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MODIS CLASSIFICATION CHAIN 
Steps for LULC classification with MOD13Q1 data 
 

Prelude 
Before you begin 

a Make sure that the “bin” directory and its subfolders, which contains the classification programs 
(e.g., sequence_classification_apply) is included in the system path 

b Also make sure that the “scripts” directory, which contains scripts and files used throughout the 
processing chain (e.g., hdf2hdfraw, hdf2hdfraw.prm) is included in the system path 

c You should have a georeferenced image file in INRIMAGE format that specifies the region of 
interest (ROI). This image should be a mask where zero indicates pixels outside the ROI, whereas 
non-zero values indicate pixels belonging to the ROI 

d You should have reference information regarding the classes to be identified: 

• a MODIS classification. 

• masks of the training and testing areas. 

 

 

 

Acquire MOD13Q1 data 

a) Login to EOS Data Gateway (http://edcimswww.cr.usgs.gov/pub/imswelcome/) 

b) Specify desired area and annual period (e.g. 2005-08-01 up to 2006-07-31) 

c) Data can be obtained via FTP or DVD in HDF-EOS format 
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1Preprocessing 
1.1 Process HDF-EOS data 

Convert original data in HDF-EOS format to INRIMAGE format and subset that data to include only the area 
within the region of interest. 

1.1.1 Use MODIS Reprojection Tool (MRT) 

MRT should be used for the following tasks: 

Reproject data from original MODIS Sinusoidal projection to Geographic (unprojected) coordinates 

Convert original HDF-EOS data to HDF-RAW format 

Subset the original data if the area of interest is smaller than a MODIS tile (e.g. High Taquari Basin) 

Mosaic several MODIS tiles if the area of interest encompasses many tiles (e.g. Rio de la Plata Basin) 

Discard layers not to be used (optional) 

Example using scripts: 
hdf2hdfraw hdf/ hdfraw/ 

will convert all HDF data in sinusoidal projection to HDF-RAW data in geographic projection; input data 
will be read from the “hdf” directory and output data will be written to the “hdfraw” directory).  

1.1.2 Convert HDF-RAW data to INRIMAGE format 

Use hdfraw2inr program to convert all HDF-RAW .dat files to INRIMAGE files. Resulting data will consist 
of .inr and .hdr pairs of files that are readable with INRIMAGE and ENVI software. 

Example: 
hdfraw2inr -idir hdfraw/ -odir inr/ 

will convert all HDF-RAW data in “hdfraw” directory and write output files to the “inr” directory. 

 

1.1.3 Crop data to region of interest (ROI)  

Use inr_crop program to crop all INRIMAGE images to the region of interest (ROI). This requires the 
existence of a georeferenced mask image representing the ROI (mask is zero for pixels outside the ROI, non-
zero otherwise) 

Example: 
inr_crop -idir inr/ -odir inr/ -mask START/masktaquari-modis.inr 

will crop all images in the “inr” directory to the ROI defined by image file “masktaquari_modis.inr”; 
resulting cropped images will overwrite the original ones. 
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1.2 Build temporal sequences 

Use inr_sequence program to build temporal sequences or temporal stacks. The resulting sequence should 
contain one layer for each time frame available. 

1.2.1 Build NDVI or EVI temporal sequence  

An NDVI or EVI temporal sequence should be built for each one-year period. Thus, considering that 
MOD13Q1 data are 16-day composites, each sequence should be composed of 24 layers. 

Example: 
inr_sequence –idir inr/ -ofile seq/sequence.ndvi.inr -ifilter NDVI 

will build a sequence composed of all files in directory “inr” whose name contains the filter string “NDVI.”; 
the resulting sequence file will be written to the directory “seq”. 

1.2.2 Build temporal sequence of NDVI or EVI per-pixel quality data  

This quality temporal sequence should contain NDVI/EVI metadata describing each pixel’s quality at each 
time frame, and should thus be the same size as the temporal sequence built in step 1.2.1. 

Example: 
inr_sequence –idir inr/ -ofile seq/sequence.ndvi_quality.inr  

-ifilter NDVI_Quality 

1.2.3 Interpret NDVI/EVI quality data to generate a temporal quality mask file 

The per-pixel quality data is composed of a series of bits that encode several quality-related information (e.g., 
presence of clouds, aerosols, overall sensor quality, etc.). This information must be interpreted so as to 
generate a mask indicating which data should be used and which data should be discarded. In order to 
perform this interpretation, the modis_VIquality2mask program should be used. 

Example: 
modis_VIquality2mask -idir seq/ -ifilter ndvi_quality -odir seq/ 

will convert all quality files located in directory “seq” (as specified by the filter string “ndvi_quality”) and 
output the corresponding mask files in the same “seq” directory (note that the program automatically changes 
the name of the files). 

1.2.4 Assert that NDVI/EVI data is within –1/+1 range 

MOD13Q1 VI products usually come in integer format, so that VI values are given in the range –10000 to 
10000. To convert these values to the usual –1/+1 range, use inr_multiply program. 

Example: 
inr_multiply -ifile seq/sequence.ndvi.inr -mult 0.0001  

-ofile seq/sequence.ndvi.mult.inr 



MODIS CLASSIFICATION CHAIN 

4 

 

1.2.5 Correct NDVI/EVI data based on the temporal quality mask 

Given the quality mask computed in step 1.2.3 and the NDVI/EVI data resulting from step 1.2.4, the 
sequence_cloudcorrection program should be used to suppress low quality data and optionally perform 
additional filtering operations, so as to compute a “corrected” version of the temporal VI data. Suppressed 
data are replaced using linear temporal interpolation. 

Example: 
sequence_cloudcorrection -ifile seq/sequence.ndvi.mult.inr  

-mask seq/sequence.qualitymask.inr -roi START/masktaquari-modis.inr 

-ofile seq/sequence.ndvi.corrected.inr 

will suppress all data from file “sequence.ndvi.inr” whose corresponding pixel in mask file 
“sequence.qualitymask.inr” is labeled as low quality (value zero); corrected data using linear temporal 
interpolation will be written to output file “sequence.ndvi.corrected.inr”. 

 

1.2.6 Build list of dates corresponding to each image of the sequence 

Use modis_datelist to build a list of dates where each entry corresponds to the date of the corresponding 
image in the sequence. This is to be done by examining the original names of the MODIS files, which must 
follow the standard MODIS naming convention for Level 2 data namely 
MODxxxxx.AYYYYDDD.*(e.g.,“MOD09GQK.A2001211.h12v10.004.2003131015044” ) 

Example: 
modis_datelist -idir inr/ -ofile dates.ddd.txt -ddd 

will examine all files located in the “inr” directory and extract date information from their names, writing the 
output to the text file “dates.ddd.txt” in DDD format (e.g., day of year). 
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2 Operational chains 
2.1 chain10F-ML  

2.1.1 Compute profile features  

Using the corrected NDVI/EVI temporal sequence data, process each pixel’s temporal profile in order to 
compute 10F features or attributes that describe each pixel’s temporal response. 

Example: 
sequence_profile_features -ifile seq/sequence.ndvi.corrected.inr 

-roi START/masktaquari-modis.inr -ofile features/features10F.ndvi.inr  

-dates dates.ddd.txt -nodata -9999 

will compute temporal features for the NDVI sequence specified by file “sequence.ndvi.corrected.inr”, 
writing the output to file “features10F.ndvi.inr”; if a specific feature cannot be computed (missing data), then 
-9999 will be assigned as a value. 

2.1.2 Normalize feature data 

The maximum likelihood classification algorithm requires input data to be normalized. For that matter, the 
inr_normalize program should be used to normalize the values computed for each feature for the entire region 
of interest. 

Example: 
inr_normalize -ifile features/features10F.ndvi.inr  

-roi masktaquari-modis.inr -ofile features/features10F.ndvi.norm.inr  

-nodata -9999 

will normalize each layer of the input feature file “features10F.ndvi.inr”, taking into consideration that –9999 
is to be considered as missing data, writing the output to file “features10F.ndvi.norm.inr”; missing data will 
be given random values in the output file 

2.1.3 Train classifier based on training data 

Based on the input reference classification image use computed normalized temporal features to train a 
supervised classification algorithm, so that the typical characteristics of each class of interest can be learned. 

The reference classification image, classification.10F.train.inr,is a learning area (southern part) image for 
which the low resolution class is known for every pixels.  

Example: 
sequence_classification_train -ifile features/features10F.ndvi.norm.inr 

-class LEARNING/classification.10F.train.inr  

-ofile LEARNING/chain10F-ML/classdef-10F-ML.txt 

will analyze the data in file “features10F.ndvi.norm.inr” for the samples of each class as provided by file 
“classification.10F.train.inr”; the program will thus learn the feature distributions typical of each class, 
writing output class definitions to file “classdef-10F-ML.txt” 
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2.1.4 Apply classifier to the testing  area (northern part) 

Once the class definitions have been produced, the program sequence_classification_apply can be used to 
determine the classes of all pixels within the region of interest. This program implements a maximum 
likelihood supervised classification algorithm. Optionally, a minimum a posteriori probability tolerance value 
can be given for assigning a class to each point, so that if, for one point, the class with maximum probability 
does not exceed this value, that point is left unclassified.  

Example: 
sequence_classification_apply -ifile features/features10F.ndvi.norm.inr 

-roi START/masktaquari-modis-north.inr  

-def LEARNING/chain10F-ML/classdef-10F-ML.txt 

-ofile OPERATIONAL/chain10F-ML/classification.10F-ML.over95.inr  

-tol 0.95 

will classify the data from file “features10F.ndvi.norm.inr” using the class definitions provided in file 
“classdef-10F-ML.txt”, writing the output to file “classification.10F-ML.over95.inr”;  a minimum tolerance 
value of 95% is specified for the a posteriori probability, so that all pixels with a posteriori probability under 
95% are considered to be of low confidence and are left unclassified 

 

2.1.5 Translate classification result to ground truth legend 

The results from the classification application have to be merged or translated using the inr_translate 
program, so as to make these data compatible with the ground truth data provided. 

Example: 
inr_translate  
-ifile OPERATIONAL/chain10F-ML/classification.10F-ML.over95.inr 
-trans START/trans.confusion.10F.txt  
-ofile OPERATIONAL/chain10F-ML/classification.10F-ML.over95.trans.inr 
 

1  
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2.2 chain12F-ML 

2.2.1 Compute profile features  

Using the corrected NDVI/EVI temporal sequence data, process each pixel’s temporal profile in order to 
compute 12F features or attributes that describe each pixel’s temporal response. 

Example: 
sequence_profile_features_upgraded -ifile seq/sequence.ndvi.corrected.inr 

-roi START/masktaquari-modis.inr -ofile features/features12F.ndvi.inr  

-dates dates.ddd.txt -nodata -9999 

will compute temporal features for the NDVI sequence specified by file “sequence.ndvi.corrected.inr”, 
writing the output to file “features12F.ndvi.inr”; if a specific feature cannot be computed (missing data), then 
-9999 will be assigned as a value. 

2.2.2 Normalize feature data 

The maximum likelihood classification algorithm requires input data to be normalized. For that matter, the 
inr_normalize program should be used to normalize the values computed for each feature for the entire region 
of interest. 

Example: 
inr_normalize -ifile features/features12F.ndvi.inr  

-roi START/masktaquari-modis.inr  

-ofile features/features12F.ndvi.norm.inr -nodata -9999 

will normalize each layer of the input feature file “features12F.ndvi.inr”, taking into consideration that –9999 
is to be considered as missing data, writing the output to file “features12F.ndvi.norm.inr”; missing data will 
be given random values in the output file 

2.2.3 Train classifier based on training data 

Based on the input reference classification image use computed normalized temporal features to train a 
supervised classification algorithm, so that the typical characteristics of each class of interest can be learned. 

The reference classification image, classification.12F.train.inr,is a learning area (southern part) image for 
which the low resolution class is known for every pixels.  

Example: 
sequence_classification_train -ifile features/features12F.ndvi.norm.inr 

-class LEARNING/classification.12F.train.inr  

-ofile LEARNING/chain12F-ML/classdef-12F-ML.txt 

will analyze the data in file “features12F.ndvi.norm.inr” for the samples of each class as provided by file 
“classification.12F.train.inr”; the program will thus learn the feature distributions typical of each class, 
writing output class definitions to file “classdef-12F-ML.txt” 

2.2.4 Apply classifier to the testing  area (northern part) 

Once the class definitions have been produced, the program sequence_classification_apply can be used to 
determine the classes of all pixels within the region of interest. This program implements a maximum 
likelihood supervised classification algorithm. Optionally, a minimum a posteriori probability tolerance value 
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can be given for assigning a class to each point, so that if, for one point, the class with maximum probability 
does not exceed this value, that point is left unclassified.  

Example: 
sequence_classification_apply -ifile features/features12F.ndvi.norm.inr 

-roi START/masktaquari-modis-north.inr  

-def LEARNING/chain12F-ML/classdef-12F-ML.txt 

-ofile OPERATINAL/chain12F-ML/classification.12F-ML.over95.inr  

-tol 0.95 

will classify the data from file “features12F.ndvi.norm.inr” using the class definitions provided in file 
“classdef-12F-ML.txt”, writing the output to file “classification.12F-ML.over95.inr”;  a minimum tolerance 
value of 95% is specified for the a posteriori probability, so that all pixels with a posteriori probability under 
95% are considered to be of low confidence and are left unclassified 

 

2.2.5 Translate classification result to ground truth legend 

The results from the classification application have to be merged or translated using the inr_translate 
program, so as to make these data compatible with the ground truth data provided. 

Example: 
inr_translate 
-ifile OPERATINAL/chain12F-ML/classification.12F-ML.over95.inr  
-trans START/trans.confusion.12F.txt  
-ofile OPERATINAL/chain12F-ML/classification.12F-ML.over95.trans.inr 
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2.3 chain12F-MAHA 

2.3.1 Compute profile features  

Using the corrected NDVI/EVI temporal sequence data, process each pixel’s temporal profile in order to 
compute 12F features or attributes that describe each pixel’s temporal response. 

Example: 
sequence_profile_features_upgraded -ifile seq/sequence.ndvi.corrected.inr 

-roi START/masktaquari-modis.inr -ofile features/features12F.ndvi.inr  

-dates dates.ddd.txt -nodata -9999 

will compute temporal features for the NDVI sequence specified by file “sequence.ndvi.corrected.inr”, 
writing the output to file “features12F.ndvi.inr”; if a specific feature cannot be computed (missing data), then 
-9999 will be assigned as a value. 
 

2.3.2 Train classifier based on training data 

In this chain the classification strategy use is a based on a Chi-square distribution and the Mahalanobis 
distance, using a specific subset of features for each class. 
The sequence_classification_train_maha software need a configuration files which specifies the number of 
features useful for a class and the features to use for each class. 
Example :  
sequence_classification_train_maha -ifile features12F.ndvi.inr  

-class LEARNING/classification.12F.train.inr  

-config START/config.maha.txt  

-ofile LEARNING/chain12F-MAHA/classdef-12F-MAHA.txt 

will analyze the data in file “features12F.ndvi.inr” for the samples of each class provided by 
“classification.12F.train.inr”; the program will thus define each class, writing output class definitions to file 
“classdef-12F-MAHA.txt”. 
 

2.3.3 Compute memberships 

Based on the previously selected strategy and in the classes definitions, a membership value to each class is 
computed for every pixel. 

Example: 
sequence_membership_maha -ifile features/features12F.ndvi.inr  

-roi START/masktaquari-modis.inr  

-def LEARNING/chain12F-MAHA/classdef-12F-MAHA.txt  

-omemb LEARNING/chain12F-MAHA/memberships_maha.inr 

Will compute the membership according the chain strategy (takes the necessary information from the 
“classdef-12F-MAHA.txt” file). 
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2.3.4 Apply classifier to the testing  area (northern part) 

Once the class definitions have been produced, the program sequence_fuzzyclassification_apply can be used 
to determine the classes of all pixels within the region of interest. This program implements a maximum 
likelihood classification algorithm. Optionally, a membership tolerance value can be given for assigning a 
class to a point, only if, the class with maximum membership exceeds this value.   

Example: 
sequence_fuzzyclassification_apply  

-ifile LEARNING/chain12F-MAHA/membership_maha.inr  

-roi START/masktaquari-modis-north.inr  

-ofile OPERATINAL/chain12F-MAHA/classification.12F-MAHA.over80.inr 

-tol 0.80 

will classify the data from file “membership_maha.inr”, writing the output to file “classification.12F-
MAHA.over80.inr”;  a minimum tolerance value of 0.8 is specified for the membership, so that all pixels with 
membership values under 0.8 are considered to be of low confidence and are left unclassified. 

2.3.5 Translate classification result to ground truth legend 

The results from the classification application have to be merged or translated using the inr_translate 
program, so as to make these data compatible with the ground truth data provided. 

Example: 
inr_translate  

-ifile OPERATINAL/chain12F-MAHA/classification.12F-MAHA.over80.inr 

-trans START/trans.confusion.12F.txt  

-ofile OPERATINAL/chain12F-MAHA/classification.12F-MAHA.over80.trans.inr 
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2.4 chain12F-FUZZY-WA 

2.4.1 Compute profile features  

Using the corrected NDVI/EVI temporal sequence data, process each pixel’s temporal profile in order to 
compute 12F features or attributes that describe each pixel’s temporal response. 

Example: 
sequence_profile_features_upgraded -ifile seq/sequence.ndvi.corrected.inr 

-roi START/masktaquari-modis.inr -ofile features/features12F.ndvi.inr 

-dates dates.ddd.txt 

-nodata -9999 

will compute temporal features for the NDVI sequence specified by file “sequence.ndvi.corrected.inr”, 
writing the output to file “features12F.ndvi.inr”; if a specific feature cannot be computed (missing data), then 
-9999 will be assigned as a value. 
 

2.4.2 Train classifier based on training data 

In this chain the classification strategy use Fuzzy logic approach and  Weighted Average for information 
fusion. 
The sequence_classification_train_wa software need a configuration files which provides the weight matrix 
(lines correspond to classes, colums to features). 
Example :  
sequence_classification_train_wa -ifile features12F.ndvi.inr  

-class LEARNING/classification.12F.train.inr  

-config START/config.FusionWA.txt  

-ofile LEARNING/chain12F-FUZZY-WA/classdef-12F-FUZZY-WA.txt 

will analyze the data in file “features12F.ndvi.inr” for the samples of each class provided by 
“classification.12F.train.inr”; the program will thus define each class, writing output class definitions to file 
“classdef-12F-FUZZY-WA.txt”. 
 

2.4.3 Compute memberships 

Based on the previously selected strategy and in the classes definitions, a membership value to each class is 
computed for every pixel. 

Example: 
sequence_membership_wa -ifile features/features12F.ndvi.inr  

-roi START/masktaquari-modis.inr  

-def LEARNING/chain12F-FUZZY-WA/classdef-12F-FUZZY-WA.txt  

-omemb LEARNING/chain12F-FUZZY-WA/memberships_wa.inr 

Will compute the membership according the chain strategy (takes the necessary information from the 
“classdef-12F-FUZZY-WA.txt” file). 
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2.4.4 Apply classifier to the testing  area (northern part) 

Once the class definitions have been produced, the program sequence_fuzzyclassification_apply can be used 
to determine the classes of all pixels within the region of interest. This program implements a maximum 
likelihood classification algorithm. Optionally, a membership tolerance value can be given for assigning a 
class to a point, only if, the class with maximum membership exceeds this value.   

Example: 
sequence_fuzzyclassification_apply  

-ifile LEARNING/chain12F-FUZZY-WA/membership_wa.inr 

-roi START/masktaquari-modis-north.inr  

-ofile OPERATIONAL/chain12F-FUZZY-WA/classification.12F-FUZZY-
WA.over32.inr -tol 0.32 

will classify the data from file “membership_wa.inr”, writing the output to file “classification.12F-FUZZY-
WA.over32.inr”;  a minimum tolerance value of 0.32 is specified for the membership, so that all pixels with 
membership values under 0.32 are considered to be of low confidence and are left unclassified. 

2.4.5 Translate classification result to ground truth legend 

The results from the classification application have to be merged or translated using the inr_translate 
program, so as to make these data compatible with the ground truth data provided. 

Example: 
inr_translate  

-ifile OPERATIONAL/chain12F-FUZZY-WA/classification.12F-FUZZY-
WA.over32.inr 

-trans START/trans.confusion.12F.txt  

-ofile OPERATIONAL/chain12F-FUZZY-WA/classification.12F-FUZZY-
WA.over32.trans.inr 
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2.5 chain12F-FUZZY-DS 

2.5.1 Compute profile features  

Using the corrected NDVI/EVI temporal sequence data, process each pixel’s temporal profile in order to 
compute 12F features or attributes that describe each pixel’s temporal response. 

Example: 
sequence_profile_features_upgraded -ifile seq/sequence.ndvi.corrected.inr 

-roi START/masktaquari-modis.inr -ofile features/features12F.ndvi.inr  

-dates dates.ddd.txt -nodata -9999 

will compute temporal features for the NDVI sequence specified by file “sequence.ndvi.corrected.inr”, 
writing the output to file “features12F.ndvi.inr”; if a specific feature cannot be computed (missing data), then 
-9999 will be assigned as a value. 
 

2.5.2 Train classifier based on training data 

In this chain the classification strategy use Fuzzy logic approach and Dempster-Shafer rule of combination 
for information fusion. 
The sequence_classification_train_ds software need a configuration files which specifies the number of 
features useful for a class and the features to use for each class. 
Example :  
sequence_classification_train_ds -ifile features12F.ndvi.inr  

-class LEARNING/classification.12F.train.inr  

-config START/config.FusionDS.txt  

-ofile LEARNING/chain12F-FUZZY-DS/classdef-12F-FUZZY-DS.txt 

will analyze the data in file “features12F.ndvi.inr” for the samples of each class provided by 
“classification.12F.train.inr”; the program will thus define each class, writing output class definitions to file 
“classdef-12F-FUZZY-DS.txt”. 
 

2.5.3 Compute memberships 

Based on the previously selected strategy and in the classes definitions, a membership value to each class is 
computed for every pixel. 

Example: 
sequence_membership_ds -ifile features/features12F.ndvi.inr  

-roi START/masktaquari-modis.inr  

-def LEARNING/chain12F-FUZZY-DS/classdef-12F-FUZZY-DS.txt 

-omemb LEARNING/chain12F-FUZZY-DS/memberships_ds.inr 

Will compute the membership according the chain strategy (takes the necessary information from the 
“classdef-12F-FUZZY-DS.txt” file). 
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2.5.4 Apply classifier to the testing  area (northern part) 

Once the class definitions have been produced, the program sequence_fuzzyclassification_apply can be used 
to determine the classes of all pixels within the region of interest. This program implements a maximum 
likelihood classification algorithm. Optionally, a membership tolerance value can be given for assigning a 
class to a point, only if, the class with maximum membership exceeds this value.   

Example: 
sequence_fuzzyclassification_apply  

-ifile LEARNING/chain12F-FUZZY-DS/membership_ds.inr 

-roi START/masktaquari-modis-north.inr  

-ofile OPERATIONAL/chain12F-FUZZY-DS/classification.12F-FUZZY-
DS.over80.inr -tol 0.8 

will classify the data from file “membership_wa.inr”, writing the output to file “classification.12F-FUZZY-
DS.over80.inr”;  a minimum tolerance value of 0.8 is specified for the membership, so that all pixels with 
membership values under 0.8 are considered to be of low confidence and are left unclassified. 

2.5.5 Translate classification result to ground truth legend 

The results from the classification application have to be merged or translated using the inr_translate 
program, so as to make these data compatible with the ground truth data provided. 

Example: 
inr_translate  

-ifile OPERATIONAL/chain12F-FUZZY-DS/classification.12F-FUZZY-
DS.over80.inr 

-trans START/trans.confusion.12F.txt  

-ofile OPERATIONAL/chain12F-FUZZY-DS/classification.12F-FUZZY-
DS.over80.trans.inr 
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3 Evaluate classification performance 
3.1 Create ground truth image including deforestation 

3.1.1 Create 4 classes truth image 

The ground truth image is created using the classification LANDSAT resized in the modis format 
“classification_14classes_truth.inr” and the inr_translate function. 

Example :  
inr_translate -ifile START/classification_14classes_truth.inr  

-trans START/translate_14to4.txt  

-ofile OPERATIONAL/truth_4classes.inr 

The translation file should be the following :  
 
1 1 
2 0 
3 0 
4 2 
5 2 
6 2 
7 2 
8 2 
9 2 
10 2 
11 2 
12 2 
13 3 
14 4 

3.1.2 Include partially deforestation 

The ground truth image and a mask of partially deforestation can be merged in order to include deforestation 
in the ground truth.  

Example :  
inr_translate_defor -ifile OPERATIONAL/truth_4classes.inr  

-trans START/translate_5to5.txt  

-maskdefor START/mask_deforesation.inr -ofile OPERATIONAL/truth.inr 

The translation file should be the following : 
 
1 1 
2 2 
3 3 
4 4 
5 5 
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3.2 Compute statistics based on test data 

A quantitative evaluation of the classification performance can be done with the sequence_classification_stats 
program, so as to compare the results computed with the methodology, based on ground truth (e.g., samples 
not included in the training data but only in the testing area). The resulting statistics include the percentage of 
pixels of each class that were classified, as well as the confusion matrix.  

Example: 
sequence_classification_stats  

-ifile OPERATIONAL/chain12F-FUZZY-DS/classification.12F-FUZZY-
DS.over80.trans.inr 

-truth OPERATIONAL/truth.inr -roi START/masktaquari_modis.north.inr 

will compare the file “classification.12F-FUZZY-DS.over80.trans.inr” with the ground truth in file 
“truth.inr”; the resulting statistics (confusion matrix) are written on the screen. 
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