A Semi-Supervised Recommender System to Predict Online Job Offer Performance

Julie Séguéla¹,² and Gilbert Saporta¹

¹CNAM, Cedric Lab, Paris
²Multiposting.fr, Paris

October 29th 2011, Beijing

Theory and Application of High-dimensional Complex and Symbolic Data Analysis
Outline

Introduction
✓ Context and objectives
✓ Recommender systems
✓ Data complexity

Methodology
✓ Data handling
✓ Similarity computing between job postings
✓ Return estimation and system evaluation

Experiments: job board recommendation for job postings
✓ Data description
✓ Experiments and results

Conclusions and future work
In 2009, 82% of vacancies were published on the internet (66% percent in 2006)
Job list

Web Designer – HTML, CSS, Javascript/jQuery – Part-time
VENTURI LIMITED Manchester, North West Posted today
Web Designer – HTML, CSS, Javascript/jQuery – Part-time Seeking an experienced, Creative Web Designer / Web Developer / Graphic Designer to join our establish...
Job details & apply

C++ Software Engineer
Deerfoot IT Resources Ltd Hounslow, London Posted today
C++ Software Engineer - Permanent - Hounslow - C++, Oracle RDBMS, OLTP, STL, Design Patterns, UNIX, PL/SQL - £40K - £50K dependent on experience + excellent benef...
Job details & apply
Context: A job posting on a job board

Job list

Structured data

- Web Designer – HTML, CSS, Javascript/JQuery – Part-time
 - VENTURI LIMITED Manchester, North West Posted today

Unstructured data

- Web Designer – HTML, CSS, Javascript/JQuery – Part-time
 - Seeking an experienced, Creative Web Designer / Web Developer / Graphic Designer to join our established FTSE 100 Company based in the Manchester area. This is an exciting opportunity to work in that part-time role (approx 20-25hrs per week) on a contract that is initially 12 months and likely to be extended.
 - The successful Creative Web Designer / Web Developer / Graphic Designer will have experience with:
 - Dreamweaver
 - Flash
 - Photoshop
 - HTML/Javascript
 - CSS
 - Adobe Acrobat Professional
 - It would also be desirable (but NOT necessary) for the successful Creative Web Designer to have some experience with:
 - JQuery
 - SEO
 - The successful Creative Web Designer will be responsible for:
 - Inserting and creating graphical design and flair to websites.
 - Re-branding of existing websites.
 - Setting up websites from initial concept with little direction.
 - Producing several mock designs before final concept approval.
 - Designing for front end web sites / Back end Content Management Systems.
 - Producing Artwork for a shot campaigns.
 - Creating interactive PDF brochures.
 - Developing Flash banners to be inserted on external websites.
 - Optimising web pages for search engines.
Illustration of multiposting

1. I choose job boards
 - Monster
 - Keljob
 - CarriereOnline
 - Cadremploi
 - Les Jeudis

2. I key just once my job offer

3. My offer is automatically multiposted
 - Profile searched: Senior Geophysicist
 - Job description: Participating as a contributive team member
 - Posting returns:
 - 22 applications
 - 14 applications
 - 18 applications

Our data are provided by Multiposting.fr, an online job posting solution

October 29th - SDA 2011, Beijing
A hundred of job boards

Number of job boards which have at least « X » postings

- Ex: 13 job boards have 1000 postings or more
Objectives

With internet expansion, the number of potential job boards is exponentially growing.

It is now necessary to understand job board performances in order to make adequate choices when posting a job on internet.

Develop a predictive algorithm of job posting performance on a job board.

Develop an intelligent tool which recommends the best job boards according to the job offer.

We present here a recommender system predicting the ranking of job boards with respect to job posting returns.
Outline

Introduction
- Context and objectives
- Recommender systems
- Data complexity

Methodology
- Data handling
- Similarity computing between job postings
- Return estimation and system evaluation

Experiments: job board recommendation for job postings
- Data description
- Experiments and results

Conclusions and future work
General idea: the aim of a recommender system is to help **users** to find **items** from huge catalogues that they should appreciate and that they have not seen yet.

