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Phytoplankton bloom (Malvinas currents)

December 6, 2006
MODIS Aqua

True Colors

I Ocean Color images show patterns that are not only due to biochemical
processes. They are also linked with the system dynamic through shear and
mixing processes.
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Direct Image Sequences Assimilation

Lagrangian Coherent Structures

The use of FSLE / FTLE maps in Image Structures Assimilation
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Direct Image Sequences Assimilation
A new methodology
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I ys is the observed structures in the image

I ys is modelled in a normed structure space S
I Frequency characteristics (e.g. through mutli-scale image transform)
I Geometrical patterns (edges, regions of interest . . . )

I The pixel value (linked with some physical properties via radiances) is not so
important here

I HX→S : maps the state variable space onto the space of structured images S
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Example 1: Computation of a synthetic image sequences of the observed
process: Innocent’s talk
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I Frequency characteristics (e.g. through mutli-scale image transform)
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I The pixel value (linked with some physical properties via radiances) is not so
important here

I HX→S : maps the state variable space onto the space of structured images S

Example 1: Computation of a synthetic image sequences of the observed
process: Innocent’s talk
Example 2: Computation of F[TS]LE maps from velocity field
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Finite Lyapunov Exponents (definition)
Finite Lyapunov exponents caracterize the evolution of the relative separation
between two particles advected by the flow
They give a kind of measure of the lagrangian dynamic of the stirring rate of a tracer

Finite Size Lyapunov Exponents:

λ(x, t, δ0, δf ) =
1

τ
log

δf
δ0

δf = δ0 exp(τλ)

Ref. Tracer

2d. Tracer

δ0

δf

Meso-scale mesh

I (x, t) : trajectory starting point of the reference particle
I δ0 : initial distance between second particle and reference particle
I δf : final separation distance (a priori fixed for Finite Size LE)
I τ : advection time (a priori fixed for Finite Time LE)

(Aurell et. al, 1997), (Artale et. al., 1997), (Mancho et. al, 2004), (D’Ovidio et. al, 2004),
(Lehahn et. al., 2007)
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Example 2: Observation operator based on F[ST]LE maps

FLSE isocontours computed from mesoscale (1/4◦) velocity fields more or less
match submesocale (1/54◦) Phytoplankton and SST patterns

F. D’Ovidio code Lamta 0.2 and Gyre / Lobster data of M. Lévy

(F. d’Ovidio et. al., 2004), (Y. Lehahn et. al., 2007), (F. d’Ovidio et. al., 2009)

ADAMS Meeting — Image Assimilation with Finite Lyapunov Exponents — November 5, 2009 F 8/11



Basic structure extraction from images
Observed structures are extracted using a binarization of the gradient norm of the
image:

ys =


1 if ‖∇ys‖ > σ,
0 else.

where the threshold σ is chosen such as a given percent (says 80%) of pixels of
‖∇ys‖ are kept.

‖∇SST‖: ySST
s ‖∇Phyto‖: yPhyto

s

Binarized images
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Structure Observation Operator

HX→S [X] may be defined using FSLE or FTLE maps:

I Binarisation of the FSLE map

I Binarisation of the gradient norm of the FTLE map

FSLE map FTLE map

Bin. FSLE Bin. ‖∇FTLE‖
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Sensitivity of the cost function with respect to velocity perturbations
Let S = (u(1)|u(2)| · · · |u(r)) where (u(l))r

l=1 are the first r EOFs of an ensemble of
velocity field. We consider velocity errors with zero mean and covariance of the
sequence:

δu ∼ N (0,P = SST). δu =
rX

l=1

u(l)δxl with δxl ∼ N (0, 1)

ys = FSLE ys = ‖∇SST‖ ys = ‖∇Phytoplankton‖

Sensitivity of the cost function J(λ) = ‖HX→S [u +
λ

100
δu]− ys‖2S for 10 random

perturbations δu in the reduced rank EOF space

I As expected J saturates with SST and Phyto. images: a part of the minimum
error represents the quantity of information the image contains that is not due
to pure meso-scale dynamics
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Conclusions

I F[ST]LE maps can be used to defined an image observation operator for direct
assimilation of images

I SST and Phytoplankton images contain information about the dynamic of the
underlying system that can be exploited

I F[ST]LE maps link model mesoscale information with observation
submesoscale information contained in images

This work is partially supported by the french National Research Agency through the
ADDISA project
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