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Abstract. The international scientific context is pointing out the role
that can be played by models and observation systems for the evaluation
and forecasting of the risks related to environmental problems.
In this context, coupling data and models becomes a scientific challenge
regarding the following considerations: A numerical model without ob-
servation data is not really interesting; On the other hand models lack
the necessary data for forecasting, since they require an accurate initial
condition for expecting good results and are making use of parameters
which can not be obtained by measurement, for example sub-mesh pa-
rameterization. There is thus a need for an optimal use of all the available
information, in order to constraint as best as possible models with their
input data and parameters.
Data assimilation (variational methods or Kalman filters) is a solution
for combining different types of information: data and models. How-
ever structured spatial information of images are not often used in this
context. If they are, this is in a qualitative way and not with accurate
quantitative information.
This paper is then considering the problem of Image Data Assimilation
by focusing on satellite acquisition and on oceanographic applications. It
is evaluating the different quantitative measures that could be obtained
on these data for assimilation within these models.

1 Introduction

The international scientific context is pointing out the role that can be played
by models and observations systems for the evaluation and forecasting of the



risks related to environmental problems. International research programs such
as GMES (Global Monitoring for Environment and Security) have been created
to focus on this point.

In this context, coupling data and models becomes a scientific challenge re-
garding the following considerations: a numerical model without observation
data is not really interesting, and the available observations are not sufficient
for forecasting. This is especially the case of geophysical models, that are highly
non-linear and thus require a very accurate knowledge of the initial condition.
Furthermore, mathematical models are making use of internal parameters (such
as sub-mesh parameterization) which can not be obtained by measurements.
There is therefore a need for techniques to make an optimal use of the avail-
able of information, in order to constraint models as best as possible with an
unsufficient input data set (observation data and parameters).

Data assimilation is a mathematical solution for combining different types of
information: data and models. However images, when used in a data assimilation
framework, are either used in a qualitative way, or considered as data with no
spatial coherence as a collection of individual measurements.

This paper aims at discussing the potential of remotely-sensed images for
assimilation within environmental models with specific application to oceanog-
raphy. What is interesting is first to determine the different types of information
available in satellite acquisition, and then to examine how to perform data as-
similation with these information.

Section 2 shortly discusses the general problem of data assimilation and de-
scribes the model we are using in this paper to illustrate our research. This
section also defines the different types of information which should be extracted
from static images or from image sequences.

Section 3 describes in 3.1 the available satellite data for oceanographic studies
and summarize their properties. Then subsection 3.2 focus on the problem of
motion estimation: how to obtain good results of apparent motion by taking into
account the available information about data acquisition and observed processes?
Results are analyzed by using synthetic data produced by a given oceanographic
circulation model. The final aim is to obtain a good quality motion field which
should be assimilated in the model. Subsection 3.3 is then discussing the problem
of structure detection. This can be performed on a static image or it can be
done on a temporal sequence by tracking the deformable structure in time. It
is then possible to compute the Lagrangian trajectories of these structures and
compare them to in situ data (for instance ARGOS drifters) in order to perform
assimilation of Lagrangian data.

2 Data Assimilation within oceanographic models

Data assimilation is a global mathematical framework for combining heteroge-
neous information: data and mathematical model equations, in order to restore
as best as possible the state variables of the model. It has first been used in me-
teorology with huge numerical models (6 millions of variables) [21], and then in



hydrological [19, 31] and oceanographic applications[7, 14]. But this is a general
framework used in other domains: air pollution, biomedical applications, . . . Up
to now two main technical approaches of data assimilation have been developed:

– Sequential methods based on Kalman filtering,
– Variational methods based on optimal control.

Data used for assimilation are usually direct or indirect measurements of model’s
state variables. In this context, images and particularly oceanographic satellite
data, contain a lot of information, which should be useful for the control of
models and are yet not used enough. A good example is provided by the me-
teorological domain: there is a huge amount of available satellite data (approx-
imatively 20 space-borne sensors are dedicated to meteorological applications,
11 of which being operational and constituting the World Meteorological Orga-
nization’s Global Observation System). There satellite data can be assimilated
as a collection of individual measurements (ex: each infrared pixel considered
as a local measure of temperature), but the structured spatial information

observed on these images is used in a rather qualitative way, although techniques
inspired from computer vision can be applied for that purpose: for example, the
detection of dark structures on water vapor images conducts to the correction
of forecast in case of storms by running again the model with different initial
conditions [29]. Then the interesting question is: how to make use of the quan-
titative structured information contained in satellite data to better predict the
state of a system?

For clarity, we discuss this problem in the case of variational assimilation and
for oceanographic applications. It corresponds to the set of following equations:
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∫ T

0

‖CX − Xobs‖
2dt.

(1)

where:

– X denotes the state vector corresponding to the output of the model,
– K denotes the control parameters of the model,
– F is the model forecast operator,
– V denotes the initial (background) condition at date t = 0,
– J is a cost function taking into account the difference between the prediction

of the model and the observation Xobs,
– C is the observation operator going from the space of state variables to the

space of observation.

The challenge is to add a term allowing to compare the image acquisitions to
the state variables of an oceanographic model, which requires the definition of a
new operator from the space of state variables to the space of images, or to the
space of image characteristics. This problem gives rise to different considerations:



– On the image content: images can be static and in this case we should con-
sider structures as explained in subsection 3.3, or they can be dynamic and
in this case we can be interested either by motion estimation (subsection 3.2)
or by Lagrangian trajectories of structures (subsection 3.3).

– On the image space: choice of mathematical spaces adapted to represent
boundaries of structures, Lagrangian trajectories, motion fields, etc.

– On the operator going from the state vector space to the image space.
– On the regularity of the image space: it is necessary to add a regularity term

in the image cost function, since information extraction from images is often
an ill-posed problem.

Coming to the problem of assimilation of dynamic data obtained from satel-
lite images (which is the most interesting problem regarding the oceanographic
application), we are facing different possibilities, which will be discussed in this
paper:

– Assimilation of a motion vector field, which corresponds to a state variable
of an oceanographic model,

– Assimilation of Lagrangian trajectories obtained by detection and tracking
of characteristic deformable structures,

– Assimilation of Lagrangian trajectories obtained by temporal integration of
a motion vector field.

As surface velocity is a state variable of ocean circulation models, direct Eu-
lerian assimilation of this information is possible. Satellite acquisitions allow to
observe the ocean surface. We try to infer the surface apparent motion from these
observations. But velocity estimation is prone to errors as we will extensively dis-
cuss in this paper. Using trajectories could be interesting because it completes
the assimilation system with the variables corresponding to Lagrangian data.
There are two main interests in trajectories: the determination of these trajec-
tories often rely on alternative image techniques such as structure detection and
tracking. Moreover, buoy drifter data are available for validation.

For better focusing our paper and defining which data we will be able to
use for assimilation, we discuss our ideas with a specific ocean circulation model
called OPA, a 3D primitive equation model developed by LODYC [23]. This
model ran in the North-East Atlantic configuration with a spatial resolution of
0.05o and a daily temporal resolution over 3 months. The state variables of the
model are the velocity wM = (uM , vM , wM ) at different vertical layers, temper-
ature and salinity; the chlorophyll concentration can also be derived by coupling
the biological model LOBSTER [15]. The input data, or control variables, are
the initial conditions of the state variables and the boundary conditions (sur-
face, wind stress, friction, radiative forcing). The model has been calibrated in
order to provide an integrated view of the evolution of the spring bloom during
the Program of Ocean Multidisciplinary MEsoscale (the POMME campaign)[22].
The domain of interest covers the location of the strongest large scale meridional
gradient in wintertime mixed-layer depth. In this way, we obtain two synthetic
sequences of 88 images with size 99 lines by 109 columns representing respectively



the surface temperature and chlorophyll concentration, these are associated to a
sequence of 99× 109 vector images representing the motion field at the surface,
with its two components wM = (uM , vM ).

As it will discussed in section 3, the outputs of the OPA model (temperature,
chlorophyll) are comparable to information provided by oceanographic satellites,
in terms of data nature, spatial and temporal resolution, but free of cloud and
atmosphere contamination. Furthermore, the OPA model provides a velocity
field consistent with the temperature and chlorophyll data: this is of course
not available in practice with satellite data, and provides us with a powerful
validation framework since we will be able to check the estimated apparent
motion against the OPA motion field. The OPA motion fields will be furthermore
used to check the validity of different mathematical models (such as conservation
equations) we apply on image data

Before getting to motion and trajectories estimation in the next section, we
first present the current state-of-the-art of satellite images dedicated to oceanog-
raphy and their potential for data assimilation.

3 Analysis of the potential of satellite data for

assimilation

Satellite data and their qualitative and quantitative content will be presented in
subsection 3.1. Different problems can be considered for coupling satellite data
and oceanographic models, that will then be discussed in the following subsec-
tions. First we consider the estimation of apparent motion on oceanographic
satellite images (subsection 3.2). Physical information on data acquisition and
on oceanography has to be used to derive adequate conservation and regularity
constraints for the numerical estimation process. We then show results of motion
estimation validated against synthetic velocity fields. Finally, structure segmen-
tation and tracking in order to compute Lagrangian trajectories is presented in
subsection 3.3.

3.1 Satellite data

For oceanographic applications, we can make use of two main types of image data
in order to study the problems of motion and structures detection and track-
ing: Sea Surface Temperature images and Color data. We do not mention other
satellite data, which are not acquired as images (such as along-track scanners),
for which images are produced after interpolation of the different satellite tracks:
this is for instance the case of altimetry (Topex-Poseidon, Jason), scatterometer
(NSCAT, Seawinds). We also do not address in this study SAR images used for
monitoring polar ice and oil-spills.

– SST data are acquired from thermal imagery in the infrared domain, and
are very often provided by meteorological satellites. SST estimation rely on
the analysis of brightness temperatures, obtained by inverting the Planck



blackbody function from the radiance measurements, and by combining dif-
ferent infrared channels so as to discard the contribution of atmosphere to
the signal. SST data can be accessed on a global scale using geostationary
platforms (Meteosat, GOES, GMS, . . . ), with continuous acquisition every
15 or 30 minutes, but coarse spatial resolution (5 to 20km). Polar orbiting
platforms, such as NOAA-AVHRR, MODIS or the future MetOp satellites,
provide information at synoptic scale with daily revisit and a spatial resolu-
tion ranging from 250m to 1km (see example images on figure 1).

– Ocean color data are acquired in the visible spectrum, using channels nar-
rowed on chlorophyll absorption bands, and after correction of the atmo-
sphere contribution. This product is then strongly related to concentration
of phytoplankton in the near surface (first few meters) and give information
on the marine biology. Ocean color is provided by sensors on-board polar or-
biting satellites, thus providing mesoscale data (app 1km) with daily revisit.
The main ocean color sensors are SeaWiFS and MODIS.

SST and oceanographic color images provided by space sensors have a strong
potential for oceanographic applications. They make it possible to observe cur-
rent patterns such as fronts, eddies, filaments, upwelling, and provide informa-
tion on the oceans’ biologic activities. They are well adapted to mesoscale and
global studies, owing to the complementarity between geostationary and polar
orbiting platforms. Their major limitations mostly concern the spatial/temporal
resolution tradeoff (eg geostationary satellite provide a very dynamic informa-
tion but with limited spatial information, whereas polar orbiting satellites show
more spatial details but on a daily basis), which prevents the study of very local
(below km) and quick (shorter than a day) phenomena. Another major limita-
tion comes from cloud coverage, which prevents the acquisition of both visible
and infrared images, and consequently ocean color and SST measurements. As
a consequence, a significant part of data is hidden and not available, or partly
available but with spectral signatures greatly affected by clouds.

3.2 Apparent motion on images

The problem of apparent motion computation has been extensively studied in the
literature [1, 4, 5, 9, 18, 24, 28]. We consider this problem in the context of satellite
data and oceanographic application in order to determine the best mathematical
equations which could be used for estimating motion.

The classical approach in computer vision assumes the conservation of the
grey level value for individual pixels (often called optical flow constraint). Given a

pixel with coordinates (x(t), y(t)) on an image I at date t, we have
dI

dt
(x(t), y(t), t) =

0 or equivalently:

∂I

∂x

dx

dt
+

∂I

∂y

dy

dt
+

∂I

∂t
= 0 ⇔ ∇I ·w + It = 0 (2)

where ∇I is the spatial gradient, w is the apparent motion on the sequence, ·
denotes the scalar product, and It the temporal partial derivative of I . Equation



(a) (b)

Fig. 1. Part of the Black Sea. SST computed from NOAA/AVHRR (a), SST computed
from MODIS (b).



(2) expresses the pixel’s luminance conservation over time: moving points keep
a constant brightness during their motion.

This equation has two unknowns: w = (u, v) and cannot be directly solved.
One classical approach for constraining it in computer vision is to define an

energy functional E1(w) =

∫

I

(∇I · w + It)
2 over the image space; then to add

an additional constraint, for example a L2 regularity for w, and to express it

within a second energy functional E2(w) =

∫

I

‖∇w‖2; and endly to minimize

E1 + E2 to obtain an estimation of w.
In the context of fluid motion on oceanographic images, which is quite com-

plex with eddies, fronts and upwelling phenomena, we still keep the framework
of energy minimization, and solve it with variational methods for example, but
we have to further analyze the two components of the energy function to be min-
imized: conservation equation and regularity constraint, in order to better adapt
them to the specific context of acquisition process and observed phenomena.

In order to investigate which conservation equation and regularity constraint
are best verified, we use the output of the OPA ocean circulation model [23],
shortly described in section 2. Our final aim is to be able to better estimate mo-
tion values on satellite data for data assimilation within such prediction models,
in order to allow better forecasts. In this study we have a model output [22] corre-
sponding to 3 months with daily values of temperature, chlorophyll and velocity
at near surface (2.5m), which will be considered as surface values. The spa-
tial and the temporal resolution of these images are similar to NOAA/AVHRR
sensor acquisitions (5km2, daily), so our conclusions could be later used on real
satellite acquisitions. What is really interesting with these simulations is that we
have access to the velocity field computed by the OPA model and corresponding
to the image data: we can then estimate a motion field from the temperature
or chlorophyll image sequences (see examples figure 2) and compare it with this
model velocity field wM (see example on figure 3). The motion field obtained
as OPA output serves for validation of the motion estimation described in the
following subsections. Our input data for the motion field estimation process will
then be the SST and Chlorophyll sequences.

Which conservation equation? Apart from the luminance conservation:

dI

dt
(x, y, t) = ∇I ·w + It = 0

the literature expresses other possible constraints. The mass conservation [6,
13, 33] is the conservation of the density for a compressible fluid, it presents one
additional term on the divergence of the apparent motion vector field:

∇I · w + It + Idivw = 0 (3)

On SST data, we can also consider the equation governing the transport
of a scalar quantity (temperature) by a fluid. It is in general an advection-
diffusion equation, which gets simpler when considering the popular Boussinesq



Fig. 2. Example of SST and Chlorophyll images obtained from OPA model.

Fig. 3. Simulated motion field wM .



approximation, that tends to neglect the variations of water density (quasi-
incompressible approximation):

dT

dt
=

∂T

∂t
+ ∇T ·w = KT ∆T (4)

where KT is the thermal diffusivity coefficient and ∆ denotes the Laplacian
operator. Notice that we should also consider source and sink terms, which occur
at the ocean surface due to radiative forcing.

On color data, it is possible to apply the advection-diffusion equation to the
chlorophyll concentration:

dC

dt
=

∂C

∂t
+ ∇C ·w = KC∆C + Src − Snk. (5)

where KC is the diffusion coefficient and Src and Snk are source and sink terms
depending on forcing condition of atmosphere and deeper layers.

We have to determine which conservation equation should be used for better
estimating the motion field:

– Luminance conservation,
– Mass conservation,
– Temperature or Chlorophyll conservation.

Concerning SST images: the mass conservation equation is not adapted, since
it applies to densities, and should not be applied to a scalar variable like tem-
perature, which is not homogeneous to a density. The rigorous mathematical
framework is given by the advection-diffusion equation. If we use the Boussinesq
approximation and consider that horizontal thermal diffusivity is very small, it
is reasonable to consider the luminance conservation.

The main errors made when assuming luminance conservation on images, are
related to the fact that we consider 2D equations in the image domain (rather
than the theoretical 3D equations) and to the unavailable source and sink terms.
However, these errors do not depend upon this particular equation and are in-
herent to the image context, whatever the conservation equation used.

Selection of points verifying the conservation equation We cannot expect
that the luminance equation applies on all the image data for the following
reasons:

– On specific structures, luminance conservation cannot be verified on image
data because of a specific configuration of the motion which prevents its
observation. This happens when the motion is perpendicular to the image
gradient: in such a configuration, it does not make sense to solve the conser-
vation equation since it is not observable from the image. These structures
must be masked prior to the motion estimation process.

– There are a lot of locations where image data do not bring information
on motion beacuse of the lack of image tracers (e.g. spatial gradient and
temporal derivatives vanish).



– There are finally locations where image data allow for motion observation,
but where the conservation equation is not well verified, for instance because
we do not account for source and sink terms.

Our aim will then be to select points, where the conservation equation is verified,
and to use these points for reconstructing the motion field over all the domain
by means of a regularization process as detailed in 3.2. For that purpose, we
must be able:

– To discard pixels belonging to structures that obviously cannot verify the
conservation equation on image data: this requires a specific modeling of
these structures and their extraction from the image.

– To select among the remaining pixels those verifying the conservation equa-
tion: by eliminating pixels with a high value of the residual (∇I.w+It)

2 and
those with no image information (∇I and It ' 0). This is a pixel-level process
based on local criteria such as spatial gradient and temporal derivatives.

We first discuss the problem of the specific structures we are trying to mask,
then we discuss the image criteria used to select points verifying the conservation
equation.

The structures for which luminance conservation cannot be verified on image
data have the following characteristics:

– the velocity and image gradient are perpendicular.

– they are stable and do not undergo a global motion.

As a matter of fact, it should be reminded that the conservation equation only
brings information on one component of the motion: its projection onto the
image gradient (see equation 2). If the two above conditions are met, then we
cannot expect finding information on motion from the image data. After analysis
of the OPA sequence, we find that this situation is met with specific structures
called filaments. Filaments are elongated structures, rather stable in time, but
with important inner motion oriented in the direction of the elongation, thus
perpendicular to the gradient (figure 4).

Fig. 4. Filaments: the velocity (red arrows) is orthogonal to the image gradient (blue
arrows).



Our proposed approach for filament detection is first based on their elongated
shape: we apply tools issued from mathematical morphology (peak and valley
operators), that will detect shapes with a maximal width and that are brighter
(peak) or darker (valley) than the background. These two will result in all shapes
with limited width, as depicted on figure 5. The resulting detected shapes are

Fig. 5. Left to right: test image (extracted from OPA sequence), result of the peak
operator, result of the valley operator.

further filtered to retain only those with sufficient elongation. This is performed
by computing their inerty matrix, and thresholding the ratio of the two eigenval-
ues (see figure 6). The last criteria used concerns the structures’ global motion:

Fig. 6. White contours: contours of the structures detected with the peak operator and
with sufficient elongation, computed on frames 52 and 53.

we only want to retain stable structures. Detected structures in two consecutive
frames are matched and their global motion computed. If this motion is small
enough, then the structure is considered as a filament and discarded from the
motion estimation process (see figure 7 for results examples).



Fig. 7. In red: elongated structures (from both peak and valley images) considered to
be filaments in frame 52.

Having discarded structures where motion is orthogonal to the gradient, we
now have to consider the remaining pixels and to retain only those with enough
image information and verifying the conservation equation. For that purpose we
have analysed the residual of the conservation equation using the OPA motion
field wM , in order to investigate where the conservation equation is verified, and
we have tuned local criteria in order to automatically find these points from the
image data.

– A threshold applied on the motion index (ratio between temporal derivative
and spatial gradient magnitude) provides pixels where there is enough infor-
mation in the image to solve the conservation equation (i.e. we don’t try to
solve 0.w = 0).

– The analysis of the OPA motion field wM shows that points with low resid-
ual of the conservation equation have a high spatial gradient magnitude.
Reciprocally, only points sufficiently close to a contour (i.e. a local maxi-
mum of the spatial gradient magnitude) have a low residual, and thus verify
the conservation equation.

Summarising: the selection of points verifying the conservation equation is
based on a three-steps process:

– Discarding structures which specific motion configuration (orthogonal to the
contours) prevents its observation from image data. These structures are
identified as filaments, and a specific detection procedure is proposed. These
structures are masked and discarded from the motion estimation process.

– Filtering pixels where image information is not sufficient. This is done by
thresholding the motion index.

– Finally, detecting among the remainder points with low residual, by selecting
points with high gradient magnitude in the vicinity of a contour.

This process results in the selection of initial points, from which the motion
is computed and reconstructed over the whole image domain by applying a
regularisation process.



Which regularity equation? In the context of computer vision different equa-
tions have been extensively studied:

– L1 [10]:

E
(1)
2 (w) =

∫

image

| ∇w | . (6)

– L2 [18]:

E
(2)
2 (w) =

∫

image

‖∇w‖2. (7)

– 1st order div/curl [2, 16, 32]:

E
(3)
2 (w) =

∫

image

α‖divw‖2 + β‖curlw‖2. (8)

– 2nd order div/curl [2, 12, 16, 30]:

E
(4)
2 (w) =

∫

image

α‖∇divw‖2 + β‖∇curlw‖2. (9)

These energy values will be computed for the OPA model velocity field wM

(displayed on figure 2) as previously explained. The energy function providing
the lowest value on this simulated field is selected for further estimation on
satellite data.

Results show that the 2nd order div-curl regularization is best verified by
OPA motion field. This is in agreement with experiments made in the meteoro-
logical domain by several authors [2, 12, 30]. The α and β coefficients must be
tuned so as to strongly penalise divergent motion fields and to relax vorticity,
as expected because of the use of Boussinesq approximation.

Results on apparent motion estimation The following results are computed
on SST images. As explained above, the motion field is computed according to
the luminance conservation hypothesis and the 2nd order div-curl regularity
constraint.

Moreover, a point selection process is applied, providing points where the
conservation hypothesis is best verified. This set of points is usually sparse and
prevent us from using cost functions defined on the whole image data, as per-
formed by [12, 18]. This led us to apply a vector spline approach, introduced
by [2] for reconstructing sparse vector data using the 2nd order div-curl regu-
larity. This method has been extended by [30], in order to deal with projected
vectors, which is our case since we only observe the projection of the velocity
on the image gradient (the normal velocity). As a result, we obtain a motion
field verifying 2nd order div-curl regularity, and which normal velocity equals
the normal velocity observed at the initially selected points.

Figure 8 displays the set of initial points, the estimated motion w, and the
OPA-modeled motion wM . It can be seen that the vortex (A) and the double
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B
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Fig. 8. Set of initial points in white (left), estimated motion (middle), real motion
(right).

vortices (B, C) are quite well recovered. The vortex (D) in the dark-cold re-
gion cannot be recovered because there is not enough image information in this
area. Areas where no motion information is provided correspond to the filaments
detected and masked prior to motion estimation.

The next subsection is dealing with detection and tracking of specific struc-
tures (eddies), with the objective of computing Lagrangian trajectories.

3.3 Structure detection of tracking for trajectories computation

In this subsection we address the segmentation and tracking of specific structures
(eddies), with the following motivation: when tracking these structures all along
the image sequence, one is able to infer Lagrangian trajectories, an information
which can also be assimilated within oceanographic models.

Segmenting and tracking a specific type of structure in an image sequence
requires a proper modelling of its image characteristics, in order to detect it in
a robust manner.

Eddies, have a circular shape with concentric lines of approximately constant
grey level, and high contrast at the edges. See figure 9 for an example of such a
structure.

The circular shape of the structures of interest, as well as the constant con-
trast along their edges, indicate that a contour based segmentation and tracking
process can be successfully applied. Active contour models, known as snakes [20],
have proven their robustness in the context of oceanographic structure segmen-
tation and tracking [17]. Snakes are parameterized curves f(s) defined for a real
parameter s ∈ S, that minimize a criterion stating that:

– The curve undergoes regularity requirements: this is the internal energy, and
it expresses the fact that we are looking for smooth enough curves. This term
is most often expressed as constraints applied on its elasticity and rigidity.

– The curve should lie in the vicinity of locations of maximal contrast: this
criterion expresses the data confidence, and is computed from a potential



Fig. 9. Examples of eddies in the OPA sequence.

P defined over the image domain. This potential should be minimal at the
vicinity of the structures of interest. A classical definition is: P = −‖∇I‖2.

Altogether, the classical formulation of snakes leads to the minimisation of the
following energy functional E(f):

min E(f) =

∫

S

α(
∂f

∂s
)2 + β(

∂2f

∂2s
)ds + λ

∫

S

P (f(s))ds (10)

The parameters α, β and λ tune the importance of the elasticity, rigidity and
data confidence respectively.

An alternative to this regularity, very adapted to quasi circular shapes, is
to state that the curve belongs to a predefined mathematical class of curves Q,
such as quadrics or hyperquadrics [11]: the snake must only minimise the data
confidence criterion, as long as f belongs to this specific family of curves.

min

∫

S

P (f(s))ds and f ∈ Q (11)

where Q is the ensemble of hyperquadrics.

The process of computing the snake then relies on the minimisation of the
energy functional E(f). Usually we are only interested in a local minimum, and
we have to start from an initial guess f0 not too far from the contour of interest.
This initial guess is user-defined. E is then minimised by means of a gradient
descent algorithm.

Snakes can be used for efficiently tracking structures in a quasi automatic
fashion: the snake describing the structure in the previous frame is used as initial
guess for the current one. If the structure’s displacement is small enough between
consecutive frames, then the energy minimisation process can be succesfully ap-
plied on each frame of the sequence. The human intervention thus only concerns
the initialisation of the snake at the beginning of the sequence. Results of eddy
tracking using snakes are depicted on figure 10.



Fig. 10. Eddy segmentation by snakes (red curves) performed between frames 24 to
30 of the OPA sequence. The trajectory (depicted in green) of the center could be
assimilated in a Lagrangian framework.

4 Conclusion

This paper aims at presenting the potential of satellite images for assimilation
within geophysical models, focusing on the oceanographic application. We have
to extract information (apparent motion, structures, ...) and find how to assim-
ilate it in the models. We also explained how the final use of image processing
results, which is assimilation and not visualization, is modifying the way we are
defining processing algorithms. Endly, we explained how we can use the available
information on satellite data acquisition on the studied phenomena (here oceanic
circulation) within the algorithms. For example, we extensively discussed how to
choose the conservation equation and the regularity constraint for the problem
of apparent motion computation. We illustrate these points with synthetic data
obtained by an oceanic model in order to be able to validate our assumptions.
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26. E. Mémin and P. Pérez. Optical flow estimation and object-based segmentation
with robust techniques. IEEE Trans. on Image Processing, 7(5):703–719, May
1998.
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