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Statement of the problem

Consider the mathematical model of a physical process that is described by the evolution problem







∂ϕ
∂t

= F (ϕ) + f, t ∈ (0, T )

ϕ
∣

∣

t=0
= u,

(1.1)

where ϕ = ϕ(t) is the unknown function belonging for any t to a Hilbert spaceX , u ∈ X , F is a

nonlinear operator mapping Y into Y , with Y = L2(0, T ;X), ‖ · ‖Y = (·, ·)1/2

Y , f ∈ Y .

Let us introduce the functional

S(u) =
1

2
(V1(u− u0), u− u0)X +

1

2
(V2(Cϕ− ϕobs), Cϕ− ϕobs)Yobs

, (1.2)

where u0 ∈ X is a prior initial-value function (background state), ϕobs ∈ Yobs is a prescribed function

(observational data), Yobs is a Hilbert space (observation space), C : Y → Yobs is a linear bounded

operator, V1 : X → X and V2 : Yobs → Yobs are symmetric positive definite operators.
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Data assimilation problem

Data assimilation problem: find u ∈ X and ϕ ∈ Y such that















∂ϕ
∂t

= F (ϕ) + f, t ∈ (0, T )

ϕ
∣

∣

t=0
= u,

S(u) = inf
v
S(v).

(1.3)

The necessary optimality condition reduces the problem (1.3) to the following system :







∂ϕ
∂t

= F (ϕ) + f, t ∈ (0, T )

ϕ
∣

∣

t=0
= u,

(1.4)







−∂ϕ
∗

∂t
− (F ′(ϕ))∗ϕ∗ = −C∗V2(Cϕ− ϕobs), t ∈ (0, T )

ϕ∗
∣

∣

t=T
= 0,

(1.5)

V1(u− u0) − ϕ∗
∣

∣

t=0
= 0 (1.6)

with the unknowns ϕ, ϕ∗, u, where (F ′(ϕ))∗ is the adjoint to the Frechet derivative of F .
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Errors

Suppose that u0 = ū+ ξ1, ϕobs = Cϕ̄+ ξ2, where ξ1 ∈ X, ξ2 ∈ Yobs, and ϕ̄ is the (”true”)

solution to the problem (1.1) with u = ū:















∂ϕ̄
∂t

= F (ϕ̄) + f, t ∈ (0, T )

ϕ̄
∣

∣

t=0
= ū. (1.7)

The functions ξ1, ξ2 may be treated as the errors of the input data u0, ϕobs (background and observation

errors, respectively). For V1 and V2 in (1.2), we consider

V1 = V −1

ξ1
, V2 = V −1

ξ2
,

where Vξi
is the covariance operator of the corresponding error ξi, i.e.

Vξ1 · = E[(·, ξ1)Xξ1], Vξ2 · = E[(·, ξ2)Yobs
ξ2],

whereE is the expectation. If ξ is a vector, then the covariance matrix is defined by Vξ = E[ξξT ].
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Error analysis via Hessian

The system (1.4)–(1.6) with the three unknowns ϕ,ϕ∗, u may be treated as an operator equation of the

form

F(U,Ud) = 0, (2.1)

where U = (ϕ, ϕ∗, u), Ud = (u0, ϕobs, f).

The following equality holds for the ”exact solution” (”true state”):

F(Ū , Ūd) = 0, (2.2)

with Ū = (ϕ̄, ϕ̄∗, u), Ūd = (ū, Cϕ̄, f), ϕ̄∗ = 0. The system (2.2) is the necessary optimality

condition of the following minimization problem: find u and ϕ such that















∂ϕ
∂t

= F (ϕ) + f, t ∈ (0, T )

ϕ
∣

∣

t=0
= u,

S̄(u) = inf
v
S̄(v),

where

S̄(u) =
1

2
(V1(u− ū), u− ū)X +

1

2
(V2(Cϕ− Cϕ̄), Cϕ− Cϕ̄)Yobs

.
– p. 5/25



System for errors

From (2.1)–(2.2), we get

F(U,Ud) −F(Ū , Ūd) = 0. (2.3)

Let δU = U − Ū , δUd = Ud − Ūd. Then (2.3) gives

F(Ū + δU, Ūd + δUd) − F(Ū , Ūd) = 0. (2.4)

Let δϕ = ϕ− ϕ̄, δu = u− ū; then δU = (δϕ, ϕ∗, δu), δUd = (ξ1, ξ2, 0). From (2.4), for regular

