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We consider a problem on the adequacy of the model of tidal dynamics in the World Ocean.
In the considered mathematical model, one of "additional sources’ is a vector function F. As
the criterion that the model correctly reproduces really modeled physical processes we
choose the requirement that sea level function (a deviation from an equilibrium level of
ocean) coincided with the satellite SSH data. This criterion can lead to a problem of
minimization of a quadratic ("cost”) functional for the purpose of variational assimilation of
satellite data and calculation of F. After the solution of this problem we estimate the norm
of F which is taken for a measure of adequacy of considered mathematical model. We prove
the uniqueness and dense solvability of the minimization problem.We prove that the
minimum of the "cost” functional is zero (therefore the norm of F really reflects degree of
adequacy of model). Also we present special algorithms of approximation of the tidal
dynamics model and the adjoint problem. The results of some numerical experiments are
presented.



Statement of a problem and definitions

® We consider a system of operator equations
(1) L¢ = f + Bu,

(2) qu — Pobs

where: ([IJ) is a mathematical model of some physical process; ¢ is a
vector function characterizing the process; f is a given element of input
data; F = Bu is a "perturbation” of the equation ([1l) and it is given by
an operator B and an "additional unknown” function u; "C'¢" is a set of
observation ("measured”) characteristics; @5 is a vector of observation
data; (2)) is called an "observability equation” (or a "controllability
equation”). The operators L, B, C and the equations (), (2) are
considered in a system of functional spaces H, H,,, Hc.



® Let us introduce:

pe = ||Cod — pobs||m,,. — "observability measure”,

Sr = {u: ||Bu|lg < R} N (some restrictions on u), R = const

® Definitions:
(V.A.Morozov [1987]; V.I.Agoshkov, E.A.Botvinovsky [2009])

1. The model (1)) is called adequate if u € Sg and puc = 0.

2. The model () is called "¢ - adequate” if u € Sg exists for all € > 0
such that puc < e.

3. For B =0 (B is the "trivial operator”) unperturbed model is called
"adequate” ("e - adequate”) if uoc =0 (uc < ).

® Problem: At given f, o5, Sg it is needed to find solutions ¢, u of the
system (), (2) and to compute puc and to check that u € Sg.



Variational data assimilation problems

® A family of regularizied optimal control problems: find ¢, u, such that

3 Lo = f + Bu,
3
1o = g, o)

where

Jo(v) = SlvliE, + 311CP — wobsll

a >0, ¢(v) is a solution of the problem ({Il) for u = v;

obs

is a family of variational data assimilation problems (Yops IS
observation data) for the mathematical model ().
(If D(B) # H¢ then (3) is a problem with "restrictions”.)



® let L*, B*,C* be the operators adjoint to L, B, C.

Theorem. (V.I. Agoshkov [2003]; V.l.Agoshkov, E.A.Botvinovsky [2009])

If the homogeneous system

has the trivial solution only, then Ve > 0 da > 0 such that a pair
Gy Ue (which is a solution of (3)) satisfies the condition

pe = pola) < e
Corollary. If the conditions of the Theorem hold true and u, € Sk the
model (1)) is e-adequate. For checking c-adequate property of the model

one can use elements ¢, u, at sufficiently small oo > 0.



® An algorithm for solving the minimization problem

Lo =t + Bu,
Jo(w) = inf_ (5[0l + 31106 — Qo)

Lo¥) = f + Buk),
L*q™) = C*(Co™ — pops),
(k=0,1,2,...)

(4)

The iterative process (4)) is convergent under necessary constraints to
{mr} (V.I.Agoshkov, [2003]).



Model of tides dynamics

® Let Q be a part of a sphere with radius R in R3, 09 is the boundary of
Q, A €10,27],0 € [0,7],dQ2 = R%sinfd\df, H()\,0) > 0 is the ocean
depth, T' < oo. We consider a problem to find U = (u,v), { and
"additional unknown" 1 :

HU, —vA U+ KU+ gHV(=1f+ gHVY, U|,, =0,
G +divHU =0, Ul|,_,=Uq), ¢|,_,= o)

where f = HVQT QT = g(T - "tide potential”, g = const, 3 =0 or
B =1 (at B =0 we have the "unperturbed model"),

1 ov ou
AU = (Au,Av) + DU, DU = maZg (—u—|—2c0805, —2COS@§ —’U) :

Y

1 0¢ 1 8¢) 4Vl = 1 Ou 19 (vsinb)

