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Abstract

We present and analyse in this article a mathematical question with a biologi-
cal origin, the theoretical treatment of which may have far-reaching implications
in the practical treatment of cancers.

Starting from biological and clinical observations on cancer cells, tumour-
bearing laboratory rodents, and patients with cancer, we ask from a theoretical
biology viewpoint questions that may be transcribed, using physiologically based
modelling of cell proliferation dynamics, into mathematical questions.

We then show how recent fluorescence-based image modelling techniques per-
formed at the single cell level in proliferating cell populations allow to identify
model parameters and how this may be applied to investigate healthy and cancer
cell populations.

Finally, we show how this modelling approach allows us to design original
optimisation methods for anticancer therapeutics, in particular chronotherapeu-
tics, by controlling eigenvalues of the differential operators underlying the cell
proliferation dynamics, in tumour and in healthy cell populations. We propose a
numerical algorithm to implement these principles.
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1. Experimental and theoretical motivations

Tissue proliferation in living organisms always relies on the cell division cycle:
one cell becomes two after a sequence of molecular events that is physiologically
controlled at each step of the cycle at so-called checkpoints [63, 71]. This process
occurs in all renewing tissues, healthy or tumour, but in tumour tissues part of
these control mechanisms are inefficient, resulting in uncontrolled tissue growth
which may be given as a definition of cancer.

At the initial local stages of cancer (i.e., still without more invasive processes
involving tumour neoangiogenesis, digestion of the extracellular matrix and metas-
tases), deficiencies in the control of cell cycle checkpoints, e.g., involving mutated
protein p53, are the main factors responsible for this disrupted control of tissue
growth.

The representation of the dynamics of the division cycle in proliferating cell
proliferations by physiologically structured partial differential equations (PDEs),
which dates back to McKendrick [67], is a natural frame to model proliferation
in cell populations, healthy or tumour. Furthermore, the inclusion in such mod-
els of targets for its physiological and pharmacological control allows to develop
mathematical methods of their analysis and control [28].

1.1. Circadian clocks and tumour growth
In the physiological control of the cell division cycle, the role of molecular

circadian clocks, which exist in all nucleated cells and are themselves under the
control of a central hypothalamic neuronal clock, has been evidenced by numerous
animal experiments and is also supported by various clinical observations. These
clocks, in the constitution of which about 15 genes have been shown to take part,
exert a rhythmic regulating control with a period of approximately 24 hours (hence
their name: circa diem = about one day) on hormonal, metabolic, behavioral and
proliferative processes [78, 82]. The first of these genes to be discovered were the
Per gene in the fruit fly Drosophila Melanogaster by R.J. Konopka and S. Benzer
in 1971 [53], and in mammals, the Clock gene by J. Takahashi in 1994 [88]. Their
disruption may impair all these physiological processes in an extended manner. It
has been experimentally shown by transgenesis experiments that Per2 knock-out
transgenic mice are more prone to develop radiation-induced cancers than wild
type mice [41].

Similarly, in experiments performed by a totally different team, it has been
shown that tumour-bearing mice submitted to artificial strong perturbations of
their circadian rhythms constantly exhibit accelerated tumour growth. In a series
of articles reporting these experimental observations on two groups of tumour-
bearing laboratory rodents [39, 40] (the tumour was a fast growing murine tumour
positioned in a subcutaneous, easily accessible, site), one with a disrupted central
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circadian clock, the other with a physiologically light-entrained clock as a control
group, this has been demonstrated by comparing tumour growth curves. These
observations were confirmed and supported by measurements of clock gene ex-
pression by quantitative real time polymerase chain reaction (qRTPCR). Further-
more, it was shown that in the disrupted clock group, a partial correction of this
tumour growth enhancement was obtained by re-entraining circadian clocks by
controlled restricted feeding at fixed and unusual times for rodents (during day-
light) [39], thus opening the way to the idea that it could be possible to add an
external control to reinforce these physiologically controlled checkpoints when
they are deficient.

It has also been observed in clinical settings that patients with cancer, whose
circadian rhythms (rest/activity, blood cortisol) were damped or ablated, showed
clinically more fatigue and had poorer life prognosis. They also had higher blood
levels of cytokines [79], which are emitted by tumour cells, or by immune cells
that surround tumours; at least one of these cytokines, TGFα, has been exper-
imentally shown, when directly infused in the cerebrospinal fluid of mice (into
the third ventricle), to severely disrupt their circadian rhythms, as evidenced on
rest-activity and sleep-wake cycles [54].

Whether or not circadian clocks play an essential role in controlling check-
points of the cell division cycle remains to be more documented, both experi-
mentally, by performing measurements in cell cultures and in living whole organ-
isms, and theoretically, by using and analysing combined mathematical models
of molecular circadian clocks and of the cell division cycle in cell populations
[28, 31, 32, 33, 35, 36]. Nevertheless, we will develop here the concept of syn-
chronisation between phases of the division cycle in a proliferating cell popula-
tion, to show that the less synchronised phases are within a cell population (i.e.,
the looser are cell cycle phase transitions), the faster is proliferation measured by
a Malthus-like growth exponent, first eigenvalue of the theoretical tissue growth
process.

Furthermore, since circadian clock proteins such as Bmal1 and Per2 have been
shown to control cyclin dependent kinases which themselves control in particu-
lar G1/S and G2/M phase transitions [65], it is not unlikely from a theoretical
biology point of view that circadian clocks control cell cycle phase synchronisa-
tion, and by this way, proliferation of the cell population. Consistent with this
speculation and the above mentioned experiments on cancer growth enhancement
by circadian clock disruption is the fact that in patients with cancer, the less ex-
pressed are physiological circadian rhythms, e.g., of rest-activity or blood cortisol,
the poorer is the prognosis and the response to cancer treatments [72].

Another speculation that arises from these theoretical considerations is that
cancer cell populations might be in this sense, i.e., with respect to cell cycle tim-
ing, less synchronised, due or not to circadian clock disruption, than healthy cell
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populations. This remains to be experimentally evidenced, thus by asking a 2-
stage question: firstly, are cancer cell populations less synchronised than healthy
cell ones? and: if so, what is the participation of circadian clock disruption in such
desynchronisation? To help better understanding how to experimentally test these
hypotheses, we have designed models of the cell division cycle in cell populations
and of its periodic control.

1.2. Cancer chronotherapeutics
In modern oncology, much before molecular circadian clocks were known, it

has been experimentally observed that for anticancer drugs, the time of delivery in
the 24 h span matters. This has led teams of oncologists to use in the clinic of can-
cers drug delivery schedules with sinusoidal shape implemented in programmable
pumps, with 24 h period and peak delivery times that were determined as the best
possible from trials and errors on laboratory animals and subsequently transferred
to the clinic [56, 57, 58, 59, 60, 61, 72]. There is a best and a worst time in day for
peaks of drug flows to be infused in the general blood circulation, and these peak
times depend on the drug used, best times for two different drugs being possibly
in antiphase with respect to a 24 h period. Whence one can deduce that assuming
the existence of an optimal cell cycle time with a unique peak drug delivery time,
the same for all drugs, is not a correct point of view to guide time-scheduled drug
delivery optimisation.

Indeed, these best times depend not only on circadian timing in the cell di-
vision cycle (which may be different according to the tissue under consideration,
but have been experimentally evidenced in different tissues of living organisms
as, e.g., circadian peaks of S-phase, of Cyclin E, of Cyclin B1, etc.) [19, 20, 85],
but also on the route followed by drugs in the organism, from their infusion in the
general circulation until their action on the DNA in target cells. This last point
is the object of pharmacokinetics and it involves drug processing by possibly cir-
cadian clock-influenced proteins (hence the name of chronopharmacokinetics) at
different levels - blood by binding proteins, liver, target cells - and in particular
by intracellular enzymes, which have been shown for some of them to be 24 h
rhythmic, and are different according to the drug under consideration [59].

But most cytotoxic anticancer drugs act in their common final route by induc-
ing damage to the DNA in the nucleus of the cell, which damage is then detected
by sensors, such as ATM, that trigger p53 protein, which in turn blocks the cell
division cycle, mainly at G1/S or G2/M phase transitions [89, 90, 91]. Others
may act directly on phase transition gating, such CDK inhibitors [26].These ef-
fects are independent of the chronopharmacokinetic fate of each drug and are the
object of molecular pharmacodynamics of cancer, i.e., the discipline that studies
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the molecular effects of drugs on the organisms submitted to anticancer drugs1.
As far as anticancer drugs are concerned, these common terminal molecular

effects on the cell division cycle in target cell populations may be represented in
cell cycle models, via ATM and p53, or by direct CDK inhibition, by a blockade
of the cell cycle at the main checkpoints G1/S and G2/M [26, 64, 89, 90, 91],
which as mentioned earlier are under the control of circadian clocks, likely in a
different manner depending on the nature of the tissue, healthy or tumour. Thus,
independently of the drug used (the particularity of which being possibly taken
into account by a chronopharmacokinetic model yielding a delay between infusion
and presence in cells), it is possible to mathematically represent and optimise
the (chronopharmacodynamic) effects of a time-dependent blockade of cell cycle
phase transitions in proliferating cell populations, at the terminal level of the DNA
in target cells.

