ADAMS SECOND ANNUAL MEETING

Motion estimation using the variational data assimilation framework.

Comparison between Simple and Extended Image Model

October 29th, 2009

Context

- 1. Derive **pseudo-observations** of circulation velocity from sequence of Sea Surface Temperature (**SST**) image sequences.
- 2. These pseudo-observations are in turn **assimilated** in an ocean circulation model.

Estimation of the apparent velocity

• Common approach:

- Image processing techniques (correlation, optical flow, ...)
- Problem: missing data, cloud coverage
 - impossible to compute derivatives.

- Data assimilation approach:
 - Image Model: expression of the transport of temperature by surface velocity
 - Assimilation of SST within the Image Model
 - → estimation of initial velocity field even when data are missing.

Image Models

Simple Image Model

$$\begin{cases} \frac{\partial T}{\partial t} = -\mathbf{v} \cdot \nabla T + K_T \Delta T \\\\ \frac{\partial u}{\partial t} = 0 \\\\ \frac{\partial v}{\partial t} = 0 \end{cases}$$

Extended Image Model

$$\begin{aligned} \left(\begin{array}{l} \frac{\partial T}{\partial t} = -\nabla T \cdot \mathbf{v} + K_T \Delta T \\ \frac{\partial u}{\partial t} = -\nabla u \cdot \mathbf{v} + fv + g' \frac{\partial \eta}{\partial x} + K_\mathbf{v} \Delta u \\ \frac{\partial v}{\partial t} = -\nabla v \cdot \mathbf{v} - fu + g' \frac{\partial \eta}{\partial y} + K_\mathbf{v} \Delta v \\ \frac{\partial \eta}{\partial t} = -\frac{\partial (u\eta)}{\partial x} + \frac{\partial (v\eta)}{\partial y} - h_m \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) \end{aligned}$$

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Configuration of the assimilation process #1

- Perfect model
- No assumption on the *background* term
- Uncorrelated observations.
- Control variable = initial conditions

$$J_0(X_0) = \frac{1}{2} \int_{\mathcal{D}} (T(X_0) - T_{obs})^2 d\mathcal{D}$$

INSTITUT NATIONAL DE RECHERCHI EN INFORMATIQUE ET EN AUTOMATIQUE

Configuration of the assimilation process #2

• Practical cost functions:

$$J_1 = \frac{1}{2} \int_{\mathcal{D}} [(T - T_{obs})^2 + \frac{\alpha}{2} (|\bigtriangledown u|^2 + |\bigtriangledown v|^2)] d\mathcal{D}$$
$$J_2 = \frac{1}{2} \int_{\mathcal{D}} [(T - T_{obs})^2 + \frac{\lambda}{2} (\alpha |\bigtriangledown \operatorname{viv} \mathbf{v}|^2 + \beta |\bigtriangledown \operatorname{curl} \mathbf{v}|^2)] d\mathcal{D}$$

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE DE RECHERCHE ET EN AUTOMATIQUE ET EN AUTOMATIQUE ET EN AUTOMATIQUE

Configuration of the assimilation process #3

Estimation of initial conditions

- Background terms
 - The background X_b is not used as a regularization term but it doesn't mean it isn't important.
 - $T_b = T_{obs1}$, (u_b, v_b) can be taken equal to zero (no assumptions) or computed by image processing softwares: such as Horn & Shunk method or GFME (Geofluid Motion Estimation).

Notations

- *SIM* We call here *Simple Image Model* (*SIM*) the <u>assimilation</u> software using the image model based on the *advection-diffusion* of temperature and frozzen velocity hypothesis.
- *EIM* We call here *Extended Image Model* (*EIM*) the <u>assimilation</u> software using the image model based on the *advection-diffusion of temperature* and the *shallow-water equations.*

INSTITUT NATIONAL DE RECHERCHI EN INFORMATIQUE ET EN AUTOMATIQUE

Parameters for the SIM

- The SIM depends on several parameters:
 - The choice of the cost function (J1, J2, ...) and the value of their parameters,
 - The number of observation used,
 - The *background* values for T_b , u_b and, v_b .

