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e Estimation of surface circulation (2D motion w(x, t)) from an image
sequence T(x, t)

@ Data Assimilation

Figure : Satellite data acquired over the Black Sea. Circulation

@ Important issue for pollutant transport and meteorology forecast
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State-of-the-art

Image Processing

@ Image structures as tracer of the sea surface circulation
@ Optical flow methods:
e They compute translational displacement between two observations

e They are ill-posed (the Aperture Problem) and required spatial
regularization

e Validity of brightness constancy assumption?

= not physically suited for ocean circulation
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State-of-the-art

Ocean circulation models and images

4/29

Circulation: advanced 3D oceanographic models are available
(Navier-Stokes, see NEMO project (http://www.nemo-ocean.net)
for instance)

But: only a thin upper layer of ocean is observable (from satellite)

From 3D Navier-stokes and various simplifications, a 2D ocean
surface circulation model is derived — shallow water equations

Compute an optimal solution w.r.t. the model and fitting
observations: use of Data Assimilation techniques

Need of an observation model: link between state vector and

observations .
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State-of-the-art

Proposed method

@ Shallow water model requires information on temperature and upper
layer thickness

@ Temperature: available from Sea Surface Temperature images
(NOAA-AHVRR sensors)

@ Layer thickness: not available from remote sensing

= We propose a method to compute surface circulation from SST image
and without information on the upper layer thickness

= Use of a rough model, missing information will be represented in an
additional model

= Solution is computed using a weak 4D-Var formulation
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Model

Shallow water equations

e State vector is velocity, w = (u, v)T, surface temperature (T) and
upper layer thickness (n):

% _ _ug)‘:_vg;Jrfv—g’ngerAu (1)
% _ _ug)‘i—vg;—fu—glaz—l—KwAv (2)
oo dy
8871:5 = —uaais — V%ZS + KTAT; (4)

e Ky, K1 are diffusive constants, f the Coriolis parameter and g’ the
reduced gravity (see paper for details)
@ Functions w, T and 7 are defined on a space-time domain:

Qx[0,T],Q ? ,ua/-
[OT] cR &Z, ........... . U Pmc
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Model
Shallow water equations

@ Geophysical forces (in red) are grouped

g‘lj _ —ugi—vg;Jrfvg'ngerAu (5)
g‘: _ —ug)‘i—vg;fug'ngerAv (6)
5;: _ _uaazs - v%? + KrAT, (8)

in a hidden part, a = (au,av)T, named “additional model”
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Proposed model

@ The previous system is rewritten as:

o ou_ ou, -
ot u@x dy A
ov ov ov
E = —Ua — Vaiy 4+ a, (].0)
oTs 0Ts 0Ts
9 = U TV ay + KTAT, (11)
@ with
a, = fv—g’@JrK Au (12)
u aX w
a, = —fu—g’g;z + KwAv (13)

where 7 verifies Eq.(3)
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Proposed model

@ The additional model a is now considered as an unknown that we
want to retrieve

) T )
@ The state vector is X = (w Ts) , and the model ruling the
evolution in time of X is summarized as:

(?9):()(’ t) + M(X)(x,t) = (a(’(()’ t)> xeQ,te(0,T] (14)
with
u% + vg—;
M(X) = ud + v%;

uGls + vBls + KT AT,
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Initialization and Observation model

@ Need of an initial condition for X(0):
X(x,0) = Xp(x) +eg(x), x€Q (15)

g Gaussian with covariance matrix B

@ Observations are SST images, T(t;), available at some given dates
t,---, ty

@ The observation operator H projects the state vector in the
observation space. It is defined as:

H(X) = Ts (16)
@ Link between state vector and observation:
]H(X)(X, t,') = T(X, t,') + €R(t,'), xeQ,i=1,---,N (17)

er Gaussian with covariance matrix R e
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Data assimilation
Weak 4D-Var formulation

@ To solve:
)+ MX)(x, 1) = (a(’(‘)’ t)> xeQee(0T  (18)
]H(X)(X, t,') = T(X, t;)+€R(ti), xeQ,i=1--- N

X(x,0) = Xp(x)+ep(x), xe€Q

we minimize the cost function J: N
J(eg,a(tr), - ,a(tn)) = (e, B 'eg) + WZ IVa(t)|*+
i=1

N (19)

> (HX)(t) = T(6), R HX)(6) — T(t)es)
i=1
under the constraint of Eq.(18)
@ ~ term is introduced to prevent numerical instabilities
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Weak 4D-Var formulation

Computation of VJ

Let \(x, t) be an auxiliary variable (named adjoint variable) as solution of:
AT) =0 (20)
O(t) OM\* . 4 .
—7-1- (8—X) A = H'RHX(t)—T(t)] t=t (21)
=0 t#t (22)
Then, gradient of J is:
0J

— = 2(Bjleg+ A 2
Bes ( ; et (0)) (23)
O _ o(yna(n) + M) (24)

8a(t,-) - v 1 i
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Weak 4D-Var formulation

Algorithm

@ Forward pass: integrate forward in time X(t), compute J

@ Backward pass: integrate backward in time A(t), compute VJ

© Perform a steepest descent using numerical solver and get new values
for X(0) and a(t;),i=1---N

@ Repeat steps 1, 2, 3 up to convergence
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Implementation

e Eq. (18) must be discretized:

e In time: Euler scheme
e In space:

@ components u and v are transported by a non linear advection (Burger
equations): Godunov scheme
@ component /s is transport by a linear advection: a first order up-wind

@ Adjoint model: operator (‘%\(/I))k in Eq. (21) is formally defined as a

dual operator:
OM\ * oM
() )= (&) )

It must be determined from the discrete model M;s: we use an
automatic differentiation software,
Tapenade [Hascoét and Pascual, 2013]

@ Steepest descent is performed by BFGS solver [Byrd et al., 1995]
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Data assimilation setup

@ Model: temperature diffusion is neglected (Kt = 0)

Initial condition X, = (wp /) " :

e no information available on initial velocity, we set w, = 0
o I is initialized to the first available observation /(t;)

o Covariance matrix B: without information on initial velocity we
choose eg = (O 0 EBIS) and we have:

<€B7 BilgB> = <€Bls7 BI:15315>

o Matrix By,: chosen diagonal, each element is set to 1 (1 Celsius degree
means 25 % of image dynamics)

Covariance matrix R: chosen diagonal, each element is set to 1

~ : empirically fixed
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Results

A first satellite experiment

@ A sequence of four SST images was acquired over Black Sea on

October 10", 2007
) 15h ) 30h

Figure : October 10t" 2007, over Black Sea

L

(a) 30min (b) 6h

Losza=UPMC
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(b) Proposed method

(a) [Sun et al., 2010]

Motion computed between the first and second observation

Figure :
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Quantitative evaluation on satellite images

@ No ground-truth on satellite data, how to evaluate?

@ We propose to compute the trajectory of some characteristic points in
order to evaluate algorithms in term of transport

@ A comparison with state-of-the-art is performed
@ We proceed as follow:

e Manual selection of a characteristic point in the first observation

e A map of signed distance is computed

e Distance map is transported by the velocity field that we want to
evaluate [Lepoittevin et al., 2013]

o Computation of local maximum in transported map gives the
characteristic point position along the sequence
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Result

Characteristic points

(a) First observation (b) Last observation. Blue =
our method, red = Sun et al.

Figure : Evolution of some characteristic points

Losza=UPMC
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Satellite Experiment #2

Observations

@ Sequence acquired on October 8", 2005

(a) 30min (b) 10h30min (c) 12h (d) 15h30min

Figure : October 8t" 2005, over Black Sea
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Satellite Experiment #2

Motion results
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(a) [Sun et al., 2010] (b) Proposed method

Figure : Motion computed between the first and second observation

. &,Z’ UPmC

1881 SORBONNE



Satellite Experiment #2

Characteristic points

(a) First observation

Figure : Evolution of some characteristic points
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Satellite Experiment #2

Characteristic points

(a) Second observation

Figure : Evolution of some characteristic points
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Satellite Experiment #2

Characteristic points

(a) Third observation

Figure : Evolution of some characteristic points
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Satellite Experiment #2

Characteristic points

(a) Last observation

Figure : Evolution of some characteristic points
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Satellite Experiment #3

Observations

@ Sequence acquired on July 27t 2007

(c) 13h (d) 22h30min

(e) 24h30min
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Satellite Experiment #3

Motion results
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(a) [Sun et al., 2010] (b) Proposed method

Figure : Motion computed between the first and second observation
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Satellite Experiment #3

Characteristic points

(a) First observation

Figure : Evolution of some characteristic points
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Satellite Experiment #3

Characteristic points

(a) Second observation

Figure : Evolution of some characteristic points
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Satellite Experiment #3

Characteristic points

(a) Third observation

Figure : Evolution of some characteristic points
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Satellite Experiment #3

Characteristic points

(a) Fourth observation

Figure : Evolution of some characteristic points
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Satellite Experiment #3

Characteristic points

(a) Last observation

Figure : Evolution of some characteristic points

o &'z,,_m uPmc

18RI SORBONNE UNIVERSITES



Satellite Experiment #4
Observations

@ Sequence acquired on May 14th, 2005

;{}Q-

*—-.

il e e
(a) 30min ) 2h55min
(c) 5h15min ) 7h15min

i (e) 16h15min V.77 % urrm
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Satellite Experiment #4

Motion results
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(b) Proposed method

Figure : Motion computed between the first and second observation
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Satellite Experiment #4

Characteristic points

Al dF

(a) First observation

Figure : Evolution of some characteristic points
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Satellite Experiment #4

Characteristic points
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(a) Second observation

Figure : Evolution of some characteristic points
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Satellite Experiment #4

Characteristic points

T
(a) Third observation

Figure : Evolution of some characteristic points
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Satellite Experiment #4

Characteristic points
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(a) Fourth observation

Figure : Evolution of some characteristic points

. &'z,,_m uPmc

18RI SORBONNE UNIVERSITES



Satellite Experiment #4

Characteristic points

(a) Last observation

Figure : Evolution of some characteristic points
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Concluding remarks

@ Determination of surface circulation using a rough model M
@ Dynamics not modelled by IM is captured in a

Analysis of a retrieved and comparison with a shallow water model

Experiments on synthetic models (Temperature and upper layer
thickness) with ground truth
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