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POLYNOMIAL PROCESSES AND THEIR APPLICATIONS TO

MATHEMATICAL FINANCE – PREMIA DOCUMENTATION

FOR AN IMPLEMENTATION OF THE BATES MODEL

CHRISTA CUCHIERO, MARTIN KELLER-RESSEL, JOSEF TEICHMANN

Abstract. We introduce a class of Markov processes called m-polynomial,
for which the calculation of (mixed) moments up to order m only requires the
computation of matrix exponentials. This class contains affine processes, Feller

processes with quadratic squared diffusion coefficient, as well as Lévy-driven
SDEs with affine vector fields. Thus, many popular models such as the classical
Black-Scholes, exponential Lévy or affine models are covered by this setting.
The applications range from statistical GMM estimation to option pricing. For

instance, the efficient and easy computation of moments can successfully be
used for variance reduction techniques in Monte Carlo simulations.

1. Introduction

Pricing and hedging of contingent claims is the crucial computation done within
every model in mathematical finance. For European type claims this amounts to
the computation of the expected value of a functional of the (discounted) price
process under some martingale measure. Hedging portfolios are then constructed
via appropriate derivatives of those expected values with respect to model param-
eters or to the prices, so called “Greeks”. Let us denote the (discounted) price
process at time T , a vector in R

n, by XT . We can roughly distinguish three cases
of complexity for the mentioned computations:

(1) The probability distribution of XT is known analytically.
(2) The characteristic function of XT is known analytically.
(3) The local characteristics of XT are known analytically.

In the first case, a numerical quadrature algorithm is sufficient for the efficient
computation of the contingent claim’s price E[φ(XT )], where φ denotes some payoff
function.

In the second case, variants of Plancherel’s theorem are applied in order to
evaluate the price E[φ(XT )], for instance,

E[φ(XT )] =

∫

Rn

φ̂(u)E [exp(i〈u,XT 〉)] du,

where φ̂ denotes the Fourier transform of the function φ. Remark that often mod-
ifications of the original payoff function are used to make the Fourier methodology
applicable. This is numerically efficient, even though its implementation, in par-
ticular the complex integration, can take some time (see, e.g., [2]). Also there are
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different levels of what it means to “know analytically” the characteristic function
of XT . If one, e.g. in affine models, has to solve a high-dimensional Riccati equa-
tion for each u ∈ R

n to calculate the characteristic function u 7→ E[exp(i〈u,XT 〉)],
the “analytic knowledge” means at least some precalculations which have to be per-
formed efficiently, too. In other words, methods applying the characteristic function
are efficient if the amount of precalculations is limited.

The third case is characterized by the use of Monte Carlo simulation methods:
one samples from the (unknown) distribution of XT by generating, for instance
through Euler schemes, approximate distributions for XT . From those approximate
distributions, which should be easy to simulate, one draws a sufficient amount of
samples. This two-step procedure is very robust, but takes a considerable amount
of time.

In this article we would like to add a fourth case, which in the previous order
would correspond to case 2 1

2 . We can describe a class of processes, called “poly-
nomial processes”, where it is easy and efficient to compute moments of all orders
of the random variable XT , even though neither its probability distribution nor its
characteristic function need to be known. We shall analyze this class and show
that exponential Lévy processes, affine processes or Jacobi-type processes belong
to it. The method is best explained by an example: consider a stochastic volatility
model of SVJJ-type [10], i.e. both the logarithmic (discounted) price process and
the stochastic volatility can jump. Such models can be described by stochastic
differential equations of the type

dXt = (aXt + bVt + c)dt+
√
VtdBt,1 + dZt,1,

dVt = (αVt + β)dt+
√
VtdBt,2 + dZt,2,

where (B1, B2) are possibly correlated Brownian motions and (Z1, Z2) are Lévy
processes, independent of (B1, B2), where the second component Z2 is a subordi-
nator. For such models there is no easy-to-implement (explicit) formula for the
characteristic function, even though they are affine models. Assuming now appro-
priate moment conditions for the jump measures, the Markov process (X,V ) has
the remarkable property that the expected value of any polynomial of the process
(X,V ) is again a polynomial in X0 and V0. The coefficients of this polynomial can
be calculated efficiently by exponentiating a matrix, which can be easily deduced
from the generator. In other words, there is a dense subset of claims in the set of
“all” claims, where the prices and hedging ratios are explicitly known (up to matrix
exponentials). This explicit knowledge allows to compute prices of general claims
by variance reduction techniques, which is more efficient and easier to implement
than Fourier methods with “unknown” characteristic function.