A = divV, ngz( : , — — : + _
Rsinf O\ R 06 Rsin 6 O\ R sin6 00

KU = (r*|U|u — lHv,lHu 4+ r*|U|v), r* = const, r* >0,



Numerical model
(V.l.Agoshkov, E.A.Botvinovsky [2008])

® Splitting scheme at (¢,_1,%;) :

(6) HUY —u))/at+ KUY =,
( 2) 172
ul? — gl
H— L vAUP 4 gHVC = BgHVY,,
@ @

=L+ divHU'Y =0,

YAN
(2) _ (2) _ 11D (2) (1)
U7 po =0 UL, =07, G2 =

\

® The observability equation is included in the quadratic cost functional

(8)

Qv 2 08
§H%HL2(Q)+—HC( ) — 2017, (Q)_>1£f



® We denote ¢ = (U, () = (U§2),§J(-2)), j=1,2,...,J and consider the
observability equation (2) as
(9) C: Cobs In Q7
where (s = Céii,j =1,2,...,J - "observation data” (altimetry, or
constructed by another ("ideal”) model). Then ([7))-(8)) can be written as:

(10) Lgb — f T B% O¢ — Pobs

where f = HVQ™T, By = BgHVY,Cod = (, 0ops = Cops, L is defined
by the left-hand side of ([7)).



® Optimality system (Euler equation):
(11) ah + B*(L*)T1C* (Ch — dops) = 0.

® Theorem. The systems (10), (11) are uniquely solvable and
Ve > 0 dJa = a(e) > 0 such that

He = Mg) = Hcgz o gbsHHobs < gv.j — 1727”'7]

where gb&j) = (U&j), éj)),wj is a solution of (1) at time step j. And
for a = 0 we have the equality pc = 0.

For 3 = 0, the solution has the form ¢¢ = (Ug, (p), ¥ = 0, where ¢y, (o
is the solution of the unperturbed model (@), (7]) at 8 = 0. In this case

e =165 — ysllra@)-



® The iterative process (4) for solving (1)) is:

—v A UR 1 bHUW) 4+ gHV(H = F + ggHVyH | UW)|,

gdivHU®) 4 gb¢F) = @

where b =1/At, F = bHUP _ gbC(Q)

g—1

—v Q" +bHQ® — gHVg" =0, QW |, =0,
—gdivHQ® + gbgs” = ) — ¢obs,

where Q) = (¢{® ¢S

(12) Y =) — 1 (ap® — gdivHQW), k=0,1,...

0,



Testing the iterative process

® Solutions are given by the formulas:

Uez (N, 0) = sin Asin® 6,
Vex (A, 0) =0,
Cex(N,0) =sin? 6 — 2/3,
W (A, 0) = sin 20 sin 2\ sin 6.

(13)

® Test N1. H =1 (depth (m)), R =5 (radius (m)), ¢ =10, v =1,
hy = hg = 1°, At = 10. Functional value was reduced from J) = 68.4
to J(20) = 1.72 x 10~%. Relative errors in L(2) are

k Suk ok 5¢k SUk

1 0.07281 | 0.06075 1.3449 1

2 0.03149 | 0.02704 0.6728 0.4994
5 || 0.009005 | 0.005976 0.08313 0.06181

10 || 0.007038 | 0.002827 0.002677 0.001814
20 || 0.007028 | 0.002824 | 3.39 * 10—% | 0.0002325




® Test N2. H = 4000, R = 6371270, g = 10, v = 108, hy, = hy = 1°,

At = 10. Functional value wasn't being reduced: J(I) = 98.1524,
J(20) = 129.806. Relative errors in Ly(2) are

k Suk svk 5¢k SWk
1 || 3.49%107° | 3.35%x107° | 2.53%x107° | 1
10 || 3.49%107° | 3.35%107° | 2.53 * 10~° 1
20 || 3.49%107° | 3.35%107° | 2.53%x107° | 1

® Test N3.v—+oo, H=1, R=5,9g=10, hy = hyg = 1°, At = 10.
U 5u20 5?)20 5C20 5\1120 Jl J20
1 0.0070 | 0.0028 | 3.39 % 10~° | 0.00023 | 68.35 | 1.72 % 104
10 0.0088 | 0.0040 | 3.77 106 | 0.00023 | 62.33 | 1.92 % 104
100 || 0.0092 | 0.0042 | 1.61 %10=% | 0.00044 | 33.71 | 8.23%10°
1000 || 0.0092 | 0.0043 | 2.03 %106 | 0.0037 | 6.08 | 1.03 %104
10% || 0.0092 | 0.0043 | 1.83 %107 | 3.7337 | 0.023 | 9.33 %106
10% || 0.0092 | 0.0043 | 2.24 %10~ 7 | 373.46 | 0.021 | 1.14x 105




® Test Nd. R — 400, H=1,v=1,g9 =10, hy = hy = 1°, At = 10.

