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Statement of the problem

%9 = Fe,N+f te0,7)

(1.1)
90’15:0 =

where ¢ = go(t) is the unknown function belonging for any ¢ to a Hilbert space X, u € X, F'is a
nonlinear operator mapping Y X Yp into Y with Y = L2 (0,7 X), || - ||y = (-, )%,/2 Y, is a Hilbert
space (space of control parameters, or control space), A € Yp, fey.

Let us introduce the functional
1 1
S<>‘) = 5(‘/1 <>‘ - >‘b)7 A — )‘b)Yp + §(V2(0‘10 - Spobs)a Co — Qoobs)Yobsa (1.2)
where Ay, € Y, is a prior (background) function, @5 € Yops is @ prescribed function (observational

data), Y, is a Hilbert space (observation space), C' : Y — Y5 is a linear bounded operator,

Vi:Yp — Ypand Vo @ Y3 — Y,ps are symmetric positive definite operators.



Data assimilation problem

Data assimilation problem: find A € Y}, and ¢ € Y such that

(%2~ RN+ te(0T)
el = w

S (A = inf S(v).
S = S

The necessary optimality condition reduces the problem (1.3) to the following system :

% = Fp,N+f te(T),
Vg =
8 * >k k k
i — (FLle, )" = —C*Va(Cp — pobs), t€(0,T)
o l,er = 0,

Vi(A = Xp) = (Fi(p,A) "™ = 0.

k)

(1.4)

(1.5)

(1.6)



Errors

Suppose that A\p, = A + &1, ©ops = CP + &, where £1 € Yy, &2 € Yops, and @ is the ("true”)
solution to the problem (1.1) with A = \:

8— —
5 = Fl@eN+/f, te(07T) an
Plimy = w

The functions &1, &2 represent the errors of the input data Ay, and @, (background and observation

error, respectively). For V1 and V5 in (1.2), we consider
_ys—1 _ys—1
V]L—V51 , Vg—V52 ,
where VEi is the covariance operator of the corresponding error &;, i.e.
Vﬁl' — E[(',fl)ngl], VEQ' : E[('7£2)Y053£2]7

where E is the expectation. If £ is a vector, then the covariance matrix is defined by V¢ = EgeT].



Error analysis via Hessian

Let 6 = @ — @, 6\ = XA — . Then, from (1.7) and the optimality system (1.4)—(1.6), we obtain

ddp - _ -
590|t=0 — 07
{ B (e ) = —CT(Cp—), te(OT) .
o*|l,_p = 0,
Vi(6X —&1) — (Fi(w, M) 9" =0, (2.3)

where p =G+ 7(p — @), A=A+7(A=N), 7 € [0,1].



System for errors

The system (2.1)—(2.3) may be written in the form:

8590 ' (= _ ' (= X\
Ot FQO(CP?)\)(S(IO - F)\(907>‘)5)‘+€37 S (OaT)a (2.4)
590|t:() — 07
890* — Y\ \k, % _ *
{ % (RL@ e = OOl - ) +Es, tE(OT)
SO*‘t:T = 0,
Vi(OA = &1) = (FX(®,N) 9™ = &s, (2.6)

where

& = [F (5, ) — Fip (@, N8 + [F3 (@, X) — Fa(3, N6,

4= [(Fyp(p, N)" = (FL (@, X)"]e™, & = [(Fa(e, N)™ = (Fx(®,0)"]e"



Hessian

< 590|t20 — 07 (27)
S1(6)) = infSi(v),

S1(63) = 5 (Vi(OX = £0),8) — &)y, + 5 (Va(Cop — £2), 000 — 2y, (28)

Consider the Hessian H : Y}, — Y}, of the functional (2.8); it is defined by the successive solutions of the

following problems:

5 o -
a_'th . F(),O(C:O? )\)w — F;\(SO, )\)’U, t € (OaT)a (2.9)
Yli=o = 0,
0 * — N\ kK *
{ ) gt — (Fo(g, M)y = —C*Valy, t€(0,T) (2.10)
w*‘t:T = 0

