The Libor Market Model with Jumps

El Hadj Aly DIA*

Premia 14

Abstract

The aim of this note is to use a Lévy-driven model to describe the joint arbitrage-free dynamics of a set of forward Libor rates. Such model is called a Libor market model. This note is based on the paper of Tankov and Kohatsu-Higa (so for more details see [4]).

1 Preliminaries

We consider a d-dimensional Lévy process Z without diffusion component. Thus $(\gamma, \sigma) \in \mathbb{R} \times \mathbb{R}^+$, and ν is a Radon measure on $\mathbb{R} \setminus \{0\}$ satisfying

$$\int_{\mathbb{R}} (1 \wedge x^2) \nu(dx) < \infty.$$

By the Lévy-Itô decomposition, X can be written in the form

$$Z_t = \gamma t + \int_{|x| > 1, s \in [0,t]} xJ(dx \times ds) + \lim_{\delta \downarrow 0} \int_{\delta \leq |x| \leq 1, s \in [0,t]} x\tilde{J}(dx \times ds)$$

(1.1)

Here $\gamma \in \mathbb{R}^d$, J is a Poisson measure on $\mathbb{R} \times [0, \infty)$ with intensity $\nu(dx)dt$, $\tilde{J}(dx \times ds) = J(dx \times ds) - \nu(dx)ds$ and ν is a Radon measure on $\mathbb{R} \setminus \{0\}$ satisfying $\int_{\mathbb{R}} (1 \wedge x^2) \nu(dx) < \infty$. Given $\epsilon > 0$, we define the process R^ϵ by

$$R^\epsilon_t = \int_{0 \leq |x| \leq \epsilon, s \in [0,t]} x\tilde{J}(dx \times ds), \ t \geq 0.$$

(1.2)

Note that we have

$$\mathbb{E}R^\epsilon_t = 0.$$

*INRIA Paris-Rocquencourt, domaine de Voluceau, BP 105, 78153 Le Chesnay Cedex France (dia.eha@gmail.com).
On the other hand we denote by Σ^ε the covariance matrix of R^ε_1, and thus for any $i, j \in \{1, \ldots, d\}$

$$\Sigma^\varepsilon_{i,j} = \int_{|x|\leq \varepsilon} x_ix_j \nu(dx).$$

Define the process Z^ε by

$$Z^\varepsilon_t = \int_{|x|> \varepsilon, s \in [0,t]} xJ(dx \times ds), \ t \geq 0.$$

Then we have

$$Z_t = \gamma_\varepsilon t + Z^\varepsilon_t + R^\varepsilon_t, \ t \geq 0, \quad (1.3)$$

where

$$\gamma_\varepsilon = \gamma - \int_{|x|\leq 1} x\nu(dx). \quad (1.4)$$

We will call $(T^\varepsilon_i)_{i \geq 1}$ the jump times of the process Z^ε.

2 Approximation of multidimensional SDE

Let X be a n-dimensional stochastic process, and the unique solution of the stochastic differential equation

$$dX_t = h(X_t^-)dZ_t, \ t \in [0,1], \quad (2.5)$$

where h is a $n \times d$ matrix. A suitable approximation of X is \bar{X} defined by

$$d\bar{X}_t = h\left(\bar{X}_t^-\right)(\gamma_\varepsilon dt + dW^\varepsilon_t + dZ^\varepsilon_t), \quad (2.6)$$

where W^ε is a d-dimensional Brownian motion with covariance matrix Σ^ε. The choice of this approximation is explain in [4]. The process \bar{X} can be also written in this form

$$\bar{X}_t = \bar{X}_t^\eta + \int_{\eta}^t h\left(\bar{X}_s\right) dW^\varepsilon_s + \int_{\eta}^t h\left(\bar{X}_s\right) \gamma_\varepsilon ds,$$

$$\bar{X}_{T^\varepsilon_i} = \bar{X}_{T^\varepsilon_i^-} + h\left(\bar{X}_{T^\varepsilon_i^-}\right) \Delta Z_{T^\varepsilon_i}.$$

where $\eta_t = \sup T^\varepsilon_i, \ T^\varepsilon_i \leq t$. The idea of [4] is to approximate \bar{X} by

