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Objective

Estimation of surface circulation (2D motion w(x, t)) from an image
sequence T (x, t)

Data Assimilation

Figure : Satellite data acquired over the Black Sea. Circulation

Important issue for pollutant transport and meteorology forecast
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State-of-the-art
Image Processing

Image structures as tracer of the sea surface circulation

Optical flow methods:

They compute translational displacement between two observations

They are ill-posed (the Aperture Problem) and required spatial
regularization

Validity of brightness constancy assumption?

⇒ not physically suited for ocean circulation
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State-of-the-art
Ocean circulation models and images

Circulation: advanced 3D oceanographic models are available
(Navier-Stokes, see NEMO project (http://www.nemo-ocean.net)
for instance)

But: only a thin upper layer of ocean is observable (from satellite)

From 3D Navier-stokes and various simplifications, a 2D ocean
surface circulation model is derived → shallow water equations

Compute an optimal solution w.r.t. the model and fitting
observations: use of Data Assimilation techniques

Need of an observation model: link between state vector and
observations
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State-of-the-art
Proposed method

Shallow water model requires information on temperature and upper
layer thickness

Temperature: available from Sea Surface Temperature images
(NOAA-AHVRR sensors)

Layer thickness: not available from remote sensing

⇒ We propose a method to compute surface circulation from SST image
and without information on the upper layer thickness

⇒ Use of a rough model, missing information will be represented in an
additional model

⇒ Solution is computed using a weak 4D-Var formulation
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Model
Shallow water equations

State vector is velocity, w = (u, v)T , surface temperature (Ts) and
upper layer thickness (η):
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Kw, KT are diffusive constants, f the Coriolis parameter and g ′ the
reduced gravity (see paper for details)

Functions w, Ts and η are defined on a space-time domain:
Ω× [0,T],Ω ⊂ R2
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Model
Shallow water equations

Geophysical forces (in red) are grouped
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in a hidden part, a = (au, av )T , named “additional model”
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Proposed model

The previous system is rewritten as:
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where η verifies Eq.(3)

8 / 29



Proposed model

The additional model a is now considered as an unknown that we
want to retrieve

The state vector is X =
(
w Ts

)T
, and the model ruling the

evolution in time of X is summarized as:
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Initialization and Observation model

Need of an initial condition for X(0):

X(x, 0) = Xb(x) + εB(x), x ∈ Ω (15)

εB Gaussian with covariance matrix B

Observations are SST images, T (ti ), available at some given dates
t1, · · · , tN
The observation operator H projects the state vector in the
observation space. It is defined as:

H(X) = Ts (16)

Link between state vector and observation:

H(X)(x, ti ) = T (x, ti ) + εR(ti ), x ∈ Ω, i = 1, · · · ,N (17)

εR Gaussian with covariance matrix R
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Data assimilation
Weak 4D-Var formulation

To solve:
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)
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H(X)(x, ti ) = T (x, ti ) + εR(ti ), x ∈ Ω, i = 1, · · · ,N
X(x, 0) = Xb(x) + εB(x), x ∈ Ω

we minimize the cost function J:
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under the constraint of Eq.(18)

γ term is introduced to prevent numerical instabilities
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Weak 4D-Var formulation
Computation of ∇J

Theorem 1

Let λ(x, t) be an auxiliary variable (named adjoint variable) as solution of:

λ(T) = 0 (20)
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Weak 4D-Var formulation

Algorithm

1 Forward pass: integrate forward in time X(t), compute J

2 Backward pass: integrate backward in time λ(t), compute ∇J

3 Perform a steepest descent using numerical solver and get new values
for X(0) and a(ti ), i = 1 · · ·N

4 Repeat steps 1, 2, 3 up to convergence
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Implementation

Eq. (18) must be discretized:

In time: Euler scheme
In space:

components u and v are transported by a non linear advection (Burger
equations): Godunov scheme
component Is is transport by a linear advection: a first order up-wind

Adjoint model: operator
(
∂M
∂X

)∗
in Eq. (21) is formally defined as a

dual operator: 〈
φ,

(
∂M

∂X

)∗
ψ

〉
=

〈(
∂M

∂X

)
φ, ψ

〉
It must be determined from the discrete model Mdis: we use an
automatic differentiation software,
Tapenade [Hascoët and Pascual, 2013]

Steepest descent is performed by BFGS solver [Byrd et al., 1995]
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Data assimilation setup

Model: temperature diffusion is neglected (KT = 0)

Initial condition Xb =
(
wb Ib

)T
:

no information available on initial velocity, we set wb = ~0
Ib is initialized to the first available observation I (t1)

Covariance matrix B: without information on initial velocity we
choose εB =

(
0 0 εBIs

)
and we have:〈

εB ,B
−1εB

〉
=
〈
εBIs

,B−1
Is
εBIs

〉
Matrix BIs : chosen diagonal, each element is set to 1 (1 Celsius degree
means 25 % of image dynamics)

Covariance matrix R: chosen diagonal, each element is set to 1

γ : empirically fixed
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Results
A first satellite experiment

A sequence of four SST images was acquired over Black Sea on
October 10th, 2007

(a) 30min (b) 6h (c) 15h (d) 30h

Figure : October 10th 2007, over Black Sea
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Results
Velocity retrieved

(a) [Sun et al., 2010] (b) Proposed method

Figure : Motion computed between the first and second observation

17 / 29



Quantitative evaluation on satellite images

No ground-truth on satellite data, how to evaluate?

We propose to compute the trajectory of some characteristic points in
order to evaluate algorithms in term of transport

A comparison with state-of-the-art is performed

We proceed as follow:

Manual selection of a characteristic point in the first observation
A map of signed distance is computed
Distance map is transported by the velocity field that we want to
evaluate [Lepoittevin et al., 2013]
Computation of local maximum in transported map gives the
characteristic point position along the sequence
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Result
Characteristic points

(a) First observation (b) Last observation. Blue =
our method, red = Sun et al.

Figure : Evolution of some characteristic points
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Satellite Experiment #2
Observations

Sequence acquired on October 8th, 2005

(a) 30min (b) 10h30min (c) 12h (d) 15h30min

Figure : October 8th 2005, over Black Sea
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Satellite Experiment #2
Motion results

(a) [Sun et al., 2010] (b) Proposed method

Figure : Motion computed between the first and second observation
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Satellite Experiment #2
Characteristic points

(a) First observation

Figure : Evolution of some characteristic points
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Satellite Experiment #2
Characteristic points

(a) Second observation

Figure : Evolution of some characteristic points
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Satellite Experiment #2
Characteristic points

(a) Third observation

Figure : Evolution of some characteristic points

22 / 29



Satellite Experiment #2
Characteristic points

(a) Last observation

Figure : Evolution of some characteristic points
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Satellite Experiment #3
Observations

Sequence acquired on July 27th, 2007

(a) 30min (b) 8h15min (c) 13h (d) 22h30min

(e) 24h30min
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Satellite Experiment #3
Motion results

(a) [Sun et al., 2010] (b) Proposed method

Figure : Motion computed between the first and second observation
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Satellite Experiment #3
Characteristic points

(a) First observation

Figure : Evolution of some characteristic points
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Satellite Experiment #3
Characteristic points

(a) Second observation

Figure : Evolution of some characteristic points
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Satellite Experiment #3
Characteristic points

(a) Third observation

Figure : Evolution of some characteristic points
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Satellite Experiment #3
Characteristic points

(a) Fourth observation

Figure : Evolution of some characteristic points
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Satellite Experiment #3
Characteristic points

(a) Last observation

Figure : Evolution of some characteristic points
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Satellite Experiment #4
Observations

Sequence acquired on May 14th, 2005

(a) 30min (b) 2h55min

(c) 5h15min (d) 7h15min

(e) 16h15min
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Satellite Experiment #4
Motion results

(a) [Suter, 1994]

(b) Proposed method

Figure : Motion computed between the first and second observation
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Satellite Experiment #4
Characteristic points

(a) First observation

Figure : Evolution of some characteristic points
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Satellite Experiment #4
Characteristic points

(a) Second observation

Figure : Evolution of some characteristic points
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Satellite Experiment #4
Characteristic points

(a) Third observation

Figure : Evolution of some characteristic points
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Satellite Experiment #4
Characteristic points

(a) Fourth observation

Figure : Evolution of some characteristic points
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Satellite Experiment #4
Characteristic points

(a) Last observation

Figure : Evolution of some characteristic points
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Concluding remarks

Determination of surface circulation using a rough model M

Dynamics not modelled by M is captured in a

Analysis of a retrieved and comparison with a shallow water model

Experiments on synthetic models (Temperature and upper layer
thickness) with ground truth
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