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Models for the polymerization process involved in prion self-replication are well established
and studied ([10, 13, 26]) in the case where the dynamics coefficients do not depend on
the size of polymers. However, several experimental studies indicate that the structure and
size of the prion aggregates are determinant for their pathological effect. This motivated the
analysis in [4] where the authors take into account size dependent replicative properties of
prion aggregates.

We first improve a result concerning the dynamics of prion aggregates when a pathological
state exists (high production of the normal protein). Then we study the strain phenomena
and more specifically we wonder what specific replicative properties are determinant in strain
propagation. We propose to interpret it also as a dynamical property of size repartitions.

Keywords: Prion kinetics, polymerization process, size repartition, duality method, strain
phenomena.
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1. Introduction

The prion protein is known to be at the origin of fatal neurodegenerative diseases as
Creutzfeldt-Jakob disease (CJD) in human and Bovine Spongiform Encephalopa-
thy in cattle. Even though the detailed mechanism remains mostly unclear, a largely
accepted hypothesis suggests the infectious agent is the misfolded form (called
PrPsc) of the normal prion protein (PrPc). According to this protein-only hypoth-
esis, abnormal PrPsc can convert PrPc by a still unknown autocatalytic process
[25]. Very intringuing in this context is that prion infectious agent can exist un-
der different strains. Prion strains have been initially distinguished by incubation
periods and lesion profiles in congenic mice [3, 12]. Nowadays, a large body of lit-
erature suggests that differences between prion strains lie in the diversity of PrPsc
structure, that can be stably and faithfully propagated (see [6, 21] for reviews).
However, it remains poorly understood how these changes in the PrPsc conforma-
tion can account for their physiopathological effects [17]. Moreover, transmission
of prion diseases between different mammalian species is almost systematically less
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efficient than within a single species [6]. This obstruction has been termed Species
Barriers. Early studies argue that barrier resides in PrP primary structure dif-
ference between donor and recipient species [24]. However, BSE strain capability
confirmed that different strains propagated in the same host may have completely
different barriers to another species. Consequently, transmission barrier appears
to depend on prion strain specificities [3, 7]. A critical challenge of prion biology
consists in understanding how a diversity of strains may exist in the same host
(expressing the same PrP molecule) and what structural basis of prion strains
determines the strength of the species barrier.

As for many protein misfolding disorders (Alzheimer’s disease, Parkinson’s dis-
ease and many other), misfolded PrPsc has the ability to polymerize and form long
aggregates called fibrils. Fibrils can be observed while the transconformation pro-
cess arises at time and size scales mostly unaccessible to experiments. This is why
mathematical models are useful to forecast consequences of modeling assumptions
at that scale. Based on fibrilar aggregation, the model which seems by now broadly
accepted is the one of nucleated polymerization. In this approach, PrPsc is consid-
ered to be a polymeric form of PrPc. Polymers can lengthen by addition of PrPc
monomers, and they can replicate by splitting into smaller fragments [10, 13, 26].
It is worth noting that this model leads to an unimodal size distribution of PrP ag-
gregates, which seems to be quite insensitive to small variations of parameters [27].
Greer et al. [14] recently improved the model and include a mean saturation effect
by the whole population of polymers onto the lenghtening process (called general
incidence), and polymer joining (through a Smoluchowski coagulation equation).
In all these models, each aggregate has the same behaviour, regardless to its size.
However, recent experimental analysis of relation between infectivity and size dis-
tribution of PrPsc aggregates (for PrPsc purified from infected brain [28] or for
PrPsc produced by PMCA [31, 32], a technique which alternates PrPsc aggregates
growth during incubation phases and aggregates fragmentation during sonication
phases) contradicts this uniform behaviour of PrPsc aggregates. In addition, some
complexity in the PrPsc aggregate size distribution is more likely to occur within
the real process [28]. This leads to consider a model which can reproduce such a
behaviour, and the simplest modeling assumption consists in introducing extension
rates that depend on the fibril size [4].

