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Outline of the talk:

cell cycle as an object of direct control
simplest models of tumor growth

compartmental models — phase specificity of
anticancer drugs

use of maximum principle in protocols
optimization

drug resistance — modeling and analysis
optimization of chemotherapy protocols

tumor angiogenesis

antiangiogenic therapy as an indirect control class
combined direct and indirect control
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rMutation inactivates
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CELLS PROLIFERATE

nMutation inactivates
DMNA repair gene

Mutation of proto-oncogene

creates an oncogene
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tumaor suppressor genes
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u e.g.vincristine,vinblastine,
bleomycine,taxol,
5-fluorouracil

v e.g.adriamycin,daunomyecin,
dexorubin,idarudicin,
hydroxyurea

e.g.granulocyte colony
stimulation factors,
Interleukin-3 combined
with human cloned stem
cell factor



3 types of action:

1. Killing (u)
Ni =—a;N; +a;,_ N,

Nixa=a @1-u)N. —a,_,N.

1+1" i+l

uel0,]
2. Blocking (v) — synchronization
Ni =—a, VN, +a, N, ,
Ni+1 =aVN, —a._,N. , velv,. 1]
3. Alteration of transit time (y)
Ni =a ,N. ,—yaN,
Ni+1 =yaN, —-a N,

1+1" Vi+1

Arr =25 af =Ya, y>1 <« recruitment



Thelrapy TCP =exp(— fON(T,)) > max
goal:

Clonogenic fraction  [g] Tumor cell density

Min <N, (T) = ZN; (T)

under constraints on cumulative negative effect on normal tissues

.
judtSE
0

.
Performance index: J=2N(T)+ FJUdt
! 0



2 compartment model

u

N, =—a,N, +2(1-u)a,N, N,(0)=N,, >0

N2 Z—azNz +a1N1 NZ(O):NZO >0

J :ZzlriNi(T)+}u(t)dt

H=u+p'(A+uB)N — min




Maximum principle

Two point boundary value problem.

a) conjugate equations:
N (t) = [A+Bu(t)IN(t),
p(t) =—{A+Bu(t)] p(t),

Switching function

0 if p'(t)BN(t)+1>0,
1 if p'(t)BN(t)+1<0,

b) switching rule:

-

u(t) =+

.

c) boundary conditions:

NOES\JIDES ¢
N belongs to positively invariant set,
p belongs to negatively invariant set
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Singular control

Legendre-Clebsch condition:

r = 2k (for linear in control problem r should be even)
In the r-th order derivative of the switching function u
appears explicitly k-order of the singular arc

dfy j
In this case k = 1, dt p'[A,BIN =0,

d2f

7= PTATABIN +up'[B.[A BIIN

but

o d?

@—W fs — [B,[A, B]]N = _4a1a2 p'BN = 4a1a2 >0

The condition is violated



3 compartment models

synchronization

N, =—a,N, +2(1-u)a,N,, N,(0)=N,, >0
N, =-va,N, +a,N,, N,(0)=N,,>0
N, =—a,N, +va,N,, N,(0) =N, >0

= iriNi(T)+]'u(t)dt



N, =—ya,N, +2b,(1-u)a,N,, N,(0) = N,, >0
N, =—a,N, + ya,N, + 2b,(1-u)a,N,, N,(0)=N,, >0
N, =-a,N, +a,N;, N,(0) =N,, >0

N (t) =[A+ Byu(t) + Bov(t)IN (1), N is in positively invariant set
p(t) =—{A+Bu(t) + Bov(t)] p(t), P IS In negatively invariant set



Necessary conditions

synchronization

0; 2a,N,p, <1

U=-+<
1 2a;N;p, >1
V:<Vm; p2 < p3
L P> ps
p1:a1(p1_ p2)1 pl(“):rl
P, = az(pz — ps)V1 P, (“) =T
ps - as(p?, —2p1(1—u)), ps(“) = I3




0; 2a,N,(byp, —b,p;) <1,

recruitment
i {1; 2a2N2(bo Po — b1 pl) >

(L p>p,

y_{o; p, < Py-
po — yao(po — pl)’ po(“) =TIy
plzai(pl_ pz)’ pl(“):rl
p, =a,[p, —2(L-u)(®, Py =B, )], P, (T) =T,