The article is devoted to a study of polynomial processes in some depths together
with their most obvious applications to mathematical finance. As the most striking
application we see the possibility to reduce the variance of Monte Carlo evaluations
within a polynomial model by approximating the claim through elements of the
dense subset of already priced claims. The remainder of our article is organized
as follows: in Section 2 we formally introduce the class of m-polynomial processes
and draw several basic conclusions. In Section 3 we analyze the conditions on the
characteristics of a Feller semimartingale to be m-polynomial. Section 4 deals with
examples from the class of m-polynomial processes and Section 5 with applications
to pricing and hedging in mathematical finance. In Section 6 we then describe the
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implementation of the Bates model in Premia. The algorithm is based on a Monte
Carlo simulation with polynomial control variates.

2. Polynomial Processes

We consider a time-homogeneous Markov process X := (Xx
t )t≥0, x∈S with state

space S ⊆ R
n, a closed subset of Rn, and semigroup (Pt)t≥0 defined by

Ptf(x) := E[f(Xx
t )] =

∫

S

f(ξ)pt(x, dξ), x ∈ S,

and acting on all functions f : S → R which are integrable with respect to the
family of Markov kernels pt(x, ·).

Notation 2.1. Let Pol≤m(S) denote the finite dimensional vector space of poly-
nomials up to degree m ≥ 0 on S, i.e the restriction of polynomials on R

n to S,
defined by

Pol≤m(S) :=





m∑

|k|=0

αkx
k

∣∣∣x ∈ S, αk ∈ R



 , (2.1)

where we use the multi-index notation k = (k1, . . . , kn) ∈ N
n
0 , |k| = k1 + · · · + kn

and xk = xk1
1 · · ·xkn

n . Pol≤m(S) is endowed with some norm ‖ · ‖Pol≤m
and its

dimension is denoted by N < ∞. Moreover, Polm(S) corresponds to the vector
space of polynomials which are precisely of degree m.

Definition 2.2. We call an S-valued time-homogeneous Markov process
m-polynomial if

Ptf(x) ∈ Pol≤m(S)

holds true for all f ∈ Pol≤m(S) and t ≥ 0. If X is m-polynomial for all m ≥ 0,
then it is called polynomial.

Theorem 2.3. Let X be a time-homogeneous Markov process with state space S
and semigroup (Pt), pointwise continuous at t = 0, i.e. t 7→ Ptf(x) is continuous
at t = 0 for all x ∈ S and f : S → R where Ptf exists as finitely valued function
on S. Then the following assertions are equivalent:

(i) X is m-polynomial for some m ≥ 0.
(ii) There exists a linear map A on Pol≤m(S), such that (Pt) restricted to

Pol≤m(S) can be written as

Pt|Pol≤m(S) = etA

for all t ≥ 0.
(iii) The infinitesimal generator A is well defined on Pol≤m(S) and maps

Pol≤m(S) to itself.
(iv) The Kolmogorov backward equation for an initial value f(·, 0) ∈ Pol≤m(S)

∂f(x, t)

∂t
= Af(x, t)

has a real analytic solution for all times t ∈ R. In particular, f(·, t) ∈
Pol≤m(S).
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3. Polynomial Feller semimartingales

For the class of Feller processes, we want to find sufficient conditions for m-
polynomial processes in terms of the infinitesimal generator. We consider therefore
a Feller semigroup (Pt) on S. If C∞

c (S), the space of smooth test functions, is
contained in the domain of the infinitesimal generator A, then it is well known that
there exist real-valued functions akl, bk, c and a kernel K(x, dξ) on S × B(Rn\{0})
such that for u ∈ C2

c (S), A is given by

Au(x) =
1

2

n∑

k,l=1

akl(x)
∂2u(x)

∂xk∂xl
+

n∑

k=1

bk(x)
∂u(x)

∂xk
− c(x)u(x)

+

∫

Rn\{0}

(
u(x+ ξ) − u(x) −

n∑

k=1

χk(ξ)
∂u(x)

∂xk

)
K(x, dξ),

(3.1)

where a(x) = (akl(x))k,l=1,...,n is a symmetric positive semidefinite matrix, b(x) ∈
R
n, c is non-negative, K(x, ·) is a Radon measure on S × B(Rn\{0}) and χ : Rn →

