Dr. Paul Van Liedekerke
Postdoc (Ingénieur expert)


Institut National de Recherche en Informatique et en Automatique (INRIA)
École Normale Supérieure (ENS)

 

Current and Former Research Activities and Interests (in a nutshell):

  • Modeling mechanics of multi-cellular systems :
    • Mechanical stress distribution in tumors, avascular tumor growth, contact inhibition in multi-cellular systems. Development of individual based models (IBMs).
    • Coupling of IBMs with continuum models (PDEs).
  • Cell adhesion using complex cell models. In collaboration with KULeuven (Belgium), we developed a novel method to the model cell adhesion dynamics at arbitrary resolution and with high accuracy, yielding new insights on how cells adhere and spread on a surface [1] (see picture below: dynamic process of a red blood cell adhering to a substrate).
  • Microscopic flow modeling using NSPH: development of a new versatile modeling technique for non-inertial dynamics in microscopic systems based on the meshless particle method Smoothed Particle Hydrodynamics (SPH) (see e.g. red blood cell in Poiseuille flow, picture below) [2].




  • (2011-2012) Fluid dynamics simulations os viscoelastic fluids (Oldroyd-B, Giesekus,..) including surface tension effects using SPH. (Bilateral project)

  • (2007-2011) Multiscale mechanics in cellular systems:

    • In Silico generation of cellular tissue and simulation of force transmission in tissue due to impact. Each cell consists of ~ 600 SPH particles (in 2D), representing the cytoplasm and cell wall. The mechanics of the cytoplasm is governed by the Navier-Stokes equations, while the solid polymeric cell wall is described by a neo-hookean model. To mimic tissue, cells are initially positioned on a brick pattern, but can evolve to different natural structures if they are inflated by osmosis (see top pictures, right side). Intracellular flow and force transmission during compression or impact of the cells leads to an excessive stress in the cell wall, eventually rupturing them (see bottom pictures, in 3D). This process is strongly influences by the intracellular viscosity [7-9].







    • Coupling of particle models with Finite Element Methods:
      • Multiscale modeling of cellular tissue using computational homogenization techniques [10,13,14].
      • Prediction mechanical behavior of tissue scale by on-the-fly simulations of a detailed micro-scale cell model.



  • (2001 -2007) Discrete Element Method (DEM):
    • Modeling of Granular flow (analysis and statistics of particulate flows, segregation), see [14-19].
    • Contact mechanics models (Hertz, JKR,.. ).
    • Irregular particle shapes.
    • Rigid body dynamics.


 

Curriculum Vitae:

  • 01/12/2012- now: Senior Postdoc position (Ingénieur Expert) at INRIA (Paris), modeling of cellular mechanics on different scales and coupling with Individual Based Models (IBMs)
  • 30/04/2011- 01/12/2012: Postdoc at KULeuven: Modeling of the draining characteristics of complex fluids under free surface conditions and with surface tension. Product optimization. Bilateral project.
  • 2007-2011: Postdoc at KULeuven: Modeling of the mechanics in cells and cell aggregates in response to impact. (KULeuven poject).
  • 2006-2007: Research Engineer at KULeuven: Study for the improvement of granular flow on spinning discs. (Bilateral project with BASF, US patent 649967).
  • 2001-2006: Research Engineer at KULeuven: Model development, conducting simulations and experiments for granular matter flow (Phd-student).

    Full CV

 

Education:

  • Phd in Applied Biological Sciences - modeling of granular flow (Catholic University Leuven, 2007).
  • Post graduate in Environmental Sciences and Technologies (University of Ghent, 2001). Thesis title : "A statistical study to relate physical parameters and psychological effects in the experience of noise".
  • “Licentiaat" (Msc) in Physics (University of Ghent, 1999). Thesis title : "A study of the atmospheric dispersion model HYSPLIT for Kr-85".
 

Collaborations:

  • With the Mebios lab of KULeuven, Belgium

 

Publications in peer reviewed journals:

    1. T. Odenthal, B. Smeets, Van Liedekerke P., E. Tijskens, H. Ramon, H. Van Oosterwijck (2013) Contact mechanics of adhesive triagulated bodies and application to a deformable cell model. Plos Comp. Biol 190(4).

    2. Van Liedekerke P., T. Odenthal, B. Smeets, H. Ramon (2013) Solving microscopic flow probmlems using Stokes equations in SPH. Computer Physics Communications 184(7).