Simulation of the experiemental Coriolis platform.

Estimation with J1

Real velocity field

Velocity field estimated with J1

Estimation with J2

Real velocity field

Velocity field estimated with J2

Estimation with 5 images

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Estimation with 4 images

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Estimation with 3 images

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Estimation with 2 images

INSTITUT NATIONAL

DE RECHERCHE EN INFORMATIQUE EN AUTOMATIQUE

EXINRIA Centre de recherche PARIS - ROCQUENCOURT

Background velocity

INSTITUT NATIONAL

DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE **EXINRIA** Centre de recherche PARIS - ROCQUENCOURT

Comparison between the two models

Five observation computed by the Extended Image Model (shallow water)

SIM

J2 + 5 images

Background conditions: $T_{\rm b} = T_{\rm obs1}$ $u_{\rm b} = v_{\rm b} = 0$

Ground truth

Estimation

EIM (twin experiment 1)

J2 + 5 images

Background conditions: $T_b = T_{obs1}$ $u_b = v_b = 0$ $\eta_b = \eta_0$ exact.

Ground truth

Estimation

EIM (twin experiment 2)

J2 + 5 images

EIM (twin experiment 2)

Estimation of η_0 :

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE ET EN AUTOMATIQUE

EIM (twin experiment 3)

 \rightarrow

Background conditions: $T_{\rm b} = T_{
m obs1}$ $u_{
m b} = v_{
m b} = 0$ $\eta_{
m b} = \eta_0$ degraded

Estimation

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

EIM (twin experiment 3)

1000			
	1.000		
		1.00	

 η_0 ground truth

 η_b

 η_0 estimated

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Introduction of a *weighting* coefficient

To reduce the influence on the η component against other components of the state variable, we introduced a coefficient w into the image model:

$$\begin{cases} \frac{\partial T}{\partial t} = -\nabla T \cdot \mathbf{v} + K_T \Delta T \\ \frac{\partial u}{\partial t} = -\nabla u \cdot \mathbf{v} + fv + \frac{g'}{w} \frac{\partial \eta}{\partial x} + K_{\mathbf{v}} \Delta u \\ \frac{\partial v}{\partial t} = -\nabla v \cdot \mathbf{v} - fu + \frac{g'}{w} \frac{\partial \eta}{\partial y} + K_{\mathbf{v}} \Delta v \\ \frac{\partial \eta}{\partial t} = -\frac{\partial (u\eta)}{\partial x} + \frac{\partial (v\eta)}{\partial y} - h_m \times w \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) \end{cases}$$

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

EIM (twin experiment 2bis)

Using the weghting coefficient:

 $\eta_{\rm b} = 0.$

Background conditions: $\begin{array}{l} T_{\rm b}=\,T_{\rm obs1}\\ u_{\rm b}=\,v_{\rm b}=\,0 \end{array}$

Ground truth

Estimation

EIM (twin experiment 2bis)

Estimation of η_0 :

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE ET EN AUTOMATIQUE DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

EIM (twin experiment 3bis)

 \rightarrow

Background conditions: $T_{\rm b} = T_{
m obs1}$ $u_{
m b} = v_{
m b} = 0$ $\eta_{
m b} = \eta_0$ degraded

Ground truth

Estimation

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

EIM (twin experiment 3bis)

Ground truth for η η_b Estimated η 10 2 0 30 30 20 20 25 20 15 0 0

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE ET EN AUTOMATIQUE DE RECHERCHE ET EN AUTOMATIQUE ET EN AUTOMATIQUE

Satellite images

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

SIM results

Estimation using

J1

Estimation computed at MHI

Estimation using J1 + background from GFME

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

EIM results

Estimation using J1

Estimation using J2

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Conclusion and perspectives

- The quality of the estimation strongly depends on the background conditions – especially for the η component – even with the regularization term.
- How to improve the approach?
 - By taking into account the \mathbf{R} and \mathbf{B} matrices in the assimilation process.
 - By taking into account a non-perfect *Image Model*.

INSTITUT NATIONAL DE RECHERCHI EN INFORMATIQUE ET EN AUTOMATIQUE

