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Summary

1. A model for p53 intracellular dynamics
◮ biology of p53 - basics
◮ a new model to reproduce its dynamics

2. A model for protein transport within the cell
◮ biology of intracellular transport - basics
◮ locating a single microtubule



What is p53?

In 1979 a protein of molecular mass of 53 kDa was isolated. It was
named p53.



p53 roles: the Guardian of the Genome

After a stress p53 acts as a
transcription factor:

◮ blocks the cell cycle progress.

◮ repairs the DNA.

◮ launches apoptosis

(programmed cell death).

It has a huge network of

interactions- hard to model!



Healthy or Stressed cell

In healthy cells p53 is dangerous,
Mdm2 keeps a balanced cellular level of p53.

◮ Mdm2 induces degradation of p53 and blocks its nuclear
import.

◮ p53 transcribes the mRNA of Mdm2.

In stressed cells p53 concentration rises to prevent the
transmission of harmful mutations.



Two different “states”

Healthy cells or Stressed cells



How to switch from a state to the other?

Healthy cells: blocked import + increased degradation



How to switch from a state to the other?

Stressed cells: modifications block p53-Mdm2 interactions.
Principal factor in case of DNA damage: ATM



p53 dynamics

the p53-Mdm2 network has an oscillatory behavior

Figure: in vitro experiments

A time-lapse movie of one cell nucleus after exposure to a 5Gy
gamma dose of a MCF7 breast cancer cell line

Oscillations and variability in the p53 system Geva-Zatorsky et al., Molecular Systems Biology 2006

doi : 10.1038/msb4100068



Mathematical models of p53

Why study p53?

◮ explain oscillations (which mechanism): HOW?

◮ understanding its behaviour: WHY?

Literature ODE models ; mean concentrations - depend on time

◮ Use delay: du
dt
(t) = f (t − τ)

◮ Use negative and positive feedback.

Lev-Bar-Or et al. 2001, Monk et al. 2003, Ma et al. 2005, Ciliberto et al. 2005, Chickarmane et al. 2007,
Ouattara et al. 2010



Mathematical models of p53

Introducing space:

◮ “Operations” in Nucleus and Cytoplasm are not homogeneous
(transcription-translation-degradation depends on compartment).

◮ Temporal dynamics: different space scales (p53’s “radius” is
2,4 nm - diameter of a cell can be 30µm)

Sturrock et al. - JTB 2011, Sturrock et al. - Bull Math Biol. 2012



Model: biological hypotheses
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Mathematical Model

Model variables (nuclear and
cytoplasmic concentrations)

◮ [p53](n) and [p53](c)

◮ active p53: [p53p]
(n) and [p53p]

(c)

◮ [Mdm2](n) and [Mdm2](c)

◮ [mdm2RNA]
(n) and [mdm2RNA]

(c)

All variables diffuse within each compartment



The Model: Nucleus
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The Model: Cytoplasm
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Kedem-Katchalsky boundary conditions
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on the common boundary Γ.

A. Cangiani and R. Natalini. A spatial model of cellular molecular trafficking including active transport along

microtubules. Journal of Theoretical Biology, 2010.



The Spatial Environment(s!)

The spatial environment is the cell

◮ compartmental model (ODE system)

NUCLEUS ←→ CYTOPLASM

◮ spatial model (PDE system): 1D and 2D domains

Where Ω1 =Nucleus, Ω2 =Cytoplasm and Γ the common
boundary, Γ = Ω1 ∩ Ω2.



ODE system: exchange between compartments

Let S be one of the species S = p53,Mdm2,mdm2RNA, or p53p ,
S(n) its nuclear concentration, S(c) its cytoplasmic concentration.

dS(n)

dt
= Nuclear Reactions− ρSVr (S

(n)
− S(c))

dS(c)

dt
= Cytoplasmic Reactions + ρS(S

(n) − S(c))

where Vr =
cytoplasmic volume

nuclear volume



ODE system: positivity of solutions and sustainend

oscillations

Proposition

The positive quadrant is invariant for the flow of the system if
ATM > 0.

Numerics
Sustained oscillations appear for ATMmin < ATM < ATMmax .
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Supercritical Hopf bifurcation and oscillations

◮ ATM and oscillations: existence of a supercritical
Hopf Bifurcation
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◮ Hypothesis of the Hopf
bifurcation theorem satisfied
by our model -numerical
proof
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Simulations in a 1-dimensional PDE system
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Figure: Simulations of the 1-dimensional PDE system; Left: temporal
evolution of p53 nuclear concentrations. Right: ‘Bifurcation diagram’
over ATM



The 1-dimensional environment does not permit a ‘spatial’

analysis
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Figure: Simulations of the 1-dimensional PDE system; Left:‘Bifurcation
diagram’ over the diffusion coefficients . Right: temporal evolution of
p53 nuclear concentrations for different diffusion values



Simulations in a 2-dimensional PDE system

p53 oscillations

Mdm2 oscillations

DS = 10µm2/s
DmRNA = 0.1µm2/s
pS = 0.16µm/s

Volume ratio (C : N) = 10 : 1



Oscillations appear for realistic diffusion and permeability

values

Parameter Description Ref. values values for oscillations

Vol Total area of the simulations domain 300µm2 Vol > 0(µm2)
Vr Volume ratio Cytoplasm:Nucleus 10 2 ≤ Vr ≤ 100
pi Protein permeabilities 10µm/min 5 ≤ pS ≤ 5000(µm/min)
Di Protein diffusion coefficients 600µm2/min 10 ≤ DS ≤ 1000(µm2/min)

Table: Parameter ranges of spatial values for which oscillations occurs.
the ratio “protein diffusion:mRNA diffusion” has been fixed to 100:1.
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D. Fusco et al., Curr. Biol 2003, Shav Tal et al. Science 2004, Hong et al. J Biomater Nanobiotechnol 2010



The geometry of the domain does not influence the

dynamics of the system



Conclusion - Part I

◮ Spatial physiological model that reproduces the oscillations

◮ ATM as a ‘natural’ bifurcation value

◮ Oscillations appear for realistic diffusion and permeability
values

◮ The geometry of the domain does not influence the dynamics
of the system



Future directions - Part I

◮ include the import and export pathways (NLS-NES)
◮ in silico experiments with drugs
◮ How the mutations act on the dynamics?
◮ 3D extension
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Figure: A basic example of DNA repair: a few oscillations occur. Here
the bifurcation parameter ATM is a variable of the system

Also we need to compare the model with real biological data!



Summary

1. A model for p53 intracellular dynamics
◮ biology of p53 - basics
◮ a new model to reproduce its dynamics

2. A model for protein transport within the cell
◮ biology of intracellular transport - basics
◮ locating a single microtubule



Diffusion to model transport

Transport of proteins is modeled by DIFFUSION.

Diffusion alone can be an efficient mechanism...

in such a crowded environment?

Diffusion means average
Direction is random
Is this mechanism always efficient?



Transport a signal

Approach faster to the nucleus =⇒ use MICROTUBULE structure.

Fig: Wikimedia commons.

Microtubules (MTs) are filaments that carry out several activities (motility
of the cell, distribution of vescicles and organelles within the cell).
Microtubule Structure

◮ Filaments of α and β tubulin dimer anchored at the centrosome
(MTOC-Microtubule Organizing Centre).

◮ MTOC is near the nucleus.

◮ They have a polarity (plus and minus end) =⇒ direction

◮ Radial Structure



Transport a message

Some proteins such as the pRb (a TUMOR SUPPRESSOR protein)
use MTs to accumulate efficiently in the nucleus.
MTs integrity and dinamicity is not a REQUIREMENT but still useful
for efficient accumulation.

Figure: Quantitative analysis of nuclear import in cells treated with
TAXOL.Roth et al, Traffic 2007; 8: 673686



Here’s a CARTOON of how it works...



Previous works

Point out the importance of MT for efficient transport within the
cell

Cangiani-Natalini,J Theor Biol.

2010 Dec 21;267(4):614-25

Smith one dimensional model: lateral diffusion is supposed to
homogenize any concentration gradient. Smith-Simmons,Biophys
J. 2001 Jan;80(1):45-68.



The model

We introduce a simplified 2-dimensional model
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Main features:

◮ positioning the microtubule

◮ considering one way motor protein

◮ cargo and cargo + protein representation: bi-dimensional and
1-dimensional equations



The Mathematical Model

We define: u, v and W (free cargo, cargo+motor and transported
cargo).
Applying Fick’s law of diffusion and Mass Action Law for kinetic
Reactions we get:
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Boundary conditions

We suppose the microtubules homogeneously distributed within
the cell =⇒ on the long side of the domains we use periodic
boundary conditions.























∂u
∂n

= 0,
∂v
∂n

= 0, on Γ4,
du

∂u
∂n

+ puu = 0,
dv

∂v
∂n

+ pvv = 0, on Γ2,
w(xIn) = 0.

Left: Neumann homogeneous boundary conditions no crossing of
the membrane (cytoplasmic side).
Right: outgoing flow proportional to the species concentration
(Robin boundary condition).



Results

φu(t) = −du
∫ Ly
0 ∇u(x̄ , y) · n(x̄ , y)dy ,

φv (t) = −dv
∫ Ly
0 ∇v(x̄ , y) · n(x̄ , y)dy ,

integrating over time we define:

Fu(t) =

∫ t

0
φu(t)dt and Fv(t) =

∫ t

0
φv (t)dt .
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Detachment and attachment rates from the MT increase

the total flow

k1 : attachment rate, k−1 : detachment rate

τon =
1

k−1
τoff =

1

k1
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The import pathway

We couple our model with a model of import pathway and we add
a nuclear compartment.
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Adding the nuclear compartment
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The microtubule attracts the cargo and its import is

slowed down
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Conclusion - Part II

◮ No import pathway: the macromolecules flow increases with
MT activity (diffusion coeff up to 6µm2/s)

◮ No import pathway: detachment and attachment rates from
the MT increase the total flow

◮ Import pathway: the competition between importin and
microtubule subtracts free cargo to import



Future Directions - Part II

◮ Highlight the importance of microtubule activity in NLS
proteins transport (Ran Pathway).

◮ Various geometries

◮ basis for studying the transmission of DNA vaccines (Maria
Grazia Notarangelo Ph.D Thesis)
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