Hv = Viv — (F5 (@, \)) ™. (2.11)



Error equation

Below we introduce four auxiliary operators R1, R2, R3, R4. Let R1 = V7. For example, the operator
Rs : Y5 — Y)p is defined on the functions g € Y, according to the formula

Rag = (F5(@,\)" 0", (2.12)

where 0* is the solution to the adjoint problem

8(9* I (= Y)\)\*/* *
= — (FL (3, A\))*0* = C*Vag, t€(0,T
5t — (Fo(®: M) 29 (0, T) (2.13)
0 ‘t:T = 0.
From (2.9)—(2.11) we conclude that the system (2.4)—(2.6) is equivalent to the single equation for d\:
HéN = R1&1 + Ro&2 + R3&3 + Ra&s + &5. (2.14)

This is the exact equation for d \. Under the hypothesis that H is invertible, we get

O = T1&1 + Too + T3&3 + Tubs + Tsés, T;=H 'R;. (2.15)



Approximation

Since p = @ 4+ Tdp, © = @ + dp, we assume that T3&3 ~ 0, Ty&q4 =~ 0, T5&5 = 0. Then
OAN=T1&1 + 1582, (2.16)

and (2.4)—(2.6) reduces to the auxiliary DA problem:

Qo I (5 X I (= X
- — F A)o = F AOA, t 0,7
Ot @(907 )90 )\(Spa ) ) 6(7 )7 (2.17)
5§0|t20 — 07
_880* . ' (= Y)\*, % _ Yk .
o — (Fo(@,N) " = —C*Va(Cép —&2), t€(0,T) 018
o*|._p = 0,
V(O — &1) — (F5(3,A)*¢* = 0. (2.19)

The problem (2.17)—(2.19) is a linear data assimilation problem; with the fixed ¢ it is the necessary

optimality condition to the following minimization problem: find d A and ¢ such that (2.7) is satisfied.



Sensitivity coeffi cients

Since A = T1 &1 + Thés for Ty = HIR;, the sensitivity coefficients are defined by

ri = /| T¢ Tl
For V1 = aF, Vo = E we have for r1:

. (8
ry = \/||T1*T1|I = (2.20)

min

The singular values 02 and the corresponding orthonormal (right) singular vectors wj, € Y, of the

operator 15 are defined by the formulas (Le Dimet, Shutyaev, 2005):

2 Mg — & 1 h
o2 =" _— wp=—oClyy, (2.21)
17 Vit —

where p . are the eigenvalues of the Hessian [, and . are the fundamental control functions, and

. VHE — O
ro = max ——.

& Mk

(2.22)



Example (Shutyaev, Parmuzin): Indian Ocean model




Covariance operators

Consider the error equation (2.14). Since H is invertible, we get

O\ = T1&1 + Toé2, (3.1

where T;=H ~1R;, T1 : Yp—Y,, Ta : Yyps—Y,. We suppose that the errors £1, €2 are normally
distributed, unbiased, and mutually uncorrelated. By V&; we denote the covariance operator of the
corresponding error §;, © = 1,2,ie. Ve, - = E[(-,81)y, &1], Ve,- = E[(+,82)y,,  §2], where Eis
the expectation. By Vs we denote the covariance operator of the optimal solution error:

Vsxr = E[(-,0))y, 0A]. From (3.1) we get

Vsy =11 V£1T1* + T2 Ve, T5. (3.2)

To find the covariance operator Vs,,, we need to construct the operators T; Ve, T'", i = 1, 2. Consider
the operator 1% V¢, T7". Since 17 = H 'R, =H v, = T, wehave T1 Ve, T =
H-1v; Ve, 1 H~—1. Moreover, if V] = Vgl, then

T\Ve, T¥ =H '"ViH ' = H 'V H™". (3.3)



Operator 1

Consider the operator T2 Ve, T5. Since Ty = H~1R5, then
ToVe, Ty = H 'RoVe, R H ™.
To determine /23, consider the inner product (Rgg,p)yp, g € Yops, P € Yp. From (2.12)—(2.13),
(R2g,p)y, = (F\(®,A)"0",p)y, = (C"Vag,d)y = (9, R5D)y,,.

where = Vo C¢, and ¢ is the solution to the problem
h R;p Vol d @isth luti h o]

9 _pl (3, N = F} (@, Np, t € (0,T),
¢lt=0 = 0.

