Preliminary Results of Data Assimilation within the Modeling Platform Polyphemus

L.Wu, V.Mallet, M.Bocquet, and B.Sportisse

CLIME Project (INRIA / ENPC) Research and Teaching Center in Atmospheric Environment École Nationale des Ponts et Chaussées / EDF R&D

Les premières Journées Nationales des ARC, 17-18 octobre 2006

Outline

1 Quick Introduction to Polyphemus

- Purpose and Overall Structure
- Quick Review of its Content

2 Data Assimilation

- Introduction
- Data Assimilation System Within Polyphemus
- Assimilation Algorithms and Preliminary Results

Polyphemus: Purpose

Purpose

Comprehensive and perennial platform for air quality modeling, with advanced forecasting methods such as data assimilation and ensemble forecast.

Highlights

- Designed to share developments and to host other models
- Wide range of applications

How?

- Modern programming (priority on C++ and Python)
- Open source (GNU GPL)
- Developed by CEREA and CLIME, supported by IRSN and INERIS

Polyphemus: Overall Structure

Quick Review of Polyphemus Content

Libraries: AtmoData, AtmoPy, etc.

Data post- and preprocessing, physical parameterizations

Models: Castor, Polair3D, etc.

3D chemistry-transport models, Gaussian models

Modules

Photochemistry, aerosols, radionuclides, transport

Drivers

Data assimilation (OI, EnKF, RRSRQT, 4D-Var), local-scale simulation

Introduction to Data Assimilation

Objective and content

- Universal model-experiment problem
- State estimation from diverse information

Components

- Model (physics)
- Data (observation)
- Assimilation algorithms

State-of-the-art

Components	In general	ADOQA in action	
Model	Meteorology, oceanography hydrology, agronomy,	Photochemistry (Polair3D), aerosol,	
Data	In situ, radar, Satellite,	Ground stations, Ozone column info (Berroir) Image sequences (Huot et al.)	
Algorithms	Sequential and variational	Maximum entropy (Bocquet)	

Difficulties

Nonlinearity + high dimension

- Constraint on data assimilation window; reduction on model or error covariance matrices
- Highly nonlinear reaction item of chemistry; but stable because of the eigenvalues of the Jacobian are negative

Error modeling

- Needed because of the high uncertainties of the model
- Multi-species, multivariate error covariance

Data Assimilation: System Design

Idea: Object-orient; data, model and algorithm components are independent of one another.

Model facts

<u>.</u>

$$\frac{\partial c_i}{\partial t} = -\operatorname{div}(Vc_i) + \operatorname{div}(K\nabla c_i) + \chi_i(c) + S_i - P_i$$

Ground BC: $K\nabla c_i \cdot n = E_i - D_i$

Dimension of state variables 10⁵ – 10⁷

 Uncertainties due to physics parameterization and numerical approximations (Mallet and Sportisse 2006).

Ozone daily profiles from 48 members

Relative standard deviation over 15% over Europe

Observation managements

EMEP observation network supported, to be extended to Pioneer, BDQA; real and synthetic observations.

Algorithms: Sequential and Variational

Data assimilation: determining x^a given background x^b, observation y, and statistics information R, B.

Notations

- **x** : model state vector.
- **x**^t : true state.
- **x**^b : background estimates.
- **x**^a : analysis.
- **y** : observation vector.
- ϵ^b : $\mathbf{x}^b \mathbf{x}^t$ background errors.
- ϵ^a : $\mathbf{x}^a \mathbf{x}^t$ analysis errors.
- H: Observation operator

B: $\overline{(\epsilon^b - \overline{\epsilon}^b)(\epsilon^b - \overline{\epsilon}^b)^T}$ background error

covariance matrix.

- **A**: $\overline{(\epsilon^a \overline{\epsilon}^a)(\epsilon^a \overline{\epsilon}^a)^T}$ analysis error covariance matrix.
- e^{o} : $\mathbf{y} H(\mathbf{x}_{t})$ observation errors.
- R: (e^o ē^o)(e^o ē^o)^T observation error covariance matrix.

Formulae

$$\begin{aligned} \mathbf{x}^{a} &= \mathbf{x}^{b} + \mathbf{K}(\mathbf{y} - H(\mathbf{x}^{b})), \\ \mathbf{K} &= \mathbf{B}\mathbf{H}^{T}(\mathbf{H}\mathbf{B}\mathbf{H}^{T} + \mathbf{R})^{-1}. \end{aligned}$$

Study

B: using Balgovind correlation function.

$$f(r) = \left(1 + \frac{r}{L}\right) \exp\left(-\frac{r}{L}\right) v^{t}$$

- Perturbs ICs (upper).
- Biased model (lower).

\mathbf{x}^{b} generated by model dynamics *M*: (extended) Kalman filter

Formulae

Model error:

$$\epsilon_{m,k-1} = M_{k-1 \to k} (\mathbf{x}_{t,k-1}) - \mathbf{x}_{t,k}$$

Q_{k-1}: model error covariance matrix.

Forecast formula:

$$\mathbf{x}_{k}^{f} = M_{k-1 \to k} (\mathbf{x}_{k-1}^{a})$$
$$\mathbf{P}_{k}^{f} = \mathbf{M}_{k-1 \to k} \mathbf{P}_{k-1}^{a} \mathbf{M}_{k-1 \to k}^{T} + \mathbf{Q}_{k-1}$$

Analysis formula:

$$\mathbf{x}_{k}^{a} = \mathbf{x}_{k}^{f} + \mathbf{K}_{k}(\mathbf{y}_{k} - H(\mathbf{x}_{k}^{f})),$$

$$\mathbf{K}_{k} = \mathbf{P}_{k}^{f}\mathbf{H}_{k}^{T}(\mathbf{H}_{k}\mathbf{P}_{k}^{f}\mathbf{H}_{k}^{T} + \mathbf{R}_{k})^{-1},$$

$$\mathbf{P}_{k}^{a} = (\mathbf{I} - \mathbf{K}_{k}\mathbf{H}_{k})\mathbf{P}_{k}^{f}$$

Reduced rank square root Kalman filter: RRSQRT Heemink et al. 2001

Formulae

Initialization: $\mathbf{x}_0^a, \mathbf{L}_0^a = [\mathbf{I}_0^{a,1}, \dots, \mathbf{I}_0^{a,q}]$

Forecast formula:

$$\mathbf{x}_{k}^{f} = M_{k-1 \to k}(\mathbf{x}_{k-1}^{a})$$
$$\mathbf{I}_{k}^{f,i} = \frac{1}{\epsilon} \{ M_{k-1 \to k}(\mathbf{x}_{k-1}^{a} + \epsilon \mathbf{I}_{k-1}^{a,i}) - M_{k-1 \to k}(\mathbf{x}_{k-1}^{a}) \}, \quad \epsilon = 1$$
$$\tilde{\mathbf{L}}_{k}^{f} = [\mathbf{I}_{k}^{f,1}, \dots, \mathbf{I}_{k}^{f,q}, \mathbf{Q}_{k-1}^{\frac{1}{2}}], \qquad \mathbf{L}_{k}^{f} = \Pi_{k}^{f} \tilde{\mathbf{L}}_{k}^{f}$$

Analysis formula:

$$\begin{split} \mathbf{P}_{k}^{f} &= \mathbf{L}_{k}^{f} \mathbf{L}_{k}^{f,T} \\ \mathbf{K}_{k} &= \mathbf{P}_{k}^{f} \mathbf{H}_{k}^{T} (\mathbf{H}_{k} \mathbf{P}_{k}^{f} \mathbf{H}_{k}^{T} + \mathbf{R}_{k})^{-1}, \\ \mathbf{x}_{k}^{a} &= \mathbf{x}_{k}^{f} + \mathbf{K}_{k} (\mathbf{y}_{k} - H(\mathbf{x}_{k}^{f})), \\ \tilde{\mathbf{L}}_{k}^{a} &= [(\mathbf{I} - \mathbf{K}_{k} \mathbf{H}_{k}) \mathbf{L}_{k}^{f}, \mathbf{K}_{k} \mathbf{R}_{k}^{\frac{1}{2}}], \qquad \mathbf{L}_{k}^{a} = \Pi_{k}^{a} \tilde{\mathbf{L}}_{k}^{a} \end{split}$$

Study

The column
$$\left\{\mathbf{Q}_{k-1}^{\frac{1}{2}}\right\}_{i} = \left(M_{k-1 \to k}(\mathbf{x}_{k-1}^{a}, \mathbf{d} + \varepsilon \cdot \mathbf{w}_{i}) - M_{k-1 \to k}(\mathbf{x}_{k-1}^{a}, \mathbf{d})\right) / \varepsilon, \varepsilon = 1$$

Experiment settings

- Assimilation: 00H00 10H00, July 5
- Prediction: 11H00, July 5 10H00, July 9
- Number of mode q = 10, column number of $\mathbf{Q}_{k}^{\frac{1}{2}}$ set to 10, column number of $\mathbf{R}_{k}^{\frac{1}{2}}$ set to 10.
- Perturbed fields are attenuation, deposition velocities, photolysis rates, surface emissions, and boundary conditions for O₃.

RRSQRT: Preliminary results

Ensemble Kalman filter: EnKF Evensen 1994

Formulae

Initialization: given initial pdf p(x^t₀), an ensemble of r members are generated randomly,

$$\{\mathbf{x}_{0}^{a,i}, , i = 1, \dots, r\}$$
$$\bar{\mathbf{x}}_{0}^{a} = \frac{1}{r} \sum_{i=1}^{r} \mathbf{x}_{0}^{a,i}$$
$$\tilde{\mathbf{P}}_{0}^{a} = \frac{1}{r-1} \sum_{i=1}^{r} \left(\mathbf{x}_{0}^{a,i} - \bar{\mathbf{x}}_{0}^{a}\right) \left(\mathbf{x}_{0}^{a,i} - \bar{\mathbf{x}}_{0}^{a}\right)^{T}$$

Forecast formula:

$$\begin{split} \mathbf{x}_{k}^{f,i} &= M_{k-1}[\mathbf{x}_{k-1}^{a,i}] + \eta_{k-1}^{i} \\ \tilde{\mathbf{P}}_{k}^{f} &= \frac{1}{r-1} \sum_{i=1}^{r} \left(\mathbf{x}_{k}^{f,i} - \bar{\mathbf{x}}_{k}^{f} \right) \left(\mathbf{x}_{k}^{f,i} - \bar{\mathbf{x}}_{k}^{f} \right)^{T} \\ \text{where } \bar{\mathbf{x}}_{k}^{f} \text{ is the mean of ensemble } \{ \mathbf{x}_{k}^{f,i}, i = 1, ..., r \} \end{split}$$

Ensemble Kalman filter: EnKF

Formulae

Analysis formula: $\mathbf{x}_{k}^{a,i} = \mathbf{x}_{k}^{f,i} + \tilde{\mathbf{K}}_{k} \left(\mathbf{y}_{k}^{i} - H_{k}[\mathbf{x}_{k}^{f,i}] \right)$ $\mathbf{x}_{k}^{a} = \frac{1}{r} \sum_{i=1}^{r} \mathbf{x}_{k}^{a,i}$ $\tilde{\mathbf{P}}_{k}^{a} = \frac{1}{r-1} \sum_{i=1}^{r} \left(\mathbf{x}_{k}^{a,i} - \mathbf{x}_{k}^{a} \right) \left(\mathbf{x}_{k}^{a,i} - \mathbf{x}_{k}^{a} \right)^{T}$

Study

- Assimilation: 00H00 06H00, July 5
- Prediction: 07H00, July 5 06H00, July 9
- Number of ensemble members r = 30.
- Perturbed fi elds are same as those of RRSQRT.

EnKF: Preliminary results

Four-Dimensional Variational Assimilation: 4D-Var Bouttier and Courtier 1999

• A cost function $J(\mathbf{x})$ that deals with a set of obs.:

$$\underbrace{\frac{1}{2}(\mathbf{x}-\mathbf{x}^b)^T \mathbf{B}^{-1}(\mathbf{x}-\mathbf{x}^b)}_{J_b} + \underbrace{\frac{1}{2} \sum_{k=0}^{N} \overline{(\mathbf{y}_k - H_k(\mathbf{x}_k))^T \mathbf{R}_k^{-1} (\mathbf{y}_k - H_k(\mathbf{x}_k))}_{J_o}}_{J_o}$$

where the assimilation window is 0 - N,

$$\mathbf{x}_k = M_{0 \to k}(\mathbf{x}) = M_k M_{k-1} \dots M_1 \mathbf{x}$$

The gradient is calculated by the backward intergration of adjoint model

•
$$\tilde{\mathbf{x}}_N = 0$$

• For $k = N, ..., 1$, calculates $\tilde{\mathbf{x}}_{k-1} = \mathbf{M}_k^T (\tilde{\mathbf{x}}_k - \mathbf{H}_k^T d_k)$, where $d_k = \mathbf{R}_k^{-1} (\mathbf{y}_k - H_k(\mathbf{x}_k))$
• $\tilde{\mathbf{x}}_0 := \tilde{\mathbf{x}}_0 - \mathbf{H}_0^T (d_0)$ gives the gradient of J_o with respect to \mathbf{x}

Implementation: Adjoint Coding and Gradient Checking

- Adjoint model obtained by automatic differentiation (O∂yssee, TROPICS team, INRIA Sophia-Antipolis)
- Checks gradient calculation by finite difference

$$\varphi(\alpha) = \frac{J_o(\mathbf{x} + \alpha h) - J_o(\mathbf{x})}{\alpha \langle \nabla_{\mathbf{x}} J_o, h \rangle}, \qquad \alpha \to 0$$

Checking case: synthetic observations, R_k, H_k identity matrix

$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$)53966 5792229 1940585 2537678 1471869

Conclusion

- Platform ready
- Easily extended to new features
 - Aerosol model
 - Advanced data assimilation methods for ozone column observations
 - Nonlinear data assimilation methods, i.e. Maximum entropy filter (M.Bocquet), particle filter (Project ASPI)
- Open scientifi c issues
 - Ensemble initialization
 - Background and model error modeling and its parameterization
- Applications
 - Long-run objective operational platform (ensemble prediction already operational)
 - Open to other models / teams (GNU GPL), education purpose