Having this in mind, we may tackle the problem of optimising the (hidden)
concentration profile in the nucleus of target cells for a generic drug acting by
blocking cell cycle transitions. Of course, it should be subsequently completed by
a chronopharmacokinetic model for each drug under consideration if one wants
to apply results of such optimisation procedures to the clinic. In particular, some
drugs act on the DNA all along the cell cycle (e.g., intercalating agents), thus
stimulating all checkpoints, while others are specific of S phase (e.g., antimetabo-
lites) or M phase (e.g., spindle poisons), stimulating the time-dependent G2/M
checkpoint, or simply blocking mitosis. And it should also be completed by an-
other common model relating DNA damage to p53 triggering (such as [64]). Nev-
ertheless, the terminal chronopharmacodynamic effects on cell cycle checkpoint
blockade by assumed time-varying p53 levels can readily be represented as ab-
stract time-dependent mathematical functions to be optimised at the target cell
population level.

1.3. The goal: chronotherapeutic optimisation in oncology
Optimisation of cancer therapeutics, from a clinical point of view, consists of

maximising some therapeutic index of a treatment, measuring (with various defi-
nitions) a ratio between its therapeutic outcome in terms of tumour regression and
its inevitable toxic side effects on healthy tissues. It thus measures the relevance
of the chosen trade-off between therapeutic efficacy and unwanted toxicity. Such
an index is hence maximum when there is no toxicity and the tumour is eradicated
(a most unlikely situation) and minimum when toxicity is so high that the treat-
ment must be stopped. Giving a mathematical sense to this trade-off is the object
of therapeutic optimisation by mathematical methods [1, 2, 3, 9, 27, 29, 30].

1A useful mnemonic motto with many sources says: “Pharmacokinetics is what the body does
to the drug; pharmacodynamics is what the drug does to the body”.
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Optimising anticancer treatments may plainly consist of defining the drug de-
livery time schedule (or, rather, its output on p53 or CDK inhibitor concentration
at the target cell population level) that will kill as many cancer cells as possible,
and then adapt it by trials and errors to clinical tolerability constraints. But since
we know that drugs act on proliferating healthy cells (in fast renewing tissues,
such as gut epithelium or bone marrow) by the same mechanisms as in cancer
drugs, and that these unwanted side-effects on healthy cells are actual clinical is-
sues that limit the use of these drugs, it is legitimate to consider the drug delivery
optimisation problem as a problem of optimisation under constraints, the solu-
tion of which is a trade-off between the objective function (decreasing the cancer
cell population) and the constraint (maintaining the healthy cell population over a
tolerable level).

The constraint mentioned here is a simple constraint consisting of limiting
the drug delivery output at the cell level (p53 or CDK inhibitor concentration) in a
given healthy cell population in such a way that the cell population level will abso-
lutely remain, whatever the circumstances, over a predefined limit threshold, e.g.,
50% of an assumed equilibrium cell density level. Other constraints have clear
clinical meanings, but are more difficult to represent: a) drug resistance in cancer
cells, that can be drug dose-dependent and leads to limit the administration of a
given drug, for fear of developing resistant cancer cell clones [43, 52], a problem
also encountered e.g., in antibiotherapy; b) drug toxicity to immune cells which
fight cancer locally, and may be affected by deleterious effects of drugs [92], to
be thus represented as indistinct artillery fire over two fighting cell populations,
the good and the bad one; c) drug toxicity to circadian clocks [60, 61] that can
perturb their assumed synchronising effects on the cell division cycle. All these
supplementary constraints, realistic though they are, have not yet been taken into
account in models, partly by lack of biological knowledge of these toxicity mech-
anisms. We will limit ourselves to the representation of the parallel action of the
same drug on two different cell populations, a cancer one and a healthy one, with-
out any communication between them, hence simultaneously a therapeutic effect
and unwanted toxic side effects.

It is also possible to take into account individual parameters of the cell pop-
ulation models, simple or more complex, based on their identification in groups
of patients defined by common responses to drugs, genetically or epigenetically
determined, opening the way to personalised medicine. This level of represen-
tation takes place at the level of populations of patients, not of cells, and relies
on statistical populational pharmacokinetic-pharmacodynamic (PK-PD) models.
Although it should certainly be considered in the future, starting from a molecular
point of view, it is concerned with levels that are presently way downstream of the
cell molecular level that we will describe here by differential equations to describe
cell population dynamics at the tissue level.
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Placing ourselves within the limited modelling frame of a generic drug acting
in parallel on a healthy tissue and on a tumour, both represented by cell population
dynamic systems of equations, it has already been shown that it was possible, us-
ing a simplified set of ordinary differential equations (ODEs) with a physiological
circadian clock control on the pharmacodynamics of a one-drug external control,
to obtain optimised drug delivery schedules, solutions to an optimisation problem
under constraints [9, 27]. These schedules are optimal in the sense that, constrain-
ing the healthy cell population to remain over an absolute tolerability threshold
(absolute, but adaptable to what could be the patient’s state of health), the tumour
cell kill is maximised by a delivery drug flow that takes into account the effects of
circadian clocks on both cell populations.

The assumption used there was that there was a best time to kill tumour cells,
which was at the same time the best to preserve healthy cells from toxicity. Al-
though it has found some experimental support explored in [9, 27], this assump-
tion may be forsaken to comply with the more likely conjecture of a clear obedi-
ence of healthy proliferating cells to circadian clock synchronising messages, and
a looser obedience to, or total ignorance of, the same messages in tumour cells. It
is this assumption that we will now put forward, as it has also been used by others
in different modelling settings [1, 2, 3].

1.4. Biological and mathematical questions on tissue proliferation and its control
The biological theoretical questions arising from these observations made in

laboratory experimental and clinical conditions have been partially sketched above
or in previously published papers; all of them still remain open. They deal mainly
with a possible connection between periodic (circadian) control of proliferation
and tumour growth rate, with therapeutic consequences in oncology. It has been
shown in particular [31, 32, 33, 35, 36] that there is no natural hierarchy between
growth exponents compared according to periodic control vs. no control on cell
cycle phase transition rates.

Here, we ask another, more precise, type of question, focusing, as mentioned
above, on age synchronisation within the cell cycle.

• At the cell population level with control on phase transitions, what are the
differences between healthy and cancer cells? A speculation, mentioned
above, proposes that healthy cells are well synchronised within the division
cycle in the cell population (roughly speaking, and caricaturing, all cells
in phase i pass to phase i + 1 of the division cycle at the same age) while
cancer cells would show more variability with respect to age at transition,
i.e., are desynchronised, or at least less synchronised than healthy cells. Is
this true, can it be observed in cell cultures or in living animals and how?
And what is the experimentally observed effect of a better synchronisation
on proliferation speed?
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• To connect this speculation with observations on circadian clock-controlled
proliferating cell populations, a corresponding speculation is that circadian
clocks enhance synchronisation with respect to cell cycle timing in prolif-
erating cell populations. Is this true, can it be experimentally observed and
how?

• It has been mentioned above that measurable effects of chronotherapeutics
are most likely due to both chronopharmacokinetics of drug processing cell
molecules and to physiological circadian control of checkpoints at cell cycle
phase transitions. Is it possible to decouple these effects and directly study
the control on the cell cycle, independently of the drug used?

These biological questions have corresponding items in mathematical terms
when one uses the McKendrick model [67] paradigm for proliferating cell pop-
ulation dynamics. They can be investigated by analytical or numerical methods.
They read:

• Excluding in the first place time-dependent control by circadian clocks and
focusing on cell cycle phase transitions dependent only on age (correspond-
ing e.g., to populations of proliferating cells in cell cultures without any
external synchronisation signal), what may be said about the influence on
the first eigenvalue - which governs the long-time behaviour of the prolifer-
ating cell population as a growth (or Malthus) exponent [76], see Section 2
- of a desynchronisation between cells at a phase transition?

• Now, if one adds time-dependent, and periodic, control on these phase tran-
sitions, what more can be said? Is it possible to correct by time-dependent
control the effects of desynchronisation of cells with respect to age in the
cell cycle?

• In particular, assuming that cancer cell populations are less synchronised
than healthy ones, how can we represent both physiological circadian con-
trol (and its possible disruptions) and theoretical therapeutical control to
design optimised cancer chronotherapeutics at the cell cycle level?

We will in the following sections state remarks, towards answering these ques-
tions, that may help a new understanding of the biological and mathematical prob-
lem, and finally we leave pending open questions for the discussion.

2. Age-structured linear models for tissue proliferation and its control

Physiologically structured cell population dynamics models have been exten-
sively studied in the last 25 years, see e.g. [4, 5, 6, 68]. We consider here typically
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age-structured cell cycle models. If we consider that the cell division cycle is di-
vided into I phases (classically 4: G1, S,G2 and M ), we follow the evolution of
the densities ni(t, x) of cells having age x at time t in phase i. Equations read :

∂ni(t,x)
∂t

+ ∂ni(t,x)
∂x

+ di(t, x)ni(t, x) +Ki→i+1(t, x)ni(t, x) = 0,

ni+1(t, 0) =
∫∞

0
Ki→i+1(t, x)ni(t, x)dx,

n1(t, 0) = 2
∫∞

0
KI→1(t, x)nI(t, x)dx.

(1)

Together with an initial condition (ni(t = 0, .))1≤i≤I . This model was first intro-
duced in [34]. The particular case I = 1 has received particular attention from the
authors [31, 32]. In this model, in each phase, the cells are ageing with constant
speed 1 (transport term), they may die (with rate di) or go to next phase (with
rate Ki→i+1) in which they start with age 0. We write it in its highest general-
ity. If we want to represent the effect of circadian rhythms, we usually consider
time-periodic coefficients, the period being of course 24h.