In both cases singular arcs are eliminated using
Clebsch —Legendre and Goh conditions



Numerical results

Synchronization
with cell arrest

0 20 40 60 80 100
t




Recruitment from GO




Pharmacokinetics and
Pharmacodynamics (PK/PD)

In previous models: dosage = concentration = effect




Models for PK

e Often unknown specifics

e Common approach - linear
model (exponential growth/
decay)-Bellman’s model

¢=—fc+ hu, c(0)=0

Iih

positive constants




Pharmacodynamics

effect

CIR




Models for PD: Michaelis-Menten
Model

L E maax C
ECs)+ ¢
E C 50

So(c)

e Menten constant

e smooth saturation at
maximum effect

e Immediate effects




Models for PD: Sigmoidal Model

Ema,m c" + Em'm (ECE)O ) nlogioc

83(6) — (ECQO _I_ Cn) Y

n
E max C

ECE + )’

e Smooth upper
saturation

o delay effect




Drug resistance (1)

1+(1-r)

1+(1-p) '

S — average number of cells in sensitive compartment
R — average number of cells in resistant compartment
probability of a daughter cell of a sensitive cell to

become resistant

probability of a daughter cell of a resistant cell to

become sensitive
— r=0 stable gene amplification
— r>0 unstable gene amplification




o cR(t) — outflow of resistant cells

Svision R { Mutates back
iVisi <V
CR sl R— S

N

remains
(2-r)cR {
resistant
e dynamics
S = —aS+(2—p)(1 —u)aS +reR,

R = —cR+(2—7)cR+p(1—u)aS.



|+1

Drug resistance model (2)

No (1) = AgNg (1) —aN (1) +d; N, ()
Nl(t) = 4N, (t) = (b, +dy )N, (t) + N, (t) +d; N, (t)

N, (t) = A,N, (£) — (b, +d, )N, (£) + by N, (1) + d; N, (1)

responsible for drug removement and metabolisation,
b, , . — cell lifespans, b<d (amplification < deamplification)

N (1) = 2;N; (€)= (B +di )N; (1) +di Ny (8) + by Ny (1)

1+1

o

b,
> N.(t) — number of cells with I additional gene copies

/\/’\/’\/\/\



Drug resistance model (3)

Model of cancer cells evolution, taking into account increasing drug resistance
Simplifying assumptions:
* the resistant cells are insensitive to drug's action —— u(t)only in 0
comp.

* there are no differences between
parameters of cells of different type — A =A4Db=Db, d=d

(N (t) =[1-2u(t) AN, (t) — N (t) + dN, (t)
N, (t) = AN, (t) = (b +d)N, (t) +dN, (t) + aN, (t)

i\:l.i(t) = AN (t) = (b +d)N. (1) +dN._, () +bN. , (t),i > 2




Block diagram

N, (t) N, (t)

No(t) = [1—2u(t) [N, (t) — aN, (t) + d, N, (1)

(N, (t) = AN, (t) = (b + d)N, (t) + dN, (t) + aN, (t)

N, (1) = AN, (0) = (b + )N, (1) + AN, (1) +bN, , (1),

I\

1>2




Stability conditions (for constant u)

Ky (S)

Ki(s) [

Kl(s):as—/1+b+d—J(S—Z+b+d) — 4hd

2bd

Z(t)—ZN(t)—exp/u [ ([Jjﬂz—) [- (b +d)z]d

N, () = XN, ()~ | 1-

i>1

Moreover:

>

b

min(b,d)}emr d t—% alA-(/d-B)°

2,/74/(bd)*(vd b )

b<d

Jd b > A

l «a
u>—+—.
2 d

1
d—b—A++/(b+d—1)%—4bd




Optimization of chemotherapy protocols

min « J = > N, (T)+r_[ u(z)dz

k>0

min <—J =N, (T) +

+T£[laN (T — )N, (r) + ru(2) i



For the simplified model and nonexisting initial drug resistant
population:

N, (t) = 1—2u(t))AN, (t) — N (t)+daj $,(t—7)N,(z)dr

0= 22 b
U (t) =argmin| (r —2p(t) AN, ®)l(t)]

p(t) = —{rlaNz(T —t)+ p)((L-2u)A —a)+ da} p(7)é, (t—7)d T} p(M) =1

0 0 for r—2p(t)AN,(t)>0
u()_{l for r—2p(t)AN,(t) <0




Combined model (1)