F , there exists ϕ̃ = ϕ̄+ τ(ϕ− ϕ̄), τ ∈ [0, 1], such that equation (2.4) is equivalent to the system:







∂δϕ
∂t

− F ′(ϕ̃)δϕ = 0, t ∈ (0, T ),

δϕ|t=0 = δu,
(2.5)







−∂ϕ
∗

∂t
− (F ′(ϕ))∗ϕ∗ = −C∗V2(Cδϕ− ξ2),

ϕ∗
∣

∣

t=T
= 0,

(2.6)

V1(δu− ξ1) − ϕ∗|t=0 = 0. (2.7)
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Equivalent system

The system (2.5)–(2.7) may be written in the form:







∂δϕ
∂t

− F ′(ϕ̄)δϕ = ξ3, t ∈ (0, T ),

δϕ|t=0 = δu,
(2.8)







−∂ϕ
∗

∂t
− (F ′(ϕ̄))∗ϕ∗ = −C∗V2(Cδϕ− ξ2) + ξ4,

ϕ∗
∣

∣

t=T
= 0,

(2.9)

V1(δu− ξ1) − ϕ∗|t=0 = 0, (2.10)

where

ξ3 = [F ′(ϕ̃) − F ′(ϕ̄)]δϕ, ξ4 = [(F ′(ϕ))∗ − (F ′(ϕ̄))∗]ϕ∗.
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Hessian















∂δϕ
∂t

− F ′(ϕ̄)δϕ = 0, t ∈ (0, T )

δϕ
∣

∣

t=0
= δu

S1(δu) = inf
v
S1(v),

(2.11)

S1(δu) =
1

2
(V1(δu− ξ1), δu− ξ1)X +

1

2
(V2(Cδϕ− ξ2), Cδϕ− ξ2)Yobs

. (2.12)

Consider the Hessian H of the functional (2.12); it is defined by the formulas:







∂ψ
∂t

− F ′(ϕ̄)ψ = 0, t ∈ (0, T ),

ψ|t=0 = v,
(2.13)







−∂ψ
∗

∂t
− (F ′(ϕ̄))∗ψ∗ = −C∗V2Cψ, t ∈ (0, T )

ψ∗
∣

∣

t=T
= 0,

(2.14)

Hv = V1v − ψ∗|t=0. (2.15)
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Error equation

Below we introduce four auxiliary operatorsR1, R2, R3, R4. LetR1 = V1. For example, the operator

R2 : Yobs → X acts on the functions g ∈ Yobs according to the formulaR2g = θ∗|t=0, where θ∗ is

the solution to the adjoint problem







−∂θ
∗

∂t
− (F ′(ϕ̄))∗θ∗ = C∗V2g, t ∈ (0, T )

θ∗
∣

∣

t=T
= 0.

(2.16)

From (2.13)–(2.15) we conclude that the system (2.19)–(2.21) is equivalent to the single equation for δu:

Hδu = R1ξ1 + R2ξ2 + R3ξ3 + R4ξ4. (2.17)

The Hessian H acts inX as a self-adjoint operator with domain of definitionD(H)=X . Moreover, due to

V1, V2, the operatorH is positive definite. Hence,

δu = T1ξ1 + T2ξ2 + T3ξ3 + T4ξ4,

where Ti = H−1Ri, i = 1, 2, 3, 4.
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Approximation

Since ϕ̃ = ϕ̄+ τδϕ, ϕ = ϕ̄+ δϕ, we assume that T3ξ3 ≈ 0, T4ξ4 ≈ 0. Then

δu = T1ξ1 + T2ξ2, (2.18)

and (2.5)–(2.7) reduces to the auxiliary DA problem:







∂δϕ
∂t

− F ′(ϕ̄)δϕ = 0, t ∈ (0, T ),

δϕ|t=0 = δu,
(2.19)







−∂ϕ
∗

∂t
− (F ′(ϕ̄))∗ϕ∗ = −C∗V2(Cδϕ− ξ2),

ϕ∗
∣

∣

t=T
= 0,

(2.20)

V1(δu− ξ1) − ϕ∗|t=0 = 0. (2.21)

The problem (2.19)–(2.21) is a linear data assimilation problem; with the fixed ϕ̄ it is the necessary

optimality condition to the following minimization problem: find u and ϕ such that (2.11) is satisfied.
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Sensitivity coefficients

Since δu = T1ξ1 + T2ξ2 for Ti = H−1Ri, the sensitivity coefficients are defined by

ri =
√

‖T ∗

i Ti‖.

