Preliminary results of data assimilation within the modeling platform Polyphemus

L.Wu, V.Mallet, M.Bocquet, and B.Sportisse

CLIME Project (INRIA / ENPC) Research and Teaching Center in Atmospheric Environment École Nationale des Ponts et Chaussées / EDF R&D

10th October 2006

Outline

1 Quick Introduction to Polyphemus

- Purpose and Overall Structure
- Quick Review of its Content

2 Data Assimilation

- Introduction
- Data Assimilation System Within Polyphemus
- Assimilation Algorithms and Preliminary Results

Polyphemus: Purpose

Purpose

Achieve a comprehensible and perennial platform for air quality modeling, primarily for risk assessment and impact studies

Highlights

- Designed to share developments and to host other models
- Wide range of applications

How?

- Modern programming (priority on C++ and Python)
- Open source (GNU GPL)
- Developed by CEREA and CLIME, supported by IRSN and INERIS

Polyphemus: Overall Structure

Quick Review of Polyphemus Content

Libraries: AtmoData, AtmoPy, etc.

Data post- and preprocessing, physical parameterizations

Models: Castor, Polair3D, etc.

3D chemistry-transport models, Gaussian models

Modules

Photochemistry, aerosols, radionuclides, transport

Drivers

Data assimilation (OI, EnKF, RRSRQT, 4D-Var), local-scale simulation

Introduction to Data Assimilation

Objective and content

- Universal model-experiment problem
- State estimation from diverse information

Components

- Model (physics)
- Data (observation)
- Assimilation algorithms

Start-of-art		
Components	In general	ADOQA in action
Model	Meteorology, oceanography hydrology, agronomy,	Photochemistry (Polair3D), aerosol,
Data	In situ, radar, Satellite,	Ground stations, Ozone column info (Berroir) Image sequences (Huot et al.)
Algorithms	Sequential and variational	Maximum entropy (Bocquet)

Difficulties

Nonlinearity + high dimension

- Constraint on data assimilation window; reduction on model or error covariance matrices.
- Highly nonlinear reaction item of chemistry; but stable because of the system stiffness.

Error modeling

- As difficult as physics parameterization
- Multi-species, multivariate error covariance

Data Assimilation: System Design

Idea: Object-orient; data, model and algorithm componets are independent of one another.

Model facts

<u>.</u>

$$\frac{\partial c_i}{\partial t} = -\operatorname{div}(Vc_i) + \operatorname{div}(K\nabla c_i) + \chi_i(c) + S_i - P_i$$

Ground BC: $K\nabla c_i \cdot n = E_i - D_i$

Dimension of state variables 10⁵ – 10⁷

 Uncertainties due to physics parameterization and numerical approximations (Mallet and Sportisse 2006).

Ozone daily profiles from 48 members

Relative standard deviation over 15% over Europe

Observation managements

EMEP observation network supported, to be extended to Pioneer, BDQA; real and synthetic observations.

Algorithms

Data assimilation: determining x_a given background x_b, observation y^o, and statistics information R, B.

Notations

- **x** : model state vector.
- **x**_t : true state.
- **x**_b : background estimates.
- **x**_a: analysis.
- **y**^o : observation vector.
- ϵ_b : $\mathbf{x}_b \mathbf{x}_t$ background errors.
- ϵ_a : $\mathbf{x}_a \mathbf{x}_t$ analysis errors.
- H: Observation operator

- B: (ϵ_b ϵ̄_b)(ϵ_b ϵ̄_b)^T background error covariance matrix.
- **A**: $\overline{(\epsilon_a \overline{\epsilon}_a)(\epsilon_a \overline{\epsilon}_a)^T}$ analysis error covariance matrix.
- ϵ_o : $\mathbf{y}^o H(\mathbf{x}_t)$ observation errors.
- R: $\overline{(\epsilon_o \overline{\epsilon}_o)(\epsilon_o \overline{\epsilon}_o)^T}$ observation error covariance matrix.

Formulae

$$\begin{aligned} \mathbf{x}_a &= \mathbf{x}_b + \mathbf{K}(\mathbf{y}^o - H(\mathbf{x}_b)), \\ \mathbf{K} &= \mathbf{B}\mathbf{H}^T(\mathbf{H}\mathbf{B}\mathbf{H}^T + \mathbf{R})^{-1}. \end{aligned}$$

Study

B: using Balgovind correlation function.

$$f(r) = \left(1 + \frac{r}{L}\right) \exp\left(-\frac{r}{L}\right) v_b$$

- Perturbs ICs (upper).
- Biased model (lower).

\mathbf{x}_b generated by model dynamics *M*: (extended) Kalman filter

Formulae

Model error:

$$\epsilon_{m,k-1} = M_{k-1 \to k} (\mathbf{x}_{t,k-1}) - \mathbf{x}_{t,k}$$

Q_{k-1}: model error covariance matrix.

Forecast formula:

$$\mathbf{x}_{k}^{f} = M_{k-1 \to k} (\mathbf{x}_{k-1}^{a})$$
$$\mathbf{P}_{k}^{f} = \mathbf{M}_{k-1 \to k} \mathbf{P}_{k-1}^{a} \mathbf{M}_{k-1 \to k}^{T} + \mathbf{Q}_{k-1}$$

Analysis formula:

$$\mathbf{x}_{k}^{a} = \mathbf{x}_{k}^{f} + \mathbf{K}_{k}(\mathbf{y}_{k}^{o} - H(\mathbf{x}_{k}^{f})),$$

$$\mathbf{K}_{k} = \mathbf{P}_{k}^{f}\mathbf{H}_{k}^{T}(\mathbf{H}_{k}\mathbf{P}_{k}^{f}\mathbf{H}_{k}^{T} + \mathbf{R}_{k})^{-1},$$

$$\mathbf{P}_{k}^{a} = (\mathbf{I} - \mathbf{K}_{k}\mathbf{H}_{k})\mathbf{P}_{k}^{f}$$

Reduced rank square root Kalman filter: RRSQRT

Formulae

Initialization: $\mathbf{x}_0^a, \mathbf{L}_0^a = [\mathbf{I}_0^{a,1}, \dots, \mathbf{I}_0^{a,q}]$

Forecast formula:

$$\mathbf{x}_{k}^{f} = M_{k-1 \to k}(\mathbf{x}_{k-1}^{a})$$
$$\mathbf{I}_{k}^{f,i} = \frac{1}{\epsilon} \{ M_{k-1 \to k}(\mathbf{x}_{k-1}^{a} + \epsilon \mathbf{I}_{k-1}^{a,i}) - M_{k-1 \to k}(\mathbf{x}_{k-1}^{a}) \}, \quad \epsilon = 1$$
$$\tilde{\mathbf{L}}_{k}^{f} = [\mathbf{I}_{k}^{f,1}, \dots, \mathbf{I}_{k}^{f,q}, \mathbf{Q}_{k-1}^{\frac{1}{2}}], \qquad \mathbf{L}_{k}^{f} = \Pi_{k}^{f} \tilde{\mathbf{L}}_{k}^{f}$$

Analysis formula:

$$\begin{split} \mathbf{P}_{k}^{f} &= \mathbf{L}_{k}^{f} \mathbf{L}_{k}^{f,T} \\ \mathbf{K}_{k} &= \mathbf{P}_{k}^{f} \mathbf{H}_{k}^{T} (\mathbf{H}_{k} \mathbf{P}_{k}^{f} \mathbf{H}_{k}^{T} + \mathbf{R}_{k})^{-1}, \\ \mathbf{x}_{k}^{a} &= \mathbf{x}_{k}^{f} + \mathbf{K}_{k} (\mathbf{y}_{k}^{o} - H(\mathbf{x}_{k}^{f})), \\ \tilde{\mathbf{L}}_{k}^{a} &= [(\mathbf{I} - \mathbf{K}_{k} \mathbf{H}_{k}) \mathbf{L}_{k}^{f}, \mathbf{K}_{k} \mathbf{R}_{k}^{\frac{1}{2}}], \qquad \mathbf{L}_{k}^{a} = \Pi_{k}^{a} \tilde{\mathbf{L}}_{k}^{a} \end{split}$$

Study

The column
$$\left\{ \mathbf{Q}_{k-1}^{\frac{1}{2}} \right\}_{i} = \left(M_{k-1 \to k} (\mathbf{x}_{k-1}^{a}, \mathbf{d} + \varepsilon \cdot \mathbf{w}_{i}) - M_{k-1 \to k} (\mathbf{x}_{k-1}^{a}, \mathbf{d}) \right) / \varepsilon, \varepsilon = 1$$

- Experiment settings
 - Assimilation: 00H00, July 5, 2001 10H00, July 5, 2001
 - Prediction: 11H00, July 5, 2001 10H00, July 9, 2001
 - Number of mode q = 10, columns of $\mathbf{Q}_{k}^{\frac{1}{2}}$ set to 10, columns of $\mathbf{R}_{k}^{\frac{1}{2}}$ set to 10.
 - Perturbed fields are attenuation, deposition velocities, photolysis rates, surface emissions, and boundary conditions for O₃.

RRSQRT: Preliminary results

Ensemble Kalman filter: EnKF

Formulae

Initialization: given initial pdf p(x^t₀), an ensemble of r members are generated randomly,

$$\{\mathbf{x}_{0}^{\boldsymbol{a}(\alpha)}, \quad , \alpha = 1, \dots, r\}$$
$$\bar{\mathbf{x}}_{0}^{\boldsymbol{a}} = \frac{1}{r} \sum_{\alpha=1}^{r} \mathbf{x}_{0}^{\boldsymbol{a}(\alpha)}$$
$$\tilde{\mathbf{P}}_{0}^{\boldsymbol{a}} = \frac{1}{r-1} \sum_{\alpha=1}^{r} \left(\mathbf{x}_{0}^{\boldsymbol{a}(\alpha)} - \bar{\mathbf{x}}_{0}^{\boldsymbol{a}}\right) \left(\mathbf{x}_{0}^{\boldsymbol{a}(\alpha)} - \bar{\mathbf{x}}_{0}^{\boldsymbol{a}}\right)^{T}$$

Forecast formula:

W

$$\mathbf{x}_{k}^{f(\alpha)} = M_{k-1}[\mathbf{x}_{k-1}^{a(\alpha)}] + \eta_{k-1}^{(\alpha)}$$
$$\tilde{\mathbf{P}}_{k}^{f} = \frac{1}{r-1} \sum_{\alpha=1}^{r} \left(\mathbf{x}_{k}^{f(\alpha)} - \bar{\mathbf{x}}_{k}^{f} \right) \left(\mathbf{x}_{k}^{f(\alpha)} - \bar{\mathbf{x}}_{k}^{f} \right)^{T}$$

where $\bar{\mathbf{x}}_{k}^{f}$ is the mean of ensemble $\{\mathbf{x}_{k}^{f(\alpha)}, \alpha = 1, ..., r\}$

defi ned similar to **x**₀

Ensemble Kalman filter: EnKF

Formulae

Analysis formula: $\mathbf{x}_{k}^{a(\alpha)} = \mathbf{x}_{k}^{f(\alpha)} + \tilde{\mathbf{K}}_{k} \left(\mathbf{y}_{k}^{o(\alpha)} - H_{k}[\mathbf{x}_{k}^{f(\alpha)}] \right)$ $\mathbf{x}_{k}^{a} = \frac{1}{r} \sum_{\alpha=1}^{r} \mathbf{x}_{k}^{a(\alpha)}$ $\tilde{\mathbf{P}}_{k}^{a} = \frac{1}{r-1} \sum_{\alpha=1}^{r} \left(\mathbf{x}_{k}^{a(\alpha)} - \mathbf{x}_{k}^{a} \right) \left(\mathbf{x}_{k}^{a(\alpha)} - \mathbf{x}_{k}^{a} \right)^{T}$

Study

- Assimilation: 00H00, July 5, 2001 06H00, July 5, 2001
- Prediction: 07H00, July 5, 2001 06H00, July 9, 2001
- Number of ensemble members r = 30.
- Perturbed fi elds are same as those of RRSQRT.

EnKF: Preliminary results

Conclusion

- Platform ready
- Easily extended to new features
 - Aerosol model
 - Advanced data assimilation methods for ozone column observations
 - Nonlinear data assimilation methods, i.e. Maximum entropy filter (M.Bocquet), particle filter (Project ASPI)
- Open scientifi c issues
 - Ensemble initilizations
 - Background and model error modeling and its parameterization
- Applications
 - Long-run objective operational platform (ensemble prediction allready operational)
 - Education purpose (GNU GPL)