

MODEL-BASED DOSE ADAPTATION OF CAPECITABINE FOR PREVENTION OF SEVERE HAND-AND-FOOT SYNDROME:

in silico comparison with the standard method

Ines Paule, Michel Tod, Emilie Hénin, Benoit You, Brigitte Tranchand, Gilles Freyer, Pascal Girard

EA 3738 "TherapeutiC Targeting in Oncology" Faculty of Medecine Lyon Sud, France

INTRODUCTION

• <u>5-FU</u> :

- inhibitor of cell cycle;
- one of the most used anticancer drugs for the treatment of solid tumors (colorectal, breast) (since 1957).

- <u>Capecitabine</u> (Xeloda[®], Roche):

- prodrug of 5-FU taken orally (a blockbuster since 2002);
- main toxicity: hand-and-foot syndrome (54% patients)
 (redness, peeling, numbness, pain of the skin of palms and soles)

Grade	0	1	2	3
	-	Tingling or burning	Pain	Severe pain
Symptoms	-	Mild redness, swelling; skin intact	Redness, swelling; skin intact	Blisters, peeling, loss of function

DOSE ADAPTATION STRATEGIES

Standard:

If Grade≥2, treatment stopped until Grade ≤1, then dose is changed accordingly:

Grade	Occurrences			
	1	2	3	4
2	100%	75%	50%	0
3	75%	50%	0	0

DOSE ADAPTATION STRATEGIES

Standard:

If Grade≥2, treatment stopped until Grade ≤1, then dose is changed accordingly:

Grade	Occurrences			
	1	2	3	4
2	100%	75%	50%	0
3	75%	50%	0	0

Alternative:

individual adaptation according to model-based
 prediction of patient-specific toxicity risk

OBJECTIVES OF THIS WORK

- Develop an individual model-based dose adaptation method for ordinal observations
- Evaluate its feasibility
- **Compare** its performance to that of the standard practice
 - → by randomized *in silico* clinical trials

Population HFS model

DOSE-TOXICITY MODEL: the principle

(Hénin *et al.,* A dynamic model of hand-and-foot syndrome in patients receiving capecitabine, advanced publication)

POPULATION DOSE-TOXICITY MODEL

mixed-effects transitional proportional odds model for ordinal data

$$\frac{dQ}{dt} = Dose - K_i \cdot Q, \qquad K_i = K \cdot e^{\eta_{1i}}$$

$$logit[P(Y_{it} \le 0 \mid Y_{it-1} = G^*)] = B_0^* - \frac{E_{MAX}^* \cdot (Q_{it} \cdot K_i)}{ED_{50} + (Q_{it} \cdot K_i)} + (CLcr_i - 75.5) \cdot \theta_{CLcr} + \frac{\eta_{2i}}{\eta_{2i}}$$

$$logit[P(Y_{it} \le 1 \mid Y_{it-1} = G^*)] = B_0^* + B_1^* - \frac{E_{MAX}^* \cdot (Q_{it} \cdot K_i)}{ED_{50} + (Q_{it} \cdot K_i)} + (CLcr_i - 75.5) \cdot \theta_{CLcr} + \frac{\eta_{2i}}{\eta_{2i}}$$

$$P(Y_{it} \le C \mid Y_{it-1} = C^*) = \frac{\exp(logit)}{1 + \exp(logit)}$$

$$p_{it0} = P(Y_{it} = 0) = P(Y_{it} \le 0)$$

$$p_{it1} = P(Y_{it} = 1) = P(Y_{it} \le 1) - P(Y_{it} \le 0)$$

$$p_{it1} = P(Y_{it} = 2) = P(Y_{it} \le 2) - P(Y_{it} \le 1) = 1 - P(Y_{it} \le 1)$$

a priori information:
$$\Theta = (B_0^0, B_0^1, B_0^2, B_1^0, B_1^1, B_1^2, E_{MAX}^0, E_{MAX}^1, E_{MAX}^2, ED_{50}, K, \theta_{CLcr})$$

$$\begin{pmatrix} \eta_1 \\ \eta_2 \end{pmatrix} \sim N(0, \Omega), \quad \Omega = \begin{bmatrix} \omega_1^2 & \omega_{12} \\ \omega_{12} & \omega_2^2 \end{bmatrix}$$

ESTIMATION OF INDIVIDUAL PARAMETERS

Bayesian estimation approach *Maximum A Posteriori* (MAP) is used for estimation of individual parameters on the basis of previous observations

ESTIMATION OF INDIVIDUAL PARAMETERS

Implementation of the **MAP method**:

$$\hat{\eta}_{iMAP}(H_{it}) = Arg \left[\max_{\eta_i} \frac{p(\eta_i) \cdot p(H_{it} | D_{it}, H_{it-1}, CLcr_i, \Theta, \eta_i)}{p(H_{it})} \right]$$

Likelihood (of **ordinal** observations):

$$p(H_{it}|D_{it}, H_{it-1}, CLcr_i, \Theta, \eta_i) = \prod_{j=1}^{t} \prod_{g=0}^{2} p_{ijg}^{y_{ijg}}$$

$$y_{itg} = \begin{cases} 1, & \text{if } Y_{it} = G, \\ 0, & \text{otherwise;} \end{cases} \text{ where } G = \{0, 1, \ge 2\}$$

Maximization by Simplex (additional subroutine)

DOSE DETERMINATION RULE

TARGET:

Risk of severe toxicity in 2 weeks = 1%

DOSE:

Daily dose corresponding to this target, constrained: 50% to 100% of the nominal dose

IN SILICO PROOF-OF-CONCEPT CLINICAL TRIAL

- 3 parallel randomized **arms** according to **adaptation** method:
 - Standard
 - Individual
 - Individual+
- 10,000 virtual patients per arm.
- Standard dosing regimen: 2500 mg/m²/day for 2 weeks, 1 week rest.
- Max 30 weeks (10 cycles of 3 weeks).
- **Interruption** of treatment in case of severe toxicity, until recovery to grade ≤1. Next doses are reduced according to the corresponding protocol.
- Definitive discontinuation:
 - after 7 consecutive weeks without any dose,
 - after the 4th episode of severe toxicity.

DOSE ADAPTATION PROTOCOLS

Protocol	Start of dose adaptation	Treatment interruption conditions	Dose	Dose limits
Standard	After the 2 nd occurrence of severe toxicity	Grade ≥2 toxicity	-25% after 2 nd occurrence of severe toxicity -50% after the 3 rd 0% after the 4th	[50%, 100%]

DOSE ADAPTATION PROTOCOLS

Protocol	Start of dose adaptation	Treatment interruption conditions	Dose	Dose limits
Standard	After the 2 nd occurrence of severe toxicity	Grade ≥2 toxicity	-25% after 2 nd occurrence of severe toxicity -50% after the 3 rd 0% after the 4th	
Individual	After the 1st occurrence of at least grade 1 toxicity, when the risk of severe toxicity exceeds 1%	Grade ≥2 toxicity Allowed dose is lower than 50% of the nominal dose	Corresponding to predicted risk of severe toxicity in 2 weeks equal to 1%	[50%, 100%]

DOSE ADAPTATION PROTOCOLS

Protocol	Start of dose adaptation	Treatment interruption conditions	Dose	Dose limits
Standard	After the 2 nd occurrence of severe toxicity	Grade ≥2 toxicity	-25% after 2 nd occurrence of severe toxicity -50% after the 3 rd 0% after the 4th	
Individual	After the 1st occurrence of at least grade 1 toxicity, when the risk of severe toxicity exceeds 1%	Grade ≥2 toxicity Allowed dose is lower than 50% of the nominal dose	Corresponding to predicted risk of severe toxicity in 2 weeks equal to 1%	[50%, 100%]
Individual+				[50%, 150%] for patients without any toxicity (start at the 4 th cycle); [50%, 100%] for the rest

*: at the beginning of treatment

RESULTS: Performance of adaptation protocols

Percentages of patients

Total duration

Percentages of patients

Percentages of patients

Percentages of patients

Total duration

Percentages of patients

Total duration

Evolution of the HFS during the 30 weeks of the trial

REDUCTION OF TREATMENT

Treatment duration

Drug exposure

STATISTICAL POWER ANALYSIS

100 replications of trials with

- 300 patients per arm
- 400 patients per arm
- 600 patients per arm

Wilcoxon test used to estimate the significance of reduction in **severe toxicity duration**

CONCLUSION:

600 patients per arm are needed to achieve at least a 90% statistical power for a significant (α=0.05) reduction of severe HFS duration.

Results of Individual+

- 29% of patients concerned
- No significant increase in toxicity
- Drug exposure of these patients:
 - **Indi** mean: 98.9% of nominal exposure
 - Indi+ mean: 104.5% of nominal exposure
 - → Relative increase: 5.7%

CONCLUSIONS

Benefits

 Individualized dose adaptation on the basis of ordinal observations showed to be feasible and beneficial.

- The benefits could be :
 - **3** 13% for incidence
 - **12 days** for duration
 - early detection of intolerant patients
 - safe intensification of treatment (up to +50%)
 if no previous toxicity

CONCLUSIONS

Limitation

Utility of dose adaptation in this particular case is hindered by a certain **inertia** of toxicity assumed by the model

(true cumulative nature of the drug or bias of the data and/or model)

CONCLUSIONS

Perspectives

- Application of this methodology for more reactive drugtoxicity systems should provide a higher benefit.
- Extension to multiple toxicities.
- Incorporation of tumor and survival models
 for evaluation of the impact on anti-cancer efficacy and
 eventually dose adaptation by targeting both therapeutic
 objectives: maximum effect and minimum toxicity.
- Development of a web-based application for dose adaptation for use in clinical routine.

ACKNOWLEDGEMENTS (1/2)

TherapeutiC Targeting in Oncology team in Lyon Sud

Academic (EA3738)

Senior/Junior Methodologists (PhD)

Doctorants, masters (Engineers, Clinicians, Pharmacists)

Clinicians (MD, PhD) Pharmacists (PharmD, PhD)

ARC / IATOS

ACKNOWLEDGEMENTS (2/2)

- **WOVARTIS** for financing my Ph.D. studies
- Roche for providing the capecitabine toxicity data of two Phase III trials

THANK YOU

BACKUP SLIDES

SUPPLEMENTAL PROTOCOLS

REDUCTION OF SEVERE TOXICITY

Percentages of patients

Incidence

Total duration

REDUCTION OF TREATMENT

Treatment duration 1.0 8.0 0.6 0.4 Stand Indi 3% 0.2 Indi 2% Indi 1% 0.0 5 10 15 20 25 30 Time (weeks)

Drug exposure

Part of patients with reduced doses

Individual B protocol

SPECIAL FEATURE:

no treatment interruption in prevention (grade<2): 50% of the dose even if predicted risk > 1%

RESULTS: 7 drug exposure BUT 7 severe toxicities

- Treatment duration: 28.1 weeks (Indi: 21.7 weeks)
- Drug exposure: 72% (Indi: 68%)
- Severe toxicity incidence: 0.74 (Indi: 0.68)
- Part of patients with severe toxicity: 55% (52%)
- Duration of severe toxicity: 7.5 weeks (Indi: 6.6 weeks)

Pop protocol

SPECIAL FEATURE:

Dose calculation is based on predictions given by average **population** model.

RESULTS: 7 drug exposure BUT 7 severe toxicities

- Treatment duration: 23.4 weeks (Indi: 21.7 weeks)
- Drug exposure: 72% (Indi: 68%)
- Severe toxicity incidence: 0.69 (Indi: 0.68)
- •Part of patients with severe toxicity: 53% (52%)
- Duration of severe toxicity: 7.1 weeks (Indi: 6.6 weeks)

Exact protocol

SPECIAL FEATURE:

Dose calculation is based on predictions given by **true** individual model (with ETAs used for simulation).

RESULTS: light **オ** drug exposure AND ≈ toxicity

- Treatment duration: 22.9 weeks (Indi: 21.7 weeks)
- •Drug exposure: 71% (Indi: 68%)
- Severe toxicity incidence: 0.68 (Indi: 0.68)
- Part of patients with severe toxicity: 52% (52%)
- Duration of severe toxicity: 6.6 weeks (Indi: 6.6 weeks)

ESTIMATION METHODS

MODE

- Local maximization:
 - simplex (Fortran)
 - quasi-Newton (NONMEM)
- Global maximization:
 - Recursive Random Search (RRS) (Fortran)

MEAN, MEDIAN

Bayesian estimation by MCMC (WinBUGS)

COMPARISON OF OPTIMIZATION METHODS

	Simplex	% of SD(true) (Simplex)	NONMEM	Recursive Random Search
Bias.eta1	0.120	12.6%	0.102	0.120
Bias.eta2	0.086	5.8%	0.098	0.085
MAE.eta1	0.592	62.3%	0.608	0.592
MAE.eta2	0.595	40.5%	0.607	0.595
Cor.eta1	0.524		0.488	0.524
Cor.eta2	0.821		0.814	0.821
Time	5″		21"	5′ 40″

Results of 1000 patients with 29 observations and at least one non-zero grade among them

$$Bias = \frac{1}{N} \sum_{i=1}^{N} (\hat{\eta} - \eta) = \frac{1}{N} \sum_{i=1}^{N} \hat{\eta} - \eta$$
 $MAE = \frac{1}{N} \sum_{i=1}^{N} |\hat{\eta} - \eta|$

COMPARISON OF ESTIMATORS

	Mean (WinBUGS)	Median (WinBUGS)	Mode (Simplex)
Bias.eta1	-0.029	0.015	0.101
Bias.eta2	-0.014	-0.016	0.076
MAE.eta1	0.587	0.584	0.586
MAE.eta2	0.597	0.599	0.605
Cor.eta1	0.491	0.493	0.507
Cor.eta2	0.810	0.810	0.808
Time	7h 52′	7h 52′	4"

Results of 839 patients with 29 observations and at least one non-zero grade among them

Bias =
$$\frac{1}{N} \sum_{i=1}^{N} (\hat{\eta} - \eta) = \frac{1}{N} \sum_{i=1}^{N} \hat{\eta} - \eta$$
 $MAE = \frac{1}{N} \sum_{i=1}^{N} |\hat{\eta} - \eta|$

COMPARISON OF ESTIMATION QUALITY

Estimation quality having more observations

	29 obs.	100 obs.	200 obs.
Bias.e1	-0.116	-0.129	-0.097
Bias.e2	-0.088	-0.040	-0.005
MAE.e1	0.626	0.439	0.376
MAE.e2	0.620	0.370	0.301
cor.e1	0.464	0.767	0.835
cor.e2	0.800	0.934	0.958

Simplex mode estimates, the same 1000 subjects with at least one severe toxicity,

Standard dose adaptation

Simplex estimates vs. True values, 200 obs.

QQ-plot: Simplex estimates vs. True values, 200 obs.

Confidence intervals of the estimates given by Bayesian estimation (WinBUGS)

- Nominal dose = 4226
- CLcr = 73
- True ETA = (-0.34, -0.00)
- MAP estimate = (-0.18, -0.76)

	2.5%	mean	median	97.5%	SD	Prior SD
Eta1	-2.23	-0.35	-0.29	1.25	0.91	0.95
Eta2	-2.74	-0.96	-0.91	0.65	0.87	1.5

POSTERIOR DISTRIBUTIONS

PRIOR DISTRIBUTIONS

Estimation quality for a model with a more reactive dose-toxicity relation

	Model with ED50*0.05 K*10	Original model
Bias.eta1	0.005	0.120
Bias.eta2	-0.041	0.086
MAE.eta1	0.234	0.592
MAE.eta2	0.531	0.595
cor.eta1	0.933	0.524
cor.eta2	0.877	0.821

Simplex, 29 observations, 1000 subjects

I. Uncertainty of the proposed dose

(Sensitivity of the proposed dose to the values of ETAs)

II. Inertia of the risk

(lack of impact on the risk of a 1 cycle drug amount)

Example of treatment

Cycle	Dose	Grades of HFS
1	4784	0,0,0
2	4784	0,0,0
3	4784	0,0,0
4	4784	0,1,1
5	?	

Doses and **risks** according to taken ETA **estimates**

	ETAs	Dose	True risk	Estimated risk
Exact	(0.00, 1.56)	100 % (33166 ≈ 693%)	0.002	-
Mode (MAP)	(-0.16, -0.51)	0 (1194 ≈ 25%)	0.0014	0.0096
Mean	(-0.07, -0.33)	69% (3303)	0.002	0.011
Median	(-0.06, -0.32)	0 (2294 ≈ 48%)	0.0014	0.01
Рор	(0, 0)	88 % (4186)	0.002	0.0089

Distributions (WinBUGS)

	Mean	SD	2.5%	Median	97.5%
Eta1	-0.074	0.82	-1.72	-0.063	1.499
Eta2	-0.330	1.00	-2.27	-0.317	1.748
New dose	3303 (69%)	6096	-5125	2294 (48%)	19080
True risk [w+1]	0.002	0.0008	0.0008	0.002	0.004
Estim.risk [w+1]	0.011	0.003	0.006	0.01	0.019

EVOLUTION OF THE HAND-AND-FOOT SYNDROME:

600 patients, 2500 mg/m²/day, 1 year

Source: Hénin *et al.*, A predictive model of Hand-and-Foot Syndrome dynamic in patients receiving capecitabine, manuscript

BIAS IN THE DATA?

Transitions between grades in a week (600 patients)

PPC for transitions

Simplex steps

Grade probabilities

Drug exposure

$$\frac{\sum_{t=1}^{T} \text{taken dose(t)}}{\sum_{t=1}^{T} \text{nominal dose(t)}}$$

T – duration of participation in the trial