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Abstract

In this note we will present the important results of [1]. These results can be used to valuate
European options in models where the log price of the underlying asset is a process with independent
increments.

1 Introduction

Let (Q,f = (]:t)tzo ,IP) be a probability space. We consider an underlying asset price given by S;, =

Soexp(Xy,) for k = {0,..., N}, where tg,...,ty are the trading dates and the process X is a process
with independent increments. We will write k instead of ¢; in the sequel. Denote by H the payoff of the
option with underlying asset .S, the Variance-Optimal pricing and hedging problem consist in finding an
initial endowment V € R and an optimal strategy ¢ = (¢r); << Which minimizes

N
E(VY ~H) with V¥ =Vo+ Y prlS,,. (1.1)
k=1

The reason of such framework is explained in [1]. We will introduce some definitions and assumptions
used which will be used in the sequel. For more details see [1].

Definition 1.1 We say that S satisfies the non-degeneracy condition (ND) if there exists a constant
0 €]0, 1] such that

(E[ASk/Fia]) < OF [(ASK) /Fia]
Pa.s. fork=1,...,N.
Definition 1.2 We define the discrete cumulant generating function as
m: D x{0,...,N} = C with m(z, k) = Ee*»*~,
where D = {z € C, Eexp (2 AXy) < 00}.
Assumption I S satisfies the non-degeneracy condition.

Assumption IT 1. AXy is never deterministic for any k =01,...,N.

2.2€eD.
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2 Discrete Follmer-Schweizer Decomposition

In this section we will derive discrete Follmer-Schweizer decomposition for some kind of payoffs. More
details can be found in [1].

Proposition 2.1 Under Assumption II, let z € D fized, such that 2Re(z) € D. Then H(z) = S% admits
a discrete Follmer-Schweizer decomposition

H(2)n = H(2)o + > _ &(2)kASk + L(2)n
k=1
H(z)y = H(2) = 5%,

where

H(z), = h(zn)SZ, Vne{0,...,N}

€(2)n = g(z,n)h(z,n)S2"], Vne{l,...,N}

L(z)p, = H(z)n—H(z)o— Zf(z)kASk, vn € {0,...,N},

n

k=1
and g(z,m), h(z,n) are defined by
N
h(zan) = H (m(z77’) fg(z,i)(m(l,i) 71))
i=n+1

m(z+1,n) —m(1,n)m(z,n)
m(2,n) —m(1,n)?

Consider now that

H=f(Sx), with ()= [ sT1(a2)

C

where II is a finite complex measure in the sense of Rudin [2], Section 6.1. For examples we have

1 . Klfz
(s—K)y*—s = 5 ch+ib szmdz, for arbitrary 0 < R< 1, s >0, K >0
11—z
(K -s)t = = chitiB szLdz for arbitrary R <0, s >0, K >0
omi BB (2 —1) 7 ’ ’

Set Iy = suppll NR.

Assumption ITI 1. Iy is compact.

2. 2l C D.

Proposition 2.2 We suppose the validity of Assumptions II and III. Any contingent claim H = f(Sn)
admits the real discrete Féllmer-Schweizer decomposition given by

H, =Ho+ Y &'AS, + LY
k=1

Hy=H



where

I
I

/(C H(2),T(d2)
et /(C £(2),11(dz)

La / L(2)aT1(dz) = Hy — Hy — > _ & AS.
C

k=1

The processes (H,), (€7) and (LH) are real-valued.

The fundamental result of [1] is given by the following Theorem.

Theorem 2.3 We suppose the validity of Assumptions IT and III. Let H = f(Sn). A solution to the
optimal problem (1.1) is given by (Vi ¢*) with Vi = Hy and ¢* is determined by

n—1
oL =T+, (Hnl —Hy—)Y_ sofA&-) :
=1

where

1 m(l,n) —1

An = Sp—1m(2,n) —2m(l,n) +1

Moreover the solution is unique (up to a null set).
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