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Goals:

« Extract sequential patterns from data streams. Applied to: behaviour
of a Web site’s users.

« Identifying problems arising with this pattern extraction. Particularly
the management of their history.

Framework: The SCDS method
(Sequence Clustering in Data Streams)
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Data Streams: a few words...

* New elements are generated continuously.
 Data have to be considered as fast as possible.
» No blocking operator can be performed.

 Data can be examined only once.

» Memory usage is restricted.
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Sequential Pattern Mining: some definitions.

* Item: bought by a customer
» Transaction: a customer + an item + a timestamp
» Sequence: ordered list of itemsets

» Data sequence: stands for the activities of a customer.
Let T1, T2, ..., Tn be the transactions of Cj, the data
sequence of Cj is:
< itemset(T1) itemset(T2) ... itemset(Tn)>

* Minimum support : the minimum number of

occurrences of a sequential pattern to be considered as
frequent.
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Question : « Can we find a behavior that would be shared by (at least) 40%

of the users recorded in the log file? »

behaviour : a series a requests performed during a navigation on the site.
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Extracting patterns from data streams

1) Satisfy the constraints of a data stream environment.

High speed algorithms.
Sampling with an estimation of the quality.
etc.

2) Managing the history of frequencies

Logarithmic Tilted Time Window (Han et al.)
Segment Tuning and Relaxation (Teng et al.)
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Example: FTPStream
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Why is this such a deal to extract sequential
patterns from a data stream?

A sequential pattern mining algorithm may be based on:

¢ wne resu

« Breadth-first search
size ©

« Depth-first search

e batc\’\‘-

« Without candidate generation
size of

* Sampling
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Why is this such a deal to extract sequential
patterns from a data stream?
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“We have to find the balance between the execution
time and the quality of the extracted patterns.”

Our proposal relies on two compromises:

1. A greedy sequence clustering algorithm.

2. A sequence alignment method applied to each cluster.
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A Greedy Algorithm for clustering
streaming sequences

Builds the clusters on the fly.

When “n” sequences have been processed: next batch.
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Overview

Stream
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Sequence alignment for each cluster

The centroid is the result of an alignment applied to the
sequences of each cluster.

< (a (b) (d) >
<(a) (b) (d) > - < (@ () @ >
< (@) () (d)> <(@2) (b1, c:1) (d:2) >

Filter k =1: < (a:2) (b:1, c:1) (d:2) >
Filter k =2: < (a:2) (d:2) >
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Managing the history of the extracted patterns

« On static databases, the knowledge is stable

« On data streams, the knowledge is evolving with the stream
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Ongoing work: an incremental clustering.

Motivation: The division of the stream into batches “blurs” the
history of the frequent patterns.
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* [dea : have the cluster evolving.

* Objective : be independent from slight variations
when managing the history of extracted patterns.

* Principle : keep the centroid (aligned sequence) of
the clusters from one batch to another.

We propose to perform an incremental clustering
in order to maintain a coherent history.

15 min 15 min 30 min 1h
A(BC)D |A(BC)D |A(BC)DE A(BC)E
3% 4% 2% 2%
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A few questions motivating this work:

- What should this summary look like?

- Where does the approximation stop?

- Is data mining able to help summarizing a stream?
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