

A Combined Biological and Mathematical Approach for Modeling PK-PD of Anticancer Drug Irinotecan -

Focus on Acquired Resistance and Circadian Rhythms at the Cell Population Scale

> Annabelle Ballesta¹, Jean Clairambault¹, Sandrine Dulong², Alper Okyar², Francis Levi²

> > 2008 December,18

Outline

- 1. Irinotecan Pharmacokinetics/Pharmacodynamics
- 2. Studying Irinotecan in cell culture
- 3. Decrease in Intracellular Concentration: Acquired Resistance?
 - 1. Experimental Results
 - 2. Mathematical Modeling
- 4. An Extended Model including Circadian Rhythms
 - 1. Experimental Results on Circadian Rhythms
 - 2. Mathematical Modeling

- Circadian = around 24 hours.
- Example of the circadian rhythm in mice:

Rest-activity rhythm in mice

Body temperature in mice

Time-scheduled delivery regimen for Metastatic Colorectal Cancer

Administration Scheme currently used by Francis Lévi's INSERM team U 776 (Villejuif):

Infusion over 5 days every 3 week

Chronotherapeutic schemes of infusion of the drug have been designed for the mouse, and then adapted for the human.

Results of chronotherapeutics versus constant administration

Metastatic colorectal cancer (Treated with Folinic Acid, 5-FU, Oxaliplatin)	Infusion flow	
	CONSTANT	CHRONO
Toxicity:		
Oral mucositis gr 3-4	74%	14%
Neuropathy gr 2-3	31%	16%
Responding rate:	30%	51%

Chronotherapy improves the responding rate to treatment and decreases the toxicity compared to constant infusion of the drugs.

Question:

Can such drug delivery schedules be improved?

1. Irinotecan Pharmacokinetics/Pharmacodynamics

2. Studying Irinotecan in cell culture

1.

- 3. Decrease in Intracellular Concentration: Acquired Resistance ?
- 4. An Extended Model including Circadian Rhythms

Pharmacokinetics of Irinotecan

Irinotecan(CPT11) is a pro-drug, i.e. it has to be activated into SN-38 which is 1000-fold more efficient. This reaction is catalysed by Carboxylesterases(CES).

SN-38 is then glucuronided into SN-38G which is inactive. This reaction is catalysed by the enzyme *UGT1A1*.

- 2. Studying Irinotecan in cell culture
- 3. Decrease in Intracellular Concentration: Acquired Resistance ?
- 4. An Extended Model including Circadian Rhythms

Pharmacokinetics of Irinotecan

CPT-11, SN-38 and SN-38G are transported outside of the cell by ATP-Binding Cassette (ABC) transporters, which are active efflux pumps.

- Irinotecan Pharmacokinetics/Pharmacodynamics 1.
- Studying Irinotecan in cell culture
- Decrease in Intracellular Concentration: Acquired 3. Resistance?
- An Extended Model including Circadian Rhythms

Pharmacodynamics of Irinotecan

Irinotecan is an **inhibitor of Topoisomerase I**

The Topoisomerase I is an enzyme that:

Wraps the supercoiled DNA:

- Cuts one strand so that the DNA can relax
- Reconnects broken strands

- 2. Studying Irinotecan in cell culture
- 3. Decrease in Intracellular Concentration: Acquired Resistance ?
- 4. An Extended Model including Circadian Rhythms

Pharmacodynamics of Irinotecan

Irinotecan is an **inhibitor of TOP1**:

 Irinotecan prevents TOP1 from reconnecting the broken strands of the DNA, creating reversible ternary complexes TOP1/DNA/Irinotecan.

 The collision between those complexes and the replication fork or the transcription mechanism creates double-stranded breaks, which can be lethal for the cell.

- 2. Studying Irinotecan in cell culture
- 3. Decrease in Intracellular Concentration: Acquired Resistance ?
- 4. An Extended Model including Circadian Rhythms

Summary

1. Studying Irinotecan in cell culture

- 2. Studying Irinotecan in cell culture
- 3. Decrease in Intracellular Concentration: Acquired Resistance ?
- 4. An Extended Model including Circadian Rhythms

Cell Culture

Experiments on Caco-2 cells (human epithelial colorectal adenocarcinoma cells) have been performed.