Note that we will not consider here a resting phase (G0), with exchanges with
the G1 phase. It is certainly possible to do it in a biologically more realistic set-
ting, since even in fast renewing tissues, all cells are not in in a proliferative state
[24, 87], and also since it has been done already [10, 11, 14], even in a completely
linear setting [42] (i.e., without nonlinear feedback). Nevertheless, since the ob-
servations on the basis of which we performed the identification of our model
parameters (see below Section 3) report recordings on proliferating cells only, we
have limited our theoretical frame here to the classical G1, S,G2 and M phases.

2.1. Basic facts about age-structured linear models
One of the most important facts about linear models is its trend to exponential

growth. Solutions to (1) satisfy (if the coefficients are time-periodic, or stationary)
ni(t, x) ∼ C0Ni(t, x)eλt, where Ni are defined by (for T−periodic coefficients)

∂Ni(t,x)
∂t

+ ∂Ni(t,x)
∂x

+
(
λ+ di(t, x) +Ki→i+1(t, x)

)
Ni(t, x) = 0,

Ni+1(t, 0) =
∫∞

0
Ki→i+1(t, x)Ni(t, x)dx,

N1(t, 0) = 2
∫∞

0
KI→1(t, x)NI(t, x)dx,

Ni > 0, Ni(t+ T, .) = Ni(t, .),
∑

i

∫ T
0

∫∞
0
Ni(t, x)dxdt = 1.

(2)

The study of the growth exponent λ, first eigenvalue of the system, thus governs
the long-time behaviour of the population (since the Ni are bounded) and is there-
fore of crucial importance. For further reading about the asymptotic behaviour of
(1), the reader may consult [76] (chapter 3) for an overview of the subject.
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In the 1-phase case (I = 1), i.e., if only the total cell cycle duration is taken
into consideration, extended studies of the first and second eigenvalues (there is
only one positive eigenvalues, but others exist, that are complex) of the system
have been performed in [25], following [68], with proposed experimental methods
using flow cytometry to identify these eigenvalues. In the present study, we will
not consider other eigenvalues than the first one, but we are fully aware of the fact
that considering the second eigenvalue (its real and imaginary parts) may be of
importance if one wants to precisely describe in particular transient phenomena
that appear when control changes occur at cell cycle phase transitions.

2.2. Summary of previous theoretical results
Sharp study of the properties of the growth exponent λ has been done, based

on previous studies [69, 70] by some of the authors in [31, 32, 33, 35, 36] where
the dependency of the first eigenvalue on the control of the death rates di(t, x)
or of the phase transition rates Ki→i+1(t, x) by a periodic function was the main
object of investigation.

In this part, we focus on the case of stationary phase transition coefficients
(Ki→i+1(t, x) = Ki→i+1(x)) and we do not consider death rates. As shown in
[34], the first eigenvalue λ is then given as the only positive solution to the fol-
lowing equation, which in population dynamics is referred to, in the 1-phase case
(I = 1) with no death term, as Lotka’s (or Euler-Lotka) equation:

1

2
=

I∏
i=1

∫ +∞

0

Ki→i+1(x)e−
∫ x
0 Ki→i+1(ξ)dξe−λx dx (3)

It can be seen by straightforward computation (see below Section 2.4), in this case
with stationary coefficients, that λ is a nondecreasing function of the Ki→i+1 (and
it is worth noticing that this is no longer the case when the coefficients depend on
age and time, as depicted in [55]). We also recall that, integrating equation (1)
along its characteristics, we can in the stationary case with no death rate derive
the formula:

ni(t+ x, x) = ni(t, 0)e−
∫ x
0 Ki→i+1(ξ)dξ. (4)

This can be interpreted in the following form: the probability that a cell which
entered phase i at time t stays for at least an age duration x in phase i is given by

P (τi ≥ x) = e−
∫ x
0 Ki→i+1(ξ)dξ.

This leads to the natural consideration of the time τi spent in phase i as a random
variable on [0,+∞[, with probability density function ϕi:

dPτi(x) = ϕi(x)dx = Ki→i+1(x).e−
∫ x
0 Ki→i+1(ξ)dξdx
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Notice that it is necessary for this interpretation to be coherent, and ϕi to be a
probability density function, to impose

∫ +∞
0

Ki→i+1(x)dx = +∞, which physio-
logically means that all cells leave any phase in finite time, without any hypothet-
ical maximum age in phase to be introduced in the cell cycle model. In the sequel
we will naturally use the notation E[e−λτ ] =

∫ +∞
0

e−λxdPτ (x). In particular, the
classical (1-phase) case in Lotka’s equation then reads E[e−λτ ] = 1

2
.

2.3. New theoretical remarks
Order structure on random variables.

Definition 2.1. The stochastic ordering is defined in the following way: for two
real-valued random variables X, Y , we say that X ≤st Y if for all t ∈ R,

P (X > t) ≤ P (Y > t).

The following application is then straightforward:

Proposition 2.2. The growth rate is non increasing with respect to stochastic
ordering.

Note that the growth rate reverses stochastic order on cell cycle durations be-
cause the higher in this order is actually the slower to lead to division (although
it would be false to think that mean cell cycle time would exactly give mean dou-
bling time, which is by definition, asymptotically τd = ln 2/λ; see e.g. from a sta-
tistical estimation point of view [86], where it is proposed that if CCT is the ran-
dom variable “cell division cycle time”, then τd = E[CCT ]− 1

2
λV ar[CCT ]+o(λ)

for small values of λ). But equivalently, one may state that order on growth rate
respects order on cumulative distribution functions.

Proof. We show it in the 1-phase case I = 1 (it extends immediately to the general
case from Lotka’s equation (3) above by considering stochastic orders in each
phase i separately). This is based on classical integration by parts: let λ > 0

E[e−λX ] =

∫ ∞
0

e−λtPX(dt) = λ

∫ ∞
0

e−λtP (X ≤ t)dt.

Therefore for any λ > 0,

E[e−λX − e−λY ]=λ

∫ ∞
0

e−λt {P (Y > t)− P (X > t)} dt≥0 if X ≤st Y.

Whence, using Lotka’s equation for both X and Y ,∫ ∞
0

e−λ(Y ).tPY (dt)=E[e−λ(Y ).Y ]=E[e−λ(X).X ]≥E[e−λ(X).Y ]=

∫ ∞
0

e−λ(X).tPY (dt),

therefore λ(X) ≥ λ(Y ) if X ≤st Y.
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Dispersion enhances proliferation. Another useful concept coming from the field
of probability is the concept of dilation. One says that a measure µ is a dilation of
ν if for any convex function φ, one has∫

φ(x)µ(dx) ≥
∫
φ(x)ν(dx).

We have the following

Proposition 2.3. Suppose µ is a dilation of ν, then λ(µ) ≥ λ(ν).

Proof. Since φ(x) = e−λ(ν)x is convex, we have by definition∫
e−λ(ν)xµ(dx) ≥ 1

2
,

and therefore λ(µ) ≥ λ(ν).

Two examples. It is worth giving an important example of dilation.
Let X be a random variable of law µ, let Xθ = E[X] + θ(X − E[X]), with

correponding law µθ, for θ > 0. Then the following holds{
If θ < 1, µ is a dilation of µθ,
If θ > 1, µθ is a dilation of µ.

This means that increasing the dispersion around the mean increases the prolifer-
ation (if expectation is fixed).

We now prove this fact for θ < 1 (the other case is then an immediate conse-
quence of the fact that X = (Xθ) 1

θ
. Let φ be a convex function. Then∫

φ(x)dµθ(x)=E[φ((1−θ)E[X]+θX)]≤(1−θ)φ(E[X])+θE[φ(X)]≤E[φ(X)]

(using Jensen’s inequality).
Another example is the following: let (Xi)0≤i≤n be a sequence of i.i.d. random

variables. For αi ≥ 0,
∑

i αi = 1, we denote Y α =
∑n

i=1 αiXi and µα the law of
Y α, we recall then the definition of majorization for vectors:

Definition 2.4. Let α, β ∈ Rn
+ with

∑
αi =

∑
βi = 1. Denote α↓, β↓ the decreas-

ing rearrangements of α, β, we say that α weakly majorizes β (denoted α �w β)
if we have for all j ≤ n, ∑

i≤j

α↓i ≥
∑
i≤j

β↓i .

or equivalently, if there exists of a doubly stochastic matrix P such that β = Pα.
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We then have the following

Proposition 2.5. Suppose α �w β, then µα is a dilation of µβ .

Proof. Using the above notation, and X = (X1, . . . Xn) we know that

Y β = β.XT = αPXT

Recall that from the Birkhoff theorem, we have

P =
∑
σ∈Sn

λσP
σ, λσ ≥ 0,

∑
λσ = 1,

where P σ are the permutation matrices. Therefore we have

Y β =
∑

λσαP σXT .

For a convex function φ, we then have

E[φ(Y β)]≤
∑

λσE[φ(αP σXT )]=
∑

λσE[φ(αXT )]=E[φ(αXT )]=E[φ(Y α)].

In particular, an elementary consequence of this remark is that it recovers the fact
that the growth exponent associated to a single random variable is higher than the
one associated to the mean of n i.i.d. representatives of the same random variable.
Furthermore, it indicates a hierarchy in a panel of intermediate situations between
these two extreme situations, (0, 0, . . . , 0, 1) and ( 1

n
, 1
n
, . . . , 1

n
) for convex combi-

nations of i.i.d. random variables and the resulting probability laws, a hierarchy
that is relevant for comparing growth exponents.

