Pricing Discretely Monitored Asian Options
under Lévy Processes

Gianluca Fusai
Dipartimento SEMEQ
Università degli Studi del Piemonte Orientale
Associate Fellow, Financial Options Research Centre, Warwick Business School
gianluca.fusai@eco.unipmn.it

Attilio Meucci
Lehman Brothers, Inc.
attilio_meucci@symmys.com

Abstract
We present methodologies to price discretely monitored Asian options when the underlying evolves according to a generic Lévy process. For arithmetic Asian options we solve the valuation problem by recursive integration and derive a recursive theoretical formula for the moments to check the accuracy of the results.

Premia 14

1 Introduction
We investigate the pricing problem for Asian options monitored at discrete times. The payoff of an arithmetic (geometric) Asian option depends on the arithmetic (geometric) average value of the underlying asset price over a given time period. Asian options have been very successful in the marketplace, because they reduce the possibility of market manipulations near the expiry and they offer better hedging possibilities to firms with a stream of exposures.

Several approaches have been attempted to obtain pricing formulas for the price of Asian options, assuming a continuous-time monitoring of the underlying under the geometric Brownian motion hypothesis, see Fusai and Roncoroni (2008) for a review and numerical comparisons. Among analytical approaches, we mention the Laplace transform approach in Geman and Yor
(1993), the spectral expansion derived by Linetsky (2004), and the approximation of the average distribution by fitting integer moments in Turnbull and Wakeman (1991), Lévy (1992), Milevsky and Posner (1998) or logarithmic moments as in Fusai and Tagliani (2002). Another approach uses binomial trees, such as Gaudenzi et al. (2007). However, a large number of contracts specify discrete time monitoring, and the impact of the continuous-time assumption can be substantial for some path-dependent derivatives, see for instance the literature on lookback and barrier options, Kat (2001).

For the discrete case, Clewlow and Carverhill (1990), Andreasen (2002), Dempster et al. (1998), Zvan et al. (1999) focus their attention on the geometric Brownian motion. Benhamou (2002) enhances the algorithm of Clewlow and Carverhill (1990) based on a Fast Fourier technique and adapt it to some non-lognormal densities, like the Student t. Their approaches, although innovative, require computationally intensive numerical methods or approximations for which no clear error bound is available. Albrecher (2004) and Albrecher and Predota (2004) explore approximations based on the moments of the average, but in general it is difficult to evaluate the approximation error.

In particular, we discuss the pricing of arithmetic Asian options when the underlying asset evolves according to a generic Lévy process. We present a new numerical procedure which combines a recursive numerical quadrature with a fast Fourier transform algorithm. Our procedure is also able to provide estimates of the Greeks, such as delta and gamma.

The paper is organized as follows. In Section 2 we model the underlying process, starting from the distribution of the log-increments. In Section 3 we present the new recursive algorithm for the valuation of arithmetic Asian options. In Section 4 we discuss our numerical results with particular emphasis on the discrete monitoring feature. In Section 5 we conclude.

2 The process for the underlying

We are interested in pricing discrete Asian options, for which the payoff depends on the geometric or on the arithmetic average of the prices observed at equally-spaced discrete times $t_0 \equiv 0, t_1 \equiv \Delta, \ldots, t_j \equiv j\Delta, \ldots$. We denote by S_t the underlying asset price at time t. Consider the demeaned log-increments of size Δ:

$$X^\Delta_T \equiv \ln (S_T \Delta) - \ln (S_{(T-1)\Delta}) - m^\Delta_T \Delta,$$ \hspace{1cm} (1)
where m_T^Δ is the deterministic component under the risk-neutral measure of the log-increments X_T^Δ, whose value will be specified later on:

$$m_T^\Delta \equiv \frac{1}{\Delta} \mathbb{E} \left\{ \ln (S_T^\Delta) - \ln (S_{(T-1)^\Delta}) \right\}. \quad (2)$$

We consider the demeaned log-increments instead of the simple log-increments for future notational convenience.

As far as the underlying process is concerned, we only assume that, under the risk-neutral measure, non-overlapping log-increments be independent and that increments of equal size be identically distributed. In other words, we assume that the logarithm of the prices be a Lévy process under the risk neutral measure. Then $m_T^\Delta \equiv m$ does not depend on either the time step T or the step size Δ and the underlying asset price reads:

$$S_T^\Delta = S_0 e^{mT^\Delta + X_1^\Delta + \cdots + X_T^\Delta}. \quad (3)$$

Lévy processes display a number of palatable features: they are the most direct generalization of the Brownian motion (BM); they are analytically tractable; Lévy processes are general enough to include a wealth of patterns and thus they account for smile and skew effects in option prices; the i.i.d. structure of the Lévy processes simplifies the estimation of the respective parameters under the real measure, see Meucci (2005). For a thorough introduction to Lévy processes with applications to finance see Geman (2002), Schoutens (2003), Cont and Tankov (2004a), Carr et al. (2003), Geman (2005).

A generic Lévy process is fully determined by the characteristic exponent of the log-increments, which is defined as the logarithm of the characteristic function:

$$\psi_{t^\Delta} (\omega) \equiv \ln \left(\mathbb{E} \left\{ e^{i\omega X_t^\Delta} \right\} \right). \quad (4)$$

In Table 1 we list a few parametric Lévy processes and their associated characteristic exponent.

[INSERT TABLE 1 HERE]
introduced by Kou (2002) are jump-diffusion processes that account for the presence of fat tails in the empirical distribution of the underlying1. The remaining models (nig and cgmy) are pure jump processes with finite variation that can display both finite and infinite activity2. They are subordinated Brownian motions: in other words, they can be interpreted as Brownian motions subject to a stochastic time change which is related to the level of activity in the market. In particular, stable processes (st) display the additional feature that their distribution does not depend on the monitoring interval, modulo a scale factor.

So far the drift parameter m in (3) has been left unspecified. Due to the incompleteness of the market, we have to choose a martingale measure for the risk-neutral pricing of derivatives. Except in the special case of the geometric Brownian motion, there are many equivalent measures under which the discounted price process is a martingale. Several different approaches have been suggested to select an appropriate martingale measure, but there is as yet no definitive way of pricing contingent claims in incomplete markets. A discussion on the different choices of an equivalent martingale measure with reference to Lévy Processes can be found for example in Chan (1999) and in Hubalek and Sgarra (2006). A mathematically tractable choice consists in choosing the value of m in such a way that the price S_t discounted by the money-market account B_t be a martingale, i.e.

$$
 E[S_T/B_T] = S_0/B_0, \quad \forall T \geq 0,
$$

see Schoutens (2003). A simple algebraic manipulation shows that m must solve

$$
 m = (r - q) - \frac{\psi_\Delta (-i)}{\Delta},
$$

where r denotes the constant risk-free rate and q denotes the constant dividend payout rate. Another possible choice is represented by the Esscher

1In these models σ^2 represent the instantaneous variance of the diffusion part, whilst λ is the jump-intensity. In the jd model, α and δ^2 refer respectively to the mean and the variance of the jump size. In the de model, p is the probability of a up jump, whilst η_1 and η_2 govern the decay of the tails of the up and down jump sizes, that are exponentially distributed.

2In particular, the nig model has stochastic time change given by an Inverse Gaussian Process I_t with parameters 1 and $\delta \sqrt{\alpha^2 - \beta^2}$, so that $nig_t = \beta \delta^2 I_t + \delta W_t$, where W_t is a Wiener process. The path behaviour of the CGMY process is determined by the Y parameter. If $Y < 0$, the paths have finite jumps in any finite interval; if not, the paths have infinitely many jumps in any finite time interval, i.e. the process has infinite activity. Moreover, if the Y parameter lie in the interval $[1, 2)$, the process is of infinite variation. See Schoutens (2003).

3 Arithmetic Asian options

The payoff of an arithmetic Asian option depends on the following path-dependent random variable:

\[A_T^\Delta \equiv \frac{1}{T+1} \sum_{k=0}^{T} S_{\Delta k}. \]

(6)

Notice that we use the convention that the average starts at period \(k \equiv 0 \). In the following, we exploit a recursive formulation to price the fixed strike arithmetic Asian option. For the floating strike version see Fusai and Meucci (2007). The payoff of an arithmetic Asian call option with fixed strike \(K \) reads:

\[C_{fix}^a (K, T) \equiv \max \left\{ A_T^\Delta - K, 0 \right\}. \]

(7)

As realized in Clewlow and Carverhill (1990), the distribution of \(A_T^\Delta \) can be obtained recursively. If we define \(Z_k^\Delta \equiv m \Delta + X_k^\Delta \), from (6) we are interested in the distribution of the following quantity

\[\sum_{k=1}^{T} S_{\Delta k} = e^{Z_1^\Delta} \left(1 + e^{Z_2^\Delta} \left(\cdots (1 + e^{Z_T^\Delta}) \right) \right). \]

Starting from \(L_T^\Delta \equiv e^{Z_1^\Delta} \) and introducing recursively the quantities

\[L_k^\Delta \equiv e^{Z_k^\Delta} \left(1 + L_{k+1}^\Delta \right), \quad k = T - 1, \ldots, 1, \]

(8)

we obtain \(A_T^\Delta \equiv S_0 \left(1 + L_T^\Delta \right) / (T + 1) \). Therefore, the key ingredient for the computation of fixed-strike arithmetic Asian options is the density of \(L_T^\Delta \) or equivalently, the density of \(B_T^\Delta \equiv \ln \left(L_T^\Delta \right) \). We discuss this computation in
Section 3.1. Once we obtain the density \(f_{B_1} \) we can price call options\(^3\) with an additional numerical integration:

\[
E \left\{ C_{f_x}^a (K, T) \right\} = e^{-rT} \int_{\gamma}^{+\infty} \left(\frac{S_0}{T + 1} \left(1 + e^x \right) - K \right) f_{B_1}(x) \, dx,
\]

where \(\gamma \equiv \ln \left(\frac{K (T + 1)}{S_0} - 1 \right) \). Furthermore, once we have the density \(f_{B_1} \) we can compute option prices for different strikes \(K \) and spot prices \(S_0 \). From (9) we can also easily compute the Greeks. For instance, for the delta we obtain:

\[
\Delta = \frac{e^{-rT}}{T + 1} \frac{\partial}{\partial S_0} \int_{\gamma}^{+\infty} \left(1 + e^x \right) f_{B_1}(x) \, dx.
\]

Similarly, for the gamma we obtain:

\[
\Gamma = \frac{e^{-rT}}{T + 1} \frac{\partial^2}{\partial S_0^2} \int_{\gamma}^{+\infty} \gamma \left(1 + e^x \right) f_{B_1}(x) \, dx.
\]

Finally, notice that the recursion (8) translates into a formula for the moments of the arithmetic average. Indeed, from the independence of \(Z_{\Delta k} \) and \(L_{\Delta k+1} \), as well as from the definition of \(Z_{\Delta k} \), we obtain:

\[
E \left\{ \left(L_{\Delta T} \right)^n \right\} \equiv E \left\{ \left(e^{\Delta Z_{\tau}} \left(1 + L_{\Delta k+1} \right) \right)^n \right\}
\]

\[
= e^{nm\Delta \phi_{X\Delta}} (-in) \sum_{q=0}^{n} \binom{n}{q} E \left\{ \left(L_{\Delta k+1} \right)^q \right\},
\]

where the recursion starts with the following initial condition:

\[
E \left\{ \left(L_{\Delta T} \right)^n \right\} \equiv E \left\{ e^{nZ_{\tau}} \right\} = \phi_{X\Delta} (-in).
\]

The moments of the arithmetic average then can be computed as follows:

\[
E \left\{ \left(A_{\Delta T} \right)^n \right\} \equiv \left(\frac{S_0}{T + 1} \right)^n \sum_{j=0}^{n} \binom{n}{j} E \left\{ \left(L_{\Delta T} \right)^j \right\}.
\]

We will use this result to verify the accuracy of our numerical method. An expression similar to (14) was obtained also in Albrecher (2004).

\(^3\)If we are interested in pricing put options, we have to integrate over the relevant domain or to exploit the put-call parity for Asian options.
3.1 Computation of the pricing density

Since Z_k^Δ and L_{k+1}^Δ are independent, the density of $B_k \equiv \ln \left(L_k^\Delta \right) = Z_k^\Delta + \ln (1 + L_{k+1}^\Delta)$ is the convolution of the density $f_{Z_k^\Delta}$ and that of $\ln (1 + e^{B_{k+1}^\Delta})$. Furthermore, since the Z_k^Δ are i.i.d. the density $f_{Z_k^\Delta}$ does not depend on the monitoring time index k, which we drop from the notation. With a change of variable we obtain that the density of f_B satisfies the recursion:

$$f_{B_k}(x) = \int_{-\infty}^{+\infty} f_{Z_k^\Delta} \left(x - \ln (e^y + 1) \right) f_{B_{k+1}}(y) \, dy, \quad k = T - 1, \ldots, 1, \quad (15)$$

where the initial condition is set as $f_{B_T} \equiv f_{Z_T^\Delta}$. For some specifications of the underlying Lévy process such as Gaussian, NIG, Double Exponential and Jump-Diffusion this density is known analytically; for other specifications, such as CGMY, it can be obtained by inverting the characteristic function of the log returns with the FFT. We remark that a recursion similar to (15) appears in Clewlow and Carverhill (1990) and then in Benhamou (2002). These authors exploit the convolution structure of the recursion to obtain the density of B_k^Δ by applying an FFT and an inverse FFT at each monitoring date. Instead, we use the FFT once to generate the density of Z_k^Δ given its characteristic function and then we implement a series of recursive quadratures.

We proceed by approximating the integral (15) using an M-point quadrature formula, see Press et al. (1997):

$$f_{B_k}(x) \approx \int_{l}^{u} \varphi_{Z_k^\Delta} \left(x - \ln (e^y + 1) \right) f_{B_{k+1}}(y) \, dy \quad (16)$$

$$\approx \sum_{j=1}^{M} w_j \varphi \left(x - \ln (e^{y_j} + 1) \right) f_{B_{k+1}}(y_j),$$

where y_j are the abscissas and w_j the corresponding weights in the quadrature formula. An issue in the implementation of the above procedure is the choice of the domain $[l, u]$. We use the results in Philips and Nelson (1995) that, for a given random variable X, yield a bound to $\Pr(X > c)$ and to $\Pr(X < -c)$ in terms of the integer moments of X. In our implementation we focus on the first ten integer moments of B_T^Δ to determine l such that $\Pr \left(B_T^\Delta < l \right) \leq 10^{-8}$ and similarly we focus on the first ten integer moments of $L_T^\Delta \equiv \exp \left(B_T^\Delta \right)$ to determine u such that $\Pr \left(L_T^\Delta > e^u \right) \leq 10^{-8}$ (the latter
moments are readily provided by \((12)\). These choices have proved sufficient to achieve accurate results. Another issue in the implementation of \((16)\) is the choice of the quadrature rule: in our numerical implementation we adopt a Gaussian quadrature rule. To motivate this choice with respect to alternative procedures we observe that the quantity to be estimated, i.e. the option price, can be represented as a multiple integral

\[
I = \int_{\ln\left(\frac{K_T}{S_0}\right)}^{+\infty} dx \int_{-\infty}^{+\infty} dy_n \cdots \int_{-\infty}^{+\infty} dy_1 \zeta (x, y),
\]

(17)

where

\[
\zeta (x, y) \equiv \left(\frac{S_0}{T + 1} (1 + e^x) - K\right) \varphi_Z (x - \ln (e^{y_n} + 1)) \cdots \varphi_Z (y_1). \quad \text{(18)}
\]

An \(M\)-point numerical quadrature approximates \((17)\) with the following expression:

\[
\hat{I} \equiv \sum_{k_{n+1}=1}^{M} \sum_{k_n=1}^{M} \cdots \sum_{k_1=1}^{M} w_{k_1} \cdots w_{k_n} w_{k_{n+1}} \zeta (x_{k_{n+1}}, y_{k_1}, \cdots, y_{k_n}).
\]

(19)

The convergence rate using the trapezoid rule is \(O \left(J^{-2/n}\right)\), where \(J\) is the number of evaluations of \(\zeta (x, y)\), see Haselgrove (1961). Using the Simpson rule we have an improvement to \(O \left(J^{-4/n}\right)\). A crude Monte Carlo simulation samples points uniformly and averages the function at these points, providing an approximation to \((17)\) which is characterized by a standard error which is independent of \(n\) and of order \(O \left(J^{-1/2}\right)\); for sufficiently large values of \(n\), this convergence rate is better than either the trapezoid or the Simpson rule. On the other hand, using an \(M\)-point Gaussian quadrature, the error is \(O \left(J^{-(2M+1)/2n}\right)\), and for \(M\) sufficiently large we obtain a faster convergence than with any of the above methods, including Monte Carlo simulations. We mention that recursive quadrature has received attention in the literature on barrier options, see Aitsahalia and Lai (1997), Sullivan (2000), Andricopoulos et al. (2003), Fusai and Recchioni (2005).

A third issue in the implementation of the recursion \((16)\) is the computational cost. We can write that recursion in matrix form as follows:

\[
f_k = K D f_{k+1},
\]

(20)

where \(f_k\) is a vector with elements \(f_{B_k} (x_j)\); \(K\) is an \(M \times M\) kernel whose \((k,j)\)-th element reads \(\phi (x_k - \ln (e^{y_j} + 1))\); and \(D\) is a diagonal matrix with
elements \(d_{jj} = w_j\). The density at the \(n\)-th monitoring date is then given by iterating (20) starting from \(f_n\). Therefore, the solution at the \(n\)-th monitoring date for each value of \(x\) requires \(O(nM^2)\) function evaluations (matrices \(K\)), plus \(O(nM^2)\) elementary operations. Therefore the total cost is of the order of \(O(nM^2)\) elementary operations.

To summarize, the algorithm, which was implemented in C, proceeds as follows:

- Define the parametric model for log-returns as in Table 1.
- Using the FFT algorithm compute the density function of the log-returns, and assign it as initial condition \(f_T\) to the recursion (20).
- Using the weights and abscissas of the Gaussian quadrature, construct the product matrix \(KD\) and then iteratively compute \(f_n, f_{n-1}, \ldots, f_1\).
- Compute the option price by numerical integration of the payoff function with the density \(f_1\) as in (9).
- Check the accuracy of the results by comparing the numerical moments of the arithmetic average with the theoretical expression provided by (14).

4 Numerical experiments

In this section we perform numerical tests to examine the accuracy of our procedure. More precisely, we compare our recursive pricing procedure with the results of a standard Monte Carlo-based pricing with one million scenarios and using the price of the Geometric option as control variate.

The first issue is the impact of the monitoring frequency. It is well known that for barrier options the discrepancy between option prices under continuous and discrete monitoring can be significant. Indeed, the convergence of the discrete monitored barrier option prices to the continuous case is extremely slow, of the order of \(n^{-1/2}\), where \(n\) is the number of monitoring dates. In the sequel, we investigate if this is also the case for Asian options when the underlying follows a Lévy process.

4.1 Parameter settings

To perform a comparison between different Lévy models, we proceed as follows. We consider the calibration results reported in Fusai and Meucci.

\(^4\)For details on the Monte Carlo simulation, the control variate and for more detailed results see Fusai and Meucci (2007).
The calibrated volatility parameter for the GBM is $\hat{\sigma} = 0.17801$.

- The calibrated parameters for the NIG process are:
 $\hat{\alpha} = 6.1882$, $\hat{\beta} = -3.8941$, $\hat{\delta} = 0.1622$.

- The calibrated parameters for the CGMY process are:
 \begin{equation}
 \hat{C} = 0.0244, \quad \hat{G} = 0.0765, \quad \hat{M} = 7.5515, \quad \hat{Y} = 1.2945.
 \end{equation}

- The calibrated parameters for the Merton model are:
 $\hat{\sigma} = 0.126349$, $\hat{\alpha} = -0.390078$, $\hat{\lambda} = 0.174814$, $\hat{\delta} = 0.338796$.

- The calibrated parameters for the double-exponential model are:
 $\hat{\sigma} = 0.120381$, $\hat{\lambda} = 0.330966$, $\hat{p} = 0.20761$, $\hat{\eta}_1 = 9.65997$, $\hat{\eta}_2 = 3.13868$.

Figure 1 shows the density of the log-returns for the calibrated models. The Merton jump-diffusion model, the Kou double exponential model and the CGMY densities appear very similar and remarkably different from the Gaussian case. In particular, the skewness and kurtosis parameters are respectively equal to -19.813 and 986.936 for the CGMY model, to -2.16016 and 7.46374 for the Merton model, to -2.77006 and 13.5805 for the double exponential model and to -2.13745 and 9.93736 for the NIG model.

4.2 Numerical Results

We consider now arithmetic-average Asian options. In Table 2 we report the CPU time and the square root of the sum of squared errors, where the errors are the differences between the analytical moments and the numerical moments of order 0 to 5. The analytical moments are computed according to formula (14), whilst the numerical are computed in two ways: using one million Monte Carlo simulations (with and without the Geometric Average
as control variate; for these results we report the standard error) and using the density obtained by recursion (20).

The most interesting results are that, except for the NIG process, the proposed numerical integration procedure provides much more accurate estimates in lesser computational time than Monte Carlo simulation also if implemented using control variates. We stress that the Monte Carlo approach is a viable alternative only if enhanced by the control variates.

The computational cost of our technique is linear in the number of monitoring dates and quadratic in the number of quadrature points. Extremely accurate result can be obtained for the Gaussian, jump-diffusion and double exponential processes, even with a very large number of monitoring dates (≈ 250) and a low number of nodes (≈ 3000). Slightly less accurate results are obtained for the CGMY process, but in this case the Monte Carlo simulations do not appear to provide a reliable alternative at all. Instead, for the NIG model, our approach does not perform well, because the density peaks as we increase the monitoring frequency. In this case the Monte Carlo appears to be the only viable alternative.

[Insert Table 2 here]

In Tables 3-7 we consider prices of arithmetic Asian options. The numerical results previously presented seem to justify that model risk does not seem to be an issue (although Gaussian and NIG models produce somewhat different option prices), as important as for barrier options. Intuitively, the averaging process tapers the thickness of the tails, whilst for barrier options the model sensitivity is much higher, as different path properties are emphasized by the knock-out/in effect of the barrier, see Schoutens et al. (2004). The tapering effect for Asian options is confirmed by Figure 2, which displays the densities of the geometric and arithmetic average according to different models. As we can see, with the exception of the Gaussian and NIG cases, these densities look very similar.

Furthermore, the number of monitoring dates does not seem as crucial as for barriers. Therefore, in order to approximate the continuously monitored solution, we can use the discrete solution with a low number of monitoring dates, for which our algorithm is reliable and fast.

[Insert Table 3 here]
[Insert Table 4 here]
Finally, in Figures 3, 4 and 5 we report the differences in prices, deltas and gammas computed according to the different models taking as benchmark the geometric Brownian motion. The differences among the Levy models are small whilst appear remarkable if compared to the GBM case: even from a hedging perspective the effect of model risk is limited, unlike in the case of barrier options, see Schoutens et al. (2004). This is welcome news from a risk-management perspective. Clearly, it remains to be investigated the relevance of the i.i.d. assumption, that underlies all Lévy processes. This will be possibly the topic of future work, although in the non i.i.d. setting our formulae for the geometric case and the numerical approximation for the arithmetic case do not apply.

5 Conclusions

We introduce a recursive algorithm to price arithmetic Asian options under the general assumption that the underlying evolves according to a Lévy process. Moreover, we consider discretely monitored options. However, differently from other path-dependent options like barrier and lookback, Asian option prices do not seem to be affected by the monitoring frequency. We also evaluate the impact of different model specification. As it turns out, model risk is significant in the case of the Gaussian and NIG models. It remains to be investigated the effect of stochastic volatility. Unfortunately, both the closed-form analytical formulas for the geometric Asian options and the numerical algorithm for the arithmetic Asian options rely on the i.i.d. assumption for the log-increments of the underlying: this assumption is not satisfied by non-Lévy stochastic volatility models.
References

[31] Madan, D. B., Yor, M., 2005. CGMY and Meixner subordinators are absolutely continuous with respect to one sided stable subordinators. Prépublication du Laboratoire de Probabilités et Modèles Aléatoires.

\[\psi_{\Delta} (\omega) = \frac{\sigma^2 \Delta}{2} \omega^2 \Delta + \lambda \Delta \left(1 - p \right) \eta \tan \left(\frac{\alpha \pi}{2} \right) \]

<table>
<thead>
<tr>
<th>Model</th>
<th>Characteristic Exponent</th>
</tr>
</thead>
<tbody>
<tr>
<td>(g)</td>
<td>(-\delta \Delta \left(\sqrt{\alpha^2 - (\beta + i \omega)^2} - \sqrt{\alpha^2 - \beta^2} \right))</td>
</tr>
<tr>
<td>(\text{nig})</td>
<td>(-\frac{1}{2} \sigma^2 \omega^2 \Delta + \lambda \Delta \left(\frac{(1-p)p\eta}{\eta^2 + \eta \omega} + \frac{p\eta}{\eta^2 + \eta \omega} - 1 \right))</td>
</tr>
<tr>
<td>(\text{cgmy})</td>
<td>(C \Delta \Gamma (-Y) \left((M - i \omega)^Y - M^Y + (G + i \omega)^Y - G^Y \right))</td>
</tr>
<tr>
<td>(\text{de})</td>
<td>(-\frac{1}{2} \sigma^2 \omega^2 \Delta + \lambda \Delta \left(e^{i \omega \alpha - \frac{1}{2} \omega^2 \delta^2} - 1 \right))</td>
</tr>
<tr>
<td>(\text{jd})</td>
<td>(-\kappa \alpha</td>
</tr>
</tbody>
</table>

Table 1: Characteristic exponents of some parametric Lévy processes

<table>
<thead>
<tr>
<th>Modello</th>
<th>Monte Carlo</th>
<th>Number of Quadrature Points</th>
<th>7000</th>
<th>10000</th>
<th>10000</th>
</tr>
</thead>
<tbody>
<tr>
<td>g</td>
<td>MC CPU MC+CV CPU</td>
<td>MSE CPU MSE CPU MSE CPU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.08439 63</td>
<td>0.03525 68</td>
<td>0.00000 119</td>
<td>0.00000 65</td>
<td>0.00000 6</td>
</tr>
<tr>
<td>50</td>
<td>0.37333 125</td>
<td>0.02433 130</td>
<td>0.00640 135</td>
<td>0.00640 52</td>
<td>0.00640 5</td>
</tr>
<tr>
<td>nig</td>
<td>12</td>
<td>0.01467 44</td>
<td>0.01573 54</td>
<td>0.01106 67</td>
<td>0.01106 35</td>
</tr>
<tr>
<td>nig</td>
<td>50</td>
<td>0.85467 225</td>
<td>0.03892 230</td>
<td>0.02555 97</td>
<td>0.06330 52</td>
</tr>
<tr>
<td>nig</td>
<td>250</td>
<td>0.69247 952</td>
<td>0.01453 957</td>
<td>n.a. 252</td>
<td>n.a. 131</td>
</tr>
<tr>
<td>cgmy</td>
<td>12</td>
<td>25.37854 105</td>
<td>2.84911 111</td>
<td>0.52170 64</td>
<td>0.52170 37</td>
</tr>
<tr>
<td>cgmy</td>
<td>50</td>
<td>7.25580 293</td>
<td>0.77980 299</td>
<td>0.07702 95</td>
<td>0.07702 53</td>
</tr>
<tr>
<td>cgmy</td>
<td>250</td>
<td>4.00879 997</td>
<td>0.43916 1005</td>
<td>1.18273 218</td>
<td>4.74037 126</td>
</tr>
<tr>
<td>jd</td>
<td>12</td>
<td>0.82418 70</td>
<td>0.82418 75</td>
<td>0.03669 63</td>
<td>0.03669 54</td>
</tr>
<tr>
<td>jd</td>
<td>50</td>
<td>1.50117 156</td>
<td>1.50117 161</td>
<td>0.04138 95</td>
<td>0.04138 51</td>
</tr>
<tr>
<td>jd</td>
<td>250</td>
<td>1.81140 602</td>
<td>1.81140 607</td>
<td>0.04307 246</td>
<td>0.04307 131</td>
</tr>
<tr>
<td>de</td>
<td>12</td>
<td>0.38342 73</td>
<td>0.38342 78</td>
<td>0.10211 73</td>
<td>0.10211 50</td>
</tr>
<tr>
<td>de</td>
<td>50</td>
<td>0.99992 156</td>
<td>0.99992 161</td>
<td>0.14144 107</td>
<td>0.14144 57</td>
</tr>
<tr>
<td>de</td>
<td>250</td>
<td>0.99756 601</td>
<td>0.99756 606</td>
<td>0.11956 261</td>
<td>0.11956 144</td>
</tr>
</tbody>
</table>

Table 2: In this table we give, for different models, the 1000*Squared Root of Sum of Squared (column ERR), the CPU time in Seconds (CPU column) for the Monte Carlo simulation (Crude and with Control Variate) and for the recursive quadrature method (with different number of grid points: from 1000 to 7000). As benchmark we have used the first five moments computed according to formula (14)
<table>
<thead>
<tr>
<th>n</th>
<th>K</th>
<th>MC+CV</th>
<th>se</th>
<th>10000</th>
<th>5000</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>90</td>
<td>11.90505</td>
<td>0.213</td>
<td>11.90497</td>
<td>11.90498</td>
<td>11.90428</td>
</tr>
<tr>
<td>12</td>
<td>100</td>
<td>4.88207</td>
<td>0.173</td>
<td>4.88210</td>
<td>4.88212</td>
<td>4.88199</td>
</tr>
<tr>
<td>12</td>
<td>110</td>
<td>1.36329</td>
<td>0.145</td>
<td>1.36314</td>
<td>1.36314</td>
<td>1.36371</td>
</tr>
<tr>
<td>50</td>
<td>90</td>
<td>11.93302</td>
<td>0.203</td>
<td>11.93301</td>
<td>11.93299</td>
<td>11.93339</td>
</tr>
<tr>
<td>50</td>
<td>100</td>
<td>4.93735</td>
<td>0.169</td>
<td>4.93736</td>
<td>4.93738</td>
<td>4.93711</td>
</tr>
<tr>
<td>50</td>
<td>110</td>
<td>1.40267</td>
<td>0.150</td>
<td>1.40264</td>
<td>1.40262</td>
<td>1.40199</td>
</tr>
<tr>
<td>250</td>
<td>90</td>
<td>11.94096</td>
<td>0.201</td>
<td>11.94068</td>
<td>11.94069</td>
<td>11.94137</td>
</tr>
<tr>
<td>250</td>
<td>100</td>
<td>4.95244</td>
<td>0.169</td>
<td>4.95233</td>
<td>4.95239</td>
<td>4.94942</td>
</tr>
<tr>
<td>250</td>
<td>110</td>
<td>1.41359</td>
<td>0.151</td>
<td>1.41351</td>
<td>1.41350</td>
<td>1.41290</td>
</tr>
</tbody>
</table>

Table 3: Prices of arithmetic Asian options for Gaussian process. Parameters: $S_0 = 100, r = 0.0367, \sigma = 0.17801$.

<table>
<thead>
<tr>
<th>n</th>
<th>K</th>
<th>MC+CV</th>
<th>se</th>
<th>11000</th>
<th>5000</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>90</td>
<td>12.62293</td>
<td>0.341</td>
<td>12.62243</td>
<td>12.62243</td>
<td>12.61315</td>
</tr>
<tr>
<td>12</td>
<td>100</td>
<td>5.06077</td>
<td>0.223</td>
<td>5.06060</td>
<td>5.06057</td>
<td>5.05723</td>
</tr>
<tr>
<td>12</td>
<td>110</td>
<td>1.01374</td>
<td>0.176</td>
<td>1.01355</td>
<td>1.01355</td>
<td>1.01379</td>
</tr>
<tr>
<td>50</td>
<td>90</td>
<td>12.66112</td>
<td>0.333</td>
<td>12.66118</td>
<td>12.66160</td>
<td>14.11925</td>
</tr>
<tr>
<td>50</td>
<td>100</td>
<td>5.10359</td>
<td>0.221</td>
<td>5.10367</td>
<td>5.10383</td>
<td>4.88735</td>
</tr>
<tr>
<td>50</td>
<td>110</td>
<td>1.03770</td>
<td>0.177</td>
<td>1.03770</td>
<td>1.03774</td>
<td>0.75191</td>
</tr>
<tr>
<td>250</td>
<td>90</td>
<td>12.67186</td>
<td>0.329</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>250</td>
<td>100</td>
<td>5.11558</td>
<td>0.218</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>250</td>
<td>110</td>
<td>1.04446</td>
<td>0.176</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
</tbody>
</table>

Table 4: Prices of arithmetic Asian options for NIG process. Parameters: $S_0 = 100, r = 0.0367, \alpha = 6.1882, \beta = -3.8941, \delta = 0.1622$.
Table 5: Prices of arithmetic Asian options for CGMY process. Parameters: \(S_0 = 100, r = 0.0367, C = 0.0244, G = 0.0765, M = 7.5515, Y = 1.2945 \).

<table>
<thead>
<tr>
<th>n</th>
<th>K</th>
<th>MC+CV</th>
<th>se</th>
<th>MC simulation</th>
<th>Numerical Quadrature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10000</td>
<td>5000</td>
</tr>
<tr>
<td>12</td>
<td>90</td>
<td>12.69114</td>
<td>0.360</td>
<td>12.70625</td>
<td>12.70626</td>
</tr>
<tr>
<td>12</td>
<td>100</td>
<td>5.02787</td>
<td>0.211</td>
<td>5.03492</td>
<td>5.03486</td>
</tr>
<tr>
<td>12</td>
<td>110</td>
<td>1.01895</td>
<td>0.156</td>
<td>1.02115</td>
<td>1.02110</td>
</tr>
<tr>
<td>50</td>
<td>90</td>
<td>12.73548</td>
<td>0.371</td>
<td>12.73854</td>
<td>12.73855</td>
</tr>
<tr>
<td>50</td>
<td>100</td>
<td>5.07403</td>
<td>0.223</td>
<td>5.07570</td>
<td>5.07577</td>
</tr>
<tr>
<td>50</td>
<td>110</td>
<td>1.04594</td>
<td>0.165</td>
<td>1.04674</td>
<td>1.04669</td>
</tr>
<tr>
<td>250</td>
<td>90</td>
<td>12.74864</td>
<td>0.393</td>
<td>12.74737</td>
<td>12.72731</td>
</tr>
<tr>
<td>250</td>
<td>100</td>
<td>5.08744</td>
<td>0.233</td>
<td>5.08694</td>
<td>5.07912</td>
</tr>
<tr>
<td>250</td>
<td>110</td>
<td>1.05377</td>
<td>0.170</td>
<td>1.05389</td>
<td>1.05251</td>
</tr>
</tbody>
</table>

Table 6: Prices of arithmetic Asian options for Double Exponential process. Parameters: \(S_0 = 100, r = 0.0367, \sigma = 0.120381, \lambda = 0.330966, p = 0.2071, \eta_1 = 9.65997, \eta_2 = 3.13868 \).

<table>
<thead>
<tr>
<th>n</th>
<th>K</th>
<th>MC+CV</th>
<th>se</th>
<th>MC simulation</th>
<th>Numerical Quadrature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10000</td>
<td>5000</td>
</tr>
<tr>
<td>12</td>
<td>90</td>
<td>12.71298</td>
<td>0.379</td>
<td>12.71236</td>
<td>12.71236</td>
</tr>
<tr>
<td>12</td>
<td>100</td>
<td>5.01729</td>
<td>0.243</td>
<td>5.01712</td>
<td>5.01705</td>
</tr>
<tr>
<td>12</td>
<td>110</td>
<td>1.04141</td>
<td>0.183</td>
<td>1.04142</td>
<td>1.04147</td>
</tr>
<tr>
<td>50</td>
<td>90</td>
<td>12.74420</td>
<td>0.371</td>
<td>12.74369</td>
<td>12.74369</td>
</tr>
<tr>
<td>50</td>
<td>100</td>
<td>5.05849</td>
<td>0.233</td>
<td>5.05809</td>
<td>5.05814</td>
</tr>
<tr>
<td>50</td>
<td>110</td>
<td>1.06886</td>
<td>0.184</td>
<td>1.06878</td>
<td>1.06877</td>
</tr>
<tr>
<td>250</td>
<td>90</td>
<td>12.75141</td>
<td>0.358</td>
<td>12.75241</td>
<td>12.75242</td>
</tr>
<tr>
<td>250</td>
<td>100</td>
<td>5.06910</td>
<td>0.232</td>
<td>5.06949</td>
<td>5.06943</td>
</tr>
<tr>
<td>250</td>
<td>110</td>
<td>1.07632</td>
<td>0.177</td>
<td>1.07646</td>
<td>1.07637</td>
</tr>
</tbody>
</table>
Table 7: Prices of arithmetic Asian options for Merton Jump-Diffusion process. Parameters: $S_0 = 100$, $r = 0.0367$, $\sigma = 0.126349$, $\alpha = -0.390078$, $\lambda = 0.174814$, $\delta = 0.338796$.

<table>
<thead>
<tr>
<th>n</th>
<th>K</th>
<th>MC+CV</th>
<th>se</th>
<th>10000</th>
<th>5000</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>90</td>
<td>12.71035</td>
<td>0.375</td>
<td>12.71066</td>
<td>12.71065</td>
<td>12.71038</td>
</tr>
<tr>
<td>12</td>
<td>100</td>
<td>5.01117</td>
<td>0.248</td>
<td>5.01127</td>
<td>5.01124</td>
<td>5.01008</td>
</tr>
<tr>
<td>12</td>
<td>110</td>
<td>1.05141</td>
<td>0.189</td>
<td>1.05162</td>
<td>1.05165</td>
<td>1.05140</td>
</tr>
<tr>
<td>50</td>
<td>90</td>
<td>12.74051</td>
<td>0.367</td>
<td>12.74093</td>
<td>12.74093</td>
<td>12.74112</td>
</tr>
<tr>
<td>50</td>
<td>100</td>
<td>5.05226</td>
<td>0.245</td>
<td>5.05246</td>
<td>5.05243</td>
<td>5.05337</td>
</tr>
<tr>
<td>50</td>
<td>110</td>
<td>1.07959</td>
<td>0.192</td>
<td>1.07959</td>
<td>1.07962</td>
<td>1.07966</td>
</tr>
<tr>
<td>250</td>
<td>90</td>
<td>12.74964</td>
<td>0.366</td>
<td>12.74917</td>
<td>12.74918</td>
<td>12.78492</td>
</tr>
<tr>
<td>250</td>
<td>100</td>
<td>5.06417</td>
<td>0.244</td>
<td>5.06381</td>
<td>5.06387</td>
<td>5.08129</td>
</tr>
<tr>
<td>250</td>
<td>110</td>
<td>1.08772</td>
<td>0.189</td>
<td>1.08740</td>
<td>1.08737</td>
<td>1.09043</td>
</tr>
</tbody>
</table>

Figure 1: Densities of the log-returns at the 1 yr horizon.
Figure 2: Density of the log(arithmetic mean) for the different Lévy models (25 monitoring dates).

Figure 3: Price differences (Lévy model vs Gaussian) of the arithmetic Asian option under different Lévy models (25 monitoring dates).
Figure 4: Delta differences (Lévy model vs Gaussian) of the arithmetic Asian option under different Lévy models (25 monitoring dates). The delta has been computed using formula (10).

Figure 5: Gamma differences (Lévy model vs Gaussian) of the arithmetic Asian option under different Lévy models (25 monitoring dates). The gamma has been computed using formula (11).