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Introduction

INM RAS:

(Marchuk G.I., Agoshkov V., Zalesny V., Shutyaev V., Diansky N., Parmuzin E.,
Botvinovsky E., Lebedev S.; Ipatova V., Gusev A., Kochurov A.)

2002-2003 — Development of the general methodology
2004-2005 — First works on assimilation of sea surface temperature.
2005-2006 — Study of problems for semidiscrete models.

2007 — Existence theorems for "continuous equations".

® © o o @

2007 — Methods and technology for solving inverse hydrothermodynamics

problem in ocean with variational assimilation of sea surface temperature.
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2007 — Variational data assimilation system INM-T'1.

2008 — Study and numerical solution of the variational assimilation problem

using on-line SST data.

2008 — Numerical methods for solving the variational assimilation problem using

sea surface salinity.
2008 — Variational data assimilation system INM-T2.

2008 — Study and solution of the inverse problem on vertical turbulent heat

exchange coefficient by assimilation of ”vertical profiles” of temperature.
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1. Mathematical model

o N

R 0 - z
du 4 / @ — g-gradé + Ayt + (AR)?4@ = f — —gradP, — %gradf p1(T, S)dz',
0

% —m—(/ O(z)udz) m—(/ O(z) —vdz) /3

AL ApT = fr, %+ AgS = fs,

where

r=R—-—2z 0<z<H.

f=g-gradG, ©(z) = rg),

(V.I. Agoshkov, A.V.Gusev, N.A. Diansky, 2007)
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Boundary conditions on the surface

( H
(/ @ﬁdz) 'FL’—I—BOmOp\/g—H§ = mop\/g—Hds on OS2,

0

_ 0 0 0
Ufl )u l/a—z—kggaAkU—T )/p,U( )v—ua—Z—kgg—Akv—T )/po,

Aku = 0, Akv - O,

_ oT _
Ul )T—VTa——I-”YT(T To) = QT—I-Uqg )dT,

_ oS _
Ul )S—Vsa— +95(S = S4) = Qs + Uy ds.
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With the function ¢ = (u,v,&,T,S) known, we calculate

H H
1
w20 = Lm S [ rude) +mol (2 [ rods!)), @z 0) € D x 0,

z

z

P(e,y. 1) = Pu(e,u,6) + pog(z =) + [ 9o1(T. S)dz"
0

Note, that for U, = U - N (here U = (u,v,w)) we always have

Un:O on FC,’LUUFH°
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Problem I: Approximation of the model by splitting method

Step 1. We consider the system:

(

T: + (U,Grad)T — Div(ar - Grad T) = fr in D X (tj_1,t;),

T'=T;_1fort=1t;_1 in D,

_(_ oT _(_
oS\ - vr =+ yr(T = Ta) = Qr + U dr on Tg x (tj_1,t;),

oT
< - :OOD Fw’cx (tj—17tj)7
ONT
_ oT _(_
Uy(,, >T—|- e i— UT(L >dT —I—QT on Fw,op X (tj_l,tj),
ONT
oT
M = 0 on FH X (tj_l,tj),

| 75 =T on D X (tj_l,tj).
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s N

St + (U,Grad)S — Div(as - Grad S) = fg in D x (t;-1,t;),

S=S5_1att=1t;_1in D,

_(_ oS _(_
Ui s — vs 5 +75(S — 5a) = Qs + U dg on Tg x (tj_1,1;),
oS
{ % =0 on I'y,c X (tj_l,tj),

_ 0S _(_
U,,g )S+— :Ué )dS+QS on Fw,op X (tj—17tj)7
ONg

oS

— =0on Ty x (ti_1,t;),
N nlmp (313)

| S; =S on D X (tj_l,tj).
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Step 3.

(1) +
¢ 0 PO

in D x (tj—1,%;),

H
& — div (/ @u“)dz) = f3in Q X (tj-1,15),

0
1
()Zuj L E=§1att=t;_1,

0 ¢ | o 1 F
u'"/ —g-gradf = g-gradG — —grad | P, + g/ p1(T, S)dz
0

( @u<1>d2> n+ BomopV/ gHE = mopy/gHds on 0Q x (tj-1,t5),

(1>: (1) : 1nD

1(52) ’ —f1(®) (2) =0in D X (tj—1,t5),
fl(ﬂ) 0
g(z) = ggl) fort =t;_1 in D,

\ u§2) = u®(t;) in D,
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Step 3. (continued)

u® + (U, Grad)u® — Div(a, - Grad Ju® + (A4;)2u® = 0in D x (t;_1,1;),

u® =4 att=t; 1 in D,

— 8u(3) 8 (CL)
Oy u® — v, Fyi k33£(14k2(3)) - I[)_()?Akg(:s) =0on I's X (tj-1,t5),
oU (3) o
U7§3> =0, IN T (aTAkg@)) T O,AkQ(B) =0on Ty X (tj_1,t;),
u k

Y~ ouBd  _ 0 _
U7g )(U(B) - N) + ON.. - N + (mAkg(‘g)) - N = Uﬁb )d, Akg(‘g) =0on I'y,op X (tj—1.