R Suk SvF 5¢k SWk J1 J20
5 0.0070 0.0028 3.39 %+ 10~° | 0.0002 23.3954 1.48845 % 10—10
10 0.0054 0.0103 1.91 % 10~% | 0.0009 91.2875 1.88076 % 1010
20 0.0041 0.0839 8.80 x 10~° | 0.0093 96.3419 1.60336 % 10~
50 0.0410 7.5331 0.2019 2.0403 1560.95 52.7667
100 1.2008 13.3968 0.5639 6.6490 | 2628.86 1645.51
500 0.5005 3.8048 0.9666 9.2439 | 539.798 144162
1000 0.2616 1.9458 0.9702 9.4770 142.084 468783
5000 0.0399 0.0337 0.0010 0.9998 | 5.98895 14.8578
10000 0.0199 0.0168 0.0004 0.9999 1.52071 6.91981
6371270 || 3.13%x107° | 2.97% 1072 | 3.76 x 1079 | 0.9991 | 2.71 % 107> 2.97 1074




Numerical experiments

® Llet 3=0, then pc = ||(; — Cobs,jllLo(0)-

Experiment 1. Q7 is the "analytic tide potential”. Here (; = CJ(.H is the

deviation from the mean level Q(nt)cm The function C](JF) is presented in
fig. 1 at 14:00 of 20th January 2000.

Experiment 2. Q7 = Q®) is the sum of the eight main harmonics
(K1,01, P1,Q1, Ma, So, Na, Ks) of the tide potential, and (; = gj(.8>.

The function C](.8> is given in fig. 2 at 14:00 of 20th January 2000.

Here we suppose (ops,j = CJ(.H. So uc = HCJ(.S) — CJ(.JF)HM(Q) is the
measure of the adequacy of the model with Q(® to the model with Q7 :

pe = 0.02)1¢ @)



Experiment 3. The function Céfi calculated from satellite altimetry (by
"harmonic analysis") presented in fig.3.

8
1CH — ¢l 030
8 — .
1< a0
(8) _ ~(8)
HC CobsHLz(Q) — 031

8
1< Lo

The C(ggi, ¢®) ¢(+) coincides in qualitative manner at all time steps. However
the value of the measure of the adequacy shows that we have to take into
account additional force F' corresponding to the effects of the self-attraction
and loading of the water.
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Conclusions

® The problem of the adequacy of complex mathematical models can be
investigated by studying and solving the variational data assimilation
problems.

® Taking into consideration the eight main harmonics the model is
adequate to the model with "analytic tide potential” and it is also
adequate to the observation data as a whole.

® The suggested iterative process for solving the problem of the adequacy
of the considered tide dynamics model converges for a number of
parameters’ values. But for the detail study of the adequacy of the
considered model of the tide dynamics it is needed to modify or upgrade
the iterative process. Currently this is under development.



References:

1. Morozov V.A. Regular methods of Solving lll-posed Problems, Nauka,
Moscow, 1987 (in Russian).

2. Agoshkov V.l. Optimal Control Approaches and Adjoint Equations in the
Mathematical Physics Problems, INM RAS, Moscow, 2003 (in Russian).

3. Marchuk G.1., Kagan B.A. Dynamics of Ocean Tides. Kluwer Academic
Publishers, Netherlands, 1989.

4. Agoshkov V.l., Botvinovsky E.A. Investigation of a method for solving a
hyperbolic-parabolic system on a sphere. Russ. J. Numer. Anal. Math.
Modelling., V. 23, No.2, 2008, pp. 107-134.

5. Botvinovsky E.A. An algorithm for the solution of a tidal dynamics problem
on a sphere // Russ. J. Numer. Anal. Math. Modelling, V. 23, No. 6, 2008, p.
523-536.



Thank youl



	Statement of a problem and definitions
	Variational data assimilation problems
	Model of tides dynamics
	Numerical model
	Testing the iterative process
	Numerical experiments
	Conclusions
	References:

