Evaluation d'une méthode de flow optique sur des images de type PIV

Dominique Heitz¹, Thomas Corpetti¹, Georges Arroyo¹, Étienne Mémin² and Alina Santa-Cruz¹

> ¹ Cemagref, Rennes, France ² IRISA/INRIA, Rennes, France

dominique.heitz@cemagref.fr

Fluid motion analysis: interests

Historically Optical-flow methods have been used in:

- Meteorology
 - ★ Tracking characteristics features (convective cells, vortices, ...)
 - ★ Weather forecasting
- Medical Imaging
 - ★ Blood flow monitoring
- Oceanography
 - ★ Tracking pollutant agents

Fluid motion analysis: interests

Historically Optical-flow methods have been used in:

Meteorology

Tracking characteristics features (convective cells, vortices, ...)
 Weather forecasting

- Medical Imaging
 - ★ Blood flow monitoring
- Oceanography
 - ★ Tracking pollutant agents

- Standard optical-flow
- Proposed estimator
- Results on a plane mixing layer
- Results on a circular cylinder wake
- Conclusion

• Horn & Schunck (1981)

★ Motion estimation: minimisation of a twofold energy function

$$\min_{\boldsymbol{v}} \mathcal{H}(E, \boldsymbol{v}) = \min_{\boldsymbol{v}} \mathcal{H}_{obs}(E, \boldsymbol{v}) + \min_{\boldsymbol{v}} \mathcal{H}_{reg}(\boldsymbol{v})$$

- Horn & Schunck (1981)
 - ***** Motion estimation: minimisation of a twofold energy function

$$\min_{\boldsymbol{v}} \mathcal{H}(E, \boldsymbol{v}) = \min_{\boldsymbol{v}} \mathcal{H}_{obs}(E, \boldsymbol{v}) + \min_{\boldsymbol{v}} \mathcal{H}_{reg}(\boldsymbol{v})$$

\Rightarrow OBSERVATION term:

- Horn & Schunck (1981)
 - ***** Motion estimation: minimisation of a twofold energy function

$$\min_{\boldsymbol{v}} \mathcal{H}(E, \boldsymbol{v}) = \min_{\boldsymbol{v}} \mathcal{H}_{obs}(E, \boldsymbol{v}) + \min_{\boldsymbol{v}} \mathcal{H}_{reg}(\boldsymbol{v})$$

⇒ OBSERVATION term: brightness constancy assumption

- Horn & Schunck (1981)
 - ***** Motion estimation: minimisation of a twofold energy function

$$\min_{\boldsymbol{v}} \mathcal{H}(E, \boldsymbol{v}) = \min_{\boldsymbol{v}} \mathcal{H}_{obs}(E, \boldsymbol{v}) + \min_{\boldsymbol{v}} \mathcal{H}_{reg}(\boldsymbol{v})$$

- ⇒ OBSERVATION term: brightness constancy assumption
- \Rightarrow REGULARISATION term:

- Horn & Schunck (1981)
 - ***** Motion estimation: minimisation of a twofold energy function

$$\min_{\boldsymbol{v}} \mathcal{H}(E, \boldsymbol{v}) = \min_{\boldsymbol{v}} \mathcal{H}_{obs}(E, \boldsymbol{v}) + \min_{\boldsymbol{v}} \mathcal{H}_{reg}(\boldsymbol{v})$$

- ⇒ OBSERVATION term: brightness constancy assumption
- ⇒ **REGULARISATION** term: spatial motion field coherence

Standard motion estimation technique

Observation

 $E(\boldsymbol{x} + \boldsymbol{d}(\boldsymbol{x}), \boldsymbol{t} + \boldsymbol{\Delta}\boldsymbol{t})$

Optical-flow constraint equation

$$\underbrace{\iint\limits_{\Omega} \left[\frac{\partial E(\boldsymbol{x},t)}{\partial t} + \boldsymbol{\nabla} E(\boldsymbol{x},t) . \boldsymbol{v}(\boldsymbol{x},t) \right]^2 d\boldsymbol{x}}_{\mathcal{H}_{obs}(E,\boldsymbol{v})}$$

Standard motion estimation technique

Observation

 $E(\boldsymbol{x} + \boldsymbol{d}(\boldsymbol{x}), \boldsymbol{t} + \boldsymbol{\Delta t})$

Regularization

First order smoothness term

$$\underbrace{\alpha \iint_{\Omega} [|\nabla u(\boldsymbol{x},t)|^2 + |\nabla v(\boldsymbol{x},t)|^2] d\boldsymbol{x}}_{\mathcal{H}reg(\boldsymbol{v})}$$

lpha controls the balance between the observation term and the regularization term

Problem statement

- For fluid motion the brigthness is not always preserved
 - \Rightarrow Brightness constancy assumption violated
- With classical regularization fluid is seen as a rigid body
 - ★ Motion field has the same smoothness as motion for rigid body
 - ★ Can we use a first order regularization for fluid motion?

$$\mathcal{H}_{reg}(\boldsymbol{v}) = \iint_{\Omega} [\operatorname{curl}^2 u(\boldsymbol{x},t) + \operatorname{div}^2 v(\boldsymbol{x},t)] d\boldsymbol{x}$$

 \Rightarrow Limits the amplitude of both divergence and vorticity

Proposed solution: integration of prior knowledge

Corpetti et al. (2002)

Observation term

- ★ Sticking on the continuity equation from fluid mechanics
- $\Rightarrow\,$ Expression of density conservation during the displacement of the fluid cell

Regularization term

- ★ Use of the Helmholtz decomposition
 - \Rightarrow Regularization based on the divergence and the vorticity

Continuity equation

• Mass conservation:

$$rac{\partial
ho}{\partial t} + \operatorname{div}(
ho oldsymbol{v}) = 0$$

Assumptions

- The luminance function is related to a passive quantity transported by the fluid
- Continuity equation holds for the bidimensional motion field captured by the image sequence
 - \Rightarrow The luminance needs to integrate the information of the 3D component
 - * Medical tomography (Fitzpatrick (1988), Wildes et al. (1997))
 - * Studied for infrared Meteosat images (Bereziat (2000), Zhou (2000))

Integration in a dense motion estimator

Image intensity relative to fluid density

$$\frac{\partial E}{\partial t} + \mathsf{div}(E\boldsymbol{v})$$

New constraint

$$egin{aligned} \mathcal{H}_{obs}(E,oldsymbol{v}) &= \int \limits_{\Omega} \int \left(rac{\partial E}{\partial t} + \operatorname{div}(Eoldsymbol{v})
ight)^2 doldsymbol{x} \ &= \int \limits_{\Omega} \int \left(rac{\partial E}{\partial t} + E \operatorname{div}(oldsymbol{v})
ight)^2 doldsymbol{x} \end{aligned}$$

• Helmholtz decomposition

3 components: Irrotational, Solenoidal, Laminar

• Helmholtz decomposition

3 components: Irrotational, Solenoidal, Laminar

• Euler Lagrange optimality condition yields:

$$\min_{\boldsymbol{v}} \iint_{\Omega} \left[|\boldsymbol{\nabla} u|^2 + |\boldsymbol{\nabla} v|^2 \right] d\boldsymbol{x} = \min_{\boldsymbol{v}} \iint_{\Omega} \left[\mathsf{div}^2 \boldsymbol{v} + \mathsf{curl}^2 \boldsymbol{v} \right] d\boldsymbol{x}$$

• Idea: regularization based on the divergence and the vorticity

- Idea: Preserve the divergence and the vorticity
- Usual second order div-curl regularization

$$\displaystyle{\iint_{\Omega} ig[| oldsymbol{
abla} \mathsf{div} oldsymbol{v}|^2 + | oldsymbol{
abla} \mathsf{curl} oldsymbol{v}|^2 ig] doldsymbol{x}}$$

- Problems
 - ★ Numerical instabilities
 ★ 4th order PDE

- Proposed approach (Corpetti et al. 2002)
 - \star Scalar intermediary fields ξ and ζ

$$\mathcal{H}_{reg}(\boldsymbol{v},\boldsymbol{\xi},\boldsymbol{\zeta}) = \iint_{\Omega} |\mathsf{div}(\boldsymbol{v}) - \boldsymbol{\xi}|^2 + \lambda(|\nabla\boldsymbol{\xi}|)^2 + \iint_{\Omega} |\mathsf{curl}(\boldsymbol{v}) - \boldsymbol{\zeta}|^2 + \lambda(|\nabla\boldsymbol{\zeta}|)^2$$

- ★ Advantages
 - * Simpler resolution
 - * Introduction of prior knowledge
- **\star** Solving alternatively w.r.t ξ , ζ and v until convergence

Robust estimators

- Problem: outlier data
 - ★ Occlusion, transparency, changes of illuminations ...
 - \rightarrow Brigthness constancy assumption not valid
 - ★ Boundaries, motion discontinuities
 - $\rightarrow\,$ No motion field coherence

Solution

★ Not the same penalisation for such data (non quadratic) \Rightarrow Use of robust estimators to preserve strong variations

$$\mathcal{H} = \underbrace{\iint_{\Omega} f_{1} \left(\frac{\partial E}{\partial t} + \operatorname{div}(E\boldsymbol{v}) \right) d\boldsymbol{x}}_{Observation} + \alpha \underbrace{\iint_{\Omega} |\operatorname{div} \boldsymbol{v} - \xi|^{2} + \lambda f_{2}(|\boldsymbol{\nabla}\xi|) d\boldsymbol{x}}_{Regularization} + \alpha \underbrace{\iint_{\Omega} |\operatorname{curl} \boldsymbol{v} - \zeta|^{2} + \lambda f_{2}(|\boldsymbol{\nabla}\zeta|) d\boldsymbol{x}}_{Regularization}$$

- Standard optical-flow
- Proposed estimator
- Results on a plane mixing layer
- Results on a circular cylinder wake
- Conclusion

- Standard optical-flow
- Proposed estimator
- Results on a plane mixing layer
- Results on a circular cylinder wake
- Conclusion

Plane mixing layer

 $U_{\rm a} = 9 \text{ m s}^{-1}$ $U_{\rm b} = 6 \text{ m s}^{-1}$ $\delta_{\omega} = 15 \text{ mm}$

 $r = U_{\rm b}/U_{\rm a} = 0.67$ $\lambda = (1 - r)/(1 + r) = 0.2$ $Re_{\delta_{\omega}} = \Delta U \delta_{\omega}/\nu = 7000$

 $L_x \times L_y = 84.5 \text{ mm} \times 82.5 \text{ mm} = 5.6 \delta_\omega \times 5.5 \delta_\omega$

Plane mixing layer - PIV settings

- Nd:YAG Laser system (30 mJ $\lambda = 532 \text{ nm}$ Quantel)
- CCD Kodak camera of 1008×984 pixels 8 bits dynamic range
- Synchronization and correlation: LaVision hardware and software (Davis)
- Two PIV treatments:

PIV I	PIV II
single-pass	multipass
32×32 pixels	32×32 to 16×16 pixels
50% overlap	50% overlap
grid spacing	grid spacing
16×16 pixels	8×8 pixels
$0.09 \; \delta_\omega imes 0.09 \; \delta_\omega$	$0.045 \ \overline{\delta_\omega imes 0.045} \ \delta_\omega$

Plane mixing layer - Optical-flow settings

$$egin{aligned} \mathcal{H} &= \iint\limits_{\Omega} \int f_1 \left(rac{\partial E}{\partial t} + ext{div}(Eoldsymbol{v})
ight) doldsymbol{x} + lpha \iint\limits_{\Omega} | ext{div} oldsymbol{v} - \xi|^2 + \lambda f_2(|oldsymbol{
abla}\xi|) doldsymbol{x} \ &+ lpha \iint\limits_{\Omega} | ext{curl} oldsymbol{v} - \zeta|^2 + \lambda f_2(|oldsymbol{
abla}\zeta|) doldsymbol{x} \end{aligned}$$

• Penalty functions:

★ $f_1(x) = 1 - \exp(-\tau_1 x^2)$ with $\tau_1 = 1.6$ (Leclerc penalty function) ★ f_2 quadratic penalty function

- Regularization parameters: $\alpha = 300$ and $\lambda = 300$
- Grid spacing of 1×1 pixel = $0.08 \text{ mm} \times 0.08 \text{ mm} = 0.006 \delta_{\omega} \times 0.006 \delta_{\omega}$

Plane mixing layer - Instantaneous velocity field

Plane mixing layer - Instantaneous iso-vorticity

isocontour of vorticity $\omega_z^{\star} = (\omega_z \Delta U) / \delta_{\omega} (\omega_{z_{\min}}^{\star} = -9, \omega_{z_{\max}}^{\star} = -2, \Delta \omega_z^{\star} = 1)$

Plane mixing layer - Mean quantities

The mean streamwise velocity component can be expressed with the theoretical solution as:

$$\frac{\overline{U} - U_b}{U_a - U_b} = \frac{1}{2} (1 - \operatorname{erf}(\sigma \eta))$$

where $\eta = (y - y_o)/(x - x_o)$ with (x_o, y_o) the coordinate of virtual origin of the mixing layer and the spreading parameter σ is constant.

	Heitz 1999	PIV	optical-flow
σ	52.7	43.55	46.37
$d\delta_w/dx$	0.0336	0.0407	0.0382

Plane mixing layer - Reynolds stress

- -, Optical-flow
- \diamond , PIV II
- o, PIVI
- •, Hot-wire (Heitz (1999))

Plane mixing layer - Reynolds stress

Plane mixing layer - Reynolds stress

- o, PIVI
- •, Hot-wire (Heitz (1999))

Circular cylinder near wake

 $U = 4.5 \text{ m s}^{-1}$ D = 10 mmL = 142 mm

L/D = 14.2 $Re = UD/\nu = 3000$

 $L_x \times L_y = 98.7 \text{ mm} \times 83.4 \text{ mm} = 9.9 D \times 8.3 D$

Circular cylinder near wake - PIV settings

- Nd:YAG Laser system (30 mJ $\lambda = 532 \text{ nm}$ New Wave)
- CCD PCO camera of 1280×1024 pixels 12 bits dynamic range
- Synchronization and correlation: LaVision hardware and software (Davis)
- PIV treatments:

PIV multipass 32×32 to 16×16 pixels 25% overlap

grid spacing 12×12 pixels $0.008 D \times 0.008 D$

Circular cylinder near wake - Optical-flow settings

$$\mathcal{H} = \iint_{\Omega} \int_{\Omega} \int_{\Omega} \left(\frac{\partial E}{\partial t} + \operatorname{div}(E\boldsymbol{v}) \right) d\boldsymbol{x} + \alpha \iint_{\Omega} \left| \operatorname{div} \boldsymbol{v} - \xi \right|^{2} + \lambda f_{2}(|\boldsymbol{\nabla}\xi|) d\boldsymbol{x} + \alpha \iint_{\Omega} \left| \operatorname{curl} \boldsymbol{v} - \zeta \right|^{2} + \lambda f_{2}(|\boldsymbol{\nabla}\zeta|) d\boldsymbol{x}$$

• Penalty functions:

★ $f_1(x) = 1 - \exp(-\tau_1 x^2)$ with $\tau_1 = 1.6$ (Leclerc penalty function) ★ f_2 quadratic penalty function

- Regularization parameters: $\alpha = 300$ and $\lambda = 300$
- Grid spacing of 1×1 pixel = $0.08 \text{ mm} \times 0.08 \text{ mm} = 0.008D \times 0.008D$

Circular cylinder near wake - Instantaneous vector field

Optical-flow

1 vector out of 256

• PIV

1 vector out of 4

Circular cylinder near wake - Instantaneous velocity Optical-flow PIV

Top: 21 iso-contours of instantaneous streamwise velocity $u/U_{\infty} = -1, ..., 1$ Bottom: 21 iso-contours of instantaneous transverse velocity $v/U_{\infty} = -1, ..., 1$

Circular cylinder near wake - Instantaneous vorticity

Optical-flow

• PIV

iso-contour of vorticity $\omega_z^{\star} = (\omega_z U)/D$ ($|\omega_{z_{\min}}^{\star}| = 0.5$, $|\omega_{z_{\max}}^{\star}| = 10$, $\Delta \omega_z^{\star} = 1$)

Circular cylinder near wake - Mean velocity Optical-flow PIV

Top: 21 iso-contours of mean streamwise velocity $U/U_{\infty} = -0.2, ..., 1$.

Top: 21 iso-contours of mean transverse velocity $V/U_{\infty} = -0.25, ..., 0.25$

Circular cylinder near wake - $\overline{u'^2}$

Optical-flow

$$D = 1.56$$

x

Top: 15 iso-contours of
$$\overline{u'^2}/U_\infty^2 = 0, ..., 0.05.$$

Circular cylinder near wake - $\overline{v'^2}$

Fop: 15 iso-contours of
$$\overline{v'^2}/U_\infty^2=0,...,0.1.$$

Circular cylinder near wake - $\overline{u'v'}$

$$x/D = 3.6$$

Top: 15 iso-contours of
$$\overline{u'v'}/U_{\infty}^2 = -0.025, ..., 0.025.$$

Circular cylinder near wake - Formation length Optical-flow PIV

	Hot-wire	PIV	Optical-flow
$\overline{u^{\prime 2}} + \overline{v^{\prime 2}}$	2.8	2.70	2.80

Conclusion

A new optical-flow estimator based on continuity equation and div – curl regularization has been proposed:

- This optical-flow approach can be applied to PIV images
- Gives similar results compared to PIV with different flow typology (mixing layer - circular cylinder near wake)
- Provides dense information (1 vector per pixel)
- Dense information needs to be validated with dedicated experiments (Characterize accuracy and dynamic range)
- Calibration of the parameters in fluid mechanics framework

Robuts estimator

• Non quadratic penalisation

1

$$egin{split} \mathcal{H}(E,oldsymbol{v},\xi,oldsymbol{\zeta}) &= \displaystyle \iint_{\Omega} egin{aligned} &\Psi\left(rac{\partial E(oldsymbol{x},t)}{\partial t} + \operatorname{div}(E(oldsymbol{x},t)oldsymbol{v}(oldsymbol{x},t))
ight) doldsymbol{x} + \ &\int &\iint_{\Omega} |\operatorname{div}oldsymbol{v}(oldsymbol{x},t) - \xi(oldsymbol{x},t)|^2 + \lambda \Psi(|oldsymbol{
aligned} \xi(oldsymbol{x},t)|) doldsymbol{x} + \ &\int &\iint_{\Omega} |\operatorname{curl}oldsymbol{v}(oldsymbol{x},t) - \zeta(oldsymbol{x},t)|^2 + \lambda \Psi(|oldsymbol{
aligned} \zeta(oldsymbol{x},t)|) doldsymbol{x} + \ &\int &\iint_{\Omega} |\operatorname{curl}oldsymbol{v}(oldsymbol{x},t) - \zeta(oldsymbol{x},t)|^2 + \lambda \Psi(|oldsymbol{
aligned} \zeta(oldsymbol{x},t)|) doldsymbol{x} + \ &\int &\iint_{\Omega} |\operatorname{curl}oldsymbol{v}(oldsymbol{x},t) - \zeta(oldsymbol{x},t)|^2 + \lambda \Psi(|oldsymbol{
aligned} \zeta(oldsymbol{x},t)|) doldsymbol{x} \end{split}$$

Circular cylinder near wake - $\overline{u'^2}$

Optical-flow

PIV

Circular cylinder near wake - $\overline{v'^2}$

Optical-flow

PIV

Circular cylinder near wake - $\overline{u'v'}$

Optical-flow

PIV

