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The Electrical System
1. Generation 2. Transmission

3. Primary
Distribution

4. Secondary Distribution
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The Problem
Distribution feeder failures result in 
automatic feeder shutdown
› called “Open Autos” or O/As 
O/As stress networks, control centers, and 
field crews 
O/As are expensive ($ millions annually)
Proactive replacement is much cheaper 
and safer than reactive repair
How do we know which feeders to fix?
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Some facts about feeders and 
failures

mostly 0-5 failures 
per day
more in the 
summer
strong seasonality 
effects
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Feeder data
Static data
› Compositional/structural
› Electrical
Dynamic data
› Outage history (updated daily)
› Load measurements (updated every 15 

minutes)
Roughly 200 attributes for each feeder
› New ones are still being added.



4

7

Overview
The problem
› The electrical system
› Available data 

Approach
Challenges
Our solution using Online learning
Experimental results

8

Machine Learning Approach
Leverage Con Edison’s domain 
knowledge and resources
Learn to rank feeders based on failure 
susceptibility
How?
› Assemble data
› Train ranking model based on past data
› Re-rank frequently using model on current 

data
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Feeder Ranking Application

Goal: rank feeders according to failure 
susceptibility
› High risk placed near the top

Integrate different types of data
Interface that reflects the latest state of 
the system
› Update feeder ranking every 15 min.
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Application Structure
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Decision Support GUI

12

Overview
The problem
› The electrical system
› Available data 

Approach
Challenges
Our solution using Online learning
Experimental results



7

13

Simple Solution
Supervised batch-learning algorithms
› Use past data to train a model
› Re-rank frequently using this model on current 

data
Use the best performing learning 
algorithm
› How do we measure performance?
› MartiRank - boosting algorithm by [Long & 

Servedio, 2005]
Use MartiRank for dynamic feeder ranking

14

Performance Metric

Normalized average rank of failed 
feeders
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Performance Metric Example
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Real-time ranking with MartiRank
MartiRank is a “batch” learning 
algorithm
Deal with changing system by:
› generating new datasets with latest data
› Re-training new model, replacing old 

model
› Using newest model to generate ranking
Must implement “training strategies”
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Real-time ranking with MartiRank

time

time

time
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How to measure performance 
over time

Every ~15 minutes, generate new ranking 
based on current model and latest data
Whenever there is a failure, look up its 
rank in the latest ranking before the 
failure
After a whole day, compute normalized 
average rank
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Using MartiRank for real-time 
ranking of feeders

MartiRank seems to work well, but..
› User decides when to re-train
› User decides how much data to use for re-

training
› Performance degrades over time
Want to make system automatic
› Do not discard all old models
› Let the system decide which models to use
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Learning from expert advice
Consider each model as an expert
Each expert has associated weight
› Reward/penalize experts with good/bad 

predictions
› Weight is a measure of confidence in expert’s 

prediction

Predict using weighted average of top-
scoring experts
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Learning from expert advice
Advantages
› Fully automatic
› Adaptive
› Can use many types of underlying learning 

algorithms
› Good performance guarantees from learning 

theory: performance never too far off from best 
expert in hindsight

Disadvantages
› Computational cost: need to track many models 

“in parallel”
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Weighted Majority Algorithm 
[Littlestone & Warmuth ‘88]

Introduced for binary classification
› Experts make predictions in [0,1]
› Obtain losses in [0,1]
Pseudocode:
› Learning rate as main parameter, ß in (0,1]
› There are N “experts”, initially weight is 1 for all
› For t=1,2,3, …

Predict using weighted average of experts’
prediction
Obtain “true” label; each expert incurs loss li
Update experts’ weights using wi,t+1 = wi,t • pow(ß,li)
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Weighted Majority Algorithm 

e1 . . .e2 e3 eNN Experts

w1 w2 w3 wN

1 0 0 1
?

w1*1 + w2*0 + w3*0 +       . . .        +wN*1

>0.5 <0.5

1 0

1

- Calculate li = loss(i) for i=1,…,N
- Update: wi,t+1 = wi,t • pow(ß,li) for learning rate ß, time t and i=1,..,N
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In our case, can’t use WM 
directly

Use ranking as opposed to binary 
classification
More importantly, do not have a fixed set 
of experts

26

Dealing with ranking vs. binary 
classification

Ranking loss as normalized average rank 
of failures as seen before, loss in [0,1]
To combine rankings, use a weighted 
average of feeders’ ranks



14

27

Dealing with a moving set of 
experts

Introduce new parameters
› B: “budget” (max number of models) set to 

100
› p: new models weight percentile in [0,100]
› α: age penalty in (0,1]

If too many models (more than B), drop 
models with poor q-score, where
› qi = wi • pow(α, agei)
› I.e., α is rate of exponential decay
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Online Ranking Algorithm 

e1 . . .e2 e3 eB

w1 w2 w3 wB

?
F1
F4
F3
F2
F5

F4
F2
F1
F3
F5

F1
F3
F5
F4
F2

F1
F3
F4
F2
F5

F1
F3
F4
F2
F5

F3
F1
F4
F2
F5

eB+1 eB+2

wB+1 wB+2
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Other parameters
How often do we train and add new models?
› Hand-tuned over the course of the summer
› Alternatively, one could train when observed 

performance drops .. not used yet
How much data do we use to train models?
› Based on observed performance and early 

experiments
1 week worth of data, and
2 weeks worth of data
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Experimental Comparison

Compare our approach to
› Using “batch”-trained models
› Other online learning methods
Ranking Perceptron
› Online version
Hand Picked Model
› Tuned by humans with domain knowledge
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Performance – Summer 2005
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Performance – Winter 2006
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Parameter Variation - Budget
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Future Work
Concept drift detection
› Add new models only when change is 

detected
Ensemble diversity control
Exploit re-occurring contexts


