

Intégration de l'information fournie par des photos aériennes pour l'estimation de paramètres en hydraulique fluviale

Hélène Roux ASSIMAGE 3-4 février 2005

Prévention du risque d'inondation

Paris Janvier 1910

Vaison-la-Romaine Septembre 1992

Montpellier Décembre 2002

- Modèles numériques de plus en plus complexes
- Manque de données nécessaires à la modélisation

Valorisation des données issues de la télédétection

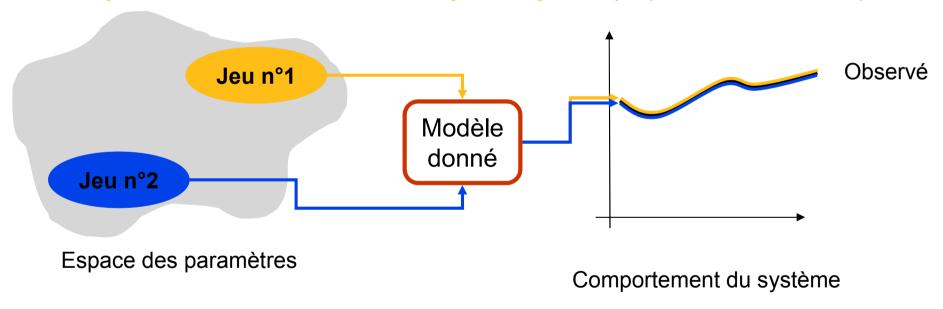
Paramètres nécessaires à la modélisation numérique en hydraulique

- Problème inverse
- Techniques d'assimilation de données

Estimation de paramètres

Estimation de paramètres

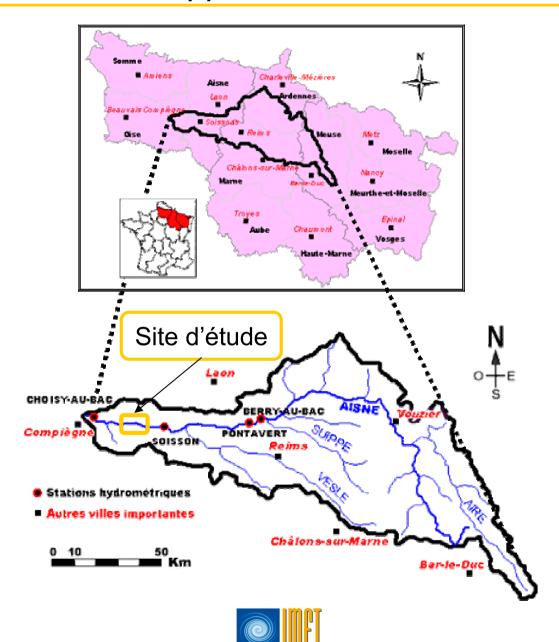
Quel est le jeu de paramètres pour lequel la zone inondée calculée est la plus proche possible de la zone inondée observée ?


Méthode présentée

- Fonctionnelle mesurant l'écart entre la solution du modèle et les observations : fonction coût
- Trouver le vecteur de paramètres minimisant cette fonctionnelle

- Mesure de l'écart
- Algorithme de minimisation
- Écueils potentiels

Concept d'équifinalité (Beven, 1989)

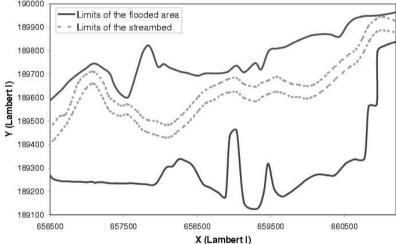

It may be endemic to mechanistic modelling of complex environmental system that there are many different model structures and many different parameter sets within a chosen model structure that may be behavioural or acceptable in reproducing the behaviour of that system. This has been called the equifinality concept. (Beven & Freer, 2001)

- Contexte probabiliste : méthode de Monte-Carlo
 - Analyse de sensibilité généralisée (Hornberger & Spear, 1981)
 - Generalized Likelihood Uncertainty Estimation (GLUE, Beven & Binley, 1992)

Application à un site d'étude : L'Aisne

Données recueillies

(Raclot, Puech, 2000)




Pont de Vic-Sur-Aisne 190000

Etendue de la plaine d'inondation

Ecluse de Vic-Sur-Aisne

- Largeur du lit mineur
- * Axe de l'écoulement

⋆ Topographie de la zone hors d'eau

Données recueillies

(Raclot, Puech, 2000)

- Raclot, 2003
 - Crue de décembre 1993
 - Photos obliques à l'apogée de la crue
 - Photos verticales hors crue
- Informations disponibles
 - Extension maximale de la crue
 - Largeur de la crue de plein bord
 - Axe de l'écoulement
 - Topographie de la plaine d'inondation
- Caractéristiques hydrauliques de la crue
 - ightharpoonup Q° > 450 m³.s⁻¹
 - → H° > 5 m

Modélisation

- Écoulement 1D permanent
- ➤ Pas d'affluent : q_L=0

$$\frac{dQ}{dx} = q_L$$

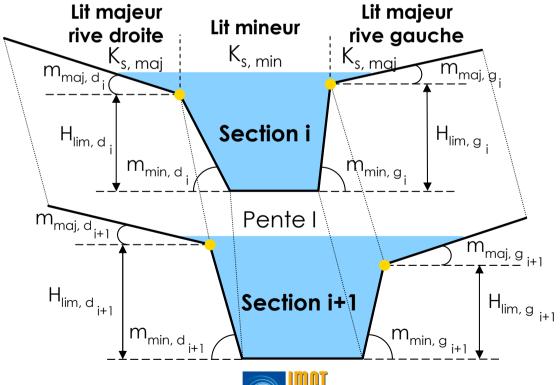
$$\frac{dH}{dx} = \frac{I - J - 2Fr^2 \frac{S}{BQ}q_L}{1 - Fr^2}$$

Lit composé

Coefficient de Strickler K_s composite : formule d'Einstein (Carlier, 1982)

$$K_s = \left(\frac{P_w}{\sum_{i} (P_{w,i}/K_{s,i}^{3/2})}\right)^{2/3}$$

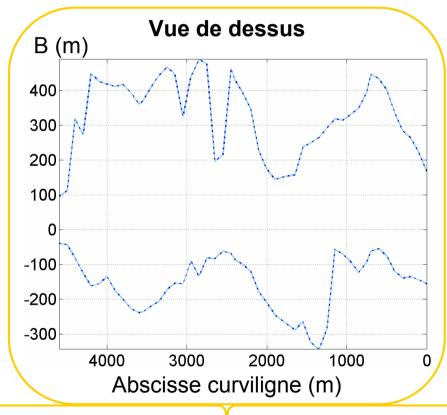
- Méthode d'estimation choisie
 - Minimisation d'un critère d'erreur

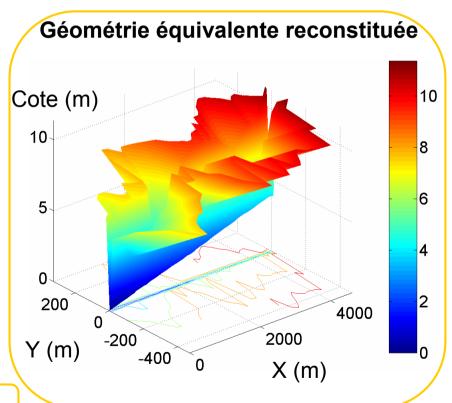

$$\Phi_{1} = \sum_{j} [(B_{d}^{o}|_{j} - B_{d}^{s}|_{j})^{2} + (B_{g}^{o}|_{j} - B_{g}^{s}|_{j})^{2}]$$

- Paramètres estimés
 - Invariants en x :
 - Débit Q
 - Condition aval H_{av}
 - Coefficient de Strickler du lit mineur K_{s, min}
 - Coefficient de Strickler du lit majeur K_{s, maj}
 - Pente du fond du lit I
 - > Fonction de x : géométrie du cours d'eau
 - 2 approches différentes

Reconstitution d'une rivière équivalente

- 5 paramètres invariants en x
- Paramètres fonction de x : géométrie du cours d'eau
 - Hypothèse sur la forme du profil en travers
 - Caractéristiques du profil en travers choisi : 6 paramètres par section (288 paramètres)





Reconstitution d'une rivière équivalente

Résultats obtenus

- Simulation de l'étendue de la zone inondée
- Valeurs estimées cohérentes avec la morphologie

Valeur observée

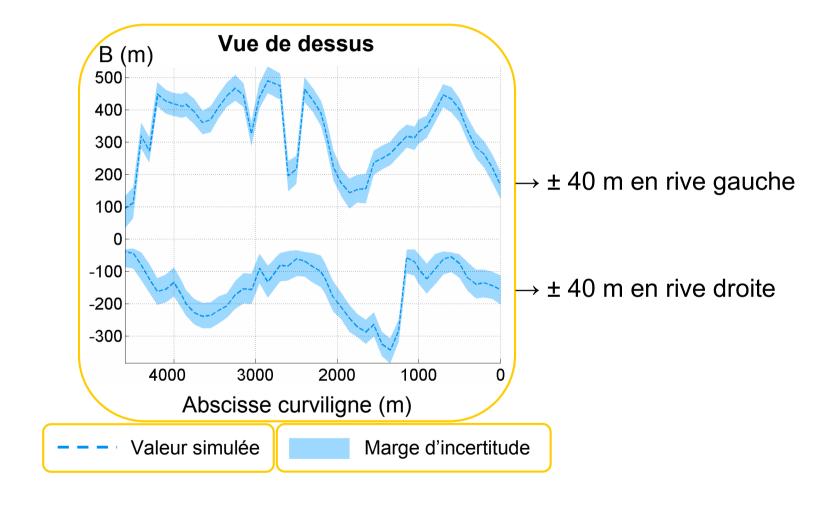
Valeur simulée

Reconstitution d'une rivière équivalente

Résultats obtenus

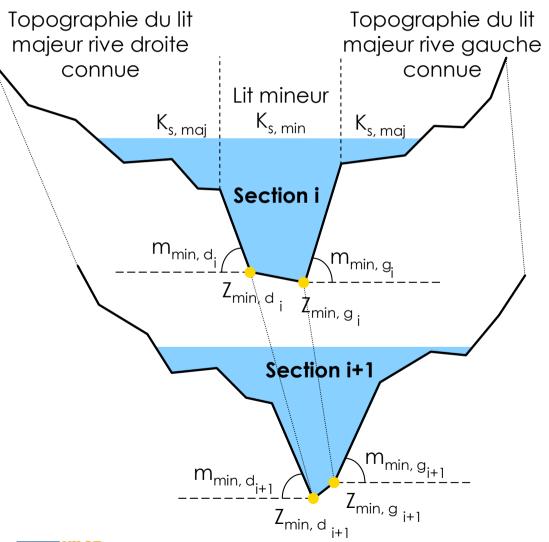
- Simulation de l'étendue de la zone inondée
- Valeurs estimées cohérentes avec la morphologie

Synthèse


- Analyse de sensibilité et calcul d'incertitude sur B^s
- Portabilité de la géométrie équivalente

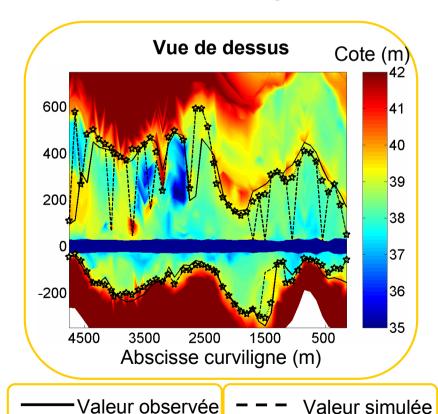
Analyse de sensibilité

- Analyse de sensibilité généralisée (Hornberger & Spear, 1981)
- Résultats obtenus : analyse au premier ordre
 - Influence forte
 - Condition aval
 - Coefficient de Strickler du lit majeur
 - Influence moindre
 - Coefficient de Strickler du lit mineur
 - Pente transversale du lit mineur
- Corrélation entre les différents paramètres
 - Hauteur d'eau et débit à l'aval : H_{av} = H_{av}(Q_{av})


Marges d'incertitude (10 % et 90 %)

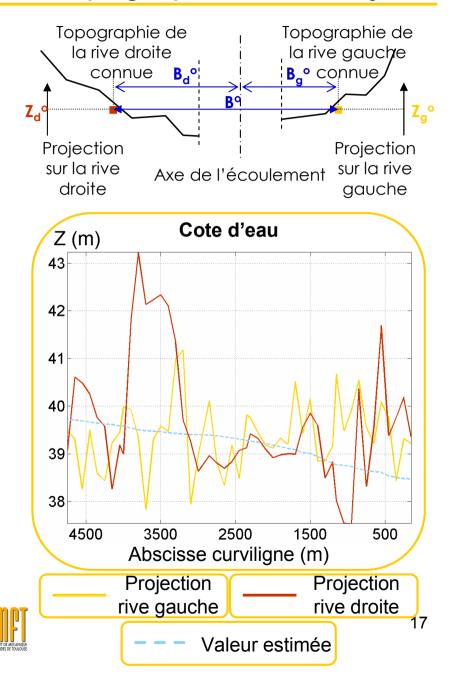
Utilisation de la topographie du lit majeur

- 5 paramètres invariants en x
- Géométrie du cours d'eau
 - Topographie du lit majeur connue
 - Reconstitution du lit mineur : 4 paramètres par section (192 paramètres)



Hélè

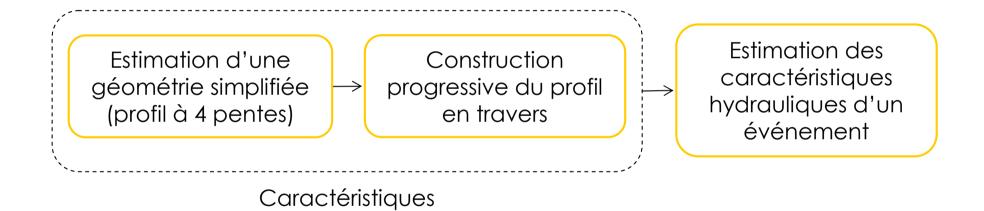
Utilisation de la topographie du lit majeur


Résultats obtenus

- Bonne reconstitution rive droite
- Obstacles rive gauche
- Bonne reconstitution de la cote d'eau
- Précision de la topographie

Points dont l'altitude correspond

à la cote d'eau reconstituée



Objectifs

- Pallier le manque d'information
- Intégration de données issues de la télédétection
- Expériences jumelles
 - Simulation avec une précision sur Bs < 1 %</p>
 - Étape par étape
- Application aux sites d'étude
 - Peu d'information disponible
 - Paramètres non estimés
 - Influence moindre (pente transversale du lit mineur)
 - Corrélation (débit aval et hauteur d'eau aval)

Procédure envisagée : étape par étape

hydrauliques connues

- Méthodes d'optimisation
 - Formulation de la fonction coût
 - Algorithmes de minimisation
- Analyse de sensibilité approfondie
 - Corrélations entre les différents paramètres
 - Réduction de l'espace des paramètres
- Type d'observations
 - Largeur de la zone inondée
 - Cote d'eau
- Assimilation de données
 - Contexte multicritère
 - Adaptation du calage à la fonction du modèle
- Modélisation de l'écoulement