Resistant subpopulation

J
6%
Yod

sensitive subpopulation




Cells In phases S+ = 2oNo(t) + (2 - @) [1-u@® JA,N, () + dN, (©)
N, (t

Cells in phase G,M = ANy (t) — AN, (t)

N, (t) = 2,N,(t) = (b +d)N, (t) + a4, N, (t)
+dN, ()

—

N, (t) = AN, (t) — (b + d)N. (t) + dN. . (t) + bN. , (t),

1 >3

Drug resistant cells

J = le N (T)+ rli Ni(T)+][r2u(r)]dr




N, ()

Transfer functions

Kz(S) —

Ky(8)

N, (O

Ky(8)

K. (S)=«

d,
S+ (A + A4)s+ (@ —24)A—-u) + A)A,

( U constant)

s—A+b+d—./(s—A+b+d)*—4bd

2hbd



N (8) = — AN, + L—U())(24 — )N, (t) + der j #(t— )N, (r)d 7

Nl(t) = ﬂoNo(t) _ﬂ’lNl(t)

U (t) = argmin| (r, — (24, — a) p&)AN, () u(t) ]

p(t) = Ao(p (1) - py (1))
p(M) =1

py(t) = —{arlNz(T 1)+ p)((-u)(24 ~a)+da| p(r)@(t—r)dr}m

p,(T) =1



Numerical example




What Is Tumor Angiogenesis?

Small localized tumor Tumor that can grow and spread

[ .,*"I 8
1 Blood vessel

Signaling
molecule




Cascade of angiogenic signals

To Initiate the process  of
angiogenesis cancer cells must release
factors which will stimulate endothelial
cells to more Intensive proliferation,
e..EGF — vascular endothelial growth
factor, and bFGF - basic fibroblast
growth factor. They are discovered by
receptors upon the surface of endothelial
cells which in turn activate some genes
In the cell nucleus. Their upregulation
leads to activation of factors necessary
for increasing growth of endothelium
(e.g. by destroying the structure of
extracellular cell matrix - ECM).

Endothalial
call surface

] .'J___

\, Relay proteins .

(=

Genes
Proteins '——__T. . . darg

stimulata
new endothalia
call growth




Therapy — where to attack?

Receptor ———

protein
Endothalial
call Q

MMPs

hatrix

Interferon-alpha

*—— VEGF (or bFGF)

8 Anti-VEGF

i antibody

SU5416

SUeEE8
PTKTET/ZK 22584

Mo
endothelial
cell growth

=

call

|

Haceplor =
protein

Endothalial
cell 4| F l A
MMPs

Matrix

¥— VEGF {or bFGF)

Endostatin
EMD121974
— YEGF (or bFGF) TNP-470
Squalamine
Receptor -
protein e ﬂ_mmp;-g
Endothelial Y=~
CEI||_[ ’a’_l\;
[SI Combretastatin A4
Angiogenesis
S MMPs P o8
Inhibitors i ,
hatrix -
Integrin - } g r— Drug molacule

&

Integrin interacts with drugs to destroy
prolifarating endothelial cells




Models of tumor growth

Z—':'zN —aN,N(0)=N, =

N = N,e*,a=In2/PDT

N
— =a = const.
N

N =a(t)N,N(0) = N,,
a=—/fa,al0)=a=

N — Noea/ﬂ(l—e‘ﬂt)




Equivalent nonlinear Gompertz
model:

N/N=-8InN/N_~1/PDT

Incorporation of angiogenesis In
the model (Hahnfeldt):

K- effective vascular support (carrying capacity)



Similarly for logistic growth
(Pearl-Verhulst equation)

K—effective vascular support (carrying capacity)




Hypotheses (Hahnfeldt)

The dynamics of the growth of volume K represented by its
PDT depends on the stimulators of angiogenesis (SF),

Inhibitory factors secreted by tumor cells (IF) and natural
mortality of the endothelial cells (MF).