A Petri Dish

The cells stick to the bottom of the dishes.

The extracellular medium is added on top of the cells

Caco-2 cells under microscope

- 2. Studying Irinotecan in cell culture
- 3. Decrease in Intracellular Concentration: Acquired Resistance ?
- 4. An Extended Model including Circadian Rhythms

Detection of CPT11 and its metabolite by High Performance Liquid Chromatography(HPLC)

What we theoretically detect:

- CPT11 OUT = CPT11 in the extracellular medium
- CPT11 IN = CPT11 in the intracellular medium+ CPT11 trapped in complexes with Topoisomerase I.
- SN38 OUT = SN38 in the extracellular medium
- SN38 IN = SN38 in the intracellular medium+ SN38 trapped in complexes with Topoisomerase I.

- 2. Studying Irinotecan in cell culture
- 3. Decrease in Intracellular Concentration: Acquired Resistance ?
- 4. An Extended Model including Circadian Rhythms

No SN38 is detected by HPLC

- 2. Studying Irinotecan in cell culture
- 3. Decrease in Intracellular Concentration: Acquired Resistance?
- 4. An Extended Model including Circadian Rhythms

CPT11 is not cytotoxic for Caco-2 cells

3. Decrease in Intracellular Concentration: Acquired Resistance?

- 2. Studying Irinotecan in cell culture
- 3. Decrease in Intracellular Concentration: Acquired Resistance ?
- 4. An Extended Model including Circadian Rhythms

Experimental results

- 2. Studying Irinotecan in cell culture
- 3. Decrease in Intracellular Concentration: Acquired Resistance ?
- 4. An Extended Model including Circadian Rhythms

Decrease in Intracellular Concentration

- Possible Explanation for Those Results: Induction of ABC transporters.
- Pgp is inducible by SN38 in HUH7 cells (human hepatocellular carcinoma cells): cf. Takeba et al., Irinotecan-Induced Apoptosis Is Inhibited by Increased P-Glycoprotein Expression and Decreased p53 in Human Hepatocellular Carcinoma Cells, Biol. Pharm. Bull. 30(8) 1400—1406 (2007)

- 2. Studying Irinotecan in cell culture
- 3. Decrease in Intracellular Concentration: Acquired Resistance ?
- 4. An Extended Model including Circadian Rhythms

Decrease in Intracellular Concentration

- CPT11 activates the nuclear factor NFkappaB (cf. Bottero et al. Activation of Nuclear Factor B through the IKK Complex by the Topoisomerase Poisons SN38 and Doxorubicin: A Brake to Apoptosis in HeLa Human Carcinoma Cells, CANCER RESEARCH 61, 7785–7791, November 1, 2001])
- Pgp is induced by the nuclear factor NFkappaB (cf. Zhou et al. NF-kB-mediated Induction of mdr1b Expression by Insulin in Rat Hepatoma Cells, THE JOURNAL OF BIOLOGICAL CHEMISTRY Vol. 272, No. 24, Issue of June 13, pp. 15174–15183, 1997)
- Proposition of a Model:

- 2. Studying Irinotecan in cell culture
- 3. Decrease in Intracellular Concentration: Acquired Resistance ?
- 4. An Extended Model including Circadian Rhythms

Construction of an ODE-based model:

One equation for each variable.

