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Abstract. In this paper we propose a new motion estimator for image sequences
depicting fluid flows. The proposed estimator is based on the Helmholtz decom-
position of vector fields. This decomposition consists in representing the velocity
field as a sum of a divergence free component and a curl free component. In order
to provide a low dimensional solution, both components are approximated using
a discretization of the vorticity and divergence maps through regularized Dirac
measure. The resulting so called irrotational and solenoidal fields consist then in
linear combinations of basis functions obtained through a convolution product of
the Green kernel gradient and the vorticity map or the divergence map respective-
ly. The coefficient values and the basis function parameters are obtained as the
minimizer of a functional relying on an integrated version of mass conservation
principle of fluid mechanics. Results are provided on real world sequences.

1 Introduction
The observation, understanding and control of complex fluid flows is a major scientif-
ic issue. For instance, in environmental sciences such as oceanography, meteorology
and climatology, the monitoring or the forecasting of the atmosphere or the ocean is
becoming more and more crucial for our everyday life. Due to their very complex na-
ture and also to unknown or inaccurate border conditions, we have a lack of complete
physical understanding of these flows. Accurate and dense measurements can hardly
be recovered by probes or by numerical evaluation of current physical models. Imag-
ing sensors are very attractive in this context as they provide multi-modal data at high
spatio-temporal resolution.

The analysis of dynamic structures and the estimation of velocities for fluid image
sequences gave rise to a great attention from the computer vision community since
several years [6, 7, 10, 12, 14, 15]. These works concern application domains such as
experimental visualization in fluid mechanics, environmental sciences (oceanography,
meteorology, ...), or medical imagery.

Recently, several dedicated approaches have been proposed for fluid flow velocity
estimation [4, 9]. Unlike most of the motion estimator based on the brightness con-
sistency assumption and a first order smoothness function, these techniques rely on a
data-model derived from the continuity equation of fluid mechanics and second order
div-curl regularizers. In the same way as a first order regularizer (eventually associat-
ed to a robust cost function) favors piecewise translational motion fields in penalizing
high gradients of the solution, second order div-curl penalizers encourage solutions
with blobs of piecewise constant divergence and curl. These methods are conceptually
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much more satisfying as they comply with the brightness variations and the motion-
s observed in fluid image sequences. Nevertheless, these method have to face much
greater numerical complexity. Besides, these estimators are dense estimator and the so-
lutions associated belong therefore to spaces of great dimension. It is desirable for some
applications to provide low dimensional solutions. This is the purpose of this paper.

We propose here a technique to estimate low dimensional motion field from image
sequences depicting a fluid flow. This method relies on the Helmholtz decomposition of
a motion field which consists to decouple the vector into a divergence free component
and a curl free component. The method we devise is based on a discrete representation
of the curl (also called vorticity) and divergence map. This discretization enables to
define implicitly adapted regularizers for fluid motion estimation problems.

2 Definitions and properties of vector fields

In this section, we present first known analytic results on planar vector fields. We shall
rely on them to develop an original method for fluid motion estimation.

A two-dimensional vector field � is a R
�
-valued map defined on a bounded set

�
of

R
�
. We denote it w �����	�
����������
������������ , where ���
����
���� and � and � are the spatial

coordinates. Each component of the vector field will be supposed twice continuously
differentiable: ��
������ � � � 
 R � .

Noting �����!  #" 
$  #% � the operator whose components are the partial derivatives

with respect to the coordinates � and � , we define the divergence: div �&�
' �' �
( ' �' � �

�*) � and the scalar vorticity of the vector field: curl �+�
' �' �-,

' �' � �.�*) �0/1
 where

� / �2� , �3
��4� is the orthogonal counterpart of � .

The vorticity accounts for the presence of a rotating motion, while the divergence is
related to the presence of sinks or sources in the flow. A vector field whose divergence
is null at every point is called solenoidal. Similarly, a field with zero vorticity will
be called irrotational. It is well known that for irrotational fields there exists a scalar
function 5 , called the velocity potential, such that 6��7��5 . Similarly, for solenoidal
fields there exists a scalar function 8 called the stream function such that 6 / �
�98 .
Any continuous vector field that vanishes at infinity can be decomposed into a sum
of an irrotational component with null vorticity and a solenoidal component with null
divergence. This is called the Helmholtz Decomposition. When the null border condition
can not be imposed, an additional component, named the laminar component, which
is both irrotational and solenoidal, has to be included. The decomposition reads then:
�:�.�<;>=?= ( �<@�ACB ( �DB>E�F . This last component can be approximated using the Horn
and Schunck estimator with a strong regularization coefficient [5]. In the sequel we
will assumed that the laminar component has been previously computed and that its
associated motion has been removed from the image sequence. We will consequently
assume a null boarder condition at infinity knowing that the image sequence, G3���H
�I�� , is
related to the original image sequence, G A ���H
�I�� , by G3���H
�I��!�JG A ��� ( � B>EKF ���H
�I��K
�I�� .

Substituting the two components � ;>=?= and � @CA�B by their expressions in terms of po-
tential functions and considering the divergence and the curl of the motion field enables
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to write the potential function as solution of two Poisson equations:
� 5 � div � ; =?=������ � 8 � curl � @�ACB 
 (1)

where
�

denotes the Laplacian operator These solutions may be expressed as convolu-
tion products:

5 ���
	<� � ,�� � div �<;>=?= � � � � � �
	�� div �<; =?= 
 (2)

8*����	<��� ,�� � curl ��@CACB�� � � � � �
	�� curl ��@CACB 
 (3)

where 	 is the Green’s function associated to the two-dimensional Laplacian:

	<����� � �������� ��� ��� �K) (4)

As the vector fields � ;>=?= and � @CA�B are respectively the gradient and the orthogonal
gradient of the potential functions 5 and 8 , equation (2-3) may be rewritten as:

�<; =�= ����� div �<; =�= and ��@CACB�����/�� curl ��@CA�BC
 (5)

where � denotes the gradient of the Green kernel. The second equation of (5) is known
as the Bio-Savart integral. These two equations state that the solenoidal and the irrota-
tional components (and consequently the whole vector field) may be recovered through
a convolution product knowing the divergence and the vorticity of the velocity field.

3 Vortex particles
The idea of vortex particles methods [2, 11] consists in approximating the vorticity of a
field � by a discrete sum of delta functions located at point vortices � ; :

curl �9� �����
� 
;�!#"%$ ;'& ��� , � ; ��
 (6)

with & denoting the Dirac measure.
This discretization of the vorticity into a limited number of elements enables to

evaluate the velocity field directly from the Bio-Savart integral (equ. 5). Due to the sin-
gularity of the Green kernel gradient, � , the induced field develops (= -type singularities,
where r is the distance to the point vortices.

These singularities can be removed by smoothing the Dirac measure with a cutt-off
or blob function, leading to a smoothed version of � . Let )�* be such a blob function
scaled by a parameter + : ) * � ����� (*-, )��/. * � . The smoothed kernel is defined as � * ��0�1) * . The amount of smoothing is determined by the value of + . If +3254 , ) * tends to
the Dirac function and � * 26� .

In the same way, for the divergence map a source particles representation reads then:

div �<;>=?= � �����
� 
;7!�"8$ ;') *-9 � � , � ; �K
 (7)

where � ; denotes the center of each basis function ):* 9 , the coefficient $ ; is the strength
associated to the particle ; , and + ; represents its influence domain. These parameters are
free to vary from a function to another.
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4 Fluid motion estimation from image sequences
In this section we present how a vortex and source particles representation may be used
in conjunction with an appropriate cost function to devise a motion estimator for image
sequences depicting fluid flows.

4.1 Motion representation
As we saw previously, discretizing the vorticity map with vortex particles together with
a gaussian smoothing of the Dirac measure leads through Bio-Savart integral to the
following representation of the solenoidal component of the motion field:

��@CA�B��������
� 
;�!#"%$

@CA�B; ��/�� ) *'9 ��� , � ; � �
� 
;7!�"8$

@CA�B; ��/* 9 � � , � ; �K
 (8)

where � /*'9 is a new kernel function obtained by convolving the orthogonal gradient
of the Green kernel with the blob function. Obviously, a similar representation of the
irrotational component can be obtained using source particles.

As a result, we exhibit an approximation of the complete motion field as weighted
sums of basis functions defined by their centers location and their respective spatial
influence. With a gaussian smoothing function which allows to derive analytically the
associated smoothed kernel � * , the final expressions of the motion field components
are:

� @CA�B ����� �
� ����� 
;�!#" $

@CA�B; ��� , �
@CA�B; � /��� � � , � @CA�B; � � � � , �

�
� 	�
�	 �����9 � ,

 �����9 , �K
 (9)

and

� ;>=?= � ��� �
� 9���� 
;�!#" $

;>=?=; � , �
; =�=;� � � � , � ;>=?=; � � � � , �

�
� 	�
�	 9����9 � ,

 9����9 , �K) (10)

This representation will be incorporated within a spatio-temporal variation model of the
luminance function in order to devise fluid motion recovery as an estimation problem
from the image sequence data.

4.2 Integrated continuity equation as a brightness variation model
For image sequences showing evolving fluid phenomena, the usual brightness consis-
tency assumption (

���
��� � 4 ) doesn’t allow to model temporal distortions of luminance

patterns caused by 3D matter transportation. For such kind of sequences, several works
have shown that a data model build from an analogy with the mass conservation con-
straint of fluid mechanics (also known as continuity equation) constitutes a better model
[1, 4, 13, 14]. This data model reads:

� G
� I � G div ��) (11)

Such a constraint relates the effect of a divergent motion to a brightness change. By
this way it is possible to modelize the effect of the apparent disappearance/appearance
of matter caused by 3D motions which are not in the visualization plane. For a null
divergence this data model reduces exactly to the usual brightness consistency equation.
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For long range displacements (i.e. fast flows or long time latency between two im-
ages as in meteorology) an integrated form of this constraint can be obtained[4]:

G � � ( �9� ���K
�I ( � ��������� div �9������� , G � �H
�I�� ��4�) (12)

According to this constraint the displaced image at time I ( � is related to the image
at time I by a scale factor which depends on the motion divergence. This constraint
comes to the standard displaced frame formulation of brightness consistency for a null
divergence.

Considering this constraint holds almost everywhere on the whole image plane leads
to seek a motion field minimizing the following cost function:

� � G 
�� � � �
�
	 G � �

( �9� ���K
�I ( � � � ����� div �9� ����� , G3���H
�I���

� � �H) (13)

4.3 General minimization problem

Considering such a cost function for an unknown motion field approximated through
vortex and source particles representations comes down to solve the following mini-
mization problem:

������ @CA�B; 
 �$
@CA�B; 
 �+ @CA�B;�� ;�! (�� � ����� 
����� ; =�=; 
 �$

;>=?=; 
 �+ ; =?=;�� ;�! (�� � 9���� �!���������! � � � G 
"�� ��) (14)

One seek therefore the minimizer of the cost function
�

in terms of particles location,
strength coefficients and influence domains. Due to the peculiar form of the data mod-
el this minimization problem is highly non linear. To face this difficult optimization
problem we have chosen to rely on a non linear least square process embedded in a
multi-resolution framework and associated to a generalized conjugated gradient opti-
mization known as Fletcher-Reeves method.

We present more precisely in the next section how this difficult global optimization
issue is handled.

5 Estimation

The non linear cost function we consider can be seen as a weighted displaced frame d-
ifferences cost function. As most of the standard motion estimators based on such a non
linear formulation we will consider an incremental minimization framework to remove
the non linearity of the displaced image brightness function. This scheme consists in
applying successive linearizations around previous estimates. That kind of techniques,
in the same spirit as Gauss-Newton non linear least squares, is in most of the case
embedded within a multi-resolution framework. We will also rely on such a data repre-
sentation.

5.1 Incremental estimation scheme

We assume first that a previous estimate of the set of unknowns is available. All these
unknowns combine together with respect to our modelization to give a motion field #� .
Considering a linearization around �%$ ( #�9
�I ( � � and dropping the time indices of
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the intensity function for sake of clarity we end up with the following functional to be
minimized according to � , an unknown correction motion field:

� ��� � � �
�

� � ����� div �� ������� � � �G������?� � ; ����9����� ( � �G � ����� � �1����� ( �G3����� � , G3������� � � �H)
(15)

In this equation we have introduced a compact notation �G3����� for the backward registered
image G3�%$ ( #��
�I ( � � . The correction field � is a combination of a solenoidal component� @CA�B and of an irrotational component ��; =?= according to the Helmholtz decomposition.
Like the field #� , this correction field is parameterized on the basis of a set of vortex
and source particles. In practice, this kind of scheme is embedded into a pyramidal
multiresolution data representation scheme. Such a representation is obtained through
low-pass filtering and sub-sampling. At a given level, the known motion estimate �� is
fixed to bev the projected estimate obtained at the previous level. For the first level this
field is a null field.

5.2 Resulting minimization problem
The incremental estimation scheme transforms the original non linear optimization
problem (14) into a succession of simpler minimization problems with respect to some
of the unknowns. As a matter of fact, considering the derivatives with respect to the
different types of unknowns gives:

' � �����'
$ ;

�
�
� � ; ������ � � ;?� ��� �

� � � , � �
� � 9�	 	�
 � ,

 9 , � �4����� 	 �4� ��� � �!� �H
 $ ; � (
� ����� 
 � �H
 (16)

' � �����'�� ;����� � 9 !��
 9 �
�
�
�
$ ;� + ; � ; ������ � ;?����� �

� � �
� � 9�	 	�
 � ,

 9 , ��� ��� 	 �4����� � �1���H
�+ ; � (�� � ����
 � �H
 (17)

�
. 9
� �����<� ��

�
' � �����' � ;' � �����' � ;

���
� 
 (18)

where: ' � �����' � ; �
�
� ,

,
 ,9 � = 9"! .$# � , = ,9 ! " #&% ! � = 9"! .$# � , % = ,9 ! " #&# ! ( �(' 
 � � 9�	 	�
 � ,

 ,9 #) � = 9*! .$# � +

��� ��� 	 �4����� � �1���H
�� ; � (
� ����� 
 � �H
 (19)

and: ,---. ---/
� ; � (*'9 

� ;�� ��� � � , � ;�� � � ; �����K
 � ; ����������4������� � div 01 ! .$# � �G � % ( ����� � div #� � ��� ( � �G � % ( � ������
� ����� � � div 01 ! .$# �G � % ( � ��� , G � ������)

(20)
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Canceling out equations (16,17 and 18) leads to three different kinds of systems.
The first one, in terms of coefficient strength is linear, the second one in terms of parti-
cles influence domain is non linear. No constrained minimization are required for both
of them. A gradient descent process can be devised for this set of unknowns. For the
third one an additional constraint to keep the particles into the image plane must be
added. Such a constrained minimization problem combined with the kind of non lin-
earity we have here leads to a very tough minimization. Besides, if we assume that in
some cases we have absolutely no idea of the initial particles location we must devise a
method allowing eventual long range moves of the particles coordinates.

We have thus decoupled these three kind of unknowns. The two first (the strength
coefficients and the influence domains of the particles) will be solved with a generalized
conjugated gradient process while the third kind of unknowns (the particles locations)
is kept fixed. The particles location will be in turn updated through a mean shift process
that will be described later.

5.3 Fletcher-Reeves optimization

Fletcher-Reeves optimization consists in a non linear extension of conjugate gradient
algorithms. Given an iterate ��� � � $

@CA�B� 
�+ @CA�B� 
 $ ; =�=� 
 + ;>=?=� � and a direction ��� , a line
search (w.r.t. ��� ) is performed along ��� to produce ��� % ( ����� ( ���	�
� . The Fletcher-
Reeves variant of the nonlinear conjugate algorithm generates ��� % ( from the recursion:

� � % ( � � � ��� � % ( � ( � � � � with
� � � 
�� � � ����� % ( � � �� � � ��� � � � ��� � )

Let us note that for the linear part of our system the method comes to a standard conju-
gated gradients. To start the optimization process we consider, as said before that parti-
cle locations are fixed. We initialize the domain of influence in an adaptive way. Their
values are fixed to the value of the distance to the nearest particles. At convergence, we
obtain a representation of the unknown correction field for fixed particle location. Let
us now describe how we propose to adjust these locations.

5.4 Adjustment of particles location

The estimation method we have proposed requires to fix for the solenoidal and irro-
tational components particles locations on the image domain. We propose now a way
to move each particle according to an error surface defined from the image data. The
method we propose is based on the mean shift procedure [8].

Definition of the error function Considering that estimates of the strength coefficients
and influence domains are available for both irrotational and solenoidal components we
consider two different error surfaces. These surfaces are based first on an image re-
construction criterion. For one given component this criterion measure the discrepancy
between the image at time I and the backward registered image I ( � obtained con-
sidering the other orthogonal component fixed. For the solenoidal component the error
surface is defined at each point of the image domain as:� @CA�B �����!� G � % ( ��� ( ��9����� ( �� ;>=?= � ����� , G � � ���K) (21)
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This error surface gather all the reconstruction errors due to the solenoidal component.
Similarly the error surface corresponding to the irrotational component is defined as:� ; =�= ����� � G � % ( ��� ( �� ����� ( �� @�ACB � ����� , G � � ���K) (22)

The quality of the modelization we consider depends obviously on these error func-
tions but also on the accuracy of the discrete approximation of the divergence and curl
map. To achieve the best approximation as possible we should expect to have a great
number of particles to describe areas corresponding to divergence or curl blobs and on-
ly few of them for the rest of the image. To reach that goal we consider an additional
criterion based on the amount of divergence and vorticity. Considering the discrete ex-
pressions of the vorticity and of the divergence map given by the particles method we
end up with two surfaces:

� @CA�B � ��� � � � @CA�B ������� � 
.�� �

� � @CACB ������� � ( � curl ��1������� � 
.�� �

� curl ��!� ����� � 
 (23)

and
� ; =�= ����� � � � ; =�= ������� � 

.�� �
� � ; =�= ������� � ( � div ��1������� � 

.�� �
� div ��1������� � 
 (24)

for the solenoidal and irrotational components respectively. In order to restrict the dis-
placements of the different particles to localized areas we combine these functions with
an a priori prior on the particles location.

A priori probability distribution for particles location Considering � �; the random
vector denoting the location of particle ; at step � , we propose to fix a distribution
of � F % (; , knowing � � (�� � , where � � (�� � represents the set of the � vectors ��� � ( 
 ) )>) 
�� �� �at step � . We assume this probability distribution is gaussian, defined as � F % (; � � F (�� ���� ��� F; 
�� F; � , The standard deviation � �; is set to the half of the distance between � F; and
the closest center among �#� �	 � 
�
 � � 
 ) ) 
 � 
�

��0; . The distribution takes into account
the previous location of the particles through a gaussian prior of mean � �; but also the
dependency between � F % (; and all the other particles through the expression of � F; .

Conditional version of the probability distribution Combining the a priori distri-
bution � .���� �9 � .�� ��� � defined above with the surface described before, denoted

�
.�� ��� � and

characterized by (23) or (24), we can define a conditional probability distribution func-
tion of a particles � � % (; given the others:

� .���� �9 � . � ��� ��� � 	 � ��� � ������� �
. � ��� � ������) � .���� �9 � . � ��� � ������) (25)

This pdf balances an a priori particle location and the amount of error associated to
all the particles locations. Once known this distribution for each particle we propose to
shift � �; towards the pdf local mode in order to find the most probable location of the
particles set.
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Shifting the particles towards the pdf modes From the sample � � . � ��� � ��� � ��� � � evalu-
ated at pixel coordinates � , and the probability distribution � . ��� �9 � . � ��� � , a continuous non
parametric estimate of the conditional probability distribution � . ��� �9 � . � ��� � � � 	 � ��� � , may be

obtained as

�� . ��� �9 � . � � � � � � 	 � ��� � �������
 
� � �

�
. � ��� � ��� � � . ��� �9 � . � � � � ��� � � � � , �� �

 
� � �

� � � , �� �

 (26)

where � is a kernel density and
�

is the window size.
The continuous pdf �� . ��� �9 � . � ��� � � � 	 � � � � � ��� is thus expressed as a linear combination

of basis functions with weighted coefficients given by � ��� � � �
. � ��� � ��� � � .���� �9 � . � � � � ��� � .

To shift a center � �; towards the nearest mode of �� .���� �9 � . � ��� ��� � 	 � � � � we rely on the

mean shift estimate of the gradient of a density function [3, 8]. This estimate called the
mean shift vector reads:

���
� 	 � ��� �

 
� � �

� �
�#��� 	<� � , �� �
 
� � �

� �
�#� 	<� � , �� � ,
�H
 (27)

where 	 is the kernel obtained by derivation of the kernel � . This vector gives at each
point the direction of the maximum increase of the density function estimated through
the weights � ��� � and Kernel � . Different choices can be done for this kernel. Usual
choice are the Epanechnikov kernel or a gaussian kernel. The gradient of the Epanech-
nikov kernel is a box function kernel whereas 	 remains gaussian for a gaussian kernel� .

Given this estimate of the pdf gradient, an iterative process called mean shift nat-
urally arises, which is convergent [3]. This process consists in moving iteratively the
kernel center

�
:

� � % ( � � � ( �
�
� 	 �

� � ��) (28)

In our case, the mean shift procedure is applied to the � @�ACB ( � ;>=?= centers of the
basis functions (or particles) involved in our motion field modelization. Through this
process, each particle is shifted towards the nearest mode of the conditional density�� . ��� �9 � . � ��� � � � 	 � ��� � . We have chosen to use the Epanechnikov kernel. Besides, the choice

of the window size is crucial. Different choices can be made. In our case we have settled
adaptative window sizes. They are fixed to the distance of the nearest particles. Such a
choice make sense in our case. As a matter of fact, for distant particles only a rough and
smooth estimate of the pdf function is needed whereas for close particles an accurate
estimate of the density is at the opposite required to approximate at best the vorticity
and divergence maps.

5.5 Overall estimation scheme
The overall estimation scheme consists in an alternate updating of the different un-
knowns. It is composed by the following two steps. For a given set of particles at some
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fixed locations, the strength coefficients and the influence domains attached to the parti-
cles blob function are estimated through the generalized conjugated gradient optimiza-
tion described in section 5.3. Once these parameters are updated, the vortex and source
particles locations are shifted toward the nearest local mode of the corresponding pdf.
This shift is realized applying the mean shift procedure described in the previous sec-
tion.

The whole process is stopped when the divergence and vorticity reach a certain
stability. This criterion is expressed as:
 �

div � � % ( , div
� � � ��

div � � � � � � ( 
 �
curl � � % ( , curl � � � ��

curl � � � � � �
6 Results

In this section we present some results given by our method on real sequences.
The first example corresponds to the motion of smoke behind a landing passenger

air plane. A strong vortex is located in the center of the image, and a second weaker one
begins to appear just below. The particles are initialized on a grid, without a priori. The
estimation method allows to guide the vortex particles towards the regions of interest of
the image and to estimate an accurate motion field (see the vector field and the associ-
ated vorticity map fig. 2. For this sequence we used a multi-resolution pyramid of two
levels. At the first level, the particles move all towards the strong vortex (fig. 1(b)). At
the finest level, the particles cloud splits up into two parts (fig. 1(c)). A set of particles
has moved towards the weaker vortex, authorizing them to capture its motion.

(a) (b) (c)

Fig. 1. Plane sequence. (a) Initial uniform disposition of the particles; (b) Final position of the
particles at the first level of multiresolution; (c) Final position of the particles at the second level.

The second example shows results on two consecutive images of the infra-red chan-
nel of Meteosat. The sequence represents a depression with a vortex in the left part of
the image domain and presence of convective clouds in the center. In this example, we
want to observe the motion in specific areas, we dispose thus the vortex and source par-
ticles manually in the regions of interest. During the estimation, the particles location
fits locally automatically. At convergence, the vortex particles remains mostly concen-
trated in the center of the vortex, while the source particles are located on the convective
cloud.
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(a) (b)

Fig. 2. Plane sequence. (a) Resulting motion field; (b)Associated vorticity.

(a) (b)

Fig. 3. Depression sequence. (a) Initial manual disposition of the particles. Black points represent
the vortex particles, white points the source ones; (b) Final position of the same particles.

(a)

(b) (c)

Fig. 4. Depression sequence. (a) Resulting motion field; (b) Associated vorticity; (c) Associated
divergence.
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7 Conclusion
In this paper we have presented an optical flow estimator dedicated to image sequences
depicting fluid flows. The proposed estimator provides a low dimensional parametric
representation of fluid motion. This parameterization has been obtained through a pe-
culiar discretization of the divergence and the vorticity map by means of adapted ba-
sis function centered at elements named particles. To handle the associated estimation
problem we have proposed an efficient strategy based on the coupling of a generalized
conjugated gradient and a mean shift process.
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