Efficient pricing of Asian options by the PDE approach.*

François Dubois¹, Tony Lelièvre²

¹ Conservatoire National des Arts et Métiers, bâtiment 506, BP 167, 91403 Orsay, France.
² CERMICS, Ecole Nationale des Ponts et Chaussées, 6 & 8 Av. Pascal, 77455 Champs-sur-Marne, France.
E-mail: fdubois@cnam.fr, lelievre@cermics.enpc.fr

January 2003

Abstract

We consider the partial differential equation proposed by Rogers and Shi in [2] and explain the main difficulties encountered when applying standard numerical schemes on this PDE as such. We then propose a scheme which is able to produce very quickly (in less than one second on a PC equipped with a 1 GHz Intel Pentium III microprocessor) accurate results (at least 5 digits of precision). We compare our approach with the schemes proposed in the litterature.

Keywords: Asian Options, Partial Differential Equation, Characteristic method.

Premia 14

1 Introduction

In this article, we would like to explain why standard techniques do not yield accurate results for the solution of the partial differential equation ruling the price of an Asian option (see [2]):

\[
\begin{align*}
\frac{\partial f}{\partial t} + \sigma^2 \xi^2 \frac{\partial^2 f}{\partial \xi^2} - \left(\frac{1}{T} + r \xi \right) \frac{\partial f}{\partial \xi} &= 0, \\
f(T, \xi) &= \phi(\xi).
\end{align*}
\]

(1)

where \(\xi \geq 0 \) and the expression of \(\phi \) depends on the payoff of the option (see Section 2 for details). We will focus on numerical methods based on this PDE. Let us also mention some Monte Carlo approaches (see [?]) or some methods based on analytical or semi-analytical solutions (see [?, ?]). Many approximations have also been derived (see [1]). The advantage of the PDE approach is that it is generally faster than Monte Carlo methods, and than it gives the results for all initial prices \(S_0 \) (and even for all strikes \(K \) or all maturities \(T \) in some cases). The drawback is usually that the numerical methods are more complicated to implement for PDE, but we give here a numerical scheme which is really simple to code. This scheme has been implemented in the software PREMIA (see routine \texttt{fd_fixedasian_rodgershi2.c} in [?]) and the source code is therefore available on the internet.

*Submitted to Journal of Computational Finance.
2 The model

We adopt the standard Black and Scholes model (see [1]) with a risky asset whose price at time \(t \) is \(S_t \) and a no-risk asset whose price at time \(t \) is \(S^0_t \), such that:

\[
\begin{align*}
 dS_t &= S_t(\mu \, dt + \sigma dB_t), \\
 dS^0_t &= rS^0_t \, dt.
\end{align*}
\]

The process \(B_t \) is a standard Brownian motion defined on a probability space \((\Omega, \mathcal{F}, \mathbb{P}, \mathbb{Q})\), and \(\mu, r \) (the interest rate), \(\sigma > 0 \) (the volatility) are three constants. We introduce the stochastic process \(W_t = B_t + \frac{\mu - r}{\sigma} t \). Under the neutral risk probability \(\mathbb{P} \), we know that \(S_t/S^0_t \) is a martingale and that \(W_t \) is a Brownian motion. The process \(S_t \) is solution of the following stochastic differential equation under \(\mathbb{P} \):

\[
dS_t = S_t(r \, dt + \sigma dW_t).
\]

We are interested in computing the price of an Asian option with maturity \(T \), which means that the option payoff \(g(S, A) \) depends on the price \(S_T \) of the risky asset and on the mean \(A_T \) of the price \(S_t \):

\[
A_t = \frac{1}{t} \int_0^t S_u \, du.
\]

The price at time \(t \) is given by:

\[
V(t, S_t, A_t) = e^{-r(T-t)} \mathbb{E}(g(S_T, A_T)|\mathcal{F}_t).
\]

One can check by standard arguments and using the fact that \(e^{-rt}V(t, S_t, A_t) \) is a \(\mathbb{P} \)-martingale that \(V \) is solution of the following PDE (see [1]):

\[
\begin{align*}
 \frac{\partial V}{\partial t} + \frac{\sigma^2 S^2}{2} \frac{\partial^2 V}{\partial S^2} + rS \frac{\partial V}{\partial S} + \frac{1}{t}(S - A) \frac{\partial V}{\partial A} - rV &= 0, \\
 V(T, S, A) &= g(S, A).
\end{align*}
\]

The PDE \((2) \) is difficult to solve as such since the parabolic operator is degenerated in the \(A \)-variable (see [1]).

