

Data assimilation of velocity fields coming from image processing

29-Jun-05

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Context: ASSIMAGE

ACI ASSIMAGE

- ACI: national research collaboration framework
- Collaboration between 8 French laboratories:
 - INRIA
 - IDOPT (Grenoble) Data assimilation
 - CLIME (Paris) Image processing and data assimilation
 - VISTA (Rennes) Image processing
 - CEMAGREF
 - ETNA (Grenoble) Snow avalanches
 - ENGREF (Montpellier) Hydrology
 - Aerobio (Rennes) Aerology and fluid mechanic
 - CNRS
 - LGGE (Grenoble) Glaciology
 - LEGI (Grenoble) Oceanography
- Extra-collaboration with MHI (Sevastopol) Oceanography

Objectives of ASSIMAGE

- Study the feasibility and potentiality of assimilation of image data
- Application to geophysical simulation models
- Focus on oceanographic application

General objectives: image assimilation

Summary of Data Assimilation

Image Data Assimilation

Problems

• Which images: static or dynamic.

• Image space: adapted to edge representation of particular structures, Lagrangian trajectories, vector field, *etc*.

• Image operator: to project the image space into state variable space.

• **Regularity constraint:** to extract information from images generally rely on a regularity constraint since such problem are often ill-posed.

Application to oceanography

Interesting problems

- Assimilation of:
 - Circulation velocity
 - Lagrangian trajectories
 - Coming from detection and tracking of structures
 - Velocity field integration
 - Matching of structures coming from image space and model space

Our goal

- Estimation of surface velocity circulation using satellite images
- Assimilation of estimated speed within a circulation model.
 - → We need to define the most appropriate method to estimate velocity.

Simulated data

- OPA: 3D circulation model
- SST
- Velocity field
- Spatial resolution 5km²
- Temporal 24h
- Sample test 500km²

Données simulées

Données simulées

SST et Champ de vitesses

Image processing

Motion estimation

• Conservation equation:

$$\frac{dI}{dt}(x, y, t) = \frac{\partial I}{\partial t} + \nabla I \cdot \mathbf{w} + I_t = 0$$

• Regularity constraint to solve the aperture problem

Which conservation equation?

Luminance conservation applied to temperature

$$\frac{\partial T}{\partial t} + \nabla T \cdot \mathbf{w} = 0$$

• Temperature conservation

$$\frac{\partial T}{\partial t} + \nabla T \cdot \mathbf{w} = K_T \Delta T$$

Conclusion

Luminance Conservation: not so bad!
But not respected everywhere

Temperature conservation: equivalent to luminance conservation since horizontal diffusivity is weak.

Which regularity?

1. Gradient norm:

$$\min \int_{image} |\nabla \mathbf{w}|^2$$

2. Div/Curl:

$$\min \int_{image} \alpha \|\nabla \mathrm{div} \mathbf{w}\|^2 + \beta \|\nabla \mathrm{curl} \mathbf{w}\|^2$$

Regularity Constraints

Gradient norm Div / Curl V

Results

Dealing with real satellite data

NOAA-AVHRR images of the Black Sea

Two consecutive frames in the sequence

List of problems

- Clouds
- Geometry of the acquisition
- Sensor saturation
- Strong temporal variation between frames
- Large spatial variation of the local mean

Image pre-processing solutions

- Masks for earth, clouds and saturation
- Spatial filtering (correction of the local mean) frame by frame
- Correction of the global mean for the computation of temporal derivatives

Original image

Mask for saturation

Correction

Result for July 14th 1998

Data assimilation

Principle of data assimilation

• We can write the principle of data assimilation as:

$$\begin{cases} \frac{dX}{dt} = F(X, C)\\ X(0) = V \end{cases}$$

where:

- X corresponds to the state variable of the model
- C is the control vector
- F is the forecast operator
- V is the initial value

Sequential data assimilation

• Kalman methods use the forecast value X and X_{obs} observation to compute the analyse:

$$a = \mathbf{K}[X_{obs} - \mathbf{H}X] + X$$

where \mathbf{H} is the observation operator.

• Nudging method is a simplification, the Kalman gain matrix ${f K}$ is replaced by a constant term λ :

$$a = \lambda [X_{obs} - \mathbf{H}X] + X$$

Shallow water model

$$\begin{cases} \frac{du}{dt} - fv = g' \frac{\partial h}{\partial x} + \frac{\tau^{(x)}}{\rho_0 h} + A_h \Delta u \\\\ \frac{dv}{dt} + fu = g' \frac{\partial h}{\partial y} + \frac{\tau^{(y)}}{\rho_0 h} + A_h \Delta v \\\\ \frac{\partial h}{\partial t} + \frac{\partial (uh)}{\partial x} + \frac{\partial (vh)}{\partial y} = 0. \end{cases}$$

Assimilation of elevation

$$\begin{cases} \frac{du}{dt} - fv = g'\frac{\partial h}{\partial x} + \frac{\tau^{(x)}}{\rho_0 h} + A_h \Delta u \\\\ \frac{dv}{dt} + fu = g'\frac{\partial h}{\partial y} + \frac{\tau^{(y)}}{\rho_0 h} + A_h \Delta v \\\\ \frac{\partial h}{\partial t} + \frac{\partial(uh)}{\partial x} + \frac{\partial(vh)}{\partial y} = \lambda[\xi_d - \xi_m] \end{cases}$$

Assimilation of estimated velocity

$$\begin{cases} \frac{du}{dt} -fv = g'\frac{\partial h}{\partial x} + \frac{\tau^{(x)}}{\rho_0 h} + A_h \Delta u \\ +\lambda \left[\frac{u_{obs}}{\sqrt{u_{obs}^2 + v_{obs}^2}} - \frac{u}{\sqrt{u^2 + v^2}} \right] \times (\sqrt{u^2 + v^2}) \\ \frac{dv}{dt} +fu = g'\frac{\partial h}{\partial y} + \frac{\tau^{(y)}}{\rho_0 h} + A_h \Delta v \\ +\lambda \left[\frac{v_{obs}}{\sqrt{u_{obs}^2 + v_{obs}^2}} - \frac{v}{\sqrt{u^2 + v^2}} \right] \times (\sqrt{u^2 + v^2}) \\ \frac{\partial h}{\partial t} + \frac{\partial(uh)}{\partial x} + \frac{\partial(vh)}{\partial y} = 0. \end{cases}$$

RINRIA

Results:

Comparison of results with and without assimilation

Measure of difference between fields

To quantify the difference between two fields we use two parameters:

• Average angular error: $\psi = \arccos(\mathbf{w}_1 \cdot \mathbf{w}_2)$

• Quadratic vorticity error: $\zeta = \sqrt{(\zeta_1 - \zeta_2)^2}$

where ζ_1 and ζ_2 stands for the curl of the two fields.

Comparison of errors field to field

July 15th 1998		Forecast	Assimilation of elevation	Assimilation of velocity
Observations	Ψ	28,26	28,74	22,51
	ζ	1,41	1,42	1,16
Forecast	ψ		15,76	22,4
	ζ		0,92	1,19
Assimilation	ψ			22,09
of elevation	ζ			1,12

Evolution of errors along time

Perspectives

- Assimilation of both velocity and elevation
 How to build the correlation matrix?
- Enhance assimilation technique
 Kalman Filtering?
- The assimilation is made in the resolution of the model.

It should be better to do it in the image space.

List of questions

- What is the spatial coherence in the model?
- What the influence of holes?
- Why the vector field is so stable with no assimilation, and how explain it is not so stable with velocity assimilation?
- How much the comparison between estimated surface velocity and shallow-water velocity is realistic?
- How quantify error for model, image processing and other observation?