R
n some bounded continuous truncation function with χ(ξ) = ξ in a neighborhood

of 0 (see for example [13] or [16]). Clearly, the above parameters have to satisfy
certain admissibility conditions guaranteeing the existence of the process in S.
As the definition of m-polynomial processes requires the existence of moments up
to order m and thus the finiteness of Xt a.s., we henceforth assume X to be con-
servative, i.e. c = 0.
If X is additionally a semimartingale, which is automatically the case if S = R

n

(see Theorem 7.16 in [4]), then its characteristics (B,C, ν) associated with the
truncation function χ(ξ) are given by

Bt =

∫ t

0

b(Xs)ds, Ct =

∫ t

0

a(Xs)ds, ν(dt, dξ) = K(Xt, dξ)dt.

We shall refer to (b, a,K) as differential characteristics of X (see [14]).
In order to specify the form of a, b and K such that A generates an m-polynomial
process, we start by defining the following two conditions on the kernel K(x, dξ):

Condition A. The kernel K(x, dξ) is of the form

K(Xt, dξ) := µ00(dξ) +
∑

i∈I
Xt,iµi0(dξ) +

∑

(i,j)∈J
Xt,iXt,jµij(dξ),

where all µij are Lévy measures on R
n with

∫

‖ξ‖>1

‖ξ‖mµij(dξ) < ∞. (3.2)

The index sets I and J are defined by

I = {1 ≤ i ≤ n|Si ⊆ R+}
and

J = {(i, j), i ≤ j|i = j or Si × Sj ⊆ R
2
+ or Si × Sj ⊆ R

2
−},

where Si stands for the projection on the ith component.

Condition B. Let d ≥ 1 and let

g : S × R
d → R

n, (x, y) 7→ g(x, y) = gx(y) = H(y)x+ h(y),
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be an affine function in x. Here, H : Rd → R
n×n and h : Rd → R

n are assumed to
be measurable. The kernel K(x, dξ) satisfies

K(Xt, dξ) := gXt
∗ µ(dξ),

where for each x ∈ S, gx∗µ denotes the pushforward of the measure µ under the map
gx. Moreover, µ is a Lévy measure on R

d integrating
∫

Rd\{0}

(
‖H(y)‖k + ‖h(y)‖k

)
µ(dy) for all 1 ≤ k ≤ m. (3.3)

Remark 3.1. The integrability condition (3.3) (in particular for k = 1) can be
weakened for specific choices of H and h (see Example 4.3).

Theorem 3.2. Let m ≥ 2 and Xx
t be a conservative Feller semimartingale on

S whose infinitesimal generator on C∞
c (S) is of form (3.1) with c = 0. Assume

furthermore that E [‖(Xx
t )‖m] < ∞ for all t ∈ [0, 1] (of course [0, 1] could be replaced

by [0, ε] for any ε > 0). Then, X is m-polynomial if its differential characteristics
(b, a,K) associated with the “truncation function” χ(ξ) = ξ are of the form

bt = b+

n∑

i=1

Xt,iβi, b, βi ∈ R
n,

at = a+

n∑

i=1

Xt,iαi0 +
∑

i≤j
Xt,iXt,jαij , a, αij ∈ R

n×n,

with K satisfying either Condition A or B.

Remark 3.3. It is important to note that the differential characteristics of X in
Theorem 3.2 are specified with respect to the “truncation function” χ(ξ) = ξ. While
a and K do not depend on the choice of χ, the characteristic b = b(χ) does. So,
if one chooses another truncation function χ̃ instead of ξ, then b(χ̃) transforms as
follows

bt(χ̃(ξ)) = bt(ξ) +

∫

Rn\{0}
(χ̃(ξ) − ξ)K(Xt, dξ).

Thus, the requirement that a and K are as in Theorem 3.2 and
(
bt(χ̃(ξ)) +

∫

Rn\{0}
(ξ − χ̃(ξ))K(Xt, dξ)

)
∈ Pol≤1(S)

is an equivalent condition guaranteeing that X is m-polynomial.