$$Y^0 + \left. \frac{\partial}{\partial \alpha} Y^\alpha \right|_{\alpha = 0},$$

where the family of processes $(Y^\alpha)_{0\leq \alpha \leq 1}$ is defined by

$$Y^\alpha_t = \bar{X}_t^\eta + \int_{\eta}^t h\left(Y^\alpha_s\right) dW^\varepsilon_s + \int_{\eta}^t h\left(Y^\alpha_s\right) \gamma_\varepsilon ds.$$
Hence a new approximation of X, called \bar{X}, is defined by
\[
\bar{X}_t = Y_{0,t} + Y_{t,1}, \quad t > \eta \\
\bar{X}_{T^i_t} = \bar{X}_{T^i_t} - h(\bar{X}_{T^i_t}) \Delta Z^i_t \\
Y_{0,t} = \bar{X}_m + \int_{\eta}^{t} h(Y_{0,s}) \gamma_t ds \\
Y_{1,t} = \int_{\eta}^{t} h(Y_{0,s}) dW^c_s + \sum_{i=1}^{n} \int_{\eta}^{t} \frac{\partial h}{\partial x_i}(Y_{0,s}) Y^i_s \gamma_t ds.
\]
The random vector $Y_{1,t}$ is Gaussian with mean zero and covariance matrix Ω_t satisfying
\[
\Omega_t = \int_{\eta}^{t} \left(\Omega_s M_s + M_s^\perp \Omega_s^\perp + N_s \right) ds,
\]
where M^\perp is the transpose of the matrix M and
\[
M^{ij}_{t} = \frac{\partial h^{ij}(Y_{0,t})}{\partial x_j} \gamma^j_t, \quad N_t = h(Y_{0,t}) \Sigma^t h^\perp(Y_{0,t}).
\]

3 Libor market model

Let $T_i = T_1 + (i-1)\delta$, $i = 1, \ldots, n + 1$ be a set dates, called tenor dates. The Libor rate L_i^t is the forward interest rate, defined at date t for the period $[T_i, T_{i+1}]$. The Libor rate can be expressed with respect to prices of zero-coupon bonds.

\[
L_i^t = \frac{1}{\delta} \left(\frac{B_t(T_i)}{B_t(T_{i+1})} - 1 \right),
\]

where $B_t(T)$ is the price at time t of a zero-coupon bond with maturity T. A arbitrage-free dynamics of L_1^t, \ldots, L_n^t (see [3]) is

\[
\frac{dL_i^t}{dL_i^\tau} = \sigma_{i,t} dZ_t - \int_{\mathbb{R}^d} \sigma_{i,t} z \left[\prod_{j=i+1}^{n+1} \left(1 + \frac{\delta L_j^t \sigma_j^t z}{1 + \delta L_j^t} \right) - 1 \right] \nu(dz) dt, \tag{3.7}
\]

where Z is a d-dimensional martingale pure jump Lévy process, with Lévy measure ν, and $\sigma_{i,t}$ are d-dimensional deterministic volatility functions. The dynamics are given under the so-called terminal measure. This means the last zero-coupon bond, $B_t(T_{n+1})$, is used as the numéraire. So the price at time t of an option with payoff $H = f(L_{T_1}^1, \ldots, L_{T_1}^n)$ at time T_1 is given by

\[
\pi_t(H) = \frac{B_t(T_1)}{\prod_{i=1}^{n} (1 + \delta L_i^t)} \mathbb{E} \left[f(L_{T_1}^1, \ldots, L_{T_1}^n) \prod_{i=1}^{n} \left(1 + \delta L_i^t \right) / \mathcal{F}_t \right].
\]
We introduce the process \((n + 1)\)-dimensional \(X\) with \(X^0_t = t\) and \(X^i_t = L^i_t\) (for \(i = 1, \ldots, n\)), a \((d + 1)\)-dimensional process \(\tilde{Z} = (t, Z_t)^\perp\), and a \((n + 1) \times (d + 1)\)-dimensional function \(h\) with \(h^{11} = 1\), \(h^{1j} = 0\) for \(2 \leq j \leq d + 1\), \(h^{i1} = f^i(x)\) and \(h^{ij} = \sigma^{j-1}_{i,x_0}\) (for \(2 \leq j \leq d + 1\)) with
\[
\begin{align*}
f^i(x) &= -\int_{\mathbb{R}^d} \sigma_{i,x_0}^j z \left[\prod_{j=i+1}^{n+1} \left(1 + \frac{\delta x_j \sigma^{j-1}_{i,x_0} z}{1 + \delta x_j} \right) - 1 \right] \nu(dz) dt,
\end{align*}
\]
so that the equation (3.7) takes the form
\[
dX_t = h(X_{t^-}) d\tilde{Z}_t.
\]
For details about this model, see [4].

References

1, 2, 4

References