Method for solving the inverse problems on sea surface heat flux and on vertical turbulent heat exchange coefficient

V.I. Agoshkov

Institute of Numerical Mathematics, RAS

Introduction

INM RAS:

(Marchuk G.I., Agoshkov V., Zalesny V., Shutyaev V., Diansky N., Parmuzin E., Botvinovsky E., Lebedev S., Ipatova V., Gusev A., Kochurov A.)

- **2002-2003** Development of the general methodology
- **2004-2005** First works on assimilation of sea surface temperature.
- **2005-2006** − Study of problems for semidiscrete models.
- **2007** − Existence theorems for "continuous equations".
- **2007** Methods and technology for solving inverse hydrothermodynamics problem in ocean with variational assimilation of sea surface temperature.

- **2007** Variational data assimilation system INM-T1.
- **2008** − Study and numerical solution of the variational assimilation problem using on-line SST data.
- 2008 Numerical methods for solving the variational assimilation problem using sea surface salinity.
- **2008** − Variational data assimilation system INM-T2.
- **2008** − Study and solution of the inverse problem on vertical turbulent heat exchange coefficient by assimilation of "vertical profiles" of temperature.

1. Mathematical model

$$\frac{d\vec{u}}{dt} + \begin{bmatrix} 0 & -f \\ f & 0 \end{bmatrix} \vec{u} - g \cdot grad\xi + A_u \vec{u} + (A_k)^2 \vec{u} = \vec{f} - \frac{1}{\rho_0} gradP_a - \frac{g}{\rho_0} grad \int_0^z \rho_1(T, S) dz',$$

$$\frac{\partial \xi}{\partial t} - m \frac{\partial}{\partial x} \left(\int_{0}^{H} \Theta(z) u dz \right) - m \frac{\partial}{\partial y} \left(\int_{0}^{H} \Theta(z) \frac{n}{m} v dz \right) = f_{3},$$

$$\frac{dT}{dt} + A_T T = f_T, \quad \frac{dS}{dt} + A_S S = f_S,$$

where

$$\bar{f} = g \cdot gradG, \ \Theta(z) \equiv \frac{r(z)}{R}, \quad r = R - z, \quad 0 < z < H.$$

(V.I. Agoshkov, A.V.Gusev, N.A. Diansky, 2007)

Boundary conditions on the surface

$$\begin{cases}
\left(\int_{0}^{H} \Theta \vec{u} dz\right) \vec{n} + \beta_{0} m_{op} \sqrt{gH} \, \xi = m_{op} \sqrt{gH} \, d_{s} \text{ on } \partial \Omega, \\
U_{n}^{(-)} u - \nu \frac{\partial u}{\partial z} - k_{33} \frac{\partial}{\partial z} A_{k} u = \tau_{x}^{(a)} / \rho_{0}, \ U_{n}^{(-)} v - \nu \frac{\partial v}{\partial z} - k_{33} \frac{\partial}{\partial z} A_{k} v = \tau_{y}^{(a)} / \rho_{0}, \\
A_{k} u = 0, \quad A_{k} v = 0, \\
U_{n}^{(-)} T - \nu_{T} \frac{\partial T}{\partial z} + \gamma_{T} (T - T_{a}) = Q_{T} + U_{n}^{(-)} d_{T}, \\
U_{n}^{(-)} S - \nu_{S} \frac{\partial S}{\partial z} + \gamma_{S} (S - S_{a}) = Q_{S} + U_{n}^{(-)} d_{S}.
\end{cases}$$

With the function $\phi = (u, v, \xi, T, S)$ known, we calculate

$$w(x, y, z, t) = \frac{1}{r} \left(m \frac{\partial}{\partial x} \left(\int_{z}^{H} rudz' \right) + m \frac{\partial}{\partial y} \left(\frac{n}{m} \int_{z}^{H} rvdz' \right) \right), (x, y, z, t) \in D \times (0, \bar{t}),$$

$$P(x, y, z, t) = P_a(x, y, t) + \rho_0 g(z - \xi) + \int_0^z g\rho_1(T, S)dz'.$$

Note, that for $U_n \equiv \underline{U} \cdot \underline{N}$ (here U = (u, v, w)) we always have

$$U_n = 0$$
 on $\Gamma_{c,w} \cup \Gamma_H$.