Remark 3.4. Note that an operator of form (3.1) with χ(ξ) = ξ can satisfy

A(Pol≤m(S)) ⊆ Pol≤m(S), (3.4)

even though the conditions of Theorem 3.2 are not fulfilled. An example of such an
operator is of the following form:

Au(x) =
1

2

(
a+ α10x+ α11x

2
) d2u(x)

dx2
+ (b+ βx)

du(x)

dx

+
λ

2x2

∫

R

(
u(x+ ξ) − u(x) − ξ

du(x)

dx

)
δ−2x(dξ)

=
1

2

(
a+ α10x+ α11x

2
) d2u(x)

dx2
+

(
b+ βx+

λ

x

)
du(x)

dx
+
λ(u(−x) − u(x))

2x2
.
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The case a = 2, α10 = α11 = b = β = 0 corresponds to the generator of the so
called Dunkl process [7, 9].

4. Examples

In order to apply Theorem 3.2 to the following examples, we assume throughout
this section m ≥ 2, i.e. the process X admits moments up to order at least 2.

Example 4.1 (Affine processes). Every conservative, regular affine process X on
S = R

p
+ × R

n−p is m-polynomial, if E [‖(Xx
t )‖m] < ∞ for t ∈ [0, 1]. For details on

affine processes see [5].

Example 4.2 (Lévy processes). Let L be a Lévy process on R
n with triplet (b, a, µ)

satisfying
∫

‖ξ‖>1
‖ξ‖mµ(dξ) < ∞. Then, the Markov process Xx

t = x + Lt is m-

polynomial.

Example 4.3 (Exponential Lévy models). Exponential Lévy models are of the form

Xx
t = xeLt , (4.1)

where Lt is a Lévy process on R with triplet (b, a, µ). Under the integrability as-
sumption

∫

|y|>1

emyµ(dy) < ∞, (4.2)

which guarantees the existence of E [|Xx
t |m], exponential models are m-polynomial,

since we have

E
[
xmemLt

]
= xmetψ(m),

where ψ denotes the cumulant generating function of the Lévy process.
In financial applications Xt usually corresponds to the price process under a

martingale measure. The absence of arbitrage then imposes conditions on b since
the discounted price process e−rtXt must be a martingale:

b = r − 1

2
a−

∫

R

(ey − 1 − χ(y))µ(dy).

The infinitesimal generator of (4.1) is then given by

Au(x) =
ax2

2

d2u(x)

dx2
+ rx

du(x)

dx
+

∫

R

(
u (xey) − u(x) − x (ey − 1)

du(x)

dx

)
µ(dy).

In terms of Theorem 3.2, we are in the situation of Condition B with g(x, y) =
H(y)x = (ey − 1)x.
Note also that the Black-Scholes model falls into the realm of this example.

Example 4.4 (Lévy driven SDEs). Let Lt denote a Lévy process on R
d with gen-

erating triplet (b, a, µ). Suppose furthermore that V1, . . . , Vd are affine functions,
i.e. we have

Vi : S → R
n, x 7→ Hix+ hi,

where Hi ∈ R
n×n and hi ∈ R

n. A process X which solves the stochastic differential
equation of type

dXt =

d∑

i=1

Vi(Xt−)dLt,i, X0 = x ∈ S, (4.3)
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in S and which leaves S invariant is m-polynomial if
∫

‖ξ‖>1
‖ξ‖mµ(dξ) < ∞. If

V1, . . . , Vd are linear, then we even have A(Polk(S)) ⊆ Polk(S) for all 0 ≤ k ≤ m
(in contrast to A(Pol≤k(S)) ⊆ Pol≤k(S)).

Example 4.5 (Jacobi process). Another example of a polynomial process is the
Jacobi process (see [12]) which is the solution of the stochastic differential equation

dXt = −β(Xt − θ)dt+ σ
√
Xt(1 −Xt)dBt, X0 = x ∈ [0, 1],

on S = [0, 1], where θ ∈ [0, 1] and β, σ > 0. Its generator is a self-adjoint operator
satisfying the following eigenvalue equation

AQn(x) = λnQn(x), n ∈ N,

where the eigenfunctions Qn are the Jacobi polynomials and the eigenvalues λn are

given by −σ2

2 n(n− 1 + 2β
σ2 ).

This example can be extended by adding jumps, where the jump times correspond
to those of a Poisson process N with intensity λ and the jump size is a function of
the process level. Indeed, if a jump occurs, then the process is reflected at 1

2 so that
it remains in the interval [0, 1], i.e. we have

dXt = −β(Xt − θ)dt+ σ
√
Xt(1 −Xt)dBt + (1 − 2Xt)dNt, X0 = x ∈ [0, 1],

whose generator is given by

Au =
1

2
σ2(x(1 − x))

d2u(x)

dx2
− β(x− θ)

du(x)

dx
+ λ(u(1 − x) − u(x)).