(3.4)



Operator 15 Ve, 15

The operator 15 VgQ TQ* is defined by successive solutions of the following problems (for a given v € Y)):

Hp = ’U7 (35)
(‘3¢ — F..(, Nop = F (o, Mp, t € (0,T), (3.6)

¢|t:0 — 07
_ai _ (F’ (907 )\)) 0* = C*V2V£2VQC¢, t € (O,T) (3.7)

’t:T 0,
Huw — (F;\(Cﬁ, 5\))*9*, (3.8)

then

ToVe, Tov = w. eXe)

it Vo =V ', then C*VoVe,VoC =C*VoC and (F}(p,)))*0* = Hp — Rip.



Optimal solution error covariance

We get
R2V§2R§ =H -V

and
ToVe, Ts = H 'RoVe, Ry H ' = H™H(H — Vi)H ™. (3.10)

From (3.3), (3.10) it follows the result for Vs :
Vsa =TuVe, Ty + 1oV, Ts = H'ViH '+ H Y (H - Vi)H ™.
Therefore
Vsx =H 'HH '=H"1 (3.11)
The last formula gives the optimal-solution-error covariance operator through the Hessian H .
Gejadze, ., Le Dimet, F.-X., Shutyaev, V.P. On analysis error covariances in variational data assimilation.
SIAM J. Sci. Comput. (2008), v.30, no.4, 1847-1874.

Shutyaev, V., Le Dimet, F-X., Gejadze, |I. On optimal solution error covariances in variational data
assimilation. Russ. J. Numer. Anal. Math. Modelling (2008), v.23, no.2, 197-206.



Numerical algorithm to compute covariances

Consider the covariance operator V' = Vs defined by (3.11):
vV =H"1 (4.1)

To find the inverse Hessian H —1, the guasi-Newton BFGS method may be used, because it generates an
approximation of H-1 directly in the course of a minimization process.
Since the Hessian H of the functional S does not depend on functions &1, £2 entering (2.8), we suggest

using as follows:

&1 =X, & = Cog, (4.2)

where d satisfies the problem (2.17).

In this case, the solution of (2.7) is 0\ = A, and S1 (5\) = (0. The initial guess to start the iterations is
oX0 = 0.



BFGS method

Applied for solving the auxiliary DA problem (2.7)-(2.8), the BFGS method has the form:

d¥ = H_'S1(6\F), (4.3)
SNETL = gAF — oFdF. (4.4)

T T T

1 _ (7 _SY N1y _YS \ S5
Hk—i—l - (I yTS>Hk (I yTS> + yTs’ S

where s = SAFTL — §AF oy = ST(SARTL) — ST (SAF), Hk;_l is the approximation to  —1 on the
k-th iteration, 57 (§AF) is the value of the gradient of S in )\ at the point SA*, a¥ are iterative

parameters, [ is the identity operator.



Statistical variance o2 and variance via H ~*

o2 =05, 02, =0.01, A= X\g), w
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Conclusions

The error of the optimal initial-value function in variational data assimilation for a nonlinear evolution model
may be expressed by an equation through the errors of the input data without the tangent linear hypothesis.
The approximation of the error equation allows to derive the analysis error covariance operator which turnes
to be the inverse Hessian of the auxiliary (linearized) error assimilation problem. This Hessian does not
coincide in general with the Hessian of the original cost functional. With the use of the quasi-Newton BFGS
method, a numerical algorithm is developed to compute the analysis error covariance operator as the
inverse Hessian. The algorithm is based on a special choice of input functions in the auxiliary data
assimilation problem and the analytical step search for the minimization along the direction of descent. This
leads to obtain the covariance operator which perfectly matches the one obtained by the statistical
(ensemble) method.

Shutyaev, V., Le Dimet, E-X., Gejadze, |. On optimal solution error covariances in variational data
assimilation. Russ. J. Numer. Anal. Math. Modelling (2008), v.23, no.2, 197-206.
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Problem statement

Model of evolution process Posterior covariance
dp/ot=F(p)+ f, te(0T) V, = E(guguT)
(D‘t:o:u ou=u-T1

U— ‘true’ state

Objective function (for the initial value control)

S(u) = %(Vbl(u —uy)u—u, ), + %(Vol(Cco— Pons ) CP— Do),

obs

Definition of the Hessian of the auxiliary control problem

[y /ot—F'(@)y=0, te(0T)
<
I
Wio =V - - *
: * D HEey=V,v-y
~oy" jot-(F'(@)) v =-C'V,'"Cy, te(0T) b -
\l//*‘tzT =0

Main result:

nportant question: how |



Fully nonlinear ensemble method

1. Consider function ¢ as the exact solution to the problem

2. Start ensemble loop I=1...,L

2.1 Generate using Monte-Carlo & |, &,

2.2 Compute u, =U+¢&,,, @,=Co+¢&,

2.3 Solve the original nonlinear DA problem with perturbed data and find u,
2.4 Compute ou, =u,—U

3. End ensemble loop. o
4. Compute the statistics v, = EZ&J|5U|T
1=1

The fully nonlinear ensemble method is used to compute benchmark estimates of the
posterior covariance matrix, to be compared with the inverse Hessian (see figures
below). The sample size can be reduced with the sampling error compensation
procedure, presented in page 10.

Otherwise, this method is very expensive and can not be used in its original form for
large-scale applications.

The BFGS method is used to build the inverse Hessian.



Example 1: Initialization problem

Model (non-linear convection-diffusion):  Nonlinear diffusion coefficient Field evolution
8t ox  ox \ ox/ : iy . LT
1 i
X 6(0,1), t E(O,T] o /
[ .',-‘-"‘":‘ ' . - .
o(x,0)=u . e
<P ®
900 _apt)_, Tt Sa
X X 0 05 | 1 | 15 2 < o o‘f’b-
. ; .
- -1 : -1 ,
dlag(H ) and ensemble variance H™ and ensemble covariance
w = -2, non-linearity type - 2 BFGS ensemble: n = 400
T T I T I T T T 1 1m - s — -
. :::Z:: :: - 8:31 . 09 000 ,/ 0.0 ,/
&0 onsemble:n o400 0a ™ o8 '
| 0.7 0 / 0.7 1 / 5 {
@ 0.08 + 08 M oos / 06 /
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About the Tangent Linear Hypothesis

It is said that the inverse Hessian of the objective function is a good approximation of the
posterior covariance if the ‘tangent linear hypothesis’ (TLH) is valid, i.e. the error dynamics is
adequately represented by the tangent linear model.

However, this condition is overly restictive and, in many cases, the main result should be valid
far beyond the validity of the TLH.

The explanation is that the TLH is a local condition, while the Hessian definition includes both
forward and backward time integrations. Therefore, what matters is the reminder of the
linearization error after integrations on a set of all possible implementations of random
background and observation errors.

Below we show a degree of violation of the TLH relevant to the case presented in the previous
slide. Despite that violation, a very good match between the inverse Hessian and the ensemble
covariance can be observed.

Solid line: dFY = F(go)— F(@) Dashed line: dF@ = F’(@qu—a) @ - optimal solution
—— 150 —— : ; . .

200

o
i
] e
400 ! 100 I 100
1l | ,’ :
2001 i : 50 (o A\ ia o
i N I ] 0F v St et |
dF 4 !: \ L; p . "
oFA—— A~ A~ dF o[ Y dF 1
! ' 1 -100f i
2001 " | -s0- ! ] |
] - | 700 - !
' t=0.001 100k i t=0.002 H 200 : t=0.003
400 ' . I _ I
0 o2 0.4 06 o8 1 . L L L 3 L L L
X 1505 0.2 0.4 0.6 0.8 1 % 0.2 0.4 0.6 0.8 1
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Example 2: Boundary control problem

Model (non-linear convection-diffusion):  Nonlinear diffusion coefficient  “True’ boundary condition

8(0 8(Ww) a ( (qo)a_gﬁ\ = Q(¢) | “ ¢ : -t'use 1' |c.‘n.ce 1 T
8t OX Gx\ ox) S S /_:,i e 1 s . /
case {1 : \ !
X E(O,l), t E(O,T] k”-‘“’ . ‘1‘ A rA g \\‘ \ !
4 h Do 2 \ : 1y
0(0)=0 SIAVFAVIR Y
PO _y 0, PI_ 4, LY ANS . . VAR VA4S
1 2 v 04 0.2 U qJU 2 04 ) 0.8 l(] !E £ 4 (] U{f]
e, 1
. . - -1 .
Field evolution dlag(H ) and ensemble variance
= k -casell, w=-20, =1 O y 10.0, 00;,5— ?OE—Z
P
’ 04— T 1 x
Al < - — BFGS
R | N e o — - background )
o® - s O—0 ensemble, M = 400
%’;‘:ﬁ < . "’@f‘p 031
Field of the diffusion coefficient S 70
<
E§ 0.2
Ty E
k I"-l'. . = L
Ny x =0, outflow
iy
b . N
o™ N
e},;,%:a - “ b‘;}f“
s o 6




Example 2: Boundary control problem:

Inflow
boundary
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boundary
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Example 3: Distributed coefficient estimation problem

Model (linear convection-diffusion):
0p , W) 0 () 139 _
o o ax\ K5 =)
X e(O,l), t e(O,T]
(p(X,O): u

0D elt)
X ’ X

Parameter estimation problem is
nonlinear even for linear dynamics !

Field evolution

ok

'%\ o L]
e o

. VAR N .
diag(H ) and ensemble variance
w=10,0,=3.0E4,y =10

T

— BFGS, k=001 %
— BFGS, k=0.1
0—0 ENS.. k = 0.01, M = 400 ¢
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When the main result is not valid
V= H™(9)

In general case one may not expect the inverse Hessian to be a satisfactory approximation
to the posterior covariance (see below).

Model: 1D Burgers with strongly
nonlinear dissipation term

Field evolution: case A and case B

1 0(p? .
8_(o+_ ((p )—i(k(%@\ 8_(0) =0 @ // ¢ v .
ot 2 ox  ox\U\" &) ox ; - , ~
x (01, te(©T] ; o L
Q(X,O): u < R . aﬁ"& A N - -
ap(0.1)/ k=0, Ap(Lt)/k=0 N W S Lt
k =Ky + k, (Ap/ & ) h T
- -1 . e ey . .
dlag(H ) and ensemble variance for initialization problem
Case A: sensors at x, = (0.4, 0.45 0.6, 0,65) Case B: sensorsat x, =(0.4, 0.5, 0.6)
02 0.21-1% seseocIcess ||
I |
015 L OIsH i
> : |l |
= 2 ! |
§ ol S oiff i
0.05 U.Uﬁwl* ’7.& _ ::
i —_ émrzg—ér
‘ graph - 2
0 % 0.2 04 T 06 08 1

X

In Figures: inverse Hessian — solid line, ensemble estimate — dotted line, background variance — dashed line



Compensation of the sampling error
If the problem is linearized around a ‘true’ state, the following error 1 A
eqution is valid: o =H7(V, g, +RE,))
: : : : . 1< -
Then, for any integer L (l is the sample element index), the sampling erroris: sy = Ezwllwln _H?

. o . . - =
Assuming the same estimation of the sampling error is valid in the

: : . 1<
nonlinear case, one can compute the following approximation of the Vv, = H 1y —Z(guI&JIT — 5u|15u|”)
posterior covariance: L=

where A, is the optimal solution, 5u,1 is the result of the first Gauss-Newton iteration.

This simple approach allows us to reduce significantly the sample size.

B § Posterior variance
025 =3 , Fcompens. ) '
i 1250, scompens. | | / Posterior variance, central part of the domain magnified

Posterior covariance by fully nonlinear ensemble
method without and with compensation for L=50
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variance
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‘Effective’ inverse Hessian approach

Instead of computing V via 5u it is possible to compute estimation of the posterior covariance as the
average of inverse HeSS|ans deflned on optlmal squtlons U,

ZH‘l(U)

Moreover, instead of optimal solutions it is p055|ble to use a sample of functions GI , such that

E[(uI u)@, -1) ]:V

where V, ~V,, . For example, we use V,=H™(T).

This approach allows us to avoid the main difficulty associated to the fully nonlinear ensemble method:
computing sample of optimal solutions!

Varlance for |n|t|aI|zat|on problem

T T | 0.15 T I ' T
015 graph 1 ~ —— graph 1
@—® graph 2 L &—@ graph 2
araph 3 — — graph3
- = praph 4 | graph 4
— graph 5 ol — graph 5
y 00 —-—w
3 - -.
£ s =
= AY B /
s | \ § /
\ | N
0.05 — N\ -
0.05 | = f)”:!\-\
-~ ~
{ £ N
, . \
/ [/
-
% “\ & \ ~ ‘4 % | * I q:’
) L N ¥ - - L
9 f 045 Ul‘_‘ 055 i 0.4 0.45 0.5 0.55 0.6

X

In Figures: graph 1 - inverse Hessian on exact solution, graph 2 — estimate by the fully nonlinear ensemble method (L=1600),
graph 3 (pale line) — estimate by the fully nonlinear ensemble method (L=50) with compensation, graph 4 (dashed line) —
‘effective’ inverse Hessian method using sample of optimal solutions (L=50), graph 5 (bold line) — ‘effective’ inverse Hessian
method using sample of randomly generated functions (L=50). 11
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‘Effective’ inverse Hessian approach

Covariance for initialization problem
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Fig. a - estimate by the fully nonlinear
ensemble method ( L=1600) with
compensation;

Fig. b - estimate by the inverse Hessian
on the ‘exact’ solution;

Fig. c - estimate by the fully nonlinear
ensemble method ( L=50) with
compensation;

Fig. d — ‘effective’ inverse Hessian
method using sample of randomly
generated functions (L=50).
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Nonlinearity criteria

In the process of evaluating the ‘effective’ inverse Hessian one can also compute the following second order

| 0= L3 (ag ()} degy, )
D2 = %Z(diag {H ‘1(u,)}— diag {H ‘1(U)})

These statistics characterize the stability of the variance in respect to the position of the solution on the
solution locus surface and are useful as distributed nonlinearity criteria. For example, one can notice a
similarity between D, and an averaged convergence rate of the Gauss-Newton method evaluated as follows:

1< 2
C*==2(u"-u®). D,
I=1
4
02
¥
0.15H “C
=01t
S %
0.05f ] )
\ P o
O (\;2- 04 06 ! o® . 'H:‘.O"‘.
. . : » Ca
In fugure above: solid bold line - V,, by the ‘effective’ # s o RPC
inverse Hessian approach, dashed line - 5&, faint ¥ - d“d’
solid line - pD_. e
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Conclusions

In the linear case the posterior covariance is equal to the inverse Hessian.

In the nonlinear case the posterior covariance can be well aproximated by the
inverse Hessian if the tangent linear hypothesis is valid.

the posterior covariance can still be well aproximated by the inverse Hessian if the
tangent linear hypothesis is not valid (to some extent). It depends on the structure
of the linearization error.

If the nonlinear DA (estimation) problem exhibits a ‘close-to-linear’ statistical
behaviour, then the posterior covariance can be approximated by the ‘effective’
inverse Hessian.

Computation of the ‘effective’ inverse Hessian might be feasible for large-scale
applications, in the case when the target areas of the covariance matrix (for

Ve ol el

The correction to the inverse Hessian which takes into account the nonlinearity
can be evaluated by means of reduced-order modeling.

If the nonlinear DA (estimation) problem does not exhibit ‘close-to-linear’
statistical behaviour, the posterior covariance cannot characterize the probability
distribution function.
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