Problem I: Approximation of the model by splitting method

Step 1. We consider the system:

$$\begin{cases} T_t + (\bar{U}, \mathbf{Grad})T - \mathbf{Div}(\hat{a}_T \cdot \mathbf{Grad} \ T) = f_T \text{ in } D \times (t_{j-1}, t_j), \\ T = T_{j-1} \text{ for } t = t_{j-1} \text{ in } D, \\ \bar{U}_n^{(-)}T - \nu_T \frac{\partial T}{\partial z} + \gamma_T (T - T_a) = Q_T + \bar{U}_n^{(-)} d_T \text{ on } \Gamma_S \times (t_{j-1}, t_j), \\ \frac{\partial T}{\partial N_T} = 0 \text{ on } \Gamma_{w,c} \times (t_{j-1}, t_j), \\ \bar{U}_n^{(-)}T + \frac{\partial T}{\partial N_T} = \bar{U}_n^{(-)} d_T + Q_T \text{ on } \Gamma_{w,op} \times (t_{j-1}, t_j), \\ \frac{\partial T}{\partial N_T} = 0 \text{ on } \Gamma_H \times (t_{j-1}, t_j), \\ T_j \equiv T \text{ on } D \times (t_{j-1}, t_j). \end{cases}$$

Step 2.

$$\begin{cases} S_t + (\bar{U}, \mathbf{Grad})S - \mathbf{Div}(\hat{a}_S \cdot \mathbf{Grad} \ S) = f_S \text{ in } D \times (t_{j-1}, t_j), \\ S = S_{j-1} \text{ at } t = t_{j-1} \text{ in } D, \\ \bar{U}_n^{(-)}S - \nu_S \frac{\partial S}{\partial z} + \gamma_S (S - S_a) = Q_S + \bar{U}_n^{(-)} d_S \text{ on } \Gamma_S \times (t_{j-1}, t_j), \\ \frac{\partial S}{\partial N_S} = 0 \text{ on } \Gamma_{w,c} \times (t_{j-1}, t_j), \\ \bar{U}_n^{(-)}S + \frac{\partial S}{\partial N_S} = \bar{U}_n^{(-)} d_S + Q_S \text{ on } \Gamma_{w,op} \times (t_{j-1}, t_j), \\ \frac{\partial S}{\partial N_S} = 0 \text{ on } \Gamma_H \times (t_{j-1}, t_j), \\ S_j \equiv S \text{ on } D \times (t_{j-1}, t_j). \end{cases}$$

Step 3.

$$\begin{cases} \underline{u}_{t}^{(1)} + \begin{bmatrix} 0 & -\ell \\ \ell & 0 \end{bmatrix} \underline{u}^{(1)} - g \cdot \mathbf{grad}\xi = g \cdot \mathbf{grad}G - \frac{1}{\rho_{0}}\mathbf{grad} \left(P_{a} + g \int_{0}^{z} \rho_{1}(\bar{T}, \bar{S})dz' \right) \\ \text{in } D \times (t_{j-1}, t_{j}), \\ \xi_{t} - \mathbf{div} \left(\int_{0}^{H} \Theta \underline{u}^{(1)}dz \right) = f_{3} \text{ in } \Omega \times (t_{j-1}, t_{j}), \\ \underline{u}^{(1)} = \underline{u}_{j-1}, \ \xi = \xi_{j-1} \text{ at } t = t_{j-1}, \\ \left(\int_{0}^{H} \Theta \underline{u}^{(1)}dz \right) \cdot n + \beta_{0}m_{op}\sqrt{gH}\xi = m_{op}\sqrt{gH}d_{s} \text{ on } \partial\Omega \times (t_{j-1}, t_{j}), \\ \underline{u}_{j}^{(1)} \equiv \underline{u}^{(1)}(t_{j}) \text{ in } D \end{cases}$$

$$\begin{cases}
\underline{u}_{t}^{(2)} + \begin{bmatrix} 0 & -f_{1}(\bar{u}) \\ f_{1}(\bar{u}) & 0 \end{bmatrix} \underline{u}^{(2)} = 0 \text{ in } D \times (t_{j-1}, t_{j}), \\
\underline{u}^{(2)} = \underline{u}_{j}^{(1)} \text{ for } t = t_{j-1} \text{ in } D, \\
\underline{u}_{j}^{(2)} \equiv \underline{u}^{(2)}(t_{j}) \text{ in } D,
\end{cases}$$