IF/SF = K°N® b+c~2/3

Originally b=1c=-1/3
CReNlelislemerleleliilib =0, c=2/3

IF ~ CR?. SF ~ const, MF ~ const,R ~3/N




N/N=-£InN/K

Similarly for logistic growth
(Pearl-Verhulst equation)




Stability conditions
N/N=K/K=0=N"=K"=((y - x)/ 1)*?
o Equillibrium points (for y > u):

Xx=INN/N",y=InK/K",x =y =0,
r= 9= (y—u)l B,x =dx/dz,y =dy/dr,

X'=y—X,

y' = 9(1—e?'¥) local asymptotic stability




Lyapunov tunction:

(e?* —1DE>0=V >0,

V > oo,Hz,xH 5 o0

Global asymptotic stability



The effect of therapy:

K/K =y —-(AN*"+ 1+ nu(t)),

Constant dose: u(t)=U=const.

N" =K' = ((7 - u—nU)/ 1)*"

nUxy—u=K =0

Similarly for periodic u(t) with average U



Simulation for the model
without therapy




With periodic therapy

2000 2500 4500 5000

(L), V(D)

I \ I
2000 2500 4500 5000




Optimization of therapy

N/N=-8InN/K

KI/K=y—(N*"+ 1+ nu(t)),

TCP =exp(—fON(T, )) > max

min<—J :N(Tk);ju(t)dth

O<uc<U

m



Modified optimization problem

| = gx(T, ) + hy(T, ) + rju(r)dr

0

0<u<lT, =T/

2/ 3X)

H=ru—qu+ p(y—X)+gA1—e

p'=p+2/399%* >, p(T,)=9
q'=-p,q(T;)=h




Switching function

Bang-bang control, no singular arcs

qﬂ_qr_l_ 2/3(:]1992/3)( _ 0,

Q(Tf) — h1q’(Tf) =—0




Let’s return to original Hahnfeldt
model:

K/K=MN/K—-(N?"?+ 1)

Define: Z=InKN’,0=y/p




We have:
N/N = B(1-N?"/e?)

| = gN(T,)+ rfu(r)dr

O0<u<l



Necessary conditions are:

H=ru—nqu+ p(BNQA-N""/e*))+q(y — u— AN?")

5= —Ao(l—e2(6+2)N) +(2/3)gAN >
q _ _,BpN ¢9—I—2€—Z

Switching function

Bang-bang control, no singular arcs




Combined antiangiogenic and chemo-
therapy

KI/IK=y—(N?"+ u+nu+&),

N/N=-8InN/K —qv

Constant drug doses: u(t)=U=const., v=V=const

N =((y—u—nU —&v) /1)
K" =N"e/”’

U+&V =y—u=K 50N -0



Optimization of combined therapy

N/N=-8InN/K —qv

K/K =y—(AN?2+ u+nu(t) + &(t)),

TCP =exp(—fAN(T, )) > max

Ty

Min <3 =N@; [uod < [vodt <0

0

O<u<U_0<vsV



Modified optimization problem

| = gx(T, )+ hy(T, )+rju(f)dr+sjv(f)df
0 0

OSU Sl,Tf :TKIB

H = ru+oqu+cqv+sv—epv + p(y — X) + q31—e?3¥)

p'=p+2/3q9%*’*, p(T;) =g
q'=-p,q(Ts)=h




Switching conditions

p=s/e+ql /e

1 :
v={ ~<minH
0

q”_q’+2/3q1962/3)( :O, p :_qr
q(T:)=h,q'(T;) =-g=-p(T;)




Singular control

No singular arcs for u Singular solution

cause g = const IS not optimal, for v

Is not a solution Clebsch-Legendre
condition:

IS not satisfied



More realistic model
S =-aS + (1-v)(2-qg)aS + rcR

R =-cR + (2 - r)cR(1-R/K) + (1 - v) gS.

K/IK=MN/K-(UN??+ p)-u-&



Conclusion

Modelling cell cycle may be useful for understanding and combating
cancer

Compartmental models may be used in analysis and synthesis of phase
specific protocols of anticancer therapy

Compartmental modelling may be also applied to overcome drug
resistance

It is possible to decrease and even eridicate the modelled tumor for
constant and periodic therapies by controling vascular network
formated in the angiogenesis

Model optimization leads to necessary conditions in the form of bang-
bang control

Control theory provides very attractive tools also in other problems of
modern oncology e.g class prediction and pattern discovery basing on
microarray data, modelling and identification of regulatory pathways
etc.
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