_ - 7(3) o
(=) (773 =y OU ( (3) _ (3) _
Un U Clw Tw —A ’ - O,A — w,o ) —1y U9
( Tw) + N, Tw + N, LU T LU 0 on I'y,op X (tj—1,%5)
ou(3) +(b)

= —onl'y X (t;i_1,t;),
ON., 0 (5 i)

u® = u® @), 7@ = (7o) o)y
UB) = (u® w® @B v®Y)), T6) = (3)0),
(b)) = (ngb),T?Sb)).
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Splitting methods (G.I. Marchuk) are used to approximate subproblems on Steps 1-3

Step 1:

(T)e + LiTh = F1, te (tj—1,t5),

T1 :Tj_l at t=1;1

(TQ)t+L2T2 :f2+BQT7 t e (tj—latj)a

To(tj—1) = T1(ty).

Tg(tj) = Tj =T at t= tj.
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3. Inverse problem and assimilation of on-line SST data

o N

Let us assume that the unique function which is obtained by observation data
processing is the function T, on Qéj) att € (tj—1,tj), 5 =1,2,...,J. Let by physical
(7) ;

meaning the function T, = T, is an approximation to STT data. We permit that

the function T(Sgg is known only on the part of Q2 x (0,t), i.e. on Q(()j) att € (tj—1,t5)

and we define the support of this function as méj ). Beyond of this area we suppose

function T(Sgg is trivial.

Let the function of sea (ocean) surface heat flux @ is an ”additional unknown function”
on {Q(()j)} (assuming that @ is known on {Q\Qéj)}) and we state the following inverse
problem: find the solution ¢ of the Problem 1 and the function () such that

m$ (T - 1Y) = 0.

obs
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Observation data mask by hours

30E 40E 50E 60E 70E ) 80E 90E 100E

30E 40E 50E 60E 70E 80E 90E 100E 110E 120E 130E 140E 110E 120E 130E 140E

GrADS: COLA/IGES 2007-10-21-19:48 GrADS: COLA/IGES 2007-10-21-19:50

GrADS: COLA/IGES 2007-10-21-19:49 GrADS: COLA/IGES 2007-10-24-12:05

(c) (d)
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4. SST data assimilation problem

We consider the cost-function of the form:

t J
Jo = Ja(Q, ¢) = %/ / a|Q — QW 2dQdt + Jo(¢) = Y Ja,j (%)
0

Qo (t) 7=1

Qo (t)
tj tj
1 1
Ja,j:§/ /a|Q—Q(O>\2det—|—§/ / mINT — T |2dQat
tj—lQéj) tj—lQéj)

Here a = «a(\, 0,t) is a regularization function( is it possible, that a(\, 6,t) =const> 0)
and it may be a dimensional quantity; Q(0) = Q(O)()\, 0,t) is a given function.
We can formulate the data assimilation problem : find the solution ¢ = (u,v,&,T,S) of

the Problem 1 and the function QQ such that the functional Jo ts minimal on the set of

the solutions.
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Theorem. Let J, be defined by formula (x) for T, s, QO ¢ Lg(Qéj) X (tj—1,t5)),

7 =1,2,...,J. Then the variational assimilation problem of finding a solution

¢ = (u,v,&,T,5) to Problem I and a function Q € LQ(Qéj) X (tj—1,tj)), such that they
minimize the functional, is uniquely solvable for any a > 0. For a = 0 this problem is
uniquely and densely solvable and, as a sequence of solutions minimizing Jy, we can
choose a sequence of regularized solutions to the variational assimilation problem for J
as a — +0, moreover, inf Jy = 0.

Corollary. Under the conditions of the unique and dense solvability of the variational
assimilation problem on (¢;_1,t;) the solution to the original assimilation problem on

0,% iS reduced tO the Sequential SOlution Of the Correspondin problems on intervals
g
(tj_l , tj )
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.