Step 3. (continued)

$$\begin{cases} \underline{u}_{t}^{(3)} + (\bar{U}, \mathbf{Grad})\underline{u}^{(3)} - \mathbf{Div}(\hat{a}_{u} \cdot \mathbf{Grad})\underline{u}^{(3)} + (A_{k})^{2}\underline{u}^{(3)} = 0 \text{ in } D \times (t_{j-1}, t_{j}), \\ \underline{u}^{(3)} = \underline{u}^{(2)} \text{ at } t = t_{j-1} \text{ in } D, \\ \bar{U}_{n}^{(-)}\underline{u}^{(3)} - \nu_{u}\frac{\partial\underline{u}^{(3)}}{\partial z} - k_{33}\frac{\partial}{\partial z}(A_{k}\underline{u}^{(3)}) = \frac{\underline{\tau}^{(a)}}{\rho_{0}}, A_{k}\underline{u}^{(3)} = 0 \text{ on } \Gamma_{S} \times (t_{j-1}, t_{j}), \\ U_{n}^{(3)} = 0, \frac{\partial U^{(3)}}{\partial N_{u}} \cdot \underline{\tau}_{w} + \left(\frac{\partial}{\partial N_{k}}A_{k}\underline{u}^{(3)}\right) \cdot \underline{\tau}_{w} = 0, A_{k}\underline{u}^{(3)} = 0 \text{ on } \Gamma_{w,c} \times (t_{j-1}, t_{j}), \\ \bar{U}_{n}^{(-)}(\tilde{U}^{(3)} \cdot \underline{N}) + \frac{\partial \tilde{U}^{(3)}}{\partial N_{u}} \cdot \bar{N} + \left(\frac{\partial}{\partial N_{k}}A_{k}\underline{u}^{(3)}\right) \cdot \bar{N} = \bar{U}_{n}^{(-)}d, A_{k}\underline{u}^{(3)} = 0 \text{ on } \Gamma_{w,op} \times (t_{j-1}, t_{j}), \\ \bar{U}_{n}^{(-)}(\tilde{U}^{(3)} \cdot \bar{\tau}_{w}) + \frac{\partial \tilde{U}^{(3)}}{\partial N_{u}} \cdot \bar{\tau}_{w} + \left(\frac{\partial}{\partial N_{k}}A_{k}\underline{u}^{(3)}\right) \cdot \underline{\tau}_{w} = 0, A_{k}\underline{u}^{(3)} = 0 \text{ on } \Gamma_{w,op} \times (t_{j-1}, t_{j}), \\ \frac{\partial\underline{u}^{(3)}}{\partial N_{u}} = \frac{\tau^{(b)}}{\rho_{0}} \text{ on } \Gamma_{H} \times (t_{j-1}, t_{j}), \end{cases}$$

where

$$\underline{u}^{(3)} = (u^{(3)}, v^{(3)}), \ \tau^{(a)} = (\tau_x^{(a)}, \tau_y^{(a)}),$$

$$U^{(3)} = (u^{(3)}, w^{(3)}(u^{(3)}, v^{(3)})), \ \tilde{U}^{(3)} = (u^{(3)}, 0),$$

$$\tau^{(b)} = (\tau_x^{(b)}, \tau_y^{(b)}).$$

Splitting methods (G.I. Marchuk) are used to approximate subproblems on Steps 1-3

Step 1:

$$(T_1)_t + L_1 T_1 = \mathcal{F}_1, \quad t \in (t_{j-1}, t_j),$$

$$T_1 = T_{j-1} \quad \text{at} \quad t = t_{j-1}$$

$$(T_2)_t + L_2 T_2 = \mathcal{F}_2 + BQ_T, \quad t \in (t_{j-1}, t_j),$$

$$T_2(t_{j-1}) = T_1(t_j).$$

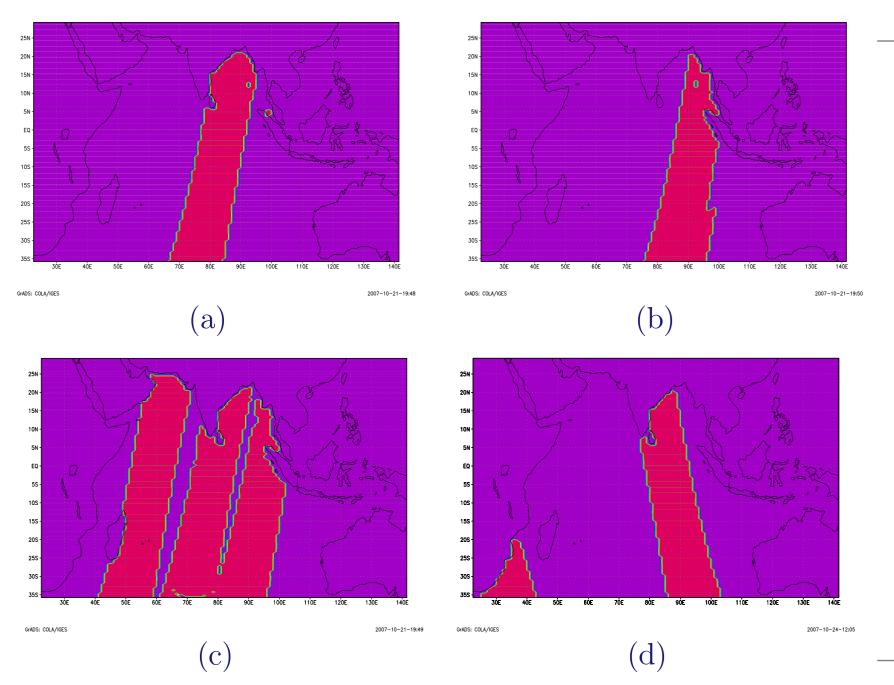
$$T_2(t_j) \equiv T_j \cong T$$
 at $t = t_j$.

3. Inverse problem and assimilation of on-line SST data

Let us assume that the unique function which is obtained by observation data processing is the function T_{obs} on $\Omega_0^{(j)}$ at $t \in (t_{j-1}, t_j)$, j = 1, 2, ..., J. Let by physical meaning the function $T_{obs} = T_{obs}^{(j)}$ is an approximation to STT data. We permit that the function $T_{obs}^{(j)}$ is known only on the part of $\Omega \times (0, \bar{t})$, i.e. on $\Omega_0^{(j)}$ at $t \in (t_{j-1}, t_j)$ and we define the support of this function as $m_0^{(j)}$. Beyond of this area we suppose function $T_{obs}^{(j)}$ is trivial.

Let the function of sea (ocean) surface heat flux Q is an "additional unknown function" on $\{\Omega_0^{(j)}\}$ (assuming that Q is known on $\{\Omega\backslash\Omega_0^{(j)}\}$) and we state the following inverse problem: find the solution ϕ of the Problem I and the function Q such that $m_0^{(j)}(T-T_{obs}^{(j)})=0$.

Observation data mask by hours



INRIA, Grenoble, 18-19 September, 2008 - p.13/23

4. SST data assimilation problem

We consider the cost-function of the form:

$$J_{\alpha} \equiv J_{\alpha}(Q, \phi) = \frac{1}{2} \int_{0}^{\bar{t}} \int_{\Omega_{0}(t)} \alpha |Q - Q^{(0)}|^{2} d\Omega dt + J_{0}(\phi) = \sum_{j=1}^{J} J_{\alpha, j}$$

$$J_{0}(\phi) = \frac{1}{2} \int_{0}^{\bar{t}} \int_{\Omega_{0}(t)} \alpha |T - T_{obs}|^{2} d\Omega dt$$
(*)

$$J_{\alpha,j} = \frac{1}{2} \int_{t_{j-1}}^{t_j} \int_{\Omega_0^{(j)}} \alpha |Q - Q^{(0)}|^2 d\Omega dt + \frac{1}{2} \int_{t_{j-1}}^{t_j} \int_{\Omega_0^{(j)}} m_0^{(j)} |T - T_{obs}^{(j)}|^2 d\Omega dt$$

Here $\alpha \equiv \alpha(\lambda, \theta, t)$ is a regularization function (is it possible, that $\alpha(\lambda, \theta, t) = \text{const} \geq 0$) and it may be a dimensional quantity; $Q^{(0)} \equiv Q^{(0)}(\lambda, \theta, t)$ is a given function.