For V1 = αE, V2 = E we have for r1:

r1 =
√

‖T ∗

1
T1‖ =

α

µmin

. (2.22)

The singular values σ2
k and the corresponding orthonormal (right) singular vectors wk ∈ Yobs of the

operator T2 are defined by the formulas (Le Dimet, Shutyaev, 2005):

σ2
k =

µk − α

µ2
k

, wk =
1√

µk − α
Chϕk, (2.23)

where µk are the eigenvalues of the HessianH , and ϕk are the fundamental control functions, and

r2 = max
k

√
µk − α

µk
. (2.24)
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Covariance operators

Consider the error equation (2.18). Since H is invertible, we get

δu = T1ξ1 + T2ξ2, (3.1)

where Ti=H
−1Ri, T1 : X→X, T2 : Yobs→X.We suppose that the errors ξ1, ξ2 are normally

distributed, unbiased, and mutually uncorrelated. By Vξi
we denote the covariance operator of the

corresponding error ξi, i = 1, 2, i.e. Vξ1 · = E[(·, ξ1)Xξ1], Vξ2 · = E[(·, ξ2)Yobs
ξ2], whereE is

the expectation. By Vδu we denote the covariance operator of the optimal solution (analysis) error:

Vδu· = E[(·, δu)Xδu]. From (3.1) we get

Vδu = T1Vξ1T
∗

1 + T2Vξ2T
∗

2 . (3.2)

To find the covariance operator Vδu, we need to construct the operators TiVξi
T ∗

i , i = 1, 2. Consider

the operator T1Vξ1T
∗

1
. Since T1 = H−1R1 = H−1V1 = T ∗

1
, we have

T1Vξ1T
∗

1 = H−1V1Vξ1V1H
−1. Moreover, if V1 = V −1

ξ1
, then

T1Vξ1T
∗

1 = H−1V1H
−1 = H−1V −1

ξ1
H−1. (3.3)
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Operator R∗
2

Consider the operator T2Vξ2T
∗

2
. Since T2 = H−1R2, then

T2Vξ2T
∗

2 = H−1R2Vξ2R
∗

2H
−1.

To determineR∗

2 , consider the inner product (R2g, p)X , g ∈ Yobs, p ∈ X . From (??)–(2.16),

(R2g, p)X = (θ∗|t=0, p)X = (C∗V2g, φ)Y = (g,R∗

2p)Yobs
,

whereR∗

2p = V2Cφ, and φ is the solution to the problem







∂φ
∂t

− F ′(ϕ̄)φ = 0, t ∈ (0, T ),

φ|t=0 = p.
(3.4)
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Operator T2Vξ2T
∗
2

The operator T2Vξ2T
∗

2
= H−1R2Vξ2R

∗

2
H−1 is defined by successive solutions of the following

problems (for a given v ∈ X):

Hp = v, (3.5)







∂φ
∂t

− F ′(ϕ̄)φ = 0, t ∈ (0, T ),

φ|t=0 = p,
(3.6)







−∂θ
∗

∂t
− (F ′(ϕ̄))∗θ∗ = C∗V2Vξ2V2Cφ, t ∈ (0, T )

θ∗
∣

∣

t=T
= 0,

(3.7)

Hw = θ∗
∣

∣

t=0
, (3.8)

then

T2Vξ2T
∗

2 v = w. (3.9)

If V2 = V −1

ξ2
, thenC∗V2Vξ2V2C = C∗V2C and θ∗

∣

∣

t=0
= Hp− V1p.
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Optimal solution error covariance

We get

R2Vξ2R
∗

2 = H − V1

and

T2Vξ2T
∗

2 = H−1R2Vξ2R
∗

2H
−1 = H−1(H − V1)H−1. (3.10)

From (3.3), (3.10) it follows the result for Vδu:

Vδu = T1Vξ1T
∗

1 + T2Vξ2T
∗

2 = H−1V1H
−1 +H−1(H − V1)H−1.

Therefore

Vδu = H−1HH−1 = H−1. (3.11)

The last formula gives the analysis-error covariance operator through the HessianH .

Gejadze, I., Le Dimet, F.-X., Shutyaev, V.P. On analysis error covariances in variational data assimilation.