    3. Bart M. Nicolai, Ashim K. Datta, Thijs Defraeye, Mulugeta A. Delele, Quang T. Ho, Linus Opara, Herman Ramon, Engelbert Tijskens, Ruud van der Sman, Paul Van Liedekerke, Pieter Verboven (2012). Multiscale Modeling in Food Engineering. Journal of Food Engineering 114(3).

    4. De Ketelaere B, Mertens K, Van Liedekerke P. and Baerdemaeker J Eggshell (2012) strength assess- ment using Hertz contact theory. Part II: Implementation and validation. Submitted (under review).

    5. De Ketelaere B, Mertens K, Van Liedekerke P. and Baerdemaeker J (2012) Eggshell strength assess- ment using Hertz contact theory. Part I: Theory and applicability. submitted

    6. Smeets, B., Odenthal, T., Tijskens, E., Roberts, S., Tam, W., Van Liedekerke, P., Van Oosterwyck, H., Ramon, H. (2012). Influence of mechanics on microcarrier cell expansion: a computational study. Journal of Tissue Engineering and Regenerative Medicine : vol. 6. TERMIS World Congress. Vienna, Austria, 5-8 September 2012, 391-392

    7. Van Liedekerke P., Ghysels P., Tijskens E., Samaey G., Roose D. and Ramon H. (2011) The bruising of soft cellular tissue: a particle base simulation approach. Soft Matter 7, DOI:10.1039/C0SM01261K.

    8. Van Liedekerke P., Ghysels P., Tijskens E., Samaey G., Roose D. and Ramon H. (2010) Particle based model to simulate the micromechanics of a spherical biological cell. Phys. Rev. E 81(1). Selected for the Virtual Journal of Biological Physics Research.

    9. Van Liedekerke P., Ghysels P., Tijskens E., Samaey G., Roose D. and Ramon H. (2010) A particle based model to simulate the micromechanics of single plant parenchyma cells and aggregates. Phys. Biol. 7 026006.

    10. Ghysels P., Samaey G., Van Liedekerke P., Tijskens E., Ramon H. and Roose D. (2010) Coarse implicit time integration of a cellular scale particle model for plant tissue deformation". Int. J. Multiscale Com. Eng. 8(4).

    11. Geris L., Van Liedekerke P., Smeets B., Tijskens E., Ramon H. (2010) A cell based modeling frame- work for tissue engineering applications. Journal of Biomechanics 43, 887-892.

    12. Ghysels P., Samaey G., Van Liedekerke P., Tijskens E., Ramon H. and Roose D. (2010) Multi-scale modeling of viscoelastic plant tissue. Int. J. Multiscale Com. Eng. 8(4).

    13. Ghysels P., Samaey G., Tijskens B., Van Liedekerke P., Ramon H. and Roose D. (2009) Multi-scale simulation of plant tissue deformation using a model for individual cell mechanics. Phys. Biol. 6(3).

    14. Van Liedekerke P., Tijskens E. and Ramon H. (2009) Discrete Element Simulations of the influence of fertilizer properties on the spread pattern from spinning disc spreaders. Biosystems Engineering 102 (4), 392-405.

    15. Van Liedekerke P., Tijskens E., Dintwa E.,F. Rioual, J. Vangeyte and Ramon H. (2008) DEM simula- tions of the particle flow on a centrifugal fertilizer spreader. Powder Technology 190(3), 348-360.

    16. Van Liedekerke P., Piron E., Vangeyte J., Villette S., Ramon H. and Engelbert Tijskens (2008) Recent results of experimentation and DEM modeling of centrifugal fertilizer spreading. Granular Matter, 10(4),247-255.

    17. Van Liedekerke P., Tijskens E., Dintwa E., Anthonis J. and Ramon H. (2006) A discrete element model for simulation of a spinning disc fertilizer spreader. I: Single particle simulations. Powder Technology 170(2), 71-85.

    18. Dintwa E., Van Liedekerke P., Tijskens E., Ramon H. (2004) Model for simulation of particle flow on a centrifugal fertilizer spreader. Biosystems Engineering 87(4), 407-415.

    19. Van Zeebroeck M., Tijskens E., Van Liedekerke P., Deli V., De Baerdemaeker J. and. Ramon H (2003) Determination of the dynamical behaviour of biological materials during impact using a pendulum device Journal of Sound and Vibration 266(3), 465-480.


 

Contact:

Email: paul.van_liedekerke [at] inria.fr
Phone: +33 677 485481