This motivates to use the following model for prion polymerization where V (t)
denotes the quantity of PrPc (normal protein), x ∈ (0,+∞) denotes the size of
aggregates and u(x, t) the density of aggregates of size x,



dV (t)
dt

+ V (t)
[
γ +

∫ ∞

0
τ(x)u(x, t) dx

]
= λ ,

∂u(x, t)
∂t

+ V (t)
∂

∂x

(
τ(x)u(x, t)

)
+ [µ(x) + β(x)]u(x, t)

= 2
∫ ∞

x
β(y)κ(x, y) u(y, t) dy ,

u(0, t) = 0 ,

(1)

together with appropriate initial conditions (u0, V 0). This is a well established
family of models used for describing aggregation, fragmentation in polymers as
well as natural production of monomers V (t) (possibly already small aggregates of
PrPsc molecules) [10, 13, 14, 16, 26, 29]. Compared to earlier completely discrete
models, it has the advantage of taking into account two scales; (i) a small scale (of
the order of several PrPsc molecules) for continuous aggregation represented by
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Figure 1. Kinetic model of the prion aggregate growth model based on Figure 2 of Masel et al [39] .

the x-derivative and (ii) a large scale for the total length of the fibrils represented
by the integral term. It can be derived through an asymptotic analysis departing
from the single PrPsc scale with a discrete model. See [8, 11, 15].

Well-posedness, in the class of weak solutions, has been studied in great gener-
ality by [16, 29]. Strong solutions to (1) are built by [10] in the case of ’constant
coefficients’, i.e., where τ , µ are constant, β(x) = β0x and κ(x, y) = 1

y1(0≤x≤y).
The transport term accounts for the growth in size of polymers: their size grows

with the rate V (t)τ(x), proportional to the available PrPc molecules V (t), with an
aggregation ability depending on the size of the polymer (a conceivable hypothesis
being that their size confers them a peculiar geometry affecting the autocatalytic
process). The fragmentation rate, for a polymer of size y, is β(y) > 0. The reparti-
tion of the two fragments of (smaller) sizes x and y − x is given by κ(x, y) ≥ 0. It
should thus satisfy the two usual laws [22] expressing that the number of fragments
increases but with constant total molecular mass (recall the factor 2 in the right
hand side of (1)): ∫ y

0
κ(x, y)dx = 1 ,

∫ y

0
xκ(x, y)dx =

y

2
. (2)

This implies that this dynamical system is equipped with two natural balance
laws 

d

dt

∫ ∞

0
u(x, t)dx =

∫ ∞

0
[β(x)− µ(x)]u(x, t) dx ,

d

dt

(
V (t) +

∫ ∞

0
x u(x, t)dx

)
= λ− γV (t)−

∫ ∞

0
xµ(x)u(x, t) dx .

(3)

In this study, we aim to continue the work initiated in [4]. Amongst other things,
a convincing mathematical model has to reproduce the unusual kinetics of PrPsc
accumulation and to be compatible with the strain phenomenon.

In section 2, we address the first question. PrPsc accumulation in brain follows
an exponential growth until the death, whereas it invariably reaches a plateau
concentration in tissues outside the central nervous system [34, 35]. Thus, the
mathematical system must have at least two steady state (one corresponding to
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Figure 2. (Left) Experimental analysis of PrPsc aggregates (data have been kindly provided by J. R.
Silveira. For details, see [28]). Size-distribution of PrPsc aggregates in a whole infected hamster brain
(solid line) and relative specific infectivity of each fraction containing PrPsc aggregates with respect to
their size (dotted line). The former corresponds to the quantity xu(x, t), and the latter represents a bell-
shaped converting rate τ(x). These are however undirect measurements after purification and sonication
(i.e. fragmentation induced by ultrasound) . (Center) Size distribution obtained by solving numerically (6)
for a suitable bell-shaped converting rate τ(x) (dotted line), the non-zero steady state solution presents a
bimodal shape (solid line). (Right) Size distribution corresponding to ’constant coefficients’ in model (1).

the healthy state, and one corresponding to the infection). The question of the
existence and the stability of these steady states has been extensively studied in
the case of ’constant coefficients’ in [10, 13, 14, 26]. Here, as in [4, 8, 9], we are
interested in non-constant rates. In such case, the attractivity of the healthy steady
state is proved in [4] when λ is small and the infectious steady state does not
exist. When the infectious steady state exists, it is not known if it is attractive
or if other dynamics such as periodic solutions can exist. Although oscillations
are not expected to occur according to experiments, and have not been observed
in numerical simulations so far, we are not able to exclude them at the moment.
Our first purpose is to give an improved estimate showing that (u ≡ 0, V = V ) is
repulsive in the infectious case.

The second question concerning strain mechanism is addressed in section 3. Our
purpose is to indicate a route to study possible relations between PrPsc aggregate
size distributions as obtained from the model (1) with ’non-constant coefficients’
(especially non-constant elongation rate τ) and the strain phenomena described
previously. It is based on the dynamical capability of this nonlinear system to
generate size repartitions with high complexity and specific properties, notably the
bimodal repartition depicted in Figure 2.

2. Mathematical results

2.1. Description of the associated eigenproblem

The eigenproblem associated with the aggregation-fragmentation equation in (1)
is useful for the mathematical analysis. For a given V > 0, we denote by Λ(V) the
first eigenvalue and by (U(V;x), ϕ(V;x)) resp. the eigenfunction and the adjoint
eigenfunction, that are the solutions to


V

∂

∂x

(
τ(x)U(V;x)

)
+ (µ(x) + β(x))U(V;x)− 2

∫ ∞

x
β(y)κ(x, y)U(V; y) dy

= Λ(V)U(V;x) ,

U(V; 0) = 0 , U(V;x) ≥ 0 ,

∫ ∞

0
U(V;x) dx = 1 .

(4)
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Figure 3. Eigenvalue problem for the microscopic distribution. (left) Several eigenfunctions are
plotted, for V respectively above (full line), below (dotted line), and close to (dashed line) the equilibrium
value V∞. This is the ’constant coefficient’ configuration except for the bell-like converting rate τ(x).
Coefficients’ values are given in Section 3. (right) Numerical computation of the eigenvalue function Λ(V )
for a bell-like function τ(x) (dashed line) compared to the ’constant coefficients case’, where Λ(V ) =
µ0 −

√
τ0β0V (full line).


−Vτ(x)

∂

∂x
ϕ(V;x) + (µ(x) + β(x))ϕ(V;x)− 2

∫ x

0
β(x)κ(y, x)ϕ(V; y) dy

= Λ(V)ϕ(V;x) ,

ϕ(V;x) ≥ 0 ,

∫ ∞

0
U(V;x)ϕ(V;x) dx = 1 .

(5)

We remind the reader that the former (4) defines the (opposite of) malthusian
factor Λ(V), and expresses the fact that whenever the level of PrPc V is fixed the
population of aggregates grows with the exponential rate exp(−Λ(V)t) and with
the asymptotic size-distribution U(V;x) (see below for further discussion related to
the stationary states). The latter (5) has less clear biological interpretation however.
It can be viewed as the natural measure that yields an effective mass conservation
for the corresponding aggregation-fragmentation Markov process [22].

Although the solutions of (4)-(5) come formally from the Krein-Rutman the-
orem, the lack of compactness in the problem requires some specific proof (and
technical assumptions on the coefficients). In particular we shall pay much at-
tention to the competition between the growth term ∂x(τ(x)U(x)) which pushes
the distribution away from small sizes and the fragmentation term β(x)U(x) −
2

∫∞
x β(y)κ(x, y)U(y) dy which drives the distribution back to small sizes. We refer

the interested reader to [9] for existence and assume throughout this paper that
the coefficients satisfy the following main conditions:∫ x

0
κ(z, y) dy ≤ C

(
x

y

)γ

,
xγ

τ(x)
∈ L1([0, A)) for some γ > 0 , A > 0 ,

lim
x→+∞

xβ(x)
τ(x)

= +∞ ,
β(x)
τ(x)

∈ L∞([0, A)) ,

associated with a couple of technical assumptions.
Several analytical examples are presented in [4] where it appears naturally that

Λ(V) should be decreasing. Even though no general proof is available as today, it
holds true by continuity when the coefficients do not differ too much from these
examples. Also numerics indicate that this property might be true for a large class
of transconformation rates τ(x), including bell-shaped rates, as one can see in
Figure 3.
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Following [4], the steady states to (1) can now be reformulated in terms of the
eigenelements. The so-called ’healthy steady state’ corresponds to (u ≡ 0, v =
V := λ/γ). More interesting, the ’infectious’ steady state (u∞, V∞) can exist and
corresponds, in (4)–(5), to the relations

Λ(V∞) = 0 , u∞(x) = %∞U(V∞;x) , V∞ =
λ

γ + %∞
∫∞
0 τ(x)U(V∞;x) dx

. (6)

Accordingly to the above interpretation, it corresponds to a level of PrPc yielding a
zero malthusian growth for the aggregates, which is an obvious necessary condition
for having a stationary state. Furthermore the profile of the size-distribution at
equilibrium is given by the eigenfunction U(V∞;x).

Such a steady state only exists if the prion production λ is high enough so as to
choose %∞ which satisfies the third condition, namely

V∞ < V :=
λ

γ
. (7)

The question of the stability of these steady states has been extensively stud-
ied in the case of ’constant coefficients’, i.e., where τ , µ are constant β(x) =
β0x and κ(x, y) = 1

y1(0≤x≤y) in [10, 13, 14, 26]. Then the system can
be reduced to a three by three system of ordinary differential equations on(
V (t),

∫∞
0 u(x, t)dx,

∫∞
0 xu(x, t)dx

)
. It turns out that the condition (7) is sharp

and when λ is small only the healthy steady state exists and is stable. If λ is large
enough so that the other steady state exists, it is globally attractive. Here, we are
interested in non-constant rates.

2.2. Analysis of stability

Several stability results are proved in [4]. When λ is small the only steady state to
(1) is (0, V ), the healthy state, that is proved that it is globally attractive; for any
initial data we have u(t) → 0 as t → 0 in L1. In the case when there is another
steady state (u∞, V∞), the infectious state, it is proved that trajectories cannot
come close to the healthy state (persistency). But it is not known if it is attractive
or if other dynamics as periodic solutions can exist.

We complete the result in [4] by removing a size condition on some parame-
ters of the system (see below), and replacing it with an assumption on the global
boundedness of the number and mean size of aggregates. The main advantages are
twofold: this new criterion has a very clear biological interpretation, and moreover
it can be obtained through independent estimates as in Theorem 2.1.

In order to state our new persistency result we first prove a uniform bound

Theorem 2.1 : Assume that
∫∞
0 [1 + x]u0(x)dx < ∞, µ(x) > µ > 0 and β(x) ≤

θµ(x) + Cβx for some constant Cβ ≥ 0 and θ < 1, then the solution u(t) to (1) is
uniformly bounded in L1

(
(1 + x)dx

)
.

The condition on β involves some smallness and we do not know if it can be
improved. However it is clear that the mortality rate µ should be large enough
otherwise the constant production of monomers is not balanced by any degradation
and the system tends to infinity. On the other hand, the case when β(x) has
sublinear growth is also of interest and corresponds to a well established theory,
see [9].

Proof : We combine the two balance laws (3) and for a > 0 to be chosen later on,
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we calculate

d

dt

(
V (t) +

∫ ∞

0
(a + x)u(x, t) dx

)
+

∫ ∞

0

[
(a+x)µ(x)−aβ(x)

]
u(x, t) dx+γV (t) = λ .

From our assumption on β, we obtain that

d

dt

(
V (t) +

∫ ∞

0
(a + x)u(x, t) dx

)
+

∫ ∞

0

[(
a(1−θ)+x

)
µ(x)−aCβx

]
u(x, t) dx+γV (t) ≤ λ .

We now choose a such that aCβ < µ/2, and we get for some b > 0 small enough
so that

d

dt

(
V (t) +

∫ ∞

0
(a + x) u(x, t)dx

)
+ b

(
V (t) +

∫ ∞

0
(a + x)u(x, t)dx

)
≤ λ .

Thanks to the Gronwall lemma, this differential inequality proves the announced
boundedness. �

Our second result improves the persistency argument in [4] and still uses a duality
method based on the weight ϕ = ϕ(V ; ·). We assume that there are two constants
K1 and K2 such that∣∣∣∣τ(x)

∂ϕ(x)
∂x

∣∣∣∣ ≤ K1ϕ(x) , and τ(x) ≤ K2ϕ(x). (8)

This condition generally holds true because ϕ grows at most linearly at infinity
according to general structure properties proved in [20, 22, 23] and related to the
assumption (2).

We have

Theorem 2.2 : We assume that Λ(V ) < 0, V (0) ≤ V and that
∫∞
0 (1+x)u(t, x)dx

is uniformly bounded. Then the system remains away from the steady state (u ≡
0, V ). More precisely we have:

lim inf
t→∞

∫ ∞

0
ϕ(x) u(x, t)dx > 0 .

In comparison with [4, Theorem 3], the peculiar size condition on the coefficients,
namely K1V < Λ(V ) + γ (where K1 is introduced in (8), has been removed and
replaced by the boundedness of the number and size of the polymers.

Proof : For the sake of clarity we introduce the quantities 0 ≤ v(t) = V −V (t) ≤ V
and w(t) =

∫∞
0 ϕ(x)u(x, t)dx. Testing the system (1) against ϕ(x) (5), it implies

after integration by parts:
d

dt
v(t) + γv(t) = V (t)

∫ ∞

0
τ(x)u(x, t) dx ≤ V K2w(t) ,

d

dt
w(t) = −v(t)

∫ ∞

0
τ(x)

∂ϕ(x)
∂x

u(x, t) dx− Λ(V )w(t) ≥
(
|Λ(V )| −K1v(t)

)
w(t) .

Notice also that v(t) cannot vanish in finite time.
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Next we consider for some α > 1 to be chosen later on, the quantity y(t) =
w(t)v−α(t). It satisfies the differential inequality:

d

dt

(
w(t)
vα(t)

)
≥ w(t)

vα(t)
(
|Λ(V )| −K1v(t)

)
− α

w(t)
vα(t)

(
−γ + V K2

w(t)
v(t)

)
,

and we now choose α large enough so that δ = αγ + Λ(V )−K1V > 0. This leads
to the system of differential inequalities:

dy(t)
dt

≥ y(t)
[
δ − αK2V y1/αw1−1/α

]
,

dw(t)
dt

≥ w(t)

[
|Λ(V )| −K1

(
w

y

)1/α
]

.

(9)

We denote by w = lim supt→∞w(t), which is finite thanks to our global boundness
on u(x, t) because ϕ has sublinear growth at infinity. Then, the first differential
inequality on y(t) tells us that,

y := lim inf
t→∞

y(t) ≥ δ/(αK2V w1−1/α) > 0 .

And then, we deduce from the second inequality that lim inft→∞w(t) ≥
|Λ(V )|αK−α

1 y and the proof is completed. �

Notice that we need the a priori knwoledge that w(t) is upper bounded in order
to obtain the lower bound from the the system (9). And such a property is not
a consequence of the dynamics on (y, w) only. This means that some information
is lost (as the mortality rate) when reducing the infinite dimensional system to
these two quantities and the upper bound should come from another stage as we
mentioned earlier (Theorem 2.1 for instance).

3. Dynamics and strain phenomena

It has been suggested that less stable prion strain are more infectious, as judged by
their shorter incubation times [17]. In addition, most infectious particles (fraction-
nated by sedimentation) seem to be smaller for fast strains than for slow strains
[38]. However, how the PrPsc conformation of a specific strain influences its replica-
tive properties remains unclear. In this section, we aim at studying how of a slight
change in the replicative parameters can reproduce or predict strains properties.
We are mainly interested in PrPsc aggregate size distribution, which could be used
to study strain mechanisms. Indeed, analysis of the dynamics of model (1) initi-
ated in [4] emphasizes the importance of the size distribution of PrPsc aggregate,
which seems to be very informative on prion replication mechanism. Notably, it
has been shown that different size repartitions resulting from different replicative
parameters can play a role in the strain adaptation mechanism.

Our approach is based both on analysis through the eigenvalue problem (4),(5)
and on direct numerical simulations of the temporal dynamics.

3.1. Numerics

Parameters of the nucleated polymerization model for prion growth have been
estimated for the ’constant parameters model’ from experimental data and are
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available in the literature, see [13, 27] and the references therein. The parameter
values used in the sequel have been quoted from Rubenstein et al. [27]. Unless
explicitly mentioned, they are: λ = 2400 per day, γ = 4 per day, µ0 = .05 per day,
and β(x) = β0x with β0 = 0.03 per day.

The real conversion function is still unkown. We test two different functions,
which represent idealized extreme cases:

• a bell-shape function, accounting for the case of the infectious particles are con-
centrated around one specific size. The conversion function τ(x) is the sum of a
basal rate τ0 = .001 and a gaussian bell centered on m:

τ(x) = τ0 + A exp
(
−(x−m)2/σ2

)
, (10)

with a magnitude A to be chosen by several orders of magnitude above τ0.

• a sigmoidal shape, when aggregates larger than a critical size are identically more
infectious than smaller polymers. Then the conversion function τ(x) is given by:

τ(x) = τ0 + A
exp(x−m)

1 + exp(x−m)
, (11)

with a magnitude A to be chosen by several orders of magnitude above τ0.

Throughout the rest of this paper, the simulations assume an initial PrPc pop-
ulation V (0) = V = λ/γ (corresponding to the healthy steady state because we
assume inoculation in an healthy animal) and an initial PrPsc distribution which
is a small perturbation of the zero steady state, given by u(x, 0) = 0.5x2/(1 + x4).

3.2. Effects of the conversion rate

Differently shaped size repartition of the conversion rate greatly affects the PrPsc
agregates size distribution [4]. We test here the situation where changes in confor-
mation do not lead to a completely different profile of converting activity, but only
a change of either the magnitude of the conversion or the location of the most infec-
tious particles. For the experiments depicted in figures 4 and 5, varying parameters
acts upon the kinetics of PrPsc accumulation as follows: the higher the transcon-
formation rate are or the smaller the most converting particles are, the faster the
PrPsc accumulates, and thus, the shorter the incubation time seems to be. In par-
ticular, this implies that a fast strain could be able to fix and transconform PrPc
either with great efficiency or by smaller aggregates (or both). Interestingly, our
simulations also predict changes in the size-distribution of PrPsc, whose variations
are specific of the varying parameters.

In the case of a bell-shaped conversion rate, we also have tested the effect of the
thightness of the converting peak, by studying the dominant eigenvalue. Indeed,
when we focus on the exponential growth of PrPsc (as is it the case in the brain but
corresponds only to the early stages of accumulation in the spleen), the eigenvalue
problem can be used during the initial phase of exponential growth (occuring at
least in the diseased brains). We assume below that V > V∞ according to (7), that
Λ(V ) is a decreasing function so that instability of the healthy state holds true as
proved in [4]. This holds for the choice of coefficients mentioned above. We may
assume that V (t) remains close enough to V because u(x, t) dynamics undergoes
an exponential growth phase, while the polymerization behaves following a linear
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Size distribution of τ
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Figure 4. Prion replication with variations in the maximum level of the conversion rate τ .
Transconformation rates are given by
(top) τ1(x) = 0.001+H ∗ exp(−10∗ (x−2)2). Three values for H have been tested : H = 0.001 (blue line),
H = .01 (green line) and H = 0.1 (brown line)

(bottom) τ2(x) = 0.0001 + G
exp(x−5)

1+exp(x−5)
. Three values for G have been tested : G = 0.01 (blue line),

G = .015 (green line) and H = 0.02 (brown line)
(left) Size distribution of τ1 and τ2 (abscissa = PrPsc aggregates size; ordinate = rate τ) (Middle) Time
evolution of total PrPsc for : (B1) τ1 and (B2) τ2. (abscissa = Time (in day) ; ordinate = rate τ (per day)
(Rigth) Normalized PrPsc aggregates size distribution at t1 = 90 days and t2 = 20 days, corresponding to
the exponential growth of PrPsc. The distributions are normalized by the total number of PrPsc aggregates
(abscissa = PrPsc aggregates size; ordinate = PrPsc aggregates number).

problem. Actually the second equation in (1) is decoupled from the first one at
the first order of approximation. The dominant eigenvalue −Λ(V ) thus measures
the exponential growth of the PrPsc total population (see [22] for a mathematical
formulation of this fact using the generalized relative entropy). Several transcon-
formation rates τ(x) – being the same basal rate τ0 combined with a more and
more concentrated gaussian bell are tested – and the corresponding growth rate in
the exponential phase −Λ(V ) are computed numerically (Figure 6). Interestingly,
the results exhibit a best compromise around α ≈ 0.01 (intermediate concentra-
tions of the peak). Thus, according to this model the optimal conditions for PrPsc
accumulation in the exponential expansion phase do not correspond to a very thin
peak.

3.3. Effects of the fragmentation rate

As suggested in [17, 28], prion strains can differ in their stability. Here, we make the
assumption that the stability of a strain is only represented by the framentation
rate β. However, it could also be interesting to study the effect of the degradation
rate µ. According to numerical experiment depicted in Figure 7, increasing the
fragmentation rate leads to a faster PrPsc accumulation for a bell-shaped convert-
ing rate τ as for a sigmoidal τ . However, for a sigmoidal τ with a higher critical
threshold, the inverse effect is observed, due to the fact that small aggregates are
less able to convert PrPc than larger PrPsc polymers, and then multiplying the
number of small particles does not compensate for the loss of conversion activity
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Figure 5. Prion replication with variations in the locus of the conversion rate τ . Transconformation rates
are given by :
(top) τ1(x) = 0.001 + 0.1 ∗ exp(−10 ∗ (x−m)2). Three values for m have been tested : m = 2 (blue line),
m = 4 (green line) and m = 6 (brown line)

(bottom) τ2(x) = 0.0001 + 0.015
exp(x−l)

1+exp(x−l)
. Three values for l have been tested : l = 5 (blue line), l = 7

(green line) and l = 10 (brown line) (Left), (Middle) and (Rigth) : Same as Figure 4.

any more. Surprisingly enough, we also can observe that when the fragmentation
accelerates the accumulation of PrPsc, this faster accumulation leads to a lower
level of total PrPsc amount at the plateau.

4. Conclusion and perspectives

We have continued the analysis in [4] concerning size dependent polymerization
rates in the standard model (1) for prion PrPsc self-replication. The interesting
situation is when the prion production rate is large enough to permit an infec-
tious steady state. Analytical study of its instability remains an open problem
(see [10, 13, 14, 26] for the ’constant coefficients’ case) but we could improve a
previous result showing that the healthy state is unstable and solutions remain
globally bounded. As previously but in a more general framework, we confirm that
the amount of PrPc is critical for the development of prion diseases. This is in
accordance with well-known experimental results, where PrP-KO mice cannot be
infected [33]. However, this result may have wider implications for many other neu-
rodegenerative diseases. Indeed, numerous pathologies (such as Alzheimer’s disease,
Parkinson’s disease and Hungtington’s disease) are characterized by the aberrant
polymerization and accumulation of misfolded proteins. Many evidences show that
they can be induced in transgenic models (see [36, 37] for review). Thus, whether
these misfolding protein disorders are transmissible or not is currently widely de-
bated. Our results suggest that the bioavailability of the amyloid precursor is crit-
ical for transmissibility. This is consistent with the fact that, in prion diseases,
prion precursor is the protein itself and naturally present in large amount in neu-
rons, whereas in Alzheimer’s disease, Abeta is only a minor proteoteolytic cleavage
product of the Amyloid Precursor Protein (APP).
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Figure 6. Influence of the transconformation tightness (top) The transconformation rate with
several levels of concentration: τ(x) = τ0 + αϕ(α(x − m)), where ϕ is a gaussian function and α =

10(−3:.2:0)). (middle) The corresponding eigenfunctions U(V ; x). (bottom) The exponential growth rate

−Λ(V ) (solid line) as a function of α (logarithmic scale, units for −Λ(V ) are day−1) and the effective

transconformation rate (dashed line) τeff =
R

τ(x)U(V , x) dx (magnified 30 times). Bimodal distribution

begins for ln(α) & −3 and thus does not correspond to the distribution having the best malthusian
parameter.

This necessary condition of PrPc bioavaibility is however insufficient to explain
strain mechanisms, since species expressing PrPc can be infected only by specific
strains. Thus additional constraints are likely to be required for prion strain trans-
mission and propagation. Such constraints can be purely physicochemical, due to
one peculiar structure of prion aggregates. Indeed, a large body of literature sug-
gests that differences between prion strains lie in the diversity of structures of PrPsc
aggregates that can be stably and faithfully propagated [1, 2, 5, 6, 17, 21, 30]. How-
ever, it remains poorly understood how these changes in the conformation of PrPsc
aggregates can account for their physiopathological effects and their relationship
with the host [17]. Although our model does not separate the host contribution from
the strain contribution, it represents on the contrary the relationship between host
and pathogen and it allows studying which elementary replicative parameter is
critical in strain propagation.

Among the attempted biochemical characterisation of prion strains, a relation-
ship was found between the relative stability values of PrPsc aggregates [17] or
level of aggregation [1] and incubation times, indicating that less stable prions are
more infectious, as judged by their shorter incubation times. This is presumably
because unstable prions fragment more easily, giving rise to smaller aggregates
of PrPsc that are more infectious than larger ones. Our model agrees with these
observations for a bell-shaped conversion rate, since increasing the fragmentation
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Figure 7. Prion replication with variations in the fragmentation rate of aggregates.
Three values for β have been tested (β = 0.0314 - blue line, β = 0.0471 - green line and β = 0.0628
- brown line) for three conversion rates τ1(x) = 0.001 + 0.1 exp

`
−10(x− 2)2

´
(top), τ2(x) = 0.0001 +

0.015
exp(x−5)

1+exp(x−5)
(middle) and τ3(x) = 0.0001 + 0.015

exp(x−10)
1+exp(x−10)

(bottom)

(Left) Time evolution of total PrPsc (abscissa = Time (in day) ; ordinate = PrPsc total amount) (Right)
Normalized PrPsc aggregates size distribution at t1 = 96 days (for τ1), t2 = 20 days (for τ2) and t3 = 60
days (for τ3) corresponding to the exponential growth of PrPsc. The distributions are normalized by the
total number of PrPsc aggregates (abscissa = PrPsc aggregates size; ordinate = PrPsc aggregates number).
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rate β0 leads to a faster PrPsc accumulation. Inverse results can be obtained for
some sigmoidal conversion rates. It does not immediately means that a sigmoidal
conversion rate is unrealistic, since this result strongly depends on the size dis-
tribution of the fragmentation rate. However, it emphasizes the need for precisely
monitoring the fragmentation rate, which might depend on the PrPsc aggregate
size in a more complex manner than the linear dependence supposed here.

We also have investigated the implications of varying the conversion rate: do dif-
ferent strain conformations lead to a more efficient fixation and conversion by the
same aggregates or do they lead to different most converting particles? Our numer-
ical simulations alone do not answer to this question, but interestingly, they show
that whereas changing parameters leads to similar effects on PrPsc accumulation
kinetics, the resulting size-distribution variations are different. Thus the achieve-
ment of experimental size-distribution of PrPsc aggregates for many prion strains
could therefore allow to better understand the molecular mechanisms involved in
prion strain phenomenon.

To conclude, this work completes the study initiated in [4], notably in studying
strain phenomenon. It emphasizes the potential role of PrPsc aggregates size dis-
tribution, which could be a signature of prion strain converting abilities. The next
step of our work is to approximate faithfully the inverse problem in order to obtain
the size dependence of the transconformation rate from the distribution of PrPsc
for several strains. This knowledge is a critical step for experimental approaches of
prion infectivity investigation like PMCA. Indeed, we have observed several times
the existence of an optimal converting rate for PrPsc accumulation (see for in-
stance the tightness in the case of a bell-shaped converting rate), which means
that only slight changes in the replicative parameters can dramatically influence
the kinetics of PrPsc accumulation. It could explain the sensitivity of PMCA to
experimental procedures. Complete understanding of how the PrPsc accumulation
of a given strain depends on their replicative parameters could help to optimize
strain specific PMCA protocols.
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[23] B. Perthame and L. Ryzhik, Exponential decay for the fragmentation or cell-division equation, J.

Differential Equations 210, 155–177 (2005).
[24] S.B. Prusiner, M. Scott, D. Foster, K.-M. Pan, D. Groth, S.-L. Yang, D. Serban, G.A. Carlson,

P.C. Hoppe, D. Westaway and S.J. DeArmond, Transgenic studies implicate interactions between
homologous PrP isoforms in scrapie prion replication, Cell 63, 673–386 (1990) .

[25] S.B. Prusiner, M.R. Scott, S.J. DeArmond and F.E. Cohen, Prion protein biology, Cell 93, 337–348
(1998).

[26] J. Pruss, L. Pujo-Menjouet, G.F. Webb, and R. Zacher, Analysis of a model for the dynamics of
prions, Discrete Cont. Dyn. Sys. - Ser. B 6(1), 215–225 (2006).

[27] R. Rubenstein, P.C. Gray, T.J. Cleland, M.S. Piltch, W.S. Hlavacek, R.M. Roberts, J. Ambrosiano
and J.-I. Kim, Dynamics of the nucleated polymerization model of prion replication, Biophys. Chem.
125, 360–367 (2007).

[28] J.R. Silveira, G.J. Raymond, A.G. Hughson, E.R. Richard, V.L. Sim, S.F. Hayes and B. Caughey,
The most infectious prion protein particles, Nature 437, 257–261 (2005).

[29] G. Simonett and C. Walker, On the solvability of a mathematical model for prion proliferation, J.
Math. Anal. Appl. Vol. 324 (1), 580–603 (2006).

[30] A.M. Thackray, L. Hopkins, M.A. Klein and R. Budjoso, Mouse-adapted ovine scrapie prion strains
are characterized by diferent coformers of PrPsc, J. Virol. 81, 12119–27 (2007).

[31] P. Weber, A. Giese, N. Piening, G. Mitteregger, A. Thomzig, M. Beekes and H.A. Kretzschmar,
Generation of genuine prion infectivity by serial PMCA, Vet. Microbiol. 123, 346–357 (2007).

[32] P. Weber, L. Reznicek, G. Mitteregger, H. Kretzschmar and A. Giese, Differential effects of prion
particle size on infectivity in vivo and in vitro, Biochem. and Biophy. Res. Comm. 369, 924–928
(2008).

[33] H. Bueler, A. Aguzzi, A. Sailer, R.A. greiner, P. Autenried, M. Aguet and C. Weissmann, Mice devoid
of PrP are resistant to scrapie, Cell369, 139–1347 (1993).

[34] R.H. Kimberlin and C.A. Walker Incubation periods in 6 models of intraperitoneally ijected scrapie
depend mainly on the dynamics of agent replication within the nervous system and not the lym-
phoreticular system, J. gen. Virol. 369, 2953–2960 (1988).

[35] V. Beringue, K.T. Adjou, F. Lamoury, J.P. Deslys, R. Race and D. Dormont Opposite effects of
dextran sulfate 500, the polyene antibiotic MS-8209, and Congo red on accumulation of the protease-
resistant isoform of PrP inthe spleens of mice inoculated intraperitoneally with the scrapie agent, J.
Virol. 74, 5432–5440 (2000).

[36] C. Soto and L.D. Estrada Protein misfolding and neurodegenration, Arch. Neurol. 65, 184–189 (2008).
[37] L.C. Walker, H. Levine, M.P. Mattson and M. Jucker Inducible proteopathies, Trends Neurosciences

29, 438–443 (2006).
[38] V. Beringue, Oral communication, Neuroprion Congress, Madrid 2008.
[39] J. Masel, V. Jansenand M. Nowak Quantifyng the kinetic parameter of prion replication, Biophysical

Chemistry 77, 139–152 (1999).