Example: the equation for [CPT11_{out}]:

$$\frac{d[CPT11_{out}]}{dt} = -k_{uptakeCPT}[CPT11_{out}] + \frac{V_{effCPT}[ABC][CPT11_{in}]}{K_{effCPT}\frac{V_{out}}{V_{in}} + [CPT11_{in}]}$$
Rate of change Uptake Efflux over time

- 2. Studying Irinotecan in cell culture
- 3. Decrease in Intracellular Concentration: Acquired Resistance ?
- 4. An Extended Model including Circadian Rhythms

ODE-based Model:

$$\frac{d[CPT11_{out}]}{dt} = -k_{uptakeCPT}[CPT11_{out}] + \frac{V_{effCPT}[ABC][CPT11_{in}]}{K_{effCPT}\frac{V_{out}}{V_{in}} + [CPT11_{in}]}$$

$$\frac{d[CPT11_{in}]}{dt} = k_{uptakeCPT}\frac{V_{out}}{V_{in}}[CPT11_{out}] - \frac{V_{effCPT}/V_{in}[ABC][CPT11_{in}]}{\frac{K_{effCPT}}{V_{in}} + [CPT11_{in}]}$$

$$\frac{d[NF]}{dt} = \frac{[CPT11_{in}]^n}{K_{ind}^n + [CPT11_{in}]^n} - k_{dNF}[NF]$$

$$\frac{d[ABC]}{dt} = k_{fABC} + k_{ind}[NF] - k_{dABC}[ABC]$$

- Studying Irinotecan in cell culture
- **Decrease in Intracellular Concentration: Acquired** 3. Resistance?
- An Extended Model including Circadian Rhythms 4.

Conservation Law: the total quantity of CPT11 is conserved

$$n_{out} + n_{in} = n_0 = CPT11_{out}(t = 0)V_{out}$$

$$CPT11_{out}V_{out} + CPT11_{in}V_{in} = n_0$$

$$CPT11_{out} = \frac{n_0 - CPT11_{in}V_{in}}{V_{out}}$$

System of equation to be solved:

$$\frac{d[CPT11_{in}]}{dt} = k_{uptakeCPT}(C_0/V_{in} - CPT11_{in}) - \frac{V_{effCPT}/V_{in}[ABC][CPT11_{in}]}{\frac{K_{effCPT}}{V_{in}} + [CPT11_{in}]}$$

$$\frac{d[NF]}{dt} = \frac{[CPT11_{in}]^n}{K_{ind}^n + [CPT11_{in}]^n} - k_{dNF}[NF]$$

$$\frac{d[ABC]}{dt} = k_{fABC} + k_{ind}[NF] - k_{dABC}[ABC]$$

- 2. Studying Irinotecan in cell culture
- 3. Decrease in Intracellular Concentration: Acquired Resistance ?
- 4. An Extended Model including Circadian Rhythms

- 2. Studying Irinotecan in cell culture
- 3. Decrease in Intracellular Concentration: Acquired Resistance ?
- 4. An Extended Model including Circadian Rhythms

- <u>Conclusion</u>: the suggested model is able to reproduce the experimental data.
- Work in progress to confirm our hypothesis:
 - 1. Measurements of CPT11 Intracellular/Extracellular concentration with inhibitor of ABC transporters (Verapamil).
 - 2. Measurements of Pgp mRNA level over time of exposure.

4. An Extended Model including Circadian Rhythms

- Studying Irinotecan in cell culture
- 3. Decrease in Intracellular Concentration: Acquired Resistance ?

Experimental results on Caco-2 cells

- 4. An Extended Model including Circadian Rhythms
 - Seric shocks (ie. exposing cells to a large amount of nutrients during 2 hours) synchronize the circadian clock of the cells which oscillate in synchrony.
 - Topoisomerase I and UGT1A1 have circadian rhythms in Caco-2 cells

• Others have found circadian rhythm for Topoisomerase I (cf. Circadian regulation of mouse topoisomerase I gene expression by glucocorticoid hormones, Y. Kuramoto and al., Biochemical Pharmacology, 2006)

- 2. Studying Irinotecan in cell culture
- 3. Decrease in Intracellular Concentration: Acquired Resistance ?
- 4. An Extended Model including Circadian Rhythms

- 2. Studying Irinotecan in cell culture
- 3. Decrease in Intracellular Concentration: Acquired Resistance ?
- 4. An Extended Model including Circadian Rhythms

- 2. Studying Irinotecan in cell culture
- 3. Decrease in Intracellular Concentration: Acquired Resistance ?
- 4. An Extended Model including Circadian Rhythms