2.4. Consequences for the cell cycle model
First, as noted above, it is straightforward (as for Proposition (2.2), using

Lotka’s equation) to see that in the case of the cell division cycle model with
stationary coefficients Ki→i+1(x) and no death rates, where

P (X > x) = e−
∫ x
0 KX(ξ)dξ,

the order KX ≤ KY implies λ(X) ≤ λ(Y ). In fact it may be shown that this is
also here a definition of hazard rate order - reversing orders on random variables:
X ≥hr Y -, which in our case is equivalent to stochastic order. One may conclude
in general that the looser (in the sense KX ≥ KY ) is the control on the transition
coefficients Ki→i+1(x), or equivalently the higher is the cumulative distribution
function 1− e−

∫ x
0 KX(ξ)dξ, the higher the growth exponent λ.

Second, the first example of dilation, consequence of Proposition (2.2), above
admits the following easily understandable consequence:
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Let a cell division cycle model with no death rates and with stationary phase
transition coefficients Ki→i+1(x) be given by its probability density functions

ϕi(x) = Ki→i+1(x).e−
∫ x
0 Ki→i+1(ξ)dξ, 1 ≤ i ≤ I.

Assume that for a given phase i, there exists a number θ > 1 such that the random
variable Xi, duration in age of phase i, takes its values in [ θ−1

θ
E[Xi],+∞[. This

is in particular possible, as shown by elementary calculus, for probability density
functions of random variables on R+ of the Gamma type

βα(Γ(α))−1(x− γ)α−1e−β(x−γ)
1[γ;+∞[(x),

where γ > 0 and 1[γ;+∞[ is the indicator function of interval [γ; +∞[. To the prob-
ability density function ϕi for age duration Xi in phase i corresponds ϕθi , proba-
bility density function of Y θ

i = Xi + θ(Xi − E[Xi]). Then Y θ
i ≥ 0, and if θ > 1,

ϕθi is a dilation of ϕi, with E[Y θ
i ] = E[X] and V ar[Y θ

i ] = θ2V ar[X] > V ar[X].
Hence λ(Y θ

i ) > λ(Xi), thus providing us with an example of dilation, relying on
an increase in dispersion, which results in an enhancement of the growth exponent
λ.

Another example is (again) the Gamma distribution βα(Γ(α))−1xα−1e−βx on
R+ in which we fix the expectation E[X] = µ =

α

β
; then V ar[X] =

µ

β
, and a

straightforward calculation using Lotka’s equation (3) in the 1-phase case yields

λ = β

2

 1

µβ


− 1

.
Again, elementary calculus shows that this expression is always decreasing with
β, i.e., increasing with V ar[X], when the mean duration µ of the phase or of the
total division cycle is kept constant.

Third, an example of the most elementary consequence of Proposition (2.5)
may be illustrated again by using the Gamma distribution, with constant expecta-
tion µ and size parameter α = k integer (then it is also known as Erlang distribu-
tion and it is the distribution of the arithmetic mean of k i.i.d. random variables
with exponential distribution of scale parameter β =

k

µ
). Here

λ(k) = k

2

 1

k


− 1

,
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an expression that decreases (towards ln 2) when k increases, i.e., when the vari-

ance
µ2

k
of the distribution decreases.

Note that we have given here examples of probability laws with fixed expecta-
tion for which increasing the variance results in enhancement of λ. The choice of
the Gamma distribution has not been chosen haphazardly, as the next section will
show. Now, how far does the growth exponent λ depend on the variance of the
duration of the same phase (or of the total cycle duration) in a cell cycle model
in general? It can be seen that if X and Y do not belong to the same family of
probability laws, V ar[X] ≤ V ar[Y ], together withE[X] = E[Y ], does not imply
λ(X) ≤ λ(Y ) in general. But as shown above, if X and Y do belong to the same
family, which is for instance the case for the Gamma distribution family, that will
be of high interest for us in the sequel, this is true.

3. Identification of model parameters

Other authors [84] have used comparable modelling to investigate the cell cy-
cle in cell populations, but the novelty of our contribution in this section is that
we have used recent image data on individual cells that enable us to assess the
variability of cell cycle phase durations in populations of cells.

3.1. FUCCI reporters to identify model parameters
From a biological point of view, the cell cycle is classically considered as

composed of 4 phases named G1 (gap 1), S (DNA synthesis), G2 (gap 2) and M
(mitosis). One challenge of our modelling study was to determine the expression
of the parameters di and Ki→i+1 mentioned in the model (1) for each phase of the
cell cycle (i = 1 . . . 4). We concentrated our efforts on Ki→i+1, assuming that
di = 0 for all i = 1 . . . 4. Note that if one assumes a constant death rate d for
all phases, then it is included (negatively) in the growth exponent λ, which in fact
may be thought of as the minimal added artificial death rate that stabilises the cell
population, as results from equations (2).

To get an expression for these transition rates, we needed to have access to the
distribution of the duration of the phases of the cell cycle within a cell population.

FUCCI is the acronym of fluorescent ubiquitination-based cell cycle indicator.
This is a recently developed technique that allows tracking progression within the
cell cycle of an individual cell with a high degree of contrast [80, 81]. The FUCCI
method consists in developing two fluorescent probes indicating whether a tracked
cell is in the G1 phase or in one of the phases S, G2 or M of the cell cycle. The
authors fused red- and green-emitting fluorescent proteins to proteins called Cdt1
and Geminin. Cdt1 and Geminin oscillate reciprocally: Cdt1 level is highest in
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the G1 phase and falls down when the cell enters the S phase, whereas Geminin
level is highest in the S, G2 and M phases and falls when the cell enters the G1

phase. Let us mention that Cdt1 and Geminin are degraded due to the process
of ubiquitination, which is what is referred to (“U”) in the name of the reporter
method. Consequently, the nucleus of a FUCCI cell fluoresces in red when this
cell is in the phase G1, and in green when it is in S, G2 or M phases.

This method allows to measure the time a tracked cell spends in the G1 phase
and the remaining part S/G2/M of the cell cycle. By tracking each cell in a
population (note that cell tracking is not a completely trivial imagery problem
because in liquid media cells move) we can get the distributions of the duration of
these phases within the population, and so we can deduce the probability density
functions of the random variables representing the duration of these phases (see
below Subsection 3.3 for details).

3.2. Identification procedure
We used for the parameter identification procedure FUCCI data transmitted to

us within the C5Sys EU project by G. van der Horst’s team, Erasmus University
Medical Center, Rotterdam, The Netherlands. The cell lines were obtained by
one of us (S. Saito at Erasmus University) by recloning cell cycle phase markers
(in the proper colour combination, see further) and generating/analysing NIH 3T3
cells (mouse embryonic fibroblasts) proliferating in a liquid medium. The data
processed in the identification procedure thus consisted of time series of intensities
recording the red and green fluorescences emitted by individual NIH 3T3 cells
proliferating within an in vitro homogeneous population. These cells had not
been preliminarily synchronised, which means that they were initially at different
stages of the cell cycle. The intensities had been recorded every fifteen minutes,
over approximately 38 hours. A graph representing such a time series is presented
on Figure 1.

We considered in the mass of data (about 2000 tracked cells) that were avail-
able to us only those (about 50) with at least the duration of a complete cell cycle,
and measured the duration of the G1 and S/G2/M phases within this cell cycle
(note here that since all the cells that were kept for parameter identification were
alive from the beginning of the experiment until its end, the assumption of a zero
death rate in the model is in full accordance with these particular experimental
conditions). The end of a cell cycle is characterised by a fast disappearance of the
green fluorescence, so that it was not difficult to measure the duration of the cell
cycle on our data. During the transition from G1 to S, red and green fluorescences
overlap, so that it is not so easy to determine the duration of phase G1. In agree-
ment with our biologist partners, we decided to define the end of phase G1 as the
time at which red fluorescence was maximum before decreasing. The duration of
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Figure 1: Example of a time series of the intensity of red (deep grey) and green (light grey)
fluorescences obtained by using the FUCCI method on a NIH 3T3 cell within a population in
liquid medium.

phase S/G2/M was obtained by subtracting the duration of phase G1 from the
duration of the cell cycle. This method is summarised on Figure 2.

Figure 2: Graphic method used to determine the duration of the cell cycle and the one ofG1 phase.
The duration of phase S/G2/M was deduced by subtracting the duration of phase G1 from the
duration of the cell cycle.

3.3. Numericals
3.3.1. Expression of the transition rates

Using this identification method, we obtained 55 data on individual cells for
the duration of the cell cycle, divided in G1 and S/G2/M phases. The mean value
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of the duration of the cell cycle was about 17.1 h (s.d.: 4.5 h), the one of G1 was
about 7.2 h (s.d.: 2.7 h), and thus the one of S/G2/M was about 9.8 h (s.d.: 3.0
h).

We rounded each duration to the nearest hour. The distributions of the du-
rations of G1 and of S/G2/M within the population were fitted to experimental
data by using Gamma laws. The corresponding curves are presented on Figure 3.
We tested several models to fit experimental data. We excluded laws that had
support not strictly contained in R+, such as normal laws; similarly, we excluded
laws that assumed a maximum age in phase, which is impossible to define natu-
rally and furthermore results in difficulties when identifying their parameters. We
chose Gamma laws because they allowed a good (phenomenological) fit to our ex-
perimental data while keeping a reasonable number of parameters to be estimated.

Moreover, there is a clear physiological basis to this choice of the Gamma
distribution: recall that, if the parameter α is an integer, it is the law, often used
to represent probabilities of waiting times of the sum of α i.i.d. random variables
representing waiting times (here within G1 or S/G2/M of times between trig-
gerings of crucial switches in a cascade of protein expressions leading to a phase
transition, e.g., G1/S), each one of them following an exponential law with the
same parameter β. Such an explanation, or parts of it, has been proposed in this
context or others dealing with gene or protein expression by many authors, let us
only mention [37, 66, 83]. Note that here the Gamma distribution is not used, as
in [14] and references therein, to represent the distribution of maturation times for
cells performing a fixed number of divisions, but the distribution of times spent
in a phase of the cell division cycle, supposed to be constituted of a cascade of
(unidentified, hidden physiological) switches, as mentioned above, hence its as
phenomenological as physiological justification in our case.

For all x ≥ 0, we thus used the following probability density functions, where
Γ is the Gamma function:

ϕi(x) =
1

Γ(αi)
(x− γi)αi−1βαii e

−βi(x−γi)1[γi;+∞[(x) i = 1, 2, where

α1 = 8.28, β1 = 1.052h−1, γ1 = 0h, α2 = 3.42, β2 = 1.47h−1, γ2 = 7.75h
and 1[γi;+∞[ is the indicator function of interval [γi; +∞[. These parameters led
to a mean duration and a standard deviation on R+ respectively of 7.9h and 2.7h
for the G1 phase and of 10.1h and 1.3h for the S/G2/M phase. These figures are
very close to the ones related to the raw experimental data mentioned above. The
main difference resides in the S/G2/M data and is due to the fact that we have
identified a high position parameter ( γ2 = 7.75h) for the Gamma distribution in
S/G2/M , which may be interpreted as an “incompressible” minimum duration
for the S/G2/M part of the cell division cycle in our observed cell population,
hence, en passant, an indirect measure of this cell physiological parameter, which
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is the minimum age a cell has to spend in S/G2/M before being able to process
further and divide. Similarly, the figure 8.28 for α1, compared to 3.42 for α2 may
be interpreted - a speculation- as due to the presence of many more biological
switches (and resulting stopping times) in G1 than in S/G2/M .

Figure 3: Gamma laws (solid line) (multiplied by a coefficient equal to the total number of data,
i.e. 55) that fit experimental data (dots) for the distribution of the duration of G1 (left) and of
S/G2/M (right).

Let us also mention that in a close, but different context (linear age- structured
population, one proliferation phase and presence of a death term), others have
proposed an inverse problem method to identify, without any assumption on a
probabilistic model for the cell cycle time, the birth and death functions [48].

Let us now come back to the 2-phase mathematical model (I = 2 in model (1)).
As the experimental data were performed in vitro in a liquid medium, with no

intercellular communication, and as cells had not been synchronised prior to the
experiment, we can consider that there was no time-dependent control whatsoever
on the growth process at the cell population level. We thus assumed that the
transition rates from G1 to S/G2/M (K1→2) and from S/G2/M to G1 (K2→1)
did not depend on time, but only on the age of cells in the two phases. From the
expression of the cumulative distribution function mentioned in Section 2:∫ x

0

ϕi(ξ)dξ = 1− e−
∫ x
0 Ki→i+1(ξ)dξ i = 1, 2,

we deduce:

Ki→i+1(x) =
ϕi(x)

1−
∫ x

0
ϕi(ξ)dξ

i = 1, 2 (5)

where ϕi represents the experimentally determined probability density function of
the random variable representing the age duration in phase i. One may note here
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that the right hand side is known in general as the hazard rate that has been briefly
mentioned in Subsection (2.4).

The graphs of the transition rates we obtained from formula (5) and experi-
mental data are presented on Figure 4.

Figure 4: Transition rates from G1 to S/G2/M (left) and from S/G2/M to G1 (right). These
rates are functions of age of cells in the phases only.

3.3.2. Discretisation scheme
In this part, we come back to the general case where Ki→i+1 depends on age

and time. Thus far, we had always considered that di = 0 but, for numerical
convenience, we also had supposed that cells could not grow beyond a maximal
age. Numerically assessing this assumption, we came to the conclusion that it
had no influence on the value of λ > 0 provided that this maximal age was large
enough, so that, for numerical convenience, we arbitrarily took a maximal age of
10 days for each one of the 2 phases.

We base our discretisation scheme on the one presented in [31]. We denote by
∆t and ∆x respectively the time and age steps, i.e. t = k∆t and x = j∆x where
k = 0 . . . bTtot

∆t
c and j = 0 . . . bXtot

∆x
c, bzc representing the integer part of the real

number z, and Ttot and Xtot being respectively the total time of the simulation and
the maximal time a cell can spend in one phase of the cell cycle. For k ∈ N, j ∈ N
and for i = 1, 2, we consider the following quantities:

nk,ji = ni(k∆t, j∆x)

Kk,j
i→i+1 = Ki→i+1(k∆t, j∆x)

We use a first order finite difference scheme on the 2-phase mathematical
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model. Assuming ∆t = ∆x (CFL=1), we have:

nk+1,j
i =

nk,j−1
i

1 + ∆tKk+1,j
i→i+1

i = 1, 2, k = 0...kmax−1, j = 1...jmax

n0,j
i = n0

i (j∆x) i = 1, 2, j = 0...jmax

nk+1,0
1 = 2

jmax∑
j=0

∆tKk+1,j+1
2→1

1 + ∆tKk+1,j+1
2→1

nk,j2 k = 0...kmax−1

nk+1,0
2 =

jmax∑
j=0

∆tKk+1,j+1
1→2

1 + ∆tKk+1,j+1
1→2

nk,j1 k = 0...kmax−1

where kmax = bTtot
∆t
c, jmax = bXtot

∆x
c, n0

i denoted the initial density of cells in each
of the two phases.

Unlike the scheme presented in [31], this scheme ensures mass conservation
of cells through the phase transitions for any discretisation step. Indeed we have
the relation ∑

j≥0

nk,j1 = nk+1,0
2 +

∑
j>0

nk+1,j
1 +

nk,jmax1

1 + ∆tKk+1,jmax+1
1→2

which means that cells at time k either go to next phase or get older or go beyond
the age limit and are thus “killed.” This property gives a better coherence with
biological reality.

3.3.3. Numerical determination of the growth exponent
If transition rates do not depend on time, which is the case when there is no

circadian control, the first eigenvalue λ of the system (2) is given by equation (3).
In the particular case of our experimentally based study described above, we have:(

1 +
λ

β1

)α1
(

1 +
λ

β2

)α2

eλ(γ1+γ2) = 2 (6)

In our experimental case, with the coefficients of two Gamma distributions iden-
tified from FUCCI data (see above), this yields λ ≈ 0.039h−1.

In the general case, transition rates depend on time. Insofar as we are inter-
ested in the effect of circadian rhythms on cell cycle progression, we restrict this
study to time-periodic transition rates, the period being equal to T = 24 hours.
Over a time period, let nk = (nk,01 , nk,11 , . . . , nk,jmax1 , nk,02 , . . . , nk,jmax2 ) be a vector
in R2(jmax+1). As in the case of the 1-phase model presented in [31], we can write
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nk+1 = Mkn
k where Mk =

(
A1k B2k
B1k A2k

)
where Aik and Bik are (jmax + 1)2

matrices defined by:

Aik =



0 · · · · · · 0 0
1

1+∆tKk+1,1
i→i+1

...
...

0
. . . ...

...
... . . . 0 0
0 · · · 0 1

1+∆tKk+1,jmax
i→i+1

0


i = 1, 2,

B1k =


∆tKk+1,1

1→2

1+∆tKk+1,1
1→2

· · · ∆tKk+1,jmax+1
1→2

1+∆tKk+1,jmax+1
1→2

0 · · · 0
...

...
0 · · · 0

 ,

and B2k =


2∆tKk+1,1

2→1

1+∆tKk+1,1
2→1

· · · 2∆tKk+1,jmax+1
2→1

1+∆tKk+1,jmax+1
2→1

0 · · · 0
...

...
0 · · · 0

 .

This matrix Mk depends only on k and is T-periodic. Moreover, if we define
the matrix M = MNTMNT−1 . . .M2M1 whereNT = T/∆t, we have nNT = Mn0.
The following proposition is simple adaptation of its analogue in [31].

Proposition 3.1. If for all phases i and for all t ∈ [0;Ttot], there exists x0 ∈
[0;Xtot] such thatKi→i+1(x, t) > 0 for all x ≥ x0, then M = MNTMNT−1 . . .M2M1

is a nonnegative and irreducible matrix.

By the Perron-Frobenius theorem (see [12] for instance), this proposition means
that M has a simple and positive principal eigenvalue ρ associated with nonnega-
tive left and right eigenvectors unique up to a given normalisation. We calculated
this eigenvalue ρ by means of the power algorithm [46]. The Floquet eigenvalue,

or growth exponent, λ can then be approximated by
1

T
log(ρ).