However, as remarked by Rogers and Shi in [2], for fixed strike call (\(g(S, A) = (A-K)^+ \)) or fixed strike put (\(g(S, A) = (K-A)^+ \)), it is possible to reduce \((2) \) to the PDE \((1) \). Indeed, if \(f \) is solution of \((1) \) with \(\phi(\xi) = \max(-\xi, 0) = \xi^- \) (resp. \(\phi(\xi) = \max(\xi, 0) = \xi^+ \)), then

\[
V(t, S, A) = S f \left(t, \frac{K - tA/T}{S} \right)
\]

is solution of \((2) \) with \(g(S, A) = (A-K)^+ \) (resp. \(g(S, A) = (K-A)^+ \)). This reduction of \((2) \) to \((1) \) is also possible for floating strike call (\(g(S, A) = (S-A)^+ \)) (resp. for floating strike put (\(g(S, A) = (A-S)^+ \))) by setting \(V(t, S, A) = S f \left(t, -\frac{tA}{S} \right) \) and \(\phi(\xi) = (1 + \xi)^- \) (resp. \(\phi(\xi) = (1 + \xi)^+ \)). For a derivation of an equation similar to \((1) \) using an interpretation of Asian options as options on a traded account, see [2].

Notice that PDE \((2) \) is more general since the reduction to \((1) \) is only possible for specific payoffs. Moreover, one can also notice that solving \((2) \) for different maturities \(T \) does not imply to recompute the whole solution, contrary to \((1) \). In the following, we focus on computing numerical solutions to \((1) \) for a call:

\[
\phi(\xi) = \xi^-.
\]

Notice that the solution with \(\phi(\xi) = \xi^+ \) (put) can be then obtained by the call-put parity:

\[
\text{Price of the put}(t = 0, S_0) = \text{Price of the call}(t = 0, S_0) - e^{-rT} \left(\frac{S_0}{rT} \left(e^{rT} - 1 \right) - K \right).
\]
3 The numerical scheme

The question we want to address is the following. When one wants to compute the solution of the classical Black-Scholes equation:

\[
\begin{cases}
\frac{\partial P}{\partial t} + \frac{\sigma^2 S^2}{2} \frac{\partial^2 P}{\partial S^2} + rS \frac{\partial P}{\partial S} - rP = 0, \\
P(T,S) = \psi(S).
\end{cases}
\]

(5)

a simple finite difference scheme leads to very satisfactory results.

<table>
<thead>
<tr>
<th>(\sigma = 0.3), (I = 100), (N = 1000)</th>
<th>reference value</th>
<th>centered scheme for the advection operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.3076</td>
<td>7.295</td>
<td></td>
</tr>
<tr>
<td>(\sigma = 0.3), (I = 600), (N = 1000)</td>
<td>7.3076</td>
<td>7.3043</td>
</tr>
<tr>
<td>(\sigma = 0.3), (I = 600), (N = 500)</td>
<td>7.3076</td>
<td>7.3041</td>
</tr>
<tr>
<td>(\sigma = 0.3), (I = 1000), (N = 200)</td>
<td>7.3076</td>
<td>7.3059</td>
</tr>
<tr>
<td>(\sigma = 0.05), (I = 600), (N = 500)</td>
<td>1.6970</td>
<td>1.783</td>
</tr>
</tbody>
</table>

Figure 1: Results obtained with a finite element scheme, or, equivalently, a centered scheme for the advection operator. The numbers \(I\) and \(N\) denote respectively the number of space steps and the number of time steps. Values of other parameters: \(S_0 = 100\), \(K = 100\), \(r = 0.02\), \(T = 1\). Table from [?].

On the other hand, when one uses a simple finite difference scheme on (1), one obtains very bad results, especially when the volatility \(\sigma\) is small (see Figure 1). These bad results are due to the fact that when \(\xi\) is close to zero, the advective term \(\left(\frac{1}{T} + r\xi\right)\) is larger than the diffusion term \(\frac{\sigma^2 \xi^2}{2}\).

What we propose to solve this problem is to use a characteristic method (based on the solution of \(\frac{dx}{dt} = 1/T\)), to get rid of the term \(\frac{1}{T}\). This means that we perform the change of variable:

\[g(t,x) = f(t, x - t/T).\]

(6)

One can easily show that \(g\) is solution of:

\[
\begin{cases}
\frac{\partial g}{\partial t} + \frac{\sigma^2 (x - t/T)^2}{2} \frac{\partial^2 g}{\partial x^2} - r (x - t/T) \frac{\partial g}{\partial x} = 0, \\
g(T, x) = \phi(x-1) = (1 - x)^+.
\end{cases}
\]

(7)

Remark 1. One could also think to completely get rid of the advective term by solving \(\frac{dx}{dt} = rx + 1/T\) and therefore by considering \(h(t,y) = f\left(t, \frac{1}{rT} (ye^{rt} - 1)\right)\). Following the same method as explained below, one can then obtain very accurate results on a geometric mesh (see [?] for the details).

The PDE satisfied by \(g\) is such that when the advective term \(r (x - t/T)\) is small, the diffusion term \(\frac{\sigma^2 (x - t/T)^2}{2}\) is also small. The drawback of this change of variable is that the advective and diffusion terms now depend on time: this means that, once the problem is discretized, the matrices are computed and inverted at each time step.

The fact that (see [2]) \(\forall \xi \leq 0,\)

\[f(t, \xi) = \frac{1}{rT} (1 - e^{-r(T-t)}) - \xi e^{-r(T-t)}\]

(8)
yields for \(g \) that \(\forall x \leq t/T \),

\[
g(t, x) = \frac{1}{rT}(1 - e^{-r(T-t)}) - (x-t/T)e^{-r(T-t)}.
\] (9)

To discretize (7), we use a Crank-Nicolson time scheme, with a uniform time step \(\delta t = T/N \) (\(N \) denotes the number of timesteps). We want to use the fact that \(g \) is analytically known on \(x \leq t/T \) (see Formula (9)). Therefore, in order that the mesh properly discretizes the border \(x = t/T \), we also use \(N \) space steps to discretize the space interval \((0,1)\) (see Figure ??). The space step is therefore \(\delta x = 1/N \). We then complete the mesh by adding \(J \) intervals on the right hand side of \(x = 1 \), so that \(x \in (0,x_{max}) \) with \(x_{max} = (N+J)\delta x \).

Notice that at time \(t_n = n\delta t \), the number of unknowns is \((N+J-n) \). This means that the size of the matrices we build depend on the timestep.

Since the mesh is uniform, it is really easy to discretize the operators involving derivatives of \(x \). What we use is the following equation on \(g \), equivalent to (7):

\[
\begin{align*}
\frac{\partial g}{\partial t} + \frac{\sigma^2}{2} \frac{\partial^2 g}{\partial x^2} \left((x-t/T)^2\frac{\partial g}{\partial x}\right) - (r+\sigma^2)(x-t/T)\frac{\partial g}{\partial x} &= 0, \\
g(T, x) &= \phi(x-1) = (1-x)^+.
\end{align*}
\] (10)

so that one can use the following approximations:

\[
\frac{\partial}{\partial x} \left((x-t/T)^2\frac{\partial g}{\partial x} \right)(t, x_i) \simeq \frac{1}{\delta x} \left((x_{i+0.5} - t/T) \frac{g(t, x_{i+1}) - g(t, x_i)}{\delta x} - (x_{i-0.5} - t/T) \frac{g(t, x_i) - g(t, x_{i-1})}{\delta x} \right),
\]

\[
(x-t/T)\frac{\partial g}{\partial x}(t, x_i) \simeq \frac{1}{2} \left((x_{i+0.5} - t/T) \frac{g(t, x_{i+1}) - g(t, x_i)}{\delta x} + (x_{i-0.5} - t/T) \frac{g(t, x_i) - g(t, x_{i-1})}{\delta x} \right).
\]

with \(x_i = i\delta x \) and \(x_{i+0.5} = (i+0.5)\delta x \). The matrices obtained are tridiagonal, so that they can be inverted with LU method with linear complexity.

As far as boundary conditions are concerned, we use a Dirichlet boundary condition on \(x = t/T \) using (9) and a “artificial” zero Neumann boundary condition on \(x = x_{max} \).

Finally, we use interpolation of degree 3 in space to compute the price, and of degree 2 in space to compute the delta. This quantities are given by (see formula (3)):

\[
\text{price} = S_0f \left(0, \frac{K}{S_0} \right) = S_0g \left(0, \frac{K}{S_0} \right),
\] (11)

\[
\text{delta} = f \left(0, \frac{K}{S_0} \right) - \frac{K}{S_0} \frac{\partial f}{\partial x} \left(0, \frac{K}{S_0} \right) = g \left(0, \frac{K}{S_0} \right) - \frac{K}{S_0} \frac{\partial g}{\partial x} \left(0, \frac{K}{S_0} \right).
\] (12)

We would like to emphasize that our numerical scheme:

- can handle negative or zero interest rate \(r \), which is important if one takes into account some dividend rate \(d \) (since in this case, \(r \) is replaced by \(r-d \) and formulas (11) and (12) for price and delta are multiplied by \(e^{-dT} \)),
- can also handle the case of \((t,S)\)-dependent interest rate \(r \) and volatility \(\sigma \).
4 Some numerical results

All the numerical results presented and the computational times have been obtained with a program written in C and run on a PC equipped with a 1 GHz Intel Pentium III microprocessor.

We have chosen the number of intervals J on $x \geq 1$ in function of N, such that the result does not change with larger J. We have found (see Figure 2) that the value

$$J = N/2$$

is sufficient to guaranty the fact that the price does not depend on the position of x_{max}.

<table>
<thead>
<tr>
<th>J</th>
<th>$J = 50$</th>
<th>$J = 100$</th>
<th>$J = 500$</th>
<th>$J = 1000$</th>
</tr>
</thead>
<tbody>
<tr>
<td>default values</td>
<td>1.697260346</td>
<td>1.696871955</td>
<td>1.696871955</td>
<td>1.696871955</td>
</tr>
<tr>
<td>$T = 0.25$</td>
<td>0.706693703</td>
<td>0.7066937038</td>
<td>0.7066937038</td>
<td>0.7066937038</td>
</tr>
<tr>
<td>$N = 100$</td>
<td>0.6668349075</td>
<td>0.6668349075</td>
<td>0.6668349075</td>
<td>0.6668349075</td>
</tr>
<tr>
<td>$K = 110$</td>
<td>94.30167983</td>
<td>0.002845743559</td>
<td>0.001516706587</td>
<td>0.001516706587</td>
</tr>
</tbody>
</table>

Figure 2: Comparison of the results for different values of J. Default values of parameters: $T = 1$, $\sigma = 0.05$, $r = 0.02$, $S_0 = 100$, $K = 100$, $N = 1000$.

We have also performed a rate of convergence analysis. We have found that both the price and the delta values converge with a rate $O\left(\frac{1}{N^2}\right)$. The fact that the delta converges with the same rate than the price is quite surprising since the delta value (see formula (12)) contains derivative of g. Notice that a precision of 4 digits both for price and delta can be obtained with $N = 800$, which corresponds to a time of computation of 0.4 s.

<table>
<thead>
<tr>
<th>N</th>
<th>price</th>
<th>delta</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>.019144</td>
<td>.0018231</td>
</tr>
<tr>
<td>200</td>
<td>.004697</td>
<td>.0003120</td>
</tr>
<tr>
<td>400</td>
<td>.001168</td>
<td>.0000603</td>
</tr>
<tr>
<td>800</td>
<td>.000291</td>
<td>.0000128</td>
</tr>
</tbody>
</table>

Figure 3: Rate of convergence. Values of parameters: $T = 1$, $\sigma = 0.05$, $r = 0.02$, $S_0 = 100$, $K = 100$, $J = N/2$. We give the absolute error between the price and delta obtained and the reference values ($N = 20000$): price= 1.697058, delta= 0.6334899.

Finally we give in Figure 4 a few comparisons of the results obtained with our method and other methods. The prices displayed for our method are converged (the digits given in Figure 4 do not change for larger N). We also indicate the number of time steps $N \geq 300$ needed to obtain at least the 5 digits of accuracy given. The computational time is given in Figure 5. Notice that, as expected, the computational time is $O(N^2)$ (since for N timesteps, we use $3N/2$ space steps and the matrices can be inverted with linear complexity).

The results from Zvan et al. comes from [?] (see Table 2 in [?]): the computational time indicated in this paper was about 20 s on a DEC Alpha. The results from Večeř comes from [?] and are obtained in a few seconds. The lower and upper bounds are obtained with the Premia software following the method of Thompson (see [?, 1]): the computational time is about 5 s on a PC equipped with a 1 GHz Intel Pentium III microprocessor.

One can see from this comparisons that our method is accurate both for small or large volatilities. For any value of the parameters, one obtains at least 5 digits of precision in less than one second. It seems also that our method is faster than the other, but this
Figure 4: Comparisons of the prices obtained with other methods. Values of parameters: $T = 1$, $r = 0.15$, $S_0 = 100$, $J = N/2$. For our method, we give the number of timestep $N \geq 300$ needed to obtain at least 5 digits of precision.

<table>
<thead>
<tr>
<th>σ</th>
<th>K</th>
<th>Our method</th>
<th>Zvan et al.</th>
<th>Večeř</th>
<th>Thompson (low)</th>
<th>Thompson (up)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>95</td>
<td>11.09409 (N = 300)</td>
<td>11.094</td>
<td>11.094</td>
<td>11.094094</td>
<td>11.094096</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>6.7943 (N = 1000)</td>
<td>6.793</td>
<td>6.795</td>
<td>6.794354</td>
<td>6.794465</td>
</tr>
<tr>
<td></td>
<td>105</td>
<td>2.7444 (N = 3000)</td>
<td>2.748</td>
<td>2.744</td>
<td>2.744406</td>
<td>2.744581</td>
</tr>
<tr>
<td>0.30</td>
<td>90</td>
<td>16.512 (N = 300)</td>
<td>16.514</td>
<td>16.516</td>
<td>16.512024</td>
<td>16.523720</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>10.209 (N = 300)</td>
<td>10.210</td>
<td>10.215</td>
<td>10.208724</td>
<td>10.214085</td>
</tr>
<tr>
<td></td>
<td>110</td>
<td>5.7304 (N = 1000)</td>
<td>5.729</td>
<td>5.736</td>
<td>5.728161</td>
<td>5.735488</td>
</tr>
</tbody>
</table>

Figure 5: Computational times for our method for some N and $J = N/2$ (computations made on a PC equipped with a 1 GHz Intel Pentium III).

<table>
<thead>
<tr>
<th>N</th>
<th>computational time</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>0.05 s</td>
</tr>
<tr>
<td>1000</td>
<td>0.56 s</td>
</tr>
<tr>
<td>3000</td>
<td>5.2 s</td>
</tr>
<tr>
<td>6000</td>
<td>27 s</td>
</tr>
</tbody>
</table>

would have to be checked carefully since it depends on the computers used. We can affirm that it is at least faster than the method of Thompson (see [1]) based on approximations, since we have tested both methods on the same computer.

We can also conclude from these experiments that, as expected, the accuracy is better for strikes less than S_0, as well as for large volatilities.

5 Conclusion

In conclusion, we have derived a very accurate and fast numerical method to solve the Rodger-Shi PDE. We obtain, in less than one second (on a PC equipped with a 1 GHz Intel Pentium III microprocessor), at least 5 digits of accuracy for $\sigma = 0.05$ and at least 5 digits of accuracy for $\sigma = 0.30$. Our method is easy to implement (see the code in the software Premia [?] and can handle (t,S)-dependent interest rates or volatilities. It also works with null or negative interest rate, which is of interest if one takes into account some dividend rate.

References