SIAM J. Sci. Comput. (2008), v.30, no.4, 1847-1874.
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Numerical algorithm to compute covariances

Consider the covariance operator V = Vδu defined by (3.11):

V = H−1. (4.1)

To find the inverse Hessian H−1, the quasi-Newton BFGS method may be used, because it generates an

approximation of H−1 directly in the course of a minimization process.

Since the HessianH of the functional S1 does not depend on functions ξ1, ξ2 entering (2.12), we suggest

using as follows:

ξ1 = ũ, ξ2 = Cδϕ̃, (4.2)

where δϕ̃ satisfies the problem







∂δϕ̃
∂t

− F ′(ϕ̄)δϕ̃ = 0, t ∈ (0, T ),

δϕ̃|t=0 = ũ.
(4.3)

In this case, the solution of (2.11) is δu = ũ, and S1(ũ) = 0. The initial guess to start the iterations is

u0 = 0.
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BFGS method

Applied for solving the auxiliary DA problem (2.11)-(2.12), the BFGS method has the form:

dk = H−1

k S′

1(δuk), (4.4)

δuk+1 = δuk − αkdk, (4.5)

H−1

k+1
=

(

I − syT

yT s

)

H−1

k

(

I − ysT

yT s

)

+
ssT

yT s
, (4.6)

where s = δuk+1 − δuk, y = S′

1
(δuk+1) − S′

1
(δuk), H−1

k is the approximation toH−1 on the

k-th iteration, S′

1
(δuk) is the value of the gradient of S1 in δu at the point δuk , αk are iterative

parameters, I is the identity operator.

– p. 17/25



Optimal minimization step

Another key point is a need for the exact minimum along the direction of descent to be achieved. Let us

denote k the iteration index and dk the direction of descent built by the minimization algorithm, then the

optimal step βk can be derived from the condition

∂S1(δuk + βdk)

∂β
= 0. (4.7)

Applying this condition to (2.12) we obtain as follows

β = −
(V1(δuk − ξ1), dk)X + (V2(Cδϕk − ξ2), Cϕd)Yobs

(V1dk, dk)X + (V2Cϕd, Cϕd)Yobs

, (4.8)

where ϕd and δϕk are the solutions of the problem (2.11) for δu = dk and δu = δuk , respectively.
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Numerical examples for convection-diffusion model

We assume that the time-continuous measurements of ϕ are available at the following locations x1 = 0.2,

x2 = 0.5, x3 = 0.8. We assume that σ2
b (x) = diag

{

Vξ1

}

6= 0, σ2
m(x) = diag

{

Vξ2

}

6= 0. In

Figs. we show the variances σ2
a(x) = diag {V } which correspond to the three cases. We note that the

variance basically changes from the background error value σ2
b (x) in the areas where no information is

available to the measurement error value σ2
m(x) at the sensor location points. The transition between two

levels depends on the transport phenomena supported by the model. In the diffusion dominated case the

transition function is quite sharp, since diffusion is a process of dissipation, both applied to the forward and

adjoint variables (information). In the convection dominated case one can see that the transition function is

less steep in the upwind direction. This shows that the information is delivered to the sensor by convection

not being dissipated by diffusion. In the non-linear case we observe a mixed behaviour, where in the areas

with weak diffusion it follows the convection dominated pattern, while in the area with strong diffision it

follows the diffusion dominated pattern.
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Numerical results

An important result is that H−1 built on the exact solution ϕ̃ = ϕ̄ by the formulas (2.13)–(2.15) gives the

covariance V of the original non-linear problem. In order to validate the latest statement we estimate V

using the statistical (ensemble) approach. For a given ’exact solution’ ū we compute ϕ̂ = Cϕ̄+ ξ1 and

ub = ū+ ξ2, where ξ1, ξ2 are normally distributed (Gaussian) random perturbations such that

E[ ξ1ξT
1

] = Vξ1 andE[ ξ2ξT
2

] = Vξ2 .