3.4. Model simulations
As we are interested in the role of circadian rhythms on cell cycle progression,

we consider transition rates of the form : Ki→i+1(x, t) = κi(x).ψi(t) (i = 1, 2),
where κi corresponds to the transition rates we identified in Subsection 3.3, and ψi
represents a 24h-periodic time control exerted by circadian rhythms on cell cycle
progression at phase transitions.
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3.4.1. Internal validation
To make sure that our numerical results were in agreement with the biological

data that we used to build our model (“internal validation”), we performed simula-
tions in the case of no time control, that is Ki→i+1(x, t) = κi(x) (i = 1, 2), where
the κi(x) were given by the expression in (5) (κi(x) = Ki→i+1(x)). Figure 5
presents the time evolution of the percentage of cells in phases G1 and S/G2/M
over the duration of one cell cycle resulting from numerical and biological ex-
periments (biological data were preliminarily synchronised “by hand”, i.e., by
deciding that all cells were at age nought at the beginning of simulations). We had
to reduce this comparison to the duration of one cell cycle because we had not
enough biological data to represent the whole population. We can nevertheless
notice that modelled numerical data were very close to raw biological data. We
are thus entitled to conclude that the model and the method we have used to rep-
resent the proliferation phenomenon and fit our experimental data may have led
us close to biological likelihood.

Figure 5: Time evolution of the percentages of cells in G1 (red or deep grey) and S/G2/M (green
or light grey) phases from biological data (dashed line) and from numerical simulations (solid
line). Our model results in a good approximation of the biological data.

3.4.2. Numerical simulations
In the case of no time control (ψi ≡ 1, i = 1, 2), we studied the time evolu-

tion of the percentages of cells in G1 and S/G2/M phases of the cell cycle and
the evolution of the total density of cells. These results are presented on Figure 6.
We can notice that oscillations are damped and that the percentages rapidly reach
a steady state. This phenomenon, which has long been known in cell population
dynamics [4, 5, 6, 25, 68] as asynchronous growth, is the result of desynchroni-
sation of cells through the cell cycle: although the cells were taken initially all in
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phase G1 with age 0, the variability in the duration of phases G1 and S/G2/M
we described above induces some variability in the position of cells through their
cycling. In our experimental case, as mentioned above, the exponential growth
exponent λ computed by using Lotka’s equation (3) was equal to 0.039h−1.

Figure 6: Time evolution of the percentages of cellsG1 (left, red or deep grey) and S/G2/M (left,
green or light grey) phases and of the total density of cells (right) evolving free of any time control.
Oscillations are damped due to cell desynchronisation. Population growth tends to be exponential
with a rate equal to 0.039h−1.

Then, we introduced a circadian control modelled by functions ψi (i = 1, 2) in
the transition rates. For each phase, G1 and S/G2/M we took continuous piece-
wise 24h-periodic cosine functions, represented on Figure 7, defined on [0;24]
by:

ψ1(t) = cos2(2π(t−3)/12)1[12;18](t)+ε, ψ2(t) = cos2(2π(t−3)/12)1[0;6](t)+ε,

where ε = 10−10 ensures ψi > 0 (which may be shown sufficient to imply irre-
ducibility of matrix M and thus applicability of the Perron-Frobenius theorem).

These phenomenological cosine-like functions standing here for physiological
circadian control on cell cycle phase transitions in fact represent the local impact
of the central circadian clock control onto the cell division cycle. This impact may
be thought of either as retransmitted by a direct action of glucocorticoids - known
to be synthesized on a circadian basis by the corticosurrenal gland [23] - directly
on the G1/S transition via stimulation of p27 and inhibition of cMyc [7, 8], or
as retransmitted by another relay involving local circadian clocks and control by
Bmal1 of the complex Cyclin B-Cdk1 that controls the G2/M transition [65]. In
the absence of an actual experimental identification of the main gating variables
(Cyclin E-Cdk2 onG1/S and Cyclin B-Cdk1 onG2/M ) and the circadian control
on them, we have chosen to represent them by such truncated cosines.

The 12h delay between the definition of ψ1 and ψ2 is suggested by biological
observations, that teach us that circadian controls are exerted on the main check-
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points G1/S and G2/M and that proteins p21 and Wee1, known circadian con-
trols on these checkpoints, are expressed in antiphase [47]. Furthermore, and com-
pletely independently of such physiological knowledge, we remarked by varying
the phase delay that this value of 12 hours maximised the population growth expo-
nent λ. We thus obtained periodic transition rates Ki→i+1(x, t) = ψi(t).κi(x) of
mixed origin, estimated by cosines (ψi(t)) and experimentally determined (κi(x)).

Figure 7: Graphic definition of the 24h-periodic functions ψ1 (left) and ψ2 (right) modelling
circadian control on the cell cycle. ψ1 controls G1 to S transition, and ψ2 controls M to G1

transition.

In this case, we observed that oscillations of the percentages of cells in G1

and in S/G2/M were no more damped (see Figure 8). In fact, because of circa-
dian entrainment, cells were more synchronised in the cell cycle and consequently
divided approximately all together. Moreover, the exponential growth rate was
about 0.024h−1, which means that the population dynamics was slower than the
one without time control we investigated above. Thus, in this case, circadian
rhythms allowed cells to be more synchronised and to divide slower.

These first numerical simulations tend to be in agreement with the biological
hypothesis according to which populations of cells that can escape circadian con-
trol, such as cancer cell population could do, proliferate faster than populations of
cells submitted to circadian entrainment.

As shown in [31, 32, 33, 35, 36], there cannot be a general theoretical result
for periodic control on cell cycle transitions, comparing proliferation in controlled
and uncontrolled situations. Nevertheless, it could be that the particular form of
the periodic control investigated here, i.e., the product of an age-dependent com-
ponent which may be qualified as hazard rate κi(x) of a Gamma distribution for
phase duration, and of a periodic time-dependent component ψi(t) with optimised
phase shift between the two transition control functions ψ1 and ψ2, does result in
slowing down the cell cycle speed. This remains to be both experimentally and
theoretically investigated.
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Figure 8: Time evolution of the percentages of cells in phases G1 (left, red or deep grey) and
S/G2/M (left, green or light grey) and of the total density of cells (right) submitted to circadian
control. Oscillations are not damped any more. Population growth tends to be exponential with a
rate equal to 0.024h−1.

4. A numerical optimisation problem with toxicity constraints

We study in this section the problem of minimising the growth rate of cancer
cells subject to a toxicity constraint on healthy cells. A related problem is studied
in [9]. As in that paper, we consider two populations called healthy and cancer
cells that do not interact but are subject to circadian control and drug infusion.
The populations behave differently and the goal is to find a drug infusion scheme
that attacks cancer cells more than healthy cells.

Our approach is however different here because we consider an age-structured
model with several phases for the population dynamics. Moreover, whereas the
authors of [9] consider an initial distribution of cells and the consequence of the
drug on this initial distribution, we consider asymptotic growth rates. We thus
describe long-range drug treatment in a stationary state by controlling growth ex-
ponents, i.e., first eigenvalues of both cell population systems, healthy and cancer,
simultaneously.

4.1. Prerequisites in nonlinear optimisation
An optimisation problem with implicit constraints can be written in the fol-

lowing general form:

min
x∈X

F0(x)

Fi(x) = 0 , i ∈ I
Fi(x) ≤ 0 , i ∈ J

(7)

The set X ⊂ Rn represents constraints that are easily tractable, like for instance
bound constraints. The function F0 : Rn → R is the objective function or cost
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function and the functions Fi : Rn → R, i 6= 0, define implicit constraints:
{Fi(x) = 0} is an equality constraint, {Fi(x) ≤ 0} is an inequality constraint.
We assume here that for all i ∈ {0} ∪ I ∪ J , the function Fi is differentiable.

An important particular case is when there are no implicit constraints. The
optimisation problem becomes then:

min
x∈X

F0(x) (8)

There exists a vast literature on the resolution of such problems [22, 17, 73]
but we will concentrate on first order methods, i.e. optimisation algorithms that
only need the value of the function and its first derivative. Indeed, as we study
the discretisation of a continuous problem, we can deal with a huge number of
variables. Computing and storing the Hessian matrix of a function can be very
time-consuming when it has many variables, so even when we have an explicit
formula, we do not use it.

The simplest first order optimisation algorithm for Problem (8) is the projected
gradient method [44, 45]. It requires the set X to be convex and uses the orthog-
onal projection PX on X . Starting from x0, the algorithm builds the sequence
(xk)k≥0 such that:

xk+1 = PX(xk − αk∇F0(xk))

The step size αk can be either fixed or determined dynamically. A simple gener-
alisation of this algorithm is to replace ∇F0(xk) by another vector dk called the
descent direction.

For a general nonconvex optimisation problem, one cannot guarantee that the
optimum has been reached. Instead, one considers stationary points, where a point
x∗ is said to be stationary if

〈∇F (x∗), x∗ − x〉 :=
n∑
i=1

∂F

∂xi
(x∗)(x∗i − xi) ≤ 0, x ∈ X.

Proposition 4.1 ([45]). If ∇F0 is Lipschitz with constant L and 0 < α < 2
L

,
then every limit point of the projected gradient algorithm with fixed step α is a
stationary point of (8).

One can also free oneself of the Lipschitz constant assumption by performing
a line search for the determination of the length step αk. A simple line search rule
is the Armijo step-size rule on the projected arc [15]. We fix σ ∈]0, 1[, β ∈]0, 1[
and s > 0. Then αk = βms where m is the first nonnegative integer such that

F (xk)− F (xk(β
ms)) ≥ σ

‖xk − xk(βms‖2

βms
.
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When we have implicit constraints, we use the method of multipliers for the
resolution of Problem (7). This method is described precisely in [16].

Given c > 0, we call augmented Lagrangian of the Problem (7) the function
Lc defined by

Lc(x, µ) = F (x)+
∑
j∈I

(µjFj(x)+
c

2
Fj(x)2)+

1

2c

K∑
j∈J

(max(0, µj+cFj(x))2−µ2
j)

The method of multipliers consists in the following scheme, starting with µ0:

xk = arg min
x
Lck(x, µ

k)

µk+1
j = µkj + ckFj(x

k), j ∈ I
µk+1
j = max(0, µkj + ckFj(x

k)), j ∈ J

(9)

where the minimisation is understood to be local in a ball within which x is the
unique local minimum of Problem (8). Under classical assumptions (see [16]
for instance), the method of multipliers converges to a stationary point of the
constrained optimisation Problem (7).

4.2. Optimisation of the Floquet eigenvalue
We study the problem of optimising the first eigenvalue with control in a set of

matrices. That is, we study the optimisation of the growth rate in the discretised
model.

Unlike in [31, 32], we will refer to the Perron eigenvalue when we consider
nonnegative square matrices and to the Floquet eigenvalue when we study the
growth exponent of a time-periodic controlled population. Indeed, if we denote
by ρ the Perron eigenvalue of the matrix M defined by the discretisation scheme
in Section 3.3.3, which means that Mu = ρu and ρ has maximal modulus, then
the Floquet eigenvalue, λ can then be approximated by 1

T
log(ρ).

By the Perron-Frobenius theorem [12], we know that if M is nonnegative and
irreducible, its principal eigenvalue ρ(M) is positive and is a simple eigenvalue.
Moreover, as mentioned above, the principal eigenvector is unique up to a normal-
isation and can be chosen such that u(M) ≥ 0. In our setting (irreducibility of the
matrix and the Perron-Frobenius theorem), one can naturally define a function ρ
from the open set of nonnegative and irreducible real matrices in Rn into R+, that
to a matrix associates its principal eigenvalue.

General eigenvalue optimisation of non symmetric matrices is a difficult (non
convex, non differentiable) problem: see [62] and [75] for two algorithms dealing
with this problem. However, for positive matrices, as the principal eigenvalue is
simple, this implies that ρ is differentiable:
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Proposition 4.2 ([50]). Denoting v and u the left and right eigenvectors of a
matrix M associated to a simple eigenvalue ρ, the derivative of ρ at M can be
written as:

∂ρ

∂Mij

= viuj

Thus, as the objective function is differentiable, the theory of differentiable
optimisation applies (see Section 4.1).

As stressed by Overton in [74], there are various possibilities for the compu-
tation of the eigenvalue and eigenvectors. Here, we consider sparse nonnegative
matrices with a simple principal eigenvalue: the power method applies and, unlike
direct methods or inverse iterations, it only needs matrix-vector products, which
is valuable with a large sparse matrix.

The Perron (or Floquet) eigenvalue optimisation problem with explicit con-
straints can be written as:

min
M∈h(C)

f(ρ(M)) (10)

We assume that f is a real-valued twice continuously differentiable function; C a
compact convex set and we denote PC the orthogonal projection on C; h is a twice
continuously differentiable function such thatM = h(C) is a set of nonnegative
irreducible matrices.

We may also need implicit constraints on the eigenvalues. The Perron (or
Floquet) eigenvalue optimisation problem with K = |I|+ |J | implicit constraints
can be written as:

min
x∈C

f0(ρ(h0(x)))

fk(ρ(hk(x))) = 0 , k ∈ I
fk(ρ(hk(x))) ≤ 0 , k ∈ J

(11)

To solve this non convex problem, we use the method of multipliers [16], which
solves a sequence of non constrained optimisation problems (10) whose solutions
converges to the solution of the constrained problem (11).

For our application, x will be the array of the infusion time step by time step
and drug by drug. The various functions hi, one by type of cell considered (healthy
or cancer, bone cell or intestine cell...), represent the dependence of the model
upon drug infusion. We may also set implicit constraints on x directly.

The objective could be for instance the maximisation of the growth rate (for
healthy cells) with f0(r) = − 1

T
log(r), the minimisation of the growth rate (for

cancer cells) f0(r) = 1
T

log(r). For the constraints, we may consider a lower
bound Λ (toxicity threshold) for the growth rate of healthy cells by f1(r) =
− 1
T

log(r) + Λ or a prescribed total daily dose D by f2(x) =
∑

t xt −D.
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4.3. Simulations
We propose numerical simulations for the problem of a drug infusion strat-

egy that minimises the growth rate of cancer cells (f0(r) = − 1
T

log(r)) while
maintaining the growth rate of healthy cells above a threshold Λ = 0.022h−1

(f1(r) = − 1
T

log(r) + Λ ≤ 0).
Infusion here may be thought of as referring to the drug 5-Fluorouracil (5FU),

an anticancer drug with S phase specificity, acting via DNA damage and involving
a preserved p53 protein control (having nevertheless in mind that p53 is mutated
in many cancers [49, 89]); but it may also be thought of, in all cases of cancer, as
referring to the delivery of a CDK inhibiting molecule (CDKI) - some of which
have shown antimitotic activity [26] - , thus directly blocking G1/S or G2/M
transitions, or both. The pharmacological impact of the drug is thus represented
by an added phase transition blockade, as illustrated on Figures 9 and 10.

In Section 3, we have determined the parameters of the cell population dynam-
ics model with two phases G1 and S/G2/M . We thus consider two phases in our
simulations. We chose a discretisation step of 6 minutes because it may be consid-
ered as a lower limit to the half-life time of 5-FU in the plasma [21, 38, 77], which
is most likely even lower than the half-time of its downstream molecular effects at
the cell level, our concern here. The oldest ages represented in the discretisation
scheme are 10 days for each phase.

Transitions from one phase to the other are described by the transition rates
Ki→i+1(t, x). We take them with the form Ki→i+1(t, x) = κi(x)ψi(t)(1 − gi(t))
where κi(x) is the transition rate of the cell without circadian control identified
in Section 3, ψi(t) is the natural circadian control and gi(t) is the effect at the
cell level of the drug infusion at time t on the transition rate from phase i to
phase i + 1. No drug corresponds to gi(t) = 0, a transition-blocking infusion
corresponds to gi(t) = 1. If the modelled drug is 5-FU, it acts on phase S (and thus
on the aggregated phase S/G2/M ) on the DNA, resulting in damaged DNA and
subsequent blocking control at the G2/M transition only; we then have g1(t) = 0
for all t, and g2 only is controlled. Numerical experiments suggest that optimal
drug infusion patterns are 1-day periodic, so we restrict to 1-day periodic drug
infusion strategies.

We considered two cell populations called cancer cells and healthy cells. In
these simulations, we made them differ only by the circadian time controls ψi
between cell cycle phases i and i+1, and we assumed that there was no interaction
between the two populations, healthy and cancer.

We took for this circadian control a continuous truncated piecewise cosine
function (i.e., cos2 times an indicatrix function) for each phase. For healthy cells,
we took the functions described in Section 3.4, that is, we located the circadian
control around 3 a.m. for the transtion from S/G2/M toG1 (Figure 9) and around
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Figure 9: Drug and circadian controls, healthy cell population case. Cosine-like functions mod-
elling the drug and circadian controls for transition fromG1 to S/G2/M (dash-dotted line) and for
transition from S/G2/M to G1 in healthy cells. The “natural” (drug-free) control for S/G2/M to
G1 transition corresponds to the solid line, the drug-induced one to the dashed line.

Figure 10: Drug and circadian controls, cancer cell population case. Cosine-like functions mod-
elling the drug and circadian controls for transition from G1 to S/G2/M (dash-dotted line) and
for transition from S/G2/M to G1 in cancer cells. The “natural” (drug-free) control for S/G2/M
to G1 transition corresponds to the solid line, the drug-induced one to the dashed line.
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3 p.m. for the transition from G1 to S/G2/M . We assumed that cancer cell
populations still obey circadian control at these main checkpoints but, like in [2],
we modelled their behaviour by a looser answer to the signal (Figure 10). We
assumed that the drug has the same effect on both populations, which couples
their behaviours through the drug infusions.

Figure 11: Evolution of the population of cancer (blue, above) and healthy (green, beneath) cells
without drug infusion during 12 days. We can see that the populations have different exponential
growth rates (λcancer = 0.026 and λhealthy = 0.024). Cancer cells proliferate faster than healthy
cells.

Figure 12: Evolution of the population of cancer (blue, beneath) and healthy (green, above) cells
with the drug infusion, starting at time 0, given by the algorithm. Healthy cells keep multiplying
(λhealthy = 0.022) while the cancer cell population is weakened (λcancer = 0.019). Contrarily to
the case without drug, cancer cells proliferate slower than healthy cells.

We solved the constrained optimisation problem with the method of multipli-
ers and the unconstrained minimisations with the gradient method of Section 4.1.
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Figure 13: Locally optimal drug infusion strategy (function g2, see text for details) found by the
optimisation algorithm.

Without drug infusion, the growth rate of cancer cells (0.026h−1) is assumed
to be larger that the one of healthy cells (0.024h−1). This gives an evolution of
the respective populations, cancer cells becoming more and more present: see
Figure 11. After convergence of the method of multipliers, we get the locally
optimal strategy, shown on Figure 13, defining on [0; 24] the 24h-periodic function
g2 (recall that g1 = 0).