System of Equations:

$$\frac{d[CPT11_{out}]}{dt} = -k_{uptakeCPT}[CPT11_{out}] + \frac{V_{effCPT}[ABC][CPT11_{in}]}{K_{effCPT}V_{vin}^{cut} + V_{out}[CPT11_{in}]}$$

$$\frac{d[CPT11_{in}]}{dt} = k_{uptakeCPT}\frac{V_{out}}{V_{in}} \left[CPT11_{out} \right] - \frac{V_{effCPT}[ABC][CPT11_{in}]}{K_{effCPT} + V_{in}[CPT11_{in}]} - \frac{V_{CPT-SN}[CPT11_{in}]}{K_{CPT-SN} + [CPT11_{in}]}$$

$$\frac{d[SN38_{out}]}{dt} = -k_{uptakeSN}[SN38_{out}] + \frac{V_{effSN}[ABC][SN38_{in}]}{K_{effSN} \frac{V_{out}}{V_{in}} + V_{out}[SN38_{in}]}$$

$$\frac{d[SN38_{in}]}{dt} = k_{uptakeSN}\frac{V_{out}}{V_{in}} \left[SN38_{out} \right] - \frac{V_{effSN}[ABC][SN38_{in}]}{K_{effSN} + V_{in}[SN38_{in}]} + \frac{V_{CPT-SN}[CPT11_{in}]}{K_{CPT-SN} + [CPT11_{in}]}$$

$$- \frac{V_{SN-SNG}[UGT][SN38_{in}]}{K_{SN-SNG} + [SN38_{in}]} - k_{fc}[TOP1][SN38_{in}](DNA_{tot} - [COMPL]) + k_{rc}[COMPL]$$

$$\frac{d[SN38G]}{dt} = \frac{V_{SN-SNG}[UGT][SN38_{in}]}{K_{SN-SNG} + [SN38_{in}]} - \frac{V_{effSNG}[ABC][SN38G]}{K_{effSNG} + V_{in}[SN38G]}$$

$$\frac{d[COMPL]}{dt} = k_{fc}[TOP1][SN38_{in}](DNA_{tot} - [COMPL]) - k_{rc}[COMPL]$$

$$\frac{d[NF]}{dt} = \frac{[SN38_{in}]^n}{K_{ind}^n + [SN38_{in}]^n} - k_{dNF}[NF]$$

$$\frac{d[ABC]}{dt} = k_{fABC} + k_{ind} * [NF] - k_{dABC}[ABC]$$

$$\frac{d[NF]}{dt} = k_{fTOP}(1 + \epsilon_{TOP}\cos(\frac{2\pi}{24}(t - \phi_{TOP}))) - k_{dTOP}[TOP1] - k_{rc}[COMPL]$$

$$-k_{fc}[TOP1][SN38_{in}](DNA_{tot} - [COMPL]) + k_{rc}[COMPL]$$

$$\frac{d[UGT1A1]}{dt} = k_{fUGT}(1 + \epsilon_{UGT}\cos(\frac{2\pi}{24}(t - \phi_{UGT}))) - k_{dUGT}[UGT]$$

- Studying Irinotecan in cell culture
- Decrease in Intracellular Concentration: Acquired 3. Resistance?
- An Extended Model including Circadian Rhythms 4.

Parameters for TOPI and UGT1A1 have been chosen to fit the data obtained in Caco-2 cells:

- 2. Studying Irinotecan in cell culture
- 3. Decrease in Intracellular Concentration: Acquired Resistance ?
- 4. An Extended Model including Circadian Rhythms

Simulation: chosing the right circadian time to expose cells

Conclusion and future work

- The decrease in CPT11 intracellular accumulation over time may be explained by the induction of ABC transporters. Further work is in progress to validate this hypothesis.
- Circadian rhythms of ABC transporters are being studied.
- Data about SN38 glucuronidation and about formation of reversible complexes are needed.
- This study at the cell population scale may then be integrated into a Whole-Body approach leading to potential improvements in the administration of Irinotecan to patients.

