
A stochastic filter for fluid motion tracking

Anne Cuzol Etienne Mémin
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Abstract

In this paper we present a method for the tracking of fluid
flows velocity fields. The technique we propose is formal-
ized within sequential Bayesian filter framework. The fil-
ter we propose here combines an Itô diffusion process com-
ing from a stochastic formulation of the vorticity-velocity
form of Navier-Stokes equation and discrete measurements
extracted from an image sequence. The resulting tracker
provides robust and consistent estimations of instantaneous
motion fields along the whole image sequence. In order
to handle a state space of reasonable dimension for the s-
tochastic filtering problem, we represent the motion field as
a combination of adapted basis functions. The used basis
functions ensue from a mollification of Biot-Savart integral
and a discretization of the vorticity and divergence map-
s of the fluid vector field. The efficiency of the method is
demonstrated on a long real world sequence showing a vor-
tex launch at tip of airplane wing.

1. Introduction
In a number of domains the analysis of image sequences
involving fluid phenomenon is of the highest importance.
Let us for instance cite the domain of geophysical sciences
such as meteorology and oceanography where one wants to
track cloud systems for weather forecasting or for surveil-
lance purpose, estimate ocean streams or monitor the drift
of passive entities such as icebergs or pollutant sheets. The
analysis of fluid flow images is also crucial in experimental
fluid mechanics to analyze flows around wing tips or vortex
shedding from airfoils or cylinders.

For all the kinds of aforementioned applications and
domains it is of major interest to track along time the
most accurately as possible representative structures of the
flow. Such a tracking which remains to estimate Lagrangian
drifters for the structures of interest may be obtained from
deterministic integration methods such as the Euler method
or the Runge and Kutta integration technique. These nu-
merical integration approaches rely on a continuous spatio-

temporal vector field description and thus requires the use
of interpolation schemes over the whole spatial and tempo-
ral domain of interest. As a consequence, they are quite
sensitive to local errors measurements or to inaccurate mo-
tion estimates. When the images are noisy or if the flow
velocities are of high magnitude and chaotic as in the case
of turbulent flows for instance, motion estimation tends to
be quite difficult and prone to errors. Another source of
error is inherent to motion estimation techniques (see for
instance [2] for an extended review on motion estimation
techniques). As a matter of fact, most of the motion estima-
tion approaches use only a small set of images (usually two
consecutive images of a sequence) and thus may suffer from
a temporal unconsistency from frame to frame. The exten-
sion of spatial regularizers to spatio-temporal regularizers
[16] or the introduction of simple dynamical constraint in
motion segmentation techniques relies mainly on crude dy-
namic assumptions or that are related only to rigid object
motion [10].

In order to improve the tracking of dynamical structures
from fluid flows image sequence, we propose a tracking
method allowing a robust and temporal consistent estima-
tion of instantaneous motion fields along the whole image
sequence. In order to be robust to acquisition noise or to il-
lumination conditions the proposed technique is formalized
within the Bayesian recursive filter framework.

To settle such a filter, we are facing three main difficul-
ties. The first one concerns the dimension of the state space
associated to a fluid motion velocity field. As a matter of
fact, Monte-Carlo probabilistic tracking methods [9, 11, 14]
are mainly built to track objects of reduced dimension such
as points or curves described by several discrete control
points. These techniques are not able to cope with high
dimensional features such as dense vector fields. In order
to handle motion fields of manageable dimension, we de-
scribe first an original parametrization of fluid flows relying
on adequate basis functions. The used basis functions stem
from Biot-Savart integration of a regularized discretization
of the vector field vorticity and divergence maps. Such a



representation enables a parcimonius representation of a flu-
id motion. The second difficulty is related to the contin-
uous nature of the involved dynamic evolution law. The
problem consists thus in the definition of an appropriate se-
quential Monte-Carlo approximation of a stochastic filter
which combines a continuous dynamical law expressed as a
stochastic differential equation and discrete measurements
extracted from the image sequence. The third difficulty lies
in the definition of the dynamic law itself. This law must be
sufficiently simple to be efficiently implemented and suffi-
ciently precise to predict the most accurately as possible the
evolving motion field.

This paper is organized as follows. After recalling some
notions about vector fields, we describe first the low dimen-
sional representation of fluid motion on which we rely. In a
second part of the paper we describe the Bayesian filter we
devised for fluid motion tracking.

2 Parametric fluid motion estimator

2.1 Some notions about 2D vector fields

A two-dimensional vector field w is a R
2-valued map de-

fined on a bounded set Ω of R
2. We denote it w(x) =

(u(x), v(x))T , where x = (x, y) and x and y denote the
spatial coordinates. Each component of the vector field
will be supposed twice continuously differentiable: u, v ∈
C2(Ω,R).

Noting ∇ = ( ∂
∂x ,

∂
∂y ) the operator whose components

are the partial derivatives with respect to the coordinates
x and y, we define the divergence: div w = ∂u

∂x + ∂v
∂y =

∇.w and the scalar vorticity of the vector field: curl w =
∂u
∂y − ∂v

∂x = ∇.w⊥, where w⊥ = (−v, u) is the orthogonal
counterpart of w.

The vorticity accounts for the presence of a rotating mo-
tion, while the divergence is related to the presence of sinks
or sources in the flow. A vector field whose divergence is
null at every point is called solenoidal. Similarly, a field
with zero vorticity will be called irrotational. It is well
known that for irrotational fields there exists a scalar func-
tion φ, called the velocity potential, such that w = ∇φ.
Similarly, for solenoidal fields there exists a scalar function
ψ called the stream function such that w⊥ = ∇ψ.

Any continuous vector field that vanishes at infinity can
be decomposed into a sum of an irrotational componen-
t with null vorticity and a solenoidal component with null
divergence. This is called the Helmholtz Decomposition.
When the null border condition can not be imposed, an ad-
ditional component, named the laminar component, which
is both irrotational and solenoidal, has to be included. The
decomposition reads then: w = wirr + wsol + wlam. This
last component can be approximated using the Horn and
Schunck estimator with a strong regularization coefficient

[6]. In the sequel we will assume that the laminar com-
ponent has been previously computed and that its associ-
ated motion has been removed from the image sequence.
We will consequently assume a null boarder condition at
infinity knowing that the image sequence, I(x, t), is relat-
ed to the original image sequence, Io(x, t), by I(x, t) =
Io(x + wlam(x, t), t).

Substituting the two components wirr and wsol by their
expressions in terms of potential functions and considering
the divergence and the curl of the motion field enables to
write the potential function as solution of two Poisson e-
quations:

∆φ = divw and ∆ψ = −curlw, (1)

where ∆ denotes the Laplacian operator. These solutions
may be expressed as convolution products:

φ = G ∗ div w and ψ = −G ∗ curl w, (2)

where G is the Green’s function associated to the two-

dimensional Laplacian: G(x) =
1
2π

ln(|x|).
As the vector fields wirr and wsol are respectively the

gradient and the orthogonal gradient of the potential func-
tions φ and ψ, equations (2) may be rewritten as:

wirr = K ∗ div w and wsol = −K⊥ ∗ curl w, (3)

where K denotes the gradient of the Green kernel. The
second equation of (3) is known as the Biot-Savart inte-
gral. These two equations state that the solenoidal and the
irrotational components (and consequently the whole vec-
tor field) may be recovered through a convolution produc-
t knowing the divergence and the vorticity of the velocity
field.

2.2 Vortex and source particles

The idea of vortex particles methods [4, 12] consists in rep-
resenting the vorticity distribution of a field by a set of dis-
crete amounts of vorticity (vortices). Using these vortices,
the vorticity distribution is approximated as a weighted dis-
crete sum:

curl w(x) ≈
∑

i

γiδ(x − xi), (4)

where xi is the location of the vortex i, γi the strength
of the vortex and δ the Dirac delta function. The vortices
are called point vortices since they are represented by delta
functions.

This discretization of the vorticity into a limited number
of elements enables to evaluate the velocity field directly
from the Biot-Savart integral (equ. 3). However, because
of the singularity of the Green kernel gradient K, the ve-
locity field becomes unbounded if any two vortices come



very close to each other. In fact, the induced field develop-
s 1

r -type singularities, where r is the distance to the point
vortices.

These singularities can be removed by smoothing the
Dirac measure with a cutt-off or blob function, leading to
a smoothed version of K. Let fε be such a blob function
scaled by a parameter ε: fε(x) = 1

ε2 f(x
ε ). The smoothed

kernel is defined asKε = K ∗fε. The amount of smoothing
is determined by the value of ε. If ε → 0, fε tends to the
Dirac function and Kε → K.

As for the divergence map a similar source particles rep-
resentation reads then:

div w(x) ≈
n∑

i=0

γifεi
(x − xi), (5)

where xi denotes the center of each basis function fεi
, the

coefficient γi is the strength associated to the particle i, and
εi represents its influence domain. These parameters are
free to vary from a function to another.

2.3 Estimation from consecutive images

As we saw previously, discretizing the vorticity map with
vortex particles together with a smoothing of the Dirac mea-
sure leads through Biot-Savart integral to the following rep-
resentation of the solenoidal component of the motion field:

wsol(x) ≈
p∑

i=0

γsol
i K⊥

εsol
i

(xsol
i − x), (6)

where K⊥
εi

is a new kernel function obtained by convolving
the orthogonal gradient of the Green kernel with the blob
function. Obviously, a similar representation of the irrota-
tional component can be obtained using source particles.

As a result, we exhibit an approximation of the complete
motion field as weighted sums of basis functions defined by
their center location and respective spatial influence. With
a Gaussian smoothing function which allows to derive an-
alytically the associated smoothed kernel Kε, the final ex-
pression of the solenoidal component is:

wsol(x)≈
p∑

i=0

γsol
i

(xsol
i −x)⊥

2π|x−xsol
i |2

(
1−exp

(
−|x−xsol

i |2
εsol
i

2

))
.

(7)

The irrotational component is expressed through source par-
ticles and a similar orthogonal expression.

This representation is incorporated within a spatio-
temporal variation model of the luminance function in order
to devise fluid motion recovery as an estimation problem
from the image sequence data.

For image sequences showing evolving fluid phenome-
na, the usual brightness consistency assumption (dI

dt = 0)

doesn’t allow to model temporal distortions of luminance
patterns caused by 3D matter transportation. For such kind
of sequences, several works have shown that a data model
build from an analogy with the mass conservation constraint
of fluid mechanics (also known as continuity equation) con-
stitutes a better model [3, 6, 15]. This data model reads:

dI

dt
+ Idivw = 0. (8)

Such a constraint relates the effect of a divergent motion to
a brightness change. By this way, it is possible to modelize
the effect of the apparent disappearance/appearance of mat-
ter caused by 3D motions which are not in the visualization
plane. For a null divergence this data model reduces exactly
to the usual brightness consistency equation.

For long range displacements (i.e. fast flows or long time
latency between two images as in meteorology) an integrat-
ed form of this constraint can be obtained[6]:

I(x + w(x), t+ 1) exp(divw(x)) − I(x, t) = 0. (9)

According to this constraint the displaced image at time t+
1 is related to the image at time t by a scale factor which
depends on the motion divergence. This constraint comes
to the standard displaced frame formulation of brightness
consistency for a null divergence. Assuming this constraint
holds almost everywhere on the whole image plane leads to
seek a motion field minimizing the following cost function:

F(I,w)=
∫
Ω

[I(x+w(x),t+1) exp(divw(x))− I(x, t)]2dx.

Considering such a cost function for an unknown motion
field approximated through vortex and source particles rep-
resentations comes down to solve the following minimiza-
tion problem:

β̂ = arg min
β

F(I,w(β)), (10)

with β = ({xsol
i , γsol

i , εsol
i }i=1:p , {xirr

i , γirr
i , εirr

i }i=1:q).
One seeks therefore the minimizer of the cost function F in
terms of particles location, strength coefficients and influ-
ence domains. Due to the peculiar form of the data mod-
el this minimization problem is highly non linear. To face
this difficult optimization problem we have chosen to rely
on a two steps estimation process. First of all, the strength
coefficients and the influence domain of each particle are
estimated through a multi-resolution non linear least square
minimization solved with a generalized conjugated gradi-
ent known as Fletcher-Reeves method. The particles loca-
tions are then moved according to a mean shift procedure
[5]. This procedure allows us to move the set of vortex and
source particles toward the modes of a probability distri-
bution related to localized image reconstruction error. In-
terested readers can refer to [7] where this two alternates
optimization is fully described.



In order to introduce a time consistency of the velocity
computed along the sequence we propose in the following a
stochastic filtering method for the tracking of the solenoidal
component of a fluid motion field.

3 Filtering problem

Before describing in detail the tracking technique we pro-
pose, we first recall the principles of discrete stochastic fil-
tering. Stochastic filtering aims at estimating the inference
of a sequence of random vector variables describing a tar-
get of interest at different discrete time instants. This se-
quence is assumed to be a discrete hidden Markov chain
noted x0:n = {x0, ...,xn}, with initial distribution p(x0)
and transition distribution p(xk|xk−1). At a current instant,
the inference is done on the basis of the previous estimates
and on a sequence of incomplete and noisy past measure-
ments of the state. These measurements are here denoted
z1:n = {z1, ..., zn} and are assumed to be conditionally
independent given the state sequence, with probability dis-
tribution p(zk|xk).

Stochastic filters constitute procedures to estimate the
posterior pdf p(xk|z1:k) of the state, given all the measure-
ments until k. The inference may be obtained in two stages:

• Given p(xk−1|z1:k−1), the prediction step uses the
transition distribution p(xk|xk−1) to make a first ap-
proximation of the next state:

p(xk|z1:k−1) =
∫
p(xk|xk−1)p(xk−1|z1:k−1)dxk−1

• The likelihood p(zk|xk) of a new observation zk is
used to update the posterior pdf at instant k:

p(xk|z1:k) =
p(zk|xk)p(xk|z1:k−1)∫
p(zk|xk)p(xk|z1:k−1)dxk

In the case of a linear Gaussian model where the poste-
rior distribution can be analytically computed, the filtering
problem is solved with the help of the well-known Kalman-
Bucy filter. In a non linear/non Gaussian case, particle fil-
tering authorizes a recursive Monte-Carlo approximation of
the posterior density. Particle filters approximate the pos-
terior density p(x0:k|z1:k) by a weighted sum centered on
elements of state space called particles{x(i)

0:k}. These parti-
cles are hypothetic trajectories of the state with initial con-
dition x0, they have nothing to do with the source/vortex
particles we introduced here. At each iteration k, the set
of particles is drawn from an approximation of the un-
known posterior distribution called the importance function
and denoted π(x0:k|z1:k). A weight is then computed for
each particle, from the measurement likelihood. Assum-
ing the importance function can be factorized as follows:

π(x0:k|z1:k) = π(x0:k−1|z1:k−1)π(xk|x0:k−1, z1:k), the
method becomes sequential, and is usually denoted as se-
quential importance sampling filter [9, 11]. During the pre-
diction step, x(i)

k is sampled from π(xk|x0:k−1, z1:k), and

the trajectory {x(i)
0:k−1} is augmented with x(i)

k . The update
step consists then in a recursive evaluation of each weight:

w
(i)
k = w

(i−1)
k

p(zk|x(i)
k )p(x(i)

k |x(i)
k−1)

π(x(i)
k |x(i)

0:k−1, z1:k)
.

The Monte-Carlo estimate of the posterior pdf p(xk|z1:k) is
then:

p̂(xk|z1:k) =
N∑

i=1

w
(i)
k δ(xk − x(i)

k ).

In practice, it is well known that the particle filtering method
leads to an increase over time of the weights variance and
to a decrease of the number of significant particles. A solu-
tion to tackle this problem can be to minimize the variance
of the weights by introducing the so-called optimal impor-
tance function p(xk|x(i)

k−1, zk)[1, 9]. This optimal function
is unfortunately only available for a linear measure equation
with Gaussian or mixture of Gaussian likelihood [1]. When
such optimal importance function is not available, the im-
portance function is often simply set to the prediction den-
sity: π(xk|x(i)

0:k−1, z1:k) = p(xk|x(i)
k−1). In that case, the

recursive formulation of the weights w(i)
k simplifies as:

w
(i)
k = w

(i−1)
k p(zk|x(i)

k ). (11)

Another procedure used to avoid degeneracy consists in re-
sampling the particles. Resampling procedures consist in
replacing trajectories with small normalized weights with
those associated to stronger weights.

4 Application to vortex structures
tracking

In this section we show how such a scheme can be adapted
to track the solenoidal component (ie. the vortex particles)
of the motion field. For sake of simplicity we assume here
that the whole motion field is divergence free and therefore
reduces to its solenoidal component.

4.1 Dynamic of the vortex particles

Let us recall that fluid flows dynamic can be described by
the Navier-Stokes equation in its velocity-vorticity formu-
lation:

∂ξ

∂t
+ (w.∇)ξ = ν�ξ, (12)



where w = w(x, t) is the velocity and ξ denotes the vortici-
ty, defined as ξ = curl w. ν is the viscosity coefficient of the
fluid. At each time step, the vorticity variation is described
by an advection-diffusion equation. This equation may be
solved by two distinct steps. This way to handle this equa-
tion, – known as viscous splitting method [4] –, enables to
treat successively the non-viscous and the viscous part of
the equation. The first step is the convection part and cor-
responds to the left part of (12). The second is the diffusion
part and is related to the right part.

If xi denote the center of a vortex particle as defined in
section (2.2), the convection and diffusion parts respectively
described read:

dxi

dt
= w(xi) and

dξ(xi)
dt

= 0, (13)

and

dxi

dt
= 0 and

dξ(xi)
dt

= ν�ξ(xi). (14)

The total transport of vorticity due to convection and d-
iffusion is finally obtained by combination of these two so-
lutions. The convection step is solved through a forward
integration. For fixed strength and fixed influence domain
the successive locations of the particles and the underlying
velocity field described is obtained from equation (7) in sec-
tion (2.2). The diffusion part can be solved efficiently by
Chorin’s random walk method[4]. This method relies on the
probabilistic interpretation of the solution of the diffusion
equation dξ(xi)

dt = ν�ξ(xi) and on the relation between d-
iffusion and Brownian motion. In fact, it can be shown that
a large set of particles undergoing Brownian motion pro-
vides a good approximation to the heat equation [13]. The
principle of Chorin’s random walk method associated to a
viscous splitting of the vorticity advection-diffusion equa-
tion consists then in transporting forward the vortex parti-
cles by their own induced velocity field (convection step)
and to add an appropriate Brownian perturbation to simu-
late the diffusion.

Let Xt denote the R
2p-vector gathering all the vortex

particles locations {xi}i=1:p at time t. Let w(Xt) represent
the vector of the velocities evaluated at these locations. The
stochastic process X = (Xt)t≥0 evolves then according to
the following Itô diffusion process:

dXt = w(Xt)dt+ σdBt, (15)

where dB is a 2p-dimensional Brownian motion with inde-
pendent components, and σ =

√
2ν + η, where η express

the uncertainty on the model. Discretizing such a stochastic
differential equation with an Euler scheme and initial con-
dition Xk

0 = Xk gives:

Xk
j = Xk

j−∆t + w(Xj−∆t)∆t+ vj , (16)

where vj are zero mean independent Gaussian noises, with
standard deviation σ. The evolution of the state X between
two frame instants k and k + 1 and for discretization steps
∆t is represented by the following transition equation:

p
(
Xk

j |Xk
j−∆t

)
= N (

Xk
j−∆t + w(Xk

j−∆t)∆t, σ∆tI2p

)
,

(17)

where I2p denotes the 2p× 2p identity matrix.

4.2 Measurement equation

The set z1:n = {z1, ..., zn} of measurements is extracted
from the image sequence. At each step k, the measuremen-
t equation is constructed from the estimated field wk (ob-
tained from the predicted positions of the vortex particles)
and the pair of images (Ik, Ik+1). We index w by k to em-
phasize the fact that it depends on the positions of all the
vortex particles at time k.

In order to devise a measurement equation likelihood, a
region Ri is defined around each vortex particle xi. This
region is in practice fixed to the influence domain of the
corresponding particle. Assuming then a brightness con-
sistency up to a Gaussian noise for all points belonging to
region Ri, we have:

Ik(x) = Ik+1(x + wk(x)) + uk, (18)

where uk is a zero mean Gaussian noise of variance σ2.
Noting R as the union of all the regions Ri and zk as

the vector gathering all the luminance values Ik(x) for all
x in R and assuming that Ik(x) and Ik(x′) are independent
conditionally to Xk ∀(x,x′) ∈ R, the likelihood reads:

p(zk|Xk) =
∏
x∈R

p(Ik(x)|Xk), (19)

and consequently

p(zk|Xk) ∝ exp
(
−
∫

R

(Ik(x) − Ik+1(x + wk(x))2

2σ2
dx
)
.

(20)

4.3 Tracking by non linear filtering

The filtering method presented in section 3 is used to track
the set {xi}i=1:p of vortex particles. The highly non linear
nature of the state dynamic and of the likelihood requires
the use of the particle filtering method. The optimal im-
portance function is obviously not available in our case, we
thus set the importance function to the prediction density
and use formula (11) to evaluate the particles weights.

The prediction and update steps of the particle filter algo-
rithm are performed iteratively, together with a resampling
of the particles cloud when necessary.



At k = 0, the initial distribution p(X0) of the set of
vortex particles is given by the estimation method presented
in section 2.3. In fact, the method gives a set of positions
for the vortex particles and the amount of vorticity carried
by each particle (through the estimated strength coefficient
and influence parameter). This initial distribution gives the
initial representation of the solenoidal component.

Knowing p(Xk−1|zk−1), the filtering particles are sam-
pled from (17) withXk−1

j=0 = Xk−1 as initial condition. The
sampling is done iteratively until j = N , (with N∆t = 1).
It is important to outline that no update step can be per-
formed between two frame instants as no observation is
available within j = 0 and j = N . At j = N a new
observation becomes available and the particles weights are
updated according to equation (11), with p(zk|X(i)

k ) given
by (20).

5 Results

In this section we show results obtained on a 60 frames real
world sequence showing a vortex launch at tip of airplane
wing. The tracker is initialized with the help of the esti-
mation method described in section (2.3). Such a method
provides us an initial set of locations for the vortex parti-
cles, together with a description of the vorticity distribution
in terms of strength and amplitude parameters associated to
each particle.

The initial state is presented in figure (1). On this fig-
ure we have plotted the initial vector field, the first image
of the sequence and the corresponding vorticity map. On
this latter map one can see a primary vortex and a smaller
secondary vortex turning around the first vortex. This result
has been obtained with a set of 15 vortex particles.

(a) (b) (c)

Figure 1: (a) First image of the sequence; (b) motion field
estimated at time k=0, with the method presented in section
2.3; (c) corresponding vorticity distribution, set of vortex
particles used to initialize the tracking.

To demonstrate the efficiency of the tracking we compare
the solution obtained only considering the dynamic with the
filtered solution. Figure (2) shows the result obtained only
propagating the initial set of vortex particles according to
the dynamic equation described in section (15).

k = 10 k = 20

k = 30 k = 40

k = 50 k = 60

Figure 2: Evolution of the motion field obtained by propa-
gating the initial vortex particles according to the Itô diffu-
sion process (15).

k = 10 k = 20

k = 30 k = 40

k = 50 k = 60

Figure 3: Evolution of the motion field obtained by particle
filtering.



Figure (3) shows the result obtained by the non linear fil-
tering method described in the previous section. The filter
has been run with the same initial conditions. As can be
observed from fig. (2), the motion fields obtained consider-
ing only the dynamic show a significant drift of the vortex.
In addition the vortex degenerates quickly and shows, from
frame #30, improper elongations which are not visible on
the image sequence.

As can be seen on fig. (3), the solution recovered by the
tracking method is visually much more satisfying. The vor-
tex motion is well reconstructed at each frame instant. No
vortex drift is observed anymore, as illustrates also the vor-
ticity maps comparison on fig. (4). The deformation of the
vortex is also well reconstructed and fit well the photomet-
ric vortex contours.

k = 30, prediction only non linear filtering

k = 50, prediction only non linear filtering

Figure 4: Comparison of the vorticity maps for two different
times of the tracking.

6 Conclusion

In this paper we have proposed a non linear stochastic fil-
ter for the tracking of fluid motion. The tracking is based
on a low dimensional representation of the velocity field
obtained through a discretization of the vorticity and diver-
gence maps. To the best of our knowledge, it is the first time
that a method to track motion field features is proposed. Be-
yond the tracking, such a method allows to recover a set
of consistent velocity fields for a whole sequence. This
method is nevertheless restricted to solenoidal fields. When
diverging motions are present the corresponding irrotation-
al component must be either estimated at each frame instant
or tracked with another dynamic expression.
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flows. IEEE Trans. Pattern Anal. Machine Intell., 24(3):365–
380, 2002.
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