We can formulate the data assimilation problem: find the solution $\phi \equiv (u, v, \xi, T, S)$ of the Problem I and the function Q such that the functional J_{α} is minimal on the set of the solutions. **Theorem.** Let J_{α} be defined by formula (*) for T_{obs} , $Q^{(0)} \in L_2(\Omega_0^{(j)} \times (t_{j-1}, t_j))$, j = 1, 2, ..., J. Then the variational assimilation problem of finding a solution $\phi \equiv (u, v, \xi, T, S)$ to Problem I and a function $Q \in L_2(\Omega_0^{(j)} \times (t_{j-1}, t_j))$, such that they minimize the functional, is uniquely solvable for any $\alpha > 0$. For $\alpha = 0$ this problem is uniquely and densely solvable and, as a sequence of solutions minimizing J_0 , we can choose a sequence of regularized solutions to the variational assimilation problem for J_{α} as $\alpha \to +0$, moreover, inf $J_0 = 0$.

Corollary. Under the conditions of the unique and dense solvability of the variational assimilation problem on (t_{j-1}, t_j) the solution to the original assimilation problem on $(0, \bar{t})$ is reduced to the sequential solution of the corresponding problems on intervals (t_{j-1}, t_j) .

The optimality system obtained consist of successive solving the variational assimilation problem on intervals $t \in (t_{j-1}, t_j)$, j = 1, 2, ..., J (Agoshkov V.I., 2006). The method can be described as follows:

STEP 1. We solve the system of equations, which arise from minimization of the functional J_{α} on the set of the solution of the equations. This system consists of equations for T_1 , T_2 , Q and system of adjoint equations:

$$\begin{cases}
(T_2^*)_t + L_2^* T_2^* = B^* m_0^{(1)} (T - T_{obs}^{(1)}) & \text{in } D \times (t_0, t_1), \\
T_2^* = 0 & \text{for } t = t_1, \\
\begin{cases}
(T_1^*)_t + L_1^* T_1^* = 0 & \text{in } D \times (t_0, t_1), \\
T_1^* = T_2^* (t_0) & \text{for } t = t_1
\end{cases}$$

$$\alpha(Q - Q^{(0)}) + T_2^* = 0 & \text{on } \Omega_0^{(1)} \times (t_0, t_1).$$

Functions T_2 , $Q(t_1)$ are accepted as approximations to functions T, Q of the full solution for the Problem I at $t > t_1$, and $T_2(t_1) \cong T(t_1)$ is taken as an initial condition to solve the problem on the interval (t_1, t_2) .

STEP 2. Solve problem for S:

$$S_t + (\bar{U}, \mathbf{Grad})S - \mathbf{Div}(\hat{a}_S \cdot \mathbf{Grad} S) = f_S \text{ in } D \times (t_0, t_1)$$

with corresponding boundary and initial conditions. After that the function S is accepted as an approximate solution, and the function $S(t_1)$ is taken as an initial condition for the problem for the interval (t_1, t_2) .

STEP 3. Solve equations of the velocity module.

5. Iterative process

Given $Q^{(k)}$, one solve all subproblems from step 1, adjoint problem for this step and define new correction $Q^{(k+1)}$ by

$$Q^{(k+1)} = Q^{(k)} - \gamma_k^{(j)} (\alpha(Q^{(k)} - Q^{(0)}) + T_2^*) \quad \text{on } \Omega_0^{(j)} \times (t_{j-1}, t_j).$$

Parameters $\{\gamma_k\}$ can be calculated at $\alpha \approx +0$, by the property of dense solvability, as:

$$\gamma_k^{(j)} = \frac{1}{2} \frac{\int_{t_{j-1}}^{t_j} \int_{\Omega_0^{(j)}} (T - T_{obs}^{(j)})^2 \Big|_{\sigma=0} d\Omega dt}{\int_{t_{j-1}}^{t_j} \int_{\Omega_0^{(j)}} (T_2^*)^2 \Big|_{\sigma=0} d\Omega dt}.$$

6. Inverse problem on the vertical turbulent heat exchange coefficient

Let ν_T, Q in Subproblem of Problem I (with $T_2 \equiv T$):

$$T_t + \frac{1}{2} \left(w_1 \frac{\partial T}{\partial z} + \frac{1}{r^2} \frac{\partial (r^2 w_1 T)}{\partial z} \right) - \frac{1}{r^2} \frac{\partial}{\partial z} r^2 \nu_T \frac{\partial T}{\partial z} = f_T \text{ in } D \text{ when } t \in (t_{j-1}, t_j),$$

$$T = T_1(t_j) \text{ at } t = t_{j-1},$$

$$-\nu_T \frac{\partial T}{\partial z} = Q \text{ at } z = 0 \text{ on } \Omega_0^{(j)} \times (t_{j-1}, t_j),$$

$$\bar{U}_n^{(-)} T - \nu_T \frac{\partial T}{\partial z} + \gamma_T (T - T_a) = Q_T + \bar{U}_n^{(-)} d_T \text{ at } z = 0 \text{ on } (\Omega \setminus \Omega_0^{(j)}) \times (t_{j-1}, t_j)$$

$$\nu_T \frac{\partial T}{\partial z} = 0 \text{ at } z = H,$$

be additional unknowns.

The inverse Problem O_1 .

Find $\phi \equiv (u, v, \xi, T, S)$ and ν_T, Q such that ϕ is the solution of Problem I and the relations

$$T = T_{obs}^{(j)} \text{ on } \Omega_0^{(j)} \times (t_{j-1}, t_j),$$

$$T = T_{obs,1}^{(j)} \text{ in } D_0^{(j)} \times (t_{j-1}, t_j)$$

$$(j = 1, 2, \dots, J)$$

hold true.

• Assume that:

$$[0, H(x, y)] = \bigcup_{k=1}^{N} [h_{k-1}(x, y), h_k(x, y)]$$

and introduce the space $L_{\infty}^{(N)}$:

$$L_{\infty}^{(N)}: \nu = \sum_{i=1}^{N} \nu_i(x, y, t) \chi_i(z), \quad t \in (t_{j-1}, t_j)$$

$$\forall \nu_i \in L_{\infty}(\Omega_0^{(j)} \times (t_{j-1}, t_j)),$$

$$\chi_i(z) = \{1 \text{ on } [h_{i-1}, h_i]; 0 \text{ on } [0, H] \setminus [h_{i-1}, h_i] \}$$

Theorem. Assume that

(a)
$$T_{obs,1}^{(j)} \in W_2^1(0,H) \ \forall (x,y,t) \in \Omega_0^{(j)} \times (t_{j-1},t_j)$$

(b)
$$\int_{0}^{H} \left(\frac{\partial T_{obs,1}^{(j)}}{\partial z} \right)^{2} dz \neq 0 \ \forall (x,y,t) \in \Omega_{0}^{(j)} \times (t_{j-1},t_{j})$$

(c)
$$Q \in L_2(\Omega_0^{(j)} \times (t_{j-1}, t_j)), \nu_T \in L_\infty^{(N)}.$$

Then the Problem O_1 is uniquely solvable (j = 1, 2, ..., J).

One of the processes of approximate solving the Problem O_1

- We solve the Problem O for given $\nu_{T,0}$ and find T_0, Q_0 .
- Introduce the "first corrections"

$$\nu_{T,1} \equiv \nu_T - \nu_{T,0}, \ Q_1 \equiv Q - Q_0,$$

$$T_1 = T - T_0 \quad \text{in } D \times (t_{j-1}, t_j)$$

and write down the approximate linear inverse problem to calculate $\nu_{T,1}$, Q_1

- ▶ We reduce the inverse problem to the variational data assimilation procedure.
- The variational data assimilation problem is solved by methods of the extremum theory problems.
- As results we calculate $\nu_{T,1}$, Q_1 and

$$\nu_T \cong \nu_{T,0} + \nu_{T,1}, \quad Q \cong Q_0 + Q_1$$

and approximate solutions of Problem I for each $(t_{j-1}, t_j) \quad \forall j$

Conclusion

- The inverse and corresponding variational data assimilation problems of finding the flux on the ocean and sea surface using the observation of on-line SST data were formulated and studied.
- The inverse problem on the heat flux on the sea surface and coefficient of vertical turbulent heat exchange was studied; the algorithms to solve the problem were proposed.
- The theoretical results and algorithms of the numerical solution of problems can be applied also to the corresponding problems in the dynamics of Black Sea.
- One of the problems is: one needs to construct effective methods for obtaining of on-line vertical profiles of temperature.
- The constructions of "INM-T3" (with calculation of Q, ν_T and on-line solving the corresponding variational data assimilations problems).