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Why coupling models and images?

> Whatever model’s resolution, images of higher resolution.

» Deriving characteristics from acquisitions, further assimilated
as pseudo-observations. Atmospheric Motion Vectors. Ocean
surface motion.

» Direct assimilation of new high-level data. Gradient maps.
Wavelets or curvlets coefficients.

» Control of structures positions.
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Which research themes?

» Empirical models from image data. Describing objects
evolution: pollutant spills, ocean or meteorological structures.
Major interest for nowcasting.

» Coupling models and images of different resolutions. Subgrid
parameterization. High resolution coastal currents.

» Optimal bases for image and model reduction. Crisis
management.
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Identification of operational needs

v

Short-term photovoltaic production forecast. EDF R&D in the
test side of Reunion Island.

v

Pollutant transport and littoral monitoring.

v

Monitoring of offshore equipments.
To be discussed in SAMA.

v
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Actions in Clime in the last 4 years

> State estimation with 4D-Var data assimilation. Observation
equations for image data, observation error covariance matrix.
Motion estimation, inpainting, structures tracking.

» Model error. Image models being obtained from heuristics,
estimation of their error allows assessing the dynamics.

» Model reduction. Sliding windows method for long sequences
and POD reduction. Div-free motion from vorticity on sine
basis. Computation of basis from motion properties (domain
shape, boundary conditions).

» Ensemble methods. Definition of an ensemble from optical
flow methods.
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Highlight1

Image Model for Motion Estimation and Structure Tracking
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Highlightl

Image Model for Motion Estimation and Structure Tracking

State vector X(x,y,t) = (w(x,y,t)7 Il(x,y,t) ®(x,y,t)) T

» Lagrangian constancy of velocity
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Motion Estimation and Structure Tracking

Observations

Satellite images /(t;) acquired by satellite at dates t;

SRS A aLa e

Distance to contours points D¢(t;) computed on the images

R ReRc)-g-

Definition of H :
H(X,Y) =1 — I,
Ho(X,Y) = (Dc — |[®])Lj¢|<s
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Motion Estimation and Structure Tracking

with contour points
without contour points
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Motion Estimation and Structure Tracking
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Highlight2

Spirit of model reduction

Courtesy: Marine Hydrophysical Institute, Ukrainian Academy of Sciences, Sevastopol
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Highlight2

Spirit of model reduction

v

Reduced state: less memory
Regularity: applied on basis
elements

Boundary conditions: imposed to
the basis elements

Numerical schemes: ODE vs PDE

v

v

v
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Full and reduced models

Full model
Reduced model
ow
—(x,t) + (w-V)w(x,t) =0
ot ‘fk(t) +aTB(k)a =0,k = [1, K]
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Motion basis

¢; are obtained by sequentially solving systems S;:

( .
= f,Vf
9i = min (VEVE)

div (¢;(x)) =0 ¥xe€Q
¢i(x) -n(x) =0 Vx€oQ
(@is k) = 6ik, ke [1,1]
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Image Basis

1; are obtained by sequentially solving systems S; :

;= min (VFf,Vf)d
(0 feT;?Q)< ) dx

Si=1{ Vii(x) n(x)=0 VxedQ 2)
(i, i) = 0ik, ke[l,i]
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Black Sea motion estimation
Results of Assimilation in the reduced model:
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Black Sea motion estimation

Results of Assimilation in the redt
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Black Sea motion estimation

Results of Assimilation in the reduced model:
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Prospective

Methods

v

Optimal basis for reduced models

v

Non linear observation operators, linked to image structures

Characterization of model errors

v

» Comparison of 4D-Var and ensemble methods

Objectives

» Motion modeling of geophysical flows
> Short-term tracking and forecast of clouds

» Forecast of ocean currents from image data
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