For these data we solve the DA problem and find δu = u− ū. The procedure is repeated k times for new

values ξ1, ξ2 each time to get an ensemble of δu, then the covariance is finally estimated as

V∗ = E[ δuδuT ]. The results of numerical experiments show that H−1 build on the exact solution ϕ̄

via the formulas (2.13)–(2.15) matches to the covariance V∗ obtained by the statistical method being in

satisfactory agreement with the χ2 distribution. Here the analysis error variances obtained by two methods

are presented, while the ensemble size used in the statistical method is k = 2500.
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Variance via H−1 built on the ’exact’ solution

0 0.2 0.4 0.6 0.8 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

distance, n/d

va
ria

nc
e

σ2
b = 0.1, σ2

m = 0.01

diffusion dominated
λ = 1.0, w = −0.01

convection
dominated
λ = 0.01,
w = −5

non-linear:
λ = λ(ϕ),
w = −5

– p. 21/25



Statistical variance σ2
a = diag {V∗} and variance via H−1
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Covariance
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Fig. 1: Covariance: linear diffusion problem
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Conclusions

The error of the optimal initial-value function in variational data assimilation for a nonlinear evolution model

may be expressed by an equation through the errors of the input data without the tangent linear hypothesis.

The approximation of the error equation allows to derive the analysis error covariance operator which turnes

to be the inverse Hessian of the auxiliary (linearized) error assimilation problem. This Hessian does not

coincide in general with the Hessian of the original cost functional. With the use of the quasi-Newton BFGS

method, a numerical algorithm is developed to compute the analysis error covariance operator as the

inverse Hessian. The algorithm is based on a special choice of input functions in the auxiliary data

assimilation problem and the analytical step search for the minimization along the direction of descent. This

leads to obtain the covariance operator which perfectly matches the one obtained by the statistical

(ensemble) method.

Shutyaev, V., Le Dimet, F.-X., Gejadze, I. On optimal solution error covariances in variational data

assimilation. Russ. J. Numer. Anal. Math. Modelling (2008), v.23, no.2, 197-206.
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Thermodynamics equations
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Operator formulation of the forward problem
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SST data assimilation problem
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The optimality system:
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Input errors
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System for the errors
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Auxiliary minimization problem

0 1

0

( ) in ( )
0 for

( ) inf ( )

t

Q

T L T T B Q D t t
T t t

S Q S Q

δ δ δ
δ
δ

⎧ ′+ = × , ,⎪⎪ = = ,⎨
⎪ = ,⎪⎩

1 1

0 0

2 2
1 0 0 2

1 1( )
2 2

t t

z
t t

S Q Q d dt m T d dtδ α δ ξ δ ξ=
Ω Ω

= | − | Ω + | | − | Ω .∫ ∫ ∫ ∫



Hessian of the functional S

0 1

0

( ) in ( )
0 for

t L T Bv D t t
t t

ψ ψ
ψ

′+ = × , ,
= = ,

0 0 1

1

( ) ( ( )) in ( )
0 for

t L T B m D t t
t t

ψ ψ ψ
ψ

∗ ∗ ∗ ∗

∗

′− + = × , ,
= = ,

0 1o n ( )H v v t tα ψ ∗= + Ω × , .



Error control equation

1 1 2 2H Q R Rδ ξ ξ= + .

1 2 2 0zR E Rα ξ θ ∗
== , = | ,

0 2 0 1

1

( ) ( ( )) in ( )
0 for

t L T B m D t t
t t

θ θ ξ
θ

∗ ∗ ∗ ∗

∗

′− + = × , ,
= = .

The optimal solution error:

1 1 2 2Q T Tδ ξ ξ= + , 1 1
1 1 2 2T H R T H R− −= , = .



Sensitivity coefficients

* *
1 1 1 2 2 2,r T T r T T= =

1
m i n

r α
μ

= , 2
2 ( )r H E Hα −= − .



Fundamental control functions

0 1

0

( ) in ( )
0 for

k t k k

k

L Bv D t t
t t

ϕ ϕ
ϕ

+ = × , ,
= = ,

0 0 1

1

( ) in ( )
0 for

k t k k

k

L B m D t t
t t

ϕ ϕ ϕ
ϕ

∗ ∗ ∗ ∗

∗

− + = × , ,
= = ,

0 1on ( )k k k kv v t tα ϕ μ∗+ = Ω× , .
Singular vectors:

2
2 2 0

1 1 2k k k k k z
k

T T w w w k …σ ϕ
μ α

∗
== , = | , = , ,

−
2

2 .k
k

k

μ ασ
μ
−

=



Numerical examples (Indian Ocean, t=24h)



Numerical examples (Indian Ocean, t=48h)Numerical examples (Indian Ocean, t=240h)



Numerical examples (Indian Ocean, t=1month)
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Thank you for your attention!
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