Preliminary Results of Data Assimilation
within the Modeling Platform Polyphemus

L.Wu, V.Mallet, M.Bocquet, and B.Sportisse

CLIME Project (INRIA / ENPC)
Research and Teaching Center in Atmospheric Environment
Ecole Nationale des Ponts et Chaussées / EDF R&D

Les premiéres Journées Nationales des ARC, 17-18
octobre 2006



Outline

Quick Introduction to Polyphemus
m Purpose and Overall Structure
m Quick Review of its Content

Data Assimilation
m Introduction
m Data Assimilation System Within Polyphemus
m Assimilation Algorithms and Preliminary Results



Polyphemus: Purpose

Purpose

Comprehensive and perennial platform for air quality modeling,
with advanced forecasting methods such as data assimilation
and ensemble forecast.

Highlights

m Designed to share developments and to host other models
m Wide range of applications

How?

m Modern programming (priority on C++ and Python)
m Open source (GNU GPL)

m Developed by CEREA and CLIME, supported by IRSN and
INERIS




Polyphemus: Overall Structu
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Quick Review of Polyphemus Content

Libraries: AtmoData, AtmoPY, etc.

Data post- and preprocessing, physical parameterizations

Models: Castor, Polair3D, etc.

3D chemistry-transport models, Gaussian models

Modules
Photochemistry, aerosols, radionuclides, transport

Drivers

Data assimilation (Ol, EnKF, RRSRQT, 4D-Var), local-scale
simulation



Introduction to Data Assimilation

m Universal model-experiment m Model (physics)
problem m Data (observation)

m State estimation from diverse m Assimilation
information algorithms

State-of-the-art

Components In general ADOQA in action

Model Meteorology, oceanography Photochemistry (Polair3D),
hydrology, agronomy; ... aerosol, ...

Data In situ, radar, Ground stations,
Satellite, ... Ozone column info (Berroir)

Image sequences (Huot et al.)
Algorithms  Sequential and variational = Maximum entropy (Bocquet)



Difficulties

m Nonlinearity + high dimension
m Constraint on data assimilation window; reduction on model
or error covariance matrices
m Highly nonlinear reaction item of chemistry; but stable
because of the eigenvalues of the Jacobian are negative

m Error modeling

m Needed because of the high uncertainties of the model
m Multi-species, multivariate error covariance



Data Assimilation: System Design

m Idea: Object-orient; data, model and algorithm
components are independent of one another.




Model facts

m 2% _ _div(Ver) + div(KVar) + xi(c) + S — P

Ground BC: KVc¢; - n = Ej — D;
m Dimension of state variables 10° — 107
m Uncertainties due to physics parameterization and

numerical approximations (Mallet and Sportisse 2006).

Ozone daily profiles from 48 Relative standard deviation
members over 15% over Europe

rrrrr



Observation managements

m EMEP observation network supported, to be extended to
Pioneer, BDQA; real and synthetic observations.




Algorithms: Sequential and Variational

m Data assimilation: determining x? given background x°,
observation y, and statistics information R, B.

Notations

m B: (b —&b)(eb —&0)T

m X : model state vector.
¢ background error
m X ! true state. covariance matrix.
b. :
m X" : background estimates. mA (@_a)a_ea)T
m X2 : analysis. analysis error covariance
m Yy : observation vector. matrix.
m " : xP — xt background m ¢y — H(xt) observation
errors. errors.
m & : x2 — x! analysis errors. m R (0 —&)(e0 —&)T

observation error

m H: Observation operator } g
covariance matrix.



Linear combination of x® and y: optimal interpolation

Formulae

x2 =x° +K(y = H(x")),
K =BHT(HBHT +R)™1.

B: using Balgovind correlation
function.

f(r) = (14 ) exp (—f)v°
m Perturbs ICs (upper).
m Biased model (lower).




xP generated by model dynamics M: (extended)
Kalman filter

Formulae

m Model error:

emk—1 = M1k (Xt k—1) — Xt k
Qk_1: model error covariance matrix.

m Forecast formula:
X|f( - Mk—l—>k(xek\—1)
fo_ T
Pl = Mi—1-kPR_ My 4 + Qi

m Analysis formula:
Xg = >f<f< + Kk(Yfk - H(XL)),l
Kk = PkH-ll(—(HkPkH-lk— —|—Bk)_ ,
PR = (I — KiHk)Py



Reduced rank square root Kalman filter: RRSQRT

Heemink et al. 2001

Formulae

m Initialization: x3,L3 = [I37,...,129]

m Forecast formula:
Xf = M1k (X2_y)
. )
Ik’I = %{Mk—lak(xﬁ—l + GIE’I—l) —Mio1k(Xg_1)}, e=1

1
cf _ qfil .4 A2 f _qfrf
Ly = [Ik ,...,Ik ,Qk_l], L, = MLy

m Analysis formula: f
T
Ky = Pkak(HkPka + Rg)_ ;
Xg = X+ Ki(yx - H (X)),
L2 = [(I — KHi)LE, KgRZ], L& = M2Lg



Reduced rank square root Kalman filter: RRSQRT

1
m The column {Qlﬁ_l} =

|
(Mk_l_)k(xékl_l,d +e-wj)— Mk_l_)k(XEkl_l, d)) Je,e=1
m Experiment settings
m Assimilation: 00HOO - 10H00, July 5
m Prediction: 11H00, July 5 - 10H00, July 9
m Number of mode g = 10, column number of QE set to 10,

column number of Ré set to 10.

m Perturbed fields are attenuation, deposition velocities,
photolysis rates, surface emissions, and boundary
conditions for O,.



RRSQRT: Preliminary results

Domain grid point (0, 0) Concentration evoluations at station AT02
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Ensemble Kalman filter: EnKF
Evensen 1994

Formulae

m Initialization: given initial pdf p(x), an ensemble of r
members are generated randomly,

{xg", Jd=1,...r}
r
a_1 ai
X3 =<2 Xg
i=1
- 1 ! a,i a,i i
a __ ) v a ) v a
Po=r1 1<Xo _Xo) (Xo _Xo>

m Forecast formula: _
X :Mk 1D ] + 7y

= L1 Z (xk’ —xlf() (xk’ —xf)T

where X is the mean of ensemble {x}',i = 1,..,r}



Ensemble Kalman filter: EnKF

Formulae

m Analysis formula:
=+ et

r i . T
_ 1 X2 al a
k=7 1zl< k) (Xk _Xk>

m Assimilation: 00HOO - 06HO00, July 5
m Prediction: 07HO0O, July 5 - 06HO0O0, July 9
m Number of ensemble members r = 30.

m Perturbed fields are same as those of RRSORT.



EnKF: Preliminary results

Domain grid point (0, 0) C i ions at station AT02
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Four-Dimensional Variational Assimilation: 4D-Var

Bouttier and Courtier 1999

m A cost function J(x) that deals with a set of obs.:
Joi

(x —x°)TB~(x - %Z (Vi = Hic()) " R (vie — Hie (%))

NI -

Jo
where the assimilation window is 0 — N,

Xk = Mo—k(X) = MMy _1 ... M1X
m The gradient is calculated by the backward intergration of
adjoint model
| )'ZN =0
m Fork =N,...,1, calculates Xx_1 = M{ (X« — H} dx), where

dv = R (yk — Hi(x«))
B Xo := Xo — H{ (do) gives the gradient of J, with respect to x



Implementation: Adjoint Coding and Gradient

Checking

m Adjoint model obtained by automatic differentiation

(Odyssee, TROPICS team, INRIA Sophia-Antipolis)

m Checks gradient calculation by finite difference

p(a)

_ Jo(x + ah) — Jo(x)

[0 (vXJo, h>

9

a—0

m Checking case: synthetic observations, Ry, Hy identity

matrix

()
0.97169086073122756808
0.99714851925111402942
0.999714847771238313
0.99997151406647999394
0.99999664594783310712

o(a)

1.0000210386562053966

0.99992712020685792229
0.99873139920821940585
0.98614371814982537678
0.87396334809574471869



Conclusion

m Platform ready

m Easily extended to new features
m Aerosol model
m Advanced data assimilation methods for ozone column
observations
m Nonlinear data assimilation methods, i.e. Maximum entropy
filter (M.Bocquet), particle filter (Project ASPI)
m Open scientific issues
m Ensemble initialization
m Background and model error modeling and its
parameterization
m Applications
m Long-run objective - operational platform (ensemble
prediction already operational)

m Open to other models / teams (GNU GPL), education
purpose
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