Illustration with a movie recommender system

<table>
<thead>
<tr>
<th>User</th>
<th>Harry Potter</th>
<th>The Chronicles of Narnia</th>
<th>Terminator</th>
<th>Rambo</th>
<th>The Lord of the Rings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Bob</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Cindy</td>
<td>3</td>
<td>5</td>
<td>?</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>David</td>
<td>1</td>
<td>?</td>
<td>5</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Fragment of a rating matrix

? = unknown rating

- What movie should be recommended to Alice?
 - Bob and Cindy like the same movies as Alice
 - So we should recommend to Alice an other movie that they liked: « The Lord of the Rings »

- This is a **collaborative system** (based on ratings and no use of descriptive variables)
Hybrid system?

About recommender systems

Prediction are based on ratings obtained by the most similar items with respect to rating vectors

Collaborative filtering

Prediction are based on item features (recommends items similar to those that the user liked in the past)

Content-based filtering

Hybrid system (a system which combines collaborative and content-based approaches)
Usual recommender objectives / issues

- Recommendation of items (= postings) to users (= job boards) according to the expected rating (= return)
- Unlimited number of potential items
- Sparse matrix: a lot of items, for each item few ratings are known
- Similarity between items is based on the ratings given by users

Our additional issues

- We are interested in predicting ratings only for « new items »: no rating, only descriptive variables
- It is not possible to obtain ratings for new items because this is a « one shot » recommendation
- Posting return is more complex than a rating (usually between 0 and 5): much variability within and between users
- We need to understand posting return variability
Outline

Introduction
- ✓ Context and objectives
- ✓ Recommender systems
- ✓ Data complexity

Methodology
- ✓ Data handling
- ✓ Similarity computing between job postings
- ✓ Return estimation and system evaluation

Experiments: job board recommendation for job postings
- ✓ Data description
- ✓ Experiments and results

Conclusions and future work
Complexity of our data and issues

Which factors are relevant to explain job posting performance?
- Identification of potential factors (job characteristics, job board, job market, etc.), coming from different sources (job offer, demographic data source, firm data, etc.)
- Use of Text mining techniques to extract relevant descriptors from the job offer

High dimensional data
- We are working with **structured** and **unstructured** data which have to be handled simultaneously
- Job postings are described by thousands of features
- Features have to be weighted in the algorithm according to their power of explanation
Complexity of our data and issues: display length

Irregular flow of applications and different display length because:
- Each job board has a specific length of display
- Some job postings are stopped before their end

We have to predict posting daily performance for a given time

Number of application received

Number of application received per day

Displaying day

Length of display
Outline

Introduction
- Context and objectives
- Recommender systems
- Data complexity

Methodology
- Data handling
- Similarity computing between job postings
- Return estimation and system evaluation

Experiments: job board recommendation for job postings
- Data description
- Experiments and results

Conclusions and future work
Methodology: General overview of the recommender system

- Unstructured data
 - Text features
 - Structured data
 - Posting features

- PLS components
- Computing similarities
- Return estimation
Methodology: Handling of structured data

Categorical variables
- contract type
- education level
- career level
- location (region)
- job category (occupation)
- Industry
- Type of recruiter (company, recruitment agency, etc.)
- year
- month

Quantitative variables
- Location (city, employment area) demographic characteristics:
 - Population
 - Unemployed people
 - Working people
- Displaying time

Categorical variables are recoded into dummy variables
Latent Semantic Indexing (LSI) with TF-IDF weighting

1) Document-term matrix

$$T = \begin{pmatrix} \vdots & \vdots & \vdots \\ \vdots & f_{ij} & \vdots \\ \vdots & \vdots & \vdots \end{pmatrix}$$

2) Weighting

$$T_W = \begin{pmatrix} \vdots & l_{ij}(f_{ij}) & g_j(f_{ij}) & \vdots \\ \vdots & \vdots & \vdots & \vdots \end{pmatrix}$$

3) SVD

$$T_W = U \Sigma V'$$

4) Document coordinates in the latent semantic space:

$$C = U_k \Sigma_k$$

Local weighting:
TF (Term Frequency)

$$l_{ij}(f_{ij}) = f_{ij}$$

Global weighting:
IDF (Inverse Document Frequency)

$$g_j(f_{ij}) = 1 + \log \left(\frac{n}{n_j} \right)$$

n: number of documents

n_j: number of documents in which term j occurs
Outline

Introduction
- Context and objectives
- Recommender systems
- Data complexity

Methodology
- Data handling
- Similarity computing between job postings
- Return estimation and system evaluation

Experiments: job board recommendation for job postings
- Data description
- Experiments and results

Conclusions and future work
Methodology: Computing of PLS components

Why PLS?
- The number of predictors can be large compared to the number of observations
- Components are independent and highly correlated with the dependent variable
- Dimensionality reduction

Method:
- Extraction of PLS components: NIPALS algorithm
- Number of components chosen by cross-validation
- Selection of relevant predictors thanks to VIP indicator (> 0.8)
- Computing of PLS components based on the predictors kept
Methodology: Similarity measures

- Computing of new posting similarity with respect to all past postings
- It supposes that similar items regarding to their PLS components should have similar returns for a given job board

Method:
- Computation of euclidean distances between posting coordinates
- Similarity is a decreasing function of euclidean distance:

- Mean
- Distance max - distance
- Inverse distance
- Gaussian function
- Exponential function
Outline

Introduction
- Context and objectives
- Recommender systems
- Data complexity

Methodology
- Data handling
- Similarity computing between job postings
- Return estimation and system evaluation

Experiments: job board recommendation for job postings
- Data description
- Experiments and results

Conclusions and future work
Methodology: Return estimation

- Expected return of an item (posting) i_1 is estimated thanks to an aggregating function computed on item neighborhood.

- Neighborhood is defined by the $|K|$ nearest neighbors of item i_1 with respect to the used similarity measure.

- $R_{u,i_1} =$ expected return of item i_1 for user u (job board).

- $r_{u,i_k} =$ return of item i_k for user u.

\[
R_{u,i_1} = \frac{\sum_{i_k \in K} \text{sim}(i_1, i_k) \times r_{u,i_k}}{\sum_{i_k \in K} \text{sim}(i_1, i_k)}
\]
Methodology: Other approaches for comparison

1 - Comparison with PLS regression (model-based recommendation)
- Computing of PLS components (method was described before)
- Regression of PLS components on the dependent variable
- Prediction by 10-fold cross validation

2 - Comparison with a non-supervised system based on text features (heuristic-based recommendation)
- LSI with TF-IDF weighting and 50 dimensions
- Similarity measures are computed directly on LSI coordinates
- Same measures as those used in the semi-supervised system
- Same estimation technique
Advantages and weaknesses of the three approaches

<table>
<thead>
<tr>
<th></th>
<th>Linearity constraint</th>
<th>Risk of overfitting</th>
<th>Interpreting</th>
<th>Weight fitting</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLS-R</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Non supervised system</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Semi-supervised system</td>
<td>no</td>
<td>low</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>
Methodology: System evaluation

- U = set of job boards
- D_u = set of postings with an observed return for job board u
- $r_{u,i}$ = return of posting i on job board u
- $p_{u,i}$ = predicted return of posting i on job board u

Mean Absolute Error (mean error per job board)

$$MAE = \frac{1}{|U|} \sum_{u \in U} \frac{\sum_{i \in D_u} |p_{u,i} - r_{u,i}|}{|D_u|}$$
Introduction

✓ Context and objectives
✓ Recommender systems
✓ Data complexity

Methodology

✓ Data handling
✓ Similarity computing between job postings
✓ Return estimation and system evaluation

Experiments: job board recommendation for job postings

✓ Data description
✓ Experiments and results

Conclusions and future work
Objective: predict the number of applications received for a new posting on a job board

- We keep in the sample job boards with at least 100 postings
- **Dependent variable:** number of applications / display length

- 31 job boards
- 14,334 postings
- 30,875 returns
Comparison of job board returns

Illustration of return variability in and between job boards (one boxplot by job board)
Outline

Introduction
✓ Context and objectives
✓ Recommender systems
✓ Data complexity

Methodology
✓ Data handling
✓ Similarity computing between job postings
✓ Return estimation and system evaluation

Experiments: job board recommendation for job postings
✓ Data description
✓ Experiments and results

Conclusions and future work
Results: Introducing of new relevant descriptors

Improving results by adding relevant descriptors

<table>
<thead>
<tr>
<th>System</th>
<th>MAE</th>
<th>Best on how many job boards?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Recommender</td>
<td>10.2</td>
<td>2</td>
</tr>
<tr>
<td>PLS-R text features</td>
<td>8.0</td>
<td>5</td>
</tr>
<tr>
<td>PLS-R text features + job characteristics + location characteristics</td>
<td>7.5</td>
<td>24</td>
</tr>
</tbody>
</table>

![Graph showing return variability vs. number of postings]
Non-supervised approach: Discussion about parameters

MAE according to the number of neighbors and parameter in gaussian and exponential functions

- **Gaussian**
 - σ
 - $1/2 \sigma$
 - $1/3 \sigma$
 - $1/4 \sigma$

- **Exponential**
 - σ
 - $1/3 \sigma$
 - $1/4 \sigma$
 - $1/8 \sigma$

![Graph showing MAE vs number of neighbors for different parameters]
Semi-supervised approach: Discussion about parameters

MAE according to the number of neighbors and parameter in gaussian and exponential functions

- **MAE**
 - **gaussian (\(\sigma\))**
 - **gaussian (2/3 \(\sigma\))**
 - **gaussian (1/2 \(\sigma\))**
 - **gaussian (1/3 \(\sigma\))**
 - **PLS-R**

- **MAE**
 - **exp (\(\sigma\))**
 - **exp (1/2 \(\sigma\))**
 - **exp (1/3 \(\sigma\))**
 - **exp (1/6 \(\sigma\))**
 - **PLS-R**

October 29th - SDA 2011, Beijing
Results: Comparison of similarity functions

Non-supervised approach

- PLS-R
- dist max - dist
- inverse distance
- gaussian (1/4 σ)
- exp (1/8 σ)

Semi-supervised approach

- PLS-R
- mean
- dist max - dist
- inverse distance
- gaussian (1/3 σ)
- exp (1/6 σ)

MAE vs. number of neighbors

October 29th - SDA 2011, Beijing
Results: Summary

Best system of each approach

<table>
<thead>
<tr>
<th>System</th>
<th>MAE</th>
<th>Best on how many job boards?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Recommender</td>
<td>10.2</td>
<td>0</td>
</tr>
<tr>
<td>PLS-R</td>
<td>7.5</td>
<td>6</td>
</tr>
<tr>
<td>Non-supervised system</td>
<td>7.1</td>
<td>7</td>
</tr>
<tr>
<td>Semi-Supervised system</td>
<td>6.6</td>
<td>18</td>
</tr>
</tbody>
</table>

![Graph showing return variability and number of postings for different systems.](image-url)
Outline

Introduction
- Context and objectives
- Recommender systems
- Data complexity

Methodology
- Data handling
- Similarity computing between job postings
- Return estimation and system evaluation

Experiments: job board recommendation for job postings
- Data description
- Experiments and results

Conclusions and future work
Conclusions:

- MAE decreases with the standard deviation parameter in gaussian and exponential functions (but increases if too small)
- In the semi-supervised approach, the optimal parameter implies stability of MAE with the number of neighbors. Select 40 neighbors, and just find the optimal parameter.
- Best results with semi-supervised approach and exponential function
- The system allows introducing of new variables and manage their weight in the model
- Estimation are made on job offers really close to the new offer / the offer studied

Future work:

- Improve the prediction if the posting is in fact « exactly » the same as a previous one
- Manage job boards with very few or no postings
Thank you for your attention!