In terms of Condition B, we have here g(x, y) = −2yx+ y and µ(dy) = λδ1(dy).

Example 4.6 (Pearson diffusions). The above example 4.5 (without jumps) as well
as Ornstein-Uhlenbeck and Cox-Ingersoll-Ross processes, all of them with mean-
reverting drift, can be subsumed under the class of so called Pearson diffusions
which are the solutions to SDEs of the form

dXt = −β(Xt − θ)dt+
√

(α11X2
t + α10Xt + a)dBt, X0 = x,

where β > 0 and α11, α10 and a are specified such as the square root is well defined.
Forman and Sørensen [8] give a complete classification of the different types of the
Pearson diffusion in terms of their invariant distributions.

5. Applications

By Theorem 2.3 we know that there exists a linear map A such that moments
of m-polynomial processes can simply be calculated by computing etA. Indeed, by
choosing a basis 〈e1, . . . , eN 〉 of Pol≤m(S) the matrix corresponding to this linear
map which we also denote by A = (Aij)i,j=1,...,N can be obtained through

Aei =
N∑

j=1

Aijej .

Writing f as
∑N
k=1 αkek, we then have

Ptf = etA

(
N∑

k=1

αkek

)
= (α1, . . . , αN )etA(e1, . . . , eN )′, (5.1)
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which means that moments of polynomial processes can be evaluated simply by
computing matrix exponentials.
By means of the one-dimensional Cox-Ingersoll-Ross process

dXt = (b+ βXt)dt+ σ
√
XtdWt, b, σ ∈ R+, β ∈ R,

we exemplify how moments of order m can be calculated. The generator is given
by

Au(x) =
1

2
σ2x

d2u(x)

dx2
+ (b+ βx)

du(x)

dx
.

Applying A to (x0, x1, . . . , xm) yields the following (m+ 1) × (m+ 1) matrix

A =




0 . . .
b β 0 . . .
0 2b+ σ2 2β 0 . . .
0 0 3b+ 3σ2 3β 0 . . .

. . .

0 . . . mb+ m(m−1)
2 σ2 mβ




.

Hence, E
[
(Xx

t )k
]

= Ptx
k = (0, . . . , 1, . . . , 0)etA(x0, . . . , xk, . . . , xm)′.

Remark 5.1. Note that A is a lower triangular matrix, whose eigenvalues are the
diagonal elements. Since in this case they are all distinct, the matrix is diagonal-
izable. This holds true for all one-dimensional affine processes since the (k + 1)th

diagonal element is given by

k

(
β +

∫

R+

(ξ − χ(ξ))µ10(dξ)

)
,

where the integral part can only appear if the process is supported on R+. Recall
the notation µ10 from Condition A. Of course there are many efficient algorithms
to evaluate such matrix exponentials (see for example [11, 15]).

5.1. Moment calculation - Generalized Method of Moments (GMM). In
view of this easy and fast technique of moment calculation for polynomial processes,
the Generalized Method of Moments (GMM) qualifies for parameter estimation and
thus, for model calibration. The implementation of a typical moment condition of
the type

f(Xt, θ) =




Xn1
t Xm1

t+s − E[Xn1
t Xm1

t+s]
...

X
nq

t X
mq

t+s − E[X
nq

t X
mq

t+s]


 , ni,mi ∈ N, 1 ≤ i ≤ q,

where θ is the set of parameters to be estimated, is simple since

E
[
Xn
t X

m
t+s

]
= E

[
Xn
t E
[
Xm
t+s

∣∣Xt

]]

can also be computed easily. In the case of one-dimensional jump-diffusions,
Zhou [17] already uses this method for GMM estimation.
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5.2. Pricing - Variance reduction. The fact that moments of polynomial pro-
cesses are analytically known also gives rise to new and efficient techniques for
pricing and hedging issues.
Let X be an m-polynomial process and G : S → R

n a deterministic bi-measurable
map such that the (discounted) price processes are given through

St = G(Xt)

under a martingale measure. Typically G = exp, if X are log-prices. We denote by
F = φ(ST ) a bounded measurable European claim for some maturity T > 0, whose
price at t ