The double exponential jump model, initiated by Steven Kou (see [1]), is an exponential Levy model, which is a compromise between reality and tractability. It gives an explanation of the two empirical phenomena which received much attention in financial markets: the asymmetric leptokurtic feature and the volatility smile. It permits to obtain analytical solutions to the prices of many derivatives: European call and put options; interest rate derivatives, such as swaptions, caps, floors, and bond options; as well as path-dependent options, such as perpetual American options, barrier, and lookback options.

1 The model

The behaviour of the asset price, S_t, under the risk neutral probability is modeled as followed:

$$\frac{dS_t}{S_t} = \mu dt + \sigma dW_t + d \left(\sum_{i=1}^{N_t} e^{Y_i} - 1 \right)$$

Where W is a standard brownian motion, N is a poisson process with rate λ, the constants μ and $\sigma > 0$ are drift and volatility of the diffusion part and the jump sizes $\{Y_1, Y_2, \ldots\}$ are i.i.d random variables with a common asymmetric double exponential distribution, of density:

$$f_Y(y) = p\eta_1 e^{-\eta_1 y} 1_{\{y \geq 0\}} + q\eta_2 e^{\eta_2 y} 1_{\{y < 0\}}$$

where $p, q \geq 0$ are constants, $p + q = 1$, $\eta_1 > 1$ and $\eta_2 > 0$. The random processes $(W_t)_{t \geq 0}$, $(N_t)_{t \geq 0}$, and random variables $\{Y_1, Y_2, \ldots\}$ are independant. Furthermore we have $\mu = r - \lambda \xi$ with:

$$\xi = \frac{p\eta_1}{\eta_1 - 1} + \frac{q\eta_2}{\eta_2 + 1} - 1$$
The condition on μ hold in order to obtain $(e^{-rS_t})_{t \geq 0}$ is a martingale. The characteristic exponent G of log (S_t) (i.e. $\mathbb{E}[e^{\theta \log(S_t)}] = e^{G(\theta)t}$) is defined as:

$$G(x) = x \left(r - \frac{1}{2} - \lambda \xi \right) + \frac{1}{2} x^2 \sigma^2 + \lambda \left(\frac{\mu \eta_1}{\eta_1 - x} + \frac{\eta_2}{\eta_2 + x} - 1 \right)$$

The equation $G(x) = \alpha$ has exactly four roots (see [2]): $\beta_{1,\alpha}$, $\beta_{2,\alpha}$, $-\beta_{3,\alpha}$, $-\beta_{4,\alpha}$, where

$$0 < \beta_{1,\alpha} < \beta_{2,\alpha} < \infty, \quad 0 < \beta_{3,\alpha} < \beta_{4,\alpha} < \infty. \quad (1.4)$$

2 European call and put

Let us define some special functions (see pp. 1094 and 1099 in [1]):

$$Hh_{-1}(x) = e^{-\frac{x^2}{2}}$$

$$Hh_0(x) = \sqrt{2\pi} \Phi(-x)$$

$$Hh_n(x) = \int_x^{+\infty} Hh_{n-1}(y) dy = \frac{1}{n!} \int_x^{+\infty} (t-x)^n e^{-\frac{t^2}{2}} dt \quad \forall n \geq 0$$

$$I_n(c; \alpha, \beta, \gamma) = \int_c^{+\infty} e^{\alpha x} Hh_n(\beta c - \gamma) dx \quad \forall n \geq -1$$

where Φ is the standard normal cumulative distribution. Then we have:

$$n Hh_n(x) = Hh_{n-2}(x) - x Hh_{n-1}(x) \quad \forall n \geq 1$$

And $\forall n \geq -1$:

$$I_n(c; \alpha, \beta, \gamma) = -\frac{e^{\alpha c}}{\alpha} \sum_{i=0}^{n} \left(\frac{\beta}{\alpha} \right)^{n-i} Hh_i(\beta c - \beta) + \left(\frac{\beta}{\alpha} \right)^{n+1} \frac{\sqrt{2\pi} e^{\frac{a^2}{2} + \frac{c^2}{2\pi}}}{\beta} \Phi \left(-\beta c + \frac{a}{\beta} \right) \quad \beta > 0, \alpha \neq 0$$

$$I_n(c; \alpha, \beta, \gamma) = -\frac{e^{\alpha c}}{\alpha} \sum_{i=0}^{n} \left(\frac{\beta}{\alpha} \right)^{n-i} Hh_i(\beta c - \beta) - \left(\frac{\beta}{\alpha} \right)^{n+1} \frac{\sqrt{2\pi} e^{\frac{a^2}{2} + \frac{c^2}{2\pi}}}{\beta} \Phi \left(\beta c - \frac{a}{\beta} \right) \quad \beta < 0, \alpha < 0$$

Introduce the following notation : For any given probability P, define :

$$\psi(\mu, \sigma, \lambda, p, \eta_1, \eta_2; a, T) = \mathbb{P}[Z_T \geq a] \quad (2.5)$$

where $Z_T = \mu t + \sigma W_t + \sum_{i=1}^{N_t} Y_i$ and Y has a double exponential distribution with density as in (1.2), and N is a poisson process with rate λ. Theorem B.1. in [1] gives us :

$$\psi(\mu, \sigma, \lambda, p, \eta_1, \eta_2; a, T) = \begin{cases} \frac{e^{(\sigma \eta_1)^2 T}}{\sigma \sqrt{2\pi T}} \sum_{n=1}^{+\infty} \pi_n \sum_{k=1}^{n} P_{n,k} \left(\sigma \sqrt{T \eta_1} \right)^k I_{k-1} \left(a - \mu T; -\eta_1, -\frac{1}{\sigma \sqrt{T}} \right) \\ + \frac{e^{(\sigma \eta_2)^2 T}}{\sigma \sqrt{2\pi T}} \sum_{n=1}^{+\infty} \pi_n \sum_{k=1}^{n} Q_{n,k} \left(\sigma \sqrt{T \eta_2} \right)^k I_{k-1} \left(a - \mu T; \eta_2, -\frac{1}{\sigma \sqrt{T}} \right) \\ + \pi_0 Phi \left(a - \mu T \frac{1}{\sigma \sqrt{T}} \right) \end{cases}$$
where
\[
P_{n,i} := \sum_{j=i}^{n-1} p^j q^{n-j} \left(\frac{n-i-1}{j-i} \right) \left(\frac{\eta_1}{\eta_1 + \eta_2} \right)^{j-i} \left(\frac{\eta_2}{\eta_1 + \eta_2} \right)^{n-j}, \quad 1 \leq i \leq n-1
\]
\[
Q_{n,i} := \sum_{j=i}^{n-1} q^j p^{n-j} \left(\frac{n-i-1}{j-i} \right) \left(\frac{\eta_2}{\eta_1 + \eta_2} \right)^{j-i} \left(\frac{\eta_1}{\eta_1 + \eta_2} \right)^{n-j}, \quad 1 \leq i \leq n-1
\]
\[
P_{n,n} := p^n; \quad Q_{n,n} := q^n, \quad \pi_n = \frac{e^{-\lambda T} \lambda^n}{n!}
\]

Using theorem 2, in [1], we know that the price of european call at inception and with maturity T is:
\[
S_0 \psi \left[r + \frac{1}{2} \sigma^2 - \lambda \xi, \sigma, \lambda, \bar{p}, \eta_1, \bar{\eta}_2; \log \left(\frac{K}{S_0} \right), T \right] - K e^{-rT} \psi \left[r + \frac{1}{2} \sigma^2 - \lambda \xi, \sigma, \lambda, p, \eta_1, \eta_2; \log \left(\frac{K}{S_0} \right), T \right]
\]
where
\[
\bar{p} = \frac{p}{1 + \xi \eta_1 - 1}, \quad \bar{\lambda} = \lambda(1 + \xi), \quad \bar{\eta}_1 = \eta_1 - 1, \quad \bar{\eta}_2 = \eta_2 + 1
\]
The put price can be obtain by using the call-put parity.

3 Finite time horizon american put option

Let $EuP(v, t)$ be the price of a european put option with initial stock price v and maturity t, $\mathbb{P}^v [S_t \leq K]$ the probability that the stock price at t is below K with initial stock price v, $z = 1 - e^{-rT}$, $\beta_3 \equiv \beta_{3, r/2}$, $\beta_4 \equiv \beta_{5, r/2}$, $C_\beta = \beta_3 \beta_4 (1 + \eta_2)$ (see (1.4)), $D_\beta = \eta_2 (1 + \beta_3)(1 + \beta_4)$, $v_0 \equiv v_0(t) \in (0, K)$ the unique solution to the equation
\[
C_\beta K - D_\beta (v_0 + EuP(v_0, t)) = (C_\beta - D_\beta) K e^{-rT} \mathbb{P}^{v_0} [S_t \leq K] \tag{3.6}
\]
and
\[
A = \frac{v_0^{\beta_4}}{\beta_4 - \beta_3} \left\{ \beta_4 K - (1 + \beta_4) [v_0 + EuP(v_0, t)] + K e^{-rT} \mathbb{P}^{v_0} [S_t \leq K] \right\} > 0,
\]
\[
B = \frac{v_0^{\beta_4}}{\beta_3 - \beta_4} \left\{ \beta_4 K - (1 + \beta_3) [v_0 + EuP(v_0, t)] + K e^{-rT} \mathbb{P}^{v_0} [S_t \leq K] \right\} > 0,
\]

Then the price of a finite-horizon american put option with maturity t and strike K can be approximated by $\psi(S_0, t)$ which is given by (see $\bar{g}3$ in [3])
\[
\psi(v, t) = \begin{cases}
EuP(v, t) + Av^{-\beta_3} + Bv^{-\beta_4}, & \text{if } v \geq v_0 \\
K - v, & \text{if } v \leq v_0
\end{cases}
\]
4 Lookback option

The price of a lookback floating strike put option is given by:

\[LP(T) = \mathbb{E} \left[e^{-rT} \left(\max_{0 \leq t \leq T} \{ M, \max_{0 \leq t \leq T} S_t \} - S_T \right) \right] \]

\[= \mathbb{E} \left[e^{-rT} \left(\max_{0 \leq t \leq T} \{ M, \max_{0 \leq t \leq T} S_t \} \right) \right] - S_0 \]

where \(M \geq S_0 \) is a fixed constant representing the prefixed maximum at time 0. The Laplace transform of the lookback put, using notations in 1.4, is given by (see theorem 1 in [3])

\[
\int_0^{+\infty} e^{-\alpha T} LP(T) dT = \frac{S_0 A_\alpha}{C_\alpha} \left(\frac{S_0}{M} \right)^{\beta_{1,a+r}-1} + \frac{S_0 B_\alpha}{C_\alpha} \left(\frac{S_0}{M} \right)^{\beta_{2,a+r}-1} + \frac{M}{\alpha + r} \frac{S_0}{\alpha} \quad \forall \alpha > 0
\]

where

\[A_\alpha = \frac{(\eta_1 - \beta_{1,a+r})^{\beta_{2,a+r}}}{\beta_{1,a+r}-1} \]

\[B_\alpha = \frac{(\beta_{2,a+r} - \eta_1)^{\beta_{1,a+r}}}{\beta_{2,a+r}-1} \]

\[C_\alpha = (\alpha + r) \eta_1 (\beta_{2,a+r} - \beta_{1,a+r}) \]

The put price is obtained by using an inversion of the Laplace transform. The call option price follows just by symmetry. For the lookback fixed strike, when we have \(M \geq \max(S_0, K) \) for the put or \(m \leq \min(S_0, K) \) for the call, we get similar results to those for floatings.

5 Barrier option

Since all eight types of barrier can be solved in similar way, we focus only on the price Up and In Call option defined as followed

\[UIC = \mathbb{E} \left[e^{-rT} (S_T - K) \mathbb{1}_{\{\max_{0 \leq t \leq T} S_t \geq H\}} \right] \quad (5.7) \]

where \(H > S_0 \) is the barrier level. For any given probability \(P \), define:

\[\Psi(\mu, \sigma, \lambda, p, \eta_1, \eta_2; a, b, T) = P \left[Z_T \geq a, \max_{0 \leq t \leq T} Z_t \geq b \right] \quad (5.8) \]

where \(Z_T = \mu t + \sigma W_t + \sum_{i=1}^{N_t} Y_i \) and \(Y \) has a double exponential distribution with density as in (1.2), and \(N \) is a poisson process with rate \(\lambda \). Using formula (3.1) and the result before remark 3.1 in [2], we get

\[
\int_0^{+\infty} e^{-\alpha T} P \left[\max_{0 \leq t \leq T} Z_t \geq b \right] = \frac{1}{\alpha} \left(\frac{\eta_1 - \beta_{1,a}}{\eta_1 (\beta_{2,a} - \beta_{1,a})} e^{-b \beta_{1,a}} + \frac{\beta_{2,a} - \eta_1}{\eta_1 (\beta_{2,a} - \beta_{1,a})} e^{-b \beta_{2,a}} \right)
\]
By Inverting the Laplace transform we get \(\mathbb{P}[\max_{0 \leq t \leq T} Z_t \geq b] \), which is useful for some types of barrier options. Let us now define some functions

\[
H_i(a, b, c; n) := \frac{1}{\sqrt{2\pi}} \int_0^\infty e^{\left(\frac{4c^2 - b}{2}\right)t + \frac{i}{2} H_i(t + \frac{a}{\sqrt{b}})} dt \quad i \geq 1, n \geq 0
\]

\[
A_\alpha := \mathbb{E}\left[e^{-\alpha \tau_b} \mathbb{1}_{X_{\tau_b} = b}\right] = \frac{\eta_1 - \beta_1, \alpha e^{-b \beta_1, \alpha} + \beta_2, \alpha - \eta_1}{\beta_2, \alpha - \beta_1, \alpha} e^{-b \beta_2, \alpha}
\]

\[
B_\alpha := \mathbb{E}\left[e^{-\alpha \tau_b} \mathbb{1}_{X_{\tau_b} > b}\right] = \frac{(\eta_1 - \beta_1, \alpha)(\beta_2, \alpha - \eta_1)}{\eta_1(\beta_2, \alpha - \beta_1, \alpha)} [e^{-b \beta_1, \alpha} - e^{-b \beta_2, \alpha}]
\]

where \(\tau_b = \inf \{t \geq 0; X_t \geq b\} \). Hh functions are defined in \(\S \ 2 \), and \(\beta \) variables in (1.4). For \(i \geq 1 \), under assumption that \(b > 0 \) and \(c > -\sqrt{2b} \), we have

\[
H_i(a, b, c; n) = \frac{1}{i} H_{i-2}(a, b, c; n + 1) - \frac{c}{i} H_{i-1}(a, b, c; n + 1) - \frac{a}{i} H_{i-1}(a, b, c; n)
\]

By knowing \(H_{-1}(a, b, c; n) \) and \(H_0(a, b, c; n) \), this recursive formula allows us to determine all values of \(H_i \). Lemmas A.1 and A.2 in [2] give us

\[
H_{-1}(a, b, c; n) = e^{-\alpha c - \sqrt{2a^2}b} \sqrt{\frac{1}{2b} \left(\frac{\alpha^2}{4b}\right)} \sum_{j=0}^{n} \frac{(-n)_j (n + 1)_j}{j! \left(\sqrt{\frac{2a^2}{b^2}}\right)} j!, \quad a \neq 0, n \geq 0
\]

\[
H_{-1}(a, b, c; n) = e^{-\alpha c - \sqrt{2a^2}b} \sqrt{\frac{1}{2b} \left(\frac{\alpha^2}{4b}\right)} \sum_{j=0}^{n-1} \frac{(-n)_j (n + 1)_j}{j! \left(\sqrt{\frac{2a^2}{b^2}}\right)} j!, \quad a \neq 0, n \leq -1
\]

\[
H_{-1}(0, b, c; n) = \frac{(2n)!}{n!} \frac{1}{4b^2}, \quad n \geq 0
\]

\[
H_0(a, b, c; n) = \frac{c}{2(n + 1)^2} \frac{H_1(a, b, c; n + 1)}{H_{-1}(a, b, c; n + 1)} - \frac{a}{2(n + 1)^2} \frac{H_{-1}(a, b, c; n)}{H_{-1}(a, b, c; n + 1)}, \quad b = \frac{1}{2} c^2, n \geq 0
\]

And \(\forall n \geq 0 \) et \(b \neq \frac{1}{2} c^2 \)

\[
H_0(a, b, c; n) = \frac{n!}{(b - \frac{1}{2} c^2)^{n+1}} \sum_{i=0}^{n} \frac{(b - \frac{1}{2} c^2)^i}{i!} \left(\frac{a}{2} H_{-1}(a, b, c; i - 1) - \frac{c}{2} H_{-1}(a, b, c; i)\right), \quad a > 0
\]

\[
H_0(a, b, c; n) = \frac{n!}{(b - \frac{1}{2} c^2)^{n+1}} \left(1 + \sum_{i=0}^{n} \frac{(b - \frac{1}{2} c^2)^i}{i!} \left(\frac{a}{2} H_{-1}(a, b, c; i - 1) - \frac{c}{2} H_{-1}(a, b, c; i)\right)\right), \quad a < 0
\]

\[
H_0(a, b, c; n) = \frac{n!}{(b - \frac{1}{2} c^2)^{n+1}} \left(\frac{1}{2} + \sum_{i=0}^{n} \frac{(b - \frac{1}{2} c^2)^i}{i!} \frac{a}{2} H_{-1}(a, b, c; i)\right), \quad a = 0
\]
where \((n)_j = n(n+1) \ldots (n+j-1)\), with convention \((n)_0 = 1\).
We can now determine the exact expression of the Laplace transform of \(\Psi\) when \(b > 0\) and \(a \leq b\) (see theorem 4.1 in [2]):

\[
\int_0^{+\infty} e^{-\alpha T} P \left[Z_T \geq a, \max_{0 \leq t \leq T} Z_t \geq b \right] dT = A_\alpha \int_0^{+\infty} e^{-\alpha T} P \left[Z_T + \xi^+ \geq a - b \right] dT
\]

\[
+ B_\alpha \int_0^{+\infty} e^{-\alpha T} P \left[Z_T + \xi^\gamma \geq a - b \right] dT
\]

\[
= (A_\alpha + B_\alpha) \sum_{n=0}^{\infty} \frac{\lambda^n}{n!} H_0 \left(-h, \gamma_\alpha, -\frac{\mu}{\sigma}; n\right)
\]

\[
+ e^{h \eta_1} \sum_{n=1}^{\infty} \sum_{j=1}^{n} \frac{\lambda^n}{n!} (A_\alpha P_{n,j} + B_\alpha P_{n,j}) \sum_{i=0}^{j-1} (\sigma \eta_1)^i H_i (h, \gamma_\alpha, c_+; n)
\]

\[
- e^{-h \eta_1} \sum_{n=1}^{\infty} \sum_{j=1}^{n} \frac{\lambda^n}{n!} (A_\alpha Q_{n,j} + B_\alpha Q_{n,j}) \sum_{i=0}^{j-1} (\sigma \eta_1)^i H_i (-h, \gamma_\alpha, c_-; n)
\]

\[
+ e^{h \eta_1} \sum_{n=1}^{\infty} \sum_{j=1}^{n} \frac{\lambda^n}{n!} (\eta_1)^i H_i (h, \gamma_\alpha, c_+; n)
\]

\[
+ e^{h \eta_1} B_\alpha H_0 (h, \gamma_\alpha, c_+; 0)
\]

where \(\xi^+\) has an exponential law with rate \(\eta_1\), matrix \(P\) and \(Q\) are as defined in \(\gamma\) 2, and

\[
\overline{P}_{n,i} := \sum_{j=i}^{n-1} Q_{n,j} \left(\frac{\eta_2}{\eta_1 + \eta_2}\right)^i, \ \overline{Q}_{n,i} := P_{n,i-1}, \ 2 \leq i \leq n + 1
\]

\[
c_+ := \sigma \eta_1 + \frac{\mu}{\sigma}, \ c_- := \sigma \eta_2 - \frac{\mu}{\sigma}, \ \gamma_\alpha := \alpha + \lambda + \frac{\mu^2}{2 \sigma^2}, \ h := \frac{b - a}{\sigma}
\]

For to get numerically \(P \left[Z_T \geq a, \max_{0 \leq t \leq T} Z_t \geq b \right]\) for a given \(T, i\) find that is better to inverse the right term in the first equality above, using some properties of the Laplace inversion. Note that \(P \left[Z_T \geq a - b \right]\) is given in \(\gamma\) 2 and \(P \left[Z_T + \xi^+ \geq a - b \right]\) is given in [2] (pp. 528, formula B.5):

\[
P \left[Z_T + \xi^+ \geq a \right] = \frac{e^{(\sigma \eta_1)^2 T}}{\sqrt{2\pi T}} \sum_{n=1}^{+\infty} \pi_n \sum_{k=1}^{n+1} \overline{P}_{n,k} \left(\sigma \sqrt{T} \eta_1\right)^k I_{k-1} \left(a - \mu T; -\eta_1, -\frac{1}{\sigma \sqrt{T}}; -\sigma \sqrt{T} \eta_1\right)
\]

\[
+ \frac{e^{(\sigma \eta_2)^2 T}}{\sqrt{2\pi T}} \sum_{n=1}^{+\infty} \pi_n \sum_{k=1}^{n} \overline{Q}_{n,k} \left(\sigma \sqrt{T} \eta_2\right)^k I_{k-1} \left(a - \mu T; -\eta_2, \frac{1}{\sigma \sqrt{T}}; -\sigma \sqrt{T} \eta_2\right)
\]

\[
+ \pi_0 \eta_1 \frac{e^{(\sigma \eta_1)^2 T}}{\sqrt{2\pi}} I_0 \left(a - \mu T; -\eta_1, -\frac{1}{\sigma \sqrt{T}}; -\eta_1 \sigma \sqrt{T}\right)
\]
The price of the UIC option is obtained by, thanks to Kou and Wang (see theorem 2 in [3])

\[
UIC = S_0 \Psi \left(r + \frac{1}{2} \sigma^2 - \lambda \xi, \sigma, \lambda, p, \eta_1, \eta_2; \log \left(\frac{K}{S_0} \right), \log \left(\frac{H}{S_0} \right), T \right) \\
-Ke^{-rT} \Psi \left(r - \frac{1}{2} \sigma^2 - \lambda \xi, \sigma, \lambda, p, \eta_1, \eta_2; \log \left(\frac{K}{S_0} \right), \log \left(\frac{H}{S_0} \right), T \right)
\]

where

\[
\tilde{p} = \frac{p}{1 + \xi \eta_1 - 1}, \quad \tilde{\lambda} = \lambda (1 + \xi), \quad \tilde{\eta}_1 = \eta_1 - 1, \quad \tilde{\eta}_2 = \eta_2 + 1
\]

References