We can see the action of the locally optimal drug infusion strategy, provided
by the optimisation algorithm, on transition rates illustrated on Figures 9 and 10.
This strategy restricts transition time durations fromG1 to S/G2/M to three hours
(between 1 am and 4 am) for both cell populations, whereas under the drug-free
circadian control, transitions would be possible during 6 hours (between midnight
and 6 am) for healthy cells and during 15 hours (between midnight and 3 pm) for
cancer cells. Thus the physical meaning of this locally optimal infusion strategy is
to forbid transitions from G1 to S/G2/M when cancer cells are under target while
healthy cells are not (or very little), thus harming mostly cancer cells. Depending
on the toxicity threshold Λ chosen, more aggressive drug infusions are possible.

By following the infusion strategy numerically determined by the optimisation
algorithm, we obtained that the growth rate of healthy cells was above the chosen
toxicity threshold and that the growth rate of cancer cells was strongly weakened.
This gave us a description of the evolution of the respective populations, which is
illustrated on Figure 12.

We finally simulated the transition from the stationary state without drug to
the stationary state with periodic drug infusion (Figure 14). After a transition
of around 10 days, the treatment performs as expected (λcancer = 0.019 and
λhealthy = 0.022). We have thus pulled by this optimal infusion strategy the
whole cell population from a state favourable to cancer cells to a state favourable
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to healthy cells.

Figure 14: Daily mean growth rates for cancer (solid line) and healthy cells (dashed line) when
starting drug infusions at time 0. After a 10-day transitional phase, the biological system stabilises
towards the expected asymptotic growth rate.

5. Discussion and future prospects for this work

The problem of circadian control on the cell division cycle in cell populations
and its possible applications in clinical oncology is a question of biological and
clinical origin that has already been studied from a theoretical point of view in
the mathematical setting of age-structured physiological cell population dynamics
[31, 32, 33, 34, 35, 36]. Yet many unsolved questions remain, which may be due,
in particular, to the scarcity of data on parameters at the individual cell level in
proliferating cell populations.

Taking advantage of quantitative measurements obtained by performing recent
image analysis techniques of the cell division cycle in individual cells inside a
population of non communicating proliferating cells of the same healthy lineage,
we have focused in this paper on studying age synchronisation of cells with respect
to cell cycle phases. Although these cells are far from an in-vivo situation, they
give us precious indications on the age distribution within the cell division cycle in
a homogeneous cell population without control exerted on its proliferation, neither
by circadian clock messages, nor by applied drugs.

The drug-free experimental proliferation dynamics of this cell population is
well approximated by Gamma distributions for cycle phase durations, for which
we have shown that the growth exponent λ, first eigenvalue of the system, is in-
creasing with the variabilities of these durations.

We assumed a multiplicative expression for both temporal controls, physiolog-
ical (circadian) and pharmacological, onto cell cycle phase age-dependent transi-
tion kernels in the McKendrick model of cell proliferation with 2 phases. Our
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results on long-time drug-free cell population dynamics behaviour, as shown on
Figures 6 and 8, are consistent with the theoretical and experimental results pre-
sented in [25], that report classical asynchronous cell growth [4, 5, 6, 25, 68, 76],
with theoretical works that report entrainment of the phase population densities
by periodic control [28], and comparable with the results presented in another
modelling context in [1, 2].

We have also been able to propose a new therapeutic optimisation scheme un-
der a toxicity constraint, controlling growth exponents in both cancer and healthy
cell populations. We resolved this optimisation problem by using the Uzawa al-
gorithm, which yielded a locally optimal drug infusion strategy.

We can see clear similarities between this infusion strategy and others found in
the literature on cancer chronotherapeutic optimisation, although a great variety of
models may be considered (see [18] for a comparison of these models). Indeed,
in [2, 9] as well as in our case, the suggested infusion schedules set a maximal
drug infusion flow when cancer cells get hurt by the drug while healthy cells
do not. The modelling settings are however different with respect to the drug
effect considered (on death rates in [2, 9, 13] or on proliferation rates, in the
present study) and with respect to the model of cell population dynamics chosen.
In [9], the solutions (drug delivery flows) to the optimisation problem are much
smoother than in the present study. This may be attributed to the fact that here,
we represented control by blockade of proliferation (on cell cycle phase transition
rates and the resulting growth coefficients), which is closer to a ‘tap open - tap
closed’ problem than an action on death rates. Whereas most therapeutic control
representations so far have been put on death rates (but note that both targets
are considered in [51], and comparatively studied in [32, 35, 55]), we know that
anticancer drugs act mostly on proliferation, either by damaging the DNA, which
results in subsequent cell cycle checkpoint (G1/S or G2/M ) blockade via ATM
and p53 in the case of cytotoxics, or by slowing down the G1 phase in the case of
cytostatics (growth factor inhibitors); this is discussed elsewhere [18]. Drugs that
act directly on death rates, e.g., by primarily enhancing the apoptotic cascade may
exist (or will exist some day), but are not of common use in the clinic. Hence our
choice of the drug target, transition rates, which looks more realistic to us than
death rates.

Of note, the authors of [13], also using an age-structured population dynamic
model, but with delays, based their optimisation procedure on the remark that the
set of 24h-periodic strategies contains both best and worst strategies, depending
on the dephasing between the position of the maximal effect of the circadian clock
and of the drug infusion. Taking advantage of this remark, they aim at avoiding
possible traps (i.e., ‘pessimised infusion strategies’) when one has no precise idea
about the optimal circadian time, thinking that it is advisable to propose a robust
optimisation approach by using a different period for the drug infusion scheme.
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Thus, they proposed drug infusion schedules that are not 24h-periodic, making
their drug effects less dependent upon this dephasing (otherwise said, ‘shooting
more safely in the dark’), which is a quite interesting point of view. In our case,
since our approach is based on experimental data supposed to give us insight onto
the target and on actual possibilities to reach it safely, we did not consider such a
robust optimisation approach.

Our optimisation method relies on the assumption of differences between
healthy and cancer cell population model parameters, namely drug-free time-
dependent circadian control functions ψi on phase transitions. The clinical feasi-
bility status of the proposed optimal drug infusion strategy is of course still ques-
tionable. Indeed, the ψi functions are thus far purely phenomenological (cosine-
like functions) and, further, the local (tissue) drug effect proposed as control vari-
able does not take into account tissue pharmacokinetics-pharmacodynamics (PK-
PD) of any drug. Last but not least, in view of clinical applications, a whole-
body physiologically based PK-PD model is still lacking. Nevertheless, by using
this combination of physiologically based modelling of proliferation, mathemat-
ical analysis methods, cell imaging and statistical parameter identification tech-
niques, and original optimisation algorithms using eigenvalue control of growth
processes, we propose the first steps of a rationale for therapeutic optimisation
in oncology at the molecular level in cell populations, healthy and tumour. We
intend to complete these first steps in the future, as sketched in [27, 29, 30], to get
closer to the clinic.

Various measurements needed to identify parameters of our model control
functions were still out of reach by the biological experiments performed in this
pioneering study, and this is the reason why we used only a phenomenological
representation (by plain cosines) of circadian control, but more measurements are
expected to come from further experiments performed by biologists on samples
of cell populations, healthy or tumour, with or without circadian control.

In particular, in forthcoming recordings of FUCCI data on healthy and cancer
cells, we will pay attention to parallel experimental measurements of the growth
exponents (that are inverses of doubling times multiplied by a factor ln 2) in the
proliferating cell populations at stake. We will thus identify experimentally the
growth coefficient λ on cell population samples, in which we will simultaneously
identify the parameters of our model from cell cycle phase duration distributions
by FUCCI recordings, obtaining a theoretical growth exponent by solving the
Euler-Lotka equation. This will allow us to validate (or falsify) the model. But
thus far, such simultaneous measurements have not been made available to us.

In the immediate future, we intend firstly to make use of a 3-phase, rather than
2-phase, model. In the absence of fluorescent markers for the G2/M transition
thus far, we will investigate the possibility that S/G2/M variability may in fact be
sheer S/G2 variability, neglecting M phase variability, that is indeed very short,
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and for which transition to G1 phase might be modelled by a Dirac-like proba-
bility measure (i.e., fixed duration of M phase). This hypothesis still needs to be
documented, but if it is valid, then our methodology will give us access to both
G1/S and G2/M transitions, that are the most important ones for both circadian
and pharmacological control.

Secondly, with more FUCCI data on both cancer and healthy cell populations,
we should be able to compare synchronisation and control in different settings
in these two situations, as much as possible in cell populations with the same
histological origin. In this way, using the methodology described in this study, we
should be able to assess the assumptions mentioned in Section 1, examining the
part played by circadian clocks in synchronisation of cells in a given population,
and to use new observations to propose new therapeutic tracks in oncology, more
precisely in cancer chronotherapeutics.
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[58] F. Lévi, The circadian timing system: A coordinator of life processes. impli-
cations for the rhythmic delivery of cancer therapeutics, IEEE-EMB Maga-
zine 27 (2008) 17–20.
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[60] F. Lévi, A. Okyar, S. Dulong, P.F. Innominato, J. Clairambault, Circadian
timing in cancer treatments, Ann. Rev. Pharmacol. Toxicol. 50 (2010) 377–
421.
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