Summarizing A 3 Way Relational Data Stream

Baptiste Csernel, 3rd year PhD Student
Fabrice Clérot, Supervisor FT R&D
Georges Hébrail, Supervisor ENST

Plan

- Problem Presentation
 - Context
 - Problematic
- Useful Tools
 - CluStream
 - Bloom Filters
- Method Presentation
 - Entity Summary
 - Relation Summary
 - Storage Management
- Work in Progress and Perspectives
Problem Presentation

- Motivation
- Context
- Problematic
- Goal

Motivations

- Data Stream processing is an ever growing preoccupation.
- For both DSMS and stream mining applications, summaries are a necessity.
- Most information is by nature, relational.
Context

- Data stream summaries generate a lot of interest.
- Static tables as well as data stream join evaluation are a popular subject as well.
- Single stream mining and single table mining are the norm.
- Relational stream mining is not a very active research area.

Problematic

Entity Stream E_i of Elements E_i

- $E_i : (K_e, t, e_1, e_2, ..., e_p)_i$

Relation Stream R_l of Elements R_l

- $R_l : (K_e, K_f, t, r_1, r_2, ..., r_d)_l$

Entity Stream F_j of Elements F_j

- $F_j : (K_f, t, f_1, f_2, ..., f_q)_j$

Additional Constraints:

- All Streams are insert only.
- R speed $<<<$ E and F speeds.
- All attributes are numerical.
- References are not broken.
Goal

- Summarizing three data streams sharing a relational link with one another.
- Building separate summaries for each entity stream, and for the relation stream.
- Summarizing the information contained in the relational links between the streams.

Useful Tools

- CluStream
 - Cluster Feature Vector (CFV)
 - SnapShot System
- Bloom Filters
Cluster Feature Vector (CFV)

- **Structure** :
 \[(n, CF_1(t), CF_2(t), CF_1(a1), CF_2(a1), \ldots, CF_1(ad), CF_2(ad)).\]

- **With**
 - \(CF_1(ak) = \sum_{i=1}^{n} (ak_i)\)
 - \(CF_2(ak) = \sum_{i=1}^{n} (ak_i)^2\)

- **Remark**
 - Time has the same role as any other variable.

SnapShot System

- The state of the system is saved at regular time intervals

- The data structure is chosen in order to allow arithmetic operation between snapshots.

- The time at which snapshots are taken is chosen in accordance to the user’s needs.
Snapshot System:
Distribution example: 2^n

<table>
<thead>
<tr>
<th>Order o</th>
<th>Snapshots</th>
<th>Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>69 67 65</td>
<td>2^1</td>
</tr>
<tr>
<td>1</td>
<td>70 66 62</td>
<td>2^2</td>
</tr>
<tr>
<td>2</td>
<td>68 60 52</td>
<td>2^3</td>
</tr>
<tr>
<td>3</td>
<td>56 40 24</td>
<td>2^4</td>
</tr>
<tr>
<td>4</td>
<td>48 16</td>
<td>2^5</td>
</tr>
<tr>
<td>5</td>
<td>64 32</td>
<td>2^6</td>
</tr>
</tbody>
</table>

CluStream: Data Stream Clustering Algorithm (Aggarwal 2003)

- Algorithm based on three principles:
 - Dividing processing in two parts, an on-line part and an off-line part.
 - Creating and maintaining a large population of micro clusters.
 - Storing the state of those micro clusters with a snapshot system.
CluStream (1/4) (on-line part)

- **Initialization**
 - Off-line initialization of the micro clusters.

- **For each element**
 - Locate the closest micro cluster.
 - Admission test
 - If admitted, update CFV.
 - Otherwise, create a new micro cluster, and remove an outdated one.

CluStream (2/4) (on-line part)

- **Micro cluster removal**
 - Remove an old micro cluster.
 - (criteria based on the arrival date of the last elements)

 - If none is available, fuse the two closest micro cluster.
 - (Update the idlist of the absorbing micro cluster)
CluStream (3/4) (partie en ligne)

- **Storage**
 - Snapshot system with a distribution in 2^o
 - Each snapshot contains
 - The CFV of each micro cluster.
 - The id list of each micro cluster.

CluStream (4/4) (off-line part)

- Use the snapshot to rebuild the stream part to be analyzed. (as a set of micro clusters)
- Apply a classic classification algorithm to the resulting set of micro clusters.
- The resulting clusters represent the final clustering of the stream.
Bloom Filters (Bloom 1970) (1/2)

- **Idea:**
 Can remember whether or not it has previously seen any number of elements.

- **Supports two operations:**
 - Learn a new element.
 - Test if an element has been previously learned or not.

Structure:
- A bloom filter is a simple binary word B of b bytes.
- At initialization, all the bytes are set to 0.

- **Learn a new element E:**
 - Hash E to a b bytes word W_E.
 - Set all the bytes at 1 in W_E to 1 in B.

- **Test a new element N:**
 - Hash N to a b bytes word W_N.
 - If all the bytes at 1 in W_N are at 1 in B, then, with high probability, N was previously learned.
 - Otherwise, N was never learned before.

- **Remark:**
 - Bloom filters are additive.
Method Presentation

- System Overview
- Entity Summary
- Relation Summary
- Storage System

System Overview

Entity Stream E
- Entity Summary Structure:
 - N_e Micro Clusters
 - N_e Bloom Filters

Relation Stream R
- Relation Summary Structure:
 - CFV Cross Table
 - $N_e \times N_f$ CFV Cross Table

Entity Stream F
- Entity Summary Structure:
 - N_f Micro Clusters
 - N_f Bloom Filters
Entity Summary

- Upon the arrival of each new element $E_i (K_e, t, e1, e2, \ldots, e_p)$:
 - Find the closest micro cluster.
 - Test for admission
 - If admitted:
 - Update the micro cluster CFV information.
 - Learn K_e with the bloom filter attached to the micro cluster.
 - If not admitted:
 - Create a new micro cluster with E_i as its seed.
 - Make room for it by fusing the two closest micro clusters.
 (this implies adding their two Bloom filters as well)

Relation Summary

- Upon the arrival of each new element $R_i (K_e, K_f, t, r1, r2, \ldots, r_d)$:
 - Check all the Bloom filters for E to locate the one containing K_e. Mark its associated micro cluster C_i.
 - Check all the Bloom filters for F to locate the one containing K_f. Mark its associated micro cluster C_j.
 - If the couple (i,j) is unique, add the element R_i to the CFV of indices (i,j) in the CFV cross table if the couple.
Storage Management

- The storage system used is the same one as the one described in CluStream.
- All three streams are considered to share the same system clock.
- The information saved in each snapshot is:
 - For each entity:
 - The CFV and IdList of each micro cluster.
 - For the relation:
 - All the CFV matrix.

Work in Progress

- A Prototype of the algorithm already exists.
- Algorithm Testing:
 - Exploring suitable real datasets:
 - Telecommunication (services/usage/client)
 - Peer 2 Peer (documents/requests/users)
 - Airline Companies (flight/reservations/passengers)
 - Constructing an artificial dataset:
 - What kind of distribution should be used (Zipf?)
 - What kind of clusters, and what evolution for them.
 - Finding an appropriate evaluation criteria and evaluation scheme.
Conclusions and Perspectives

- This work is still in progress despite a working prototype.
- Perspectives include:
 - Extensive evaluation with real and artificial data.
 - Studying the summary querying mechanisms.
 - Extending the method to more complex data schemes (star first, then any relational type).
 - Adapting the method to deal with deletions in the streams processed.