlying learning
algorithms

> Good performance guarantees from learning
theory: performance never too far off from best
expert in hindsight

@Disadvantages

> Computational cost: need to track many models
“in parallel”
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Weighted Majority Algorithm
[Littlestone & Warmuth “88]

@ Introduced for binary classification
> Experts make predictionsin [0,1]
> Obtain losses in [0,1]
® Pseudocode:
> Learning rate as main parameter, B in (0,1]
> There are N “experts”, initially weight is 1 for all
> Fort=1,2,3, ...

Predict using weighted average of experts’
prediction

Obtain “true” label; each expert incurs loss |,
Update experts’ weights using w; ., = w;; = pow(,1,)
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Weighted Majority Algorithm
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- Calculate li = loss(i) for i=1,...,N
- Update: wi,t+1 = wi,t = pow(R,li) for learning rate g, time t and i=1,..,N
24
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In our case, can’t use WM
directly

® Use ranking as opposed to binary
classification

® More importantl

do not have a fixed set

Dealing with ranking vs. binary
classification

® Ranking loss as normalized average rank
of failures as seen before, loss in [0,1]
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Dealing with a moving set of
experts
®@Introduce new parameters

> B: “budget” (max number of models) set to
100

Online Ranking Algorithm
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Other parameters

® How often do we train and add new models?
> Hand-tuned over the course of the summer

> Alternatively, one could train when observed
performance drops .. not used yet

® How much data do we use to train models?

> Based on observed performance and early
experiments

- 1 week worth of data, and
- 2 weeks worth of data
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Experimental Comparison

“© Compare our approach to
> Using “batch”-trained models
- Other online learning methods

Performance - Summer 2005
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Performance - Winter 2006
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Future Work

© Concept drift detection

> Add new models only when change is
detected
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