The optimality system obtained consist of successive solving the variational assimilation
problem on intervals t € (t;-1,t;), 7 =1,2,...,J (Agoshkov V.I., 2006). The method —‘
can be described as follows:

STEP 1. We solve the system of equations, which arise from minimization of the
functional J, on the set of the solution of the equations. This system consists of

equations for 17, T, (Q and system of adjoint equations:

(T3)e + L3Ty = B*m (T = T)) in D x (o, 1),

obs

Ty =0 for t=tq,

(Tl*)t+L>{T1* =0 in DX (to,tl),
Ty =T5(to) for t =11

a(Q—-QN)+Ty =0 on Q(()l) X (to,t1).
Functions T2, Q(t1) are accepted as approximations to functions T, Q) of the full solution

for the Problem I at ¢ > t1, and T2(t1) = T'(¢1) is taken as an initial condition to solve

the problem on the interval (¢1,%2).
STEP 2. Solve problem for S:

St + (U, Grad)S — Div(ag - Grad S) = fg in D X (to,t1)
with corresponding boundary and initial conditions. After that the function S is accepted

as an approximate solution, and the function S(¢;1) is taken as an initial condition for the

problem for the interval (¢1,t2).
STEP 3. Solve equations of the velocity module.
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5. Iterative process

Given Q%) one solve all subproblems from step 1, adjoint problem for this step and

define new correction Q(**1) by
QU = QW — 17 (a(@® - Q) +13) on Qf x (t5-1,1)).

Parameters {7} can be calculated at a =~ 40, by the property of dense solvability, as:

tj

I (T—T(j))2’ _ dadt

obs

Gy _ 17 7tag)
e TS t
JoJ @p2|  doa
tj—1 (@) 7=0
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6. Inverse problem on the vertical turbulent heat exchange coeflicient

Let vy, Q in Subproblem of Problem I (with 7o = T):

1 oT 1 9(r?wiT) 1 0 5 0T ,
Tt —(’Ujlgﬁ—ﬁ B ) _7«_257“ I/TE:fT in D when tE(tj_l,tj),

T=T(t;) at t=t;_1,

oT

—vr— =Q at z=0on Qéj) X (tj—1,t5),
0z
_(— oT _(— :
Ul >T—VT8— (T = To) = Qr + U5 dr at z =0 on (Q\QY)) x (t;_1,t;)
z
VT@_T =0 at z = H,
0z

be additional unknowns.
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The inverse Problem O;.

-

Find ¢ = (u,v,&,T,S) and vy, Q such that ¢ is the solution of Problem I and the

relations

T =79 on QY x (t;_1,t;),

obs
T = T(Sgg,l in D(()j) X (tj_l,tj)

G=1,2,...,J)

hold true.
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Assume that:

N
[O7H(a:7y)] - U [hk—l(x7y)ahk(xay)]

k=1
and introduce the space Lgév) :
N N
LE) v =3 vile,y, )xi(2), te (ti—1,t))
=1

Vv, € Loo(ng) X (tj—1,t5)),

Xxi(z) = {1 on [h;—1,h;];0 on [0, H|\|hi—1, h;]}
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Theorem. Assume that

(a) TY) € Wi(0,H) V(z,y,t) € QY x (t;_1,t;)

obs,1
: 2
" 8T(§gi,1 (5)
(b) g o dz # 0 V(x,y,t) € Q57 X (tj—-1,15)

(c) Q€ LQ(Qé‘j) X (tj_l,tj)),VT € L(()év)

Then the Problem O; is uniquely solvable (5 =1,2,...,J).
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One of the processes of approximate solving the Problem O;

o N

We solve the Problem O for given v o and find 7o, Qo.

o

Introduce the "first corrections"
vri1=Vr —VT,0, Ql = Q - QO?

Ty =T —Ty in D x (tj_1,t;)

and write down the approximate linear inverse problem to calculate v 1, Q1

We reduce the inverse problem to the variational data assimilation procedure.

o

The variational data assimilation problem is solved by methods of the extremum

theory problems.

B As results we calculate vt 1, @1 and

vr E2vro+turri, Q=Qo+ @1

and approximate solutions of Problem I for each (¢;_1,t;) Vj
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Conclusion

The inverse and corresponding variational data assimilation problems of finding
the flux on the ocean and sea surface using the observation of on-line SST data

were formulated and studied.
The inverse problem on the heat flux on the sea surface and coefficient of vertical
turbulent heat exchange was studied; the algorithms to solve the problem were

proposed.

The theoretical results and algorithms of the numerical solution of problems can

be applied also to the corresponding problems in the dynamics of Black Sea.

One of the problems is: one needs to construct effective methods for obtaining of

on-line vertical profiles of temperature.

The constructions of "INM-T3"(with calculation of @, v and on-line solving the

|
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corresponding variational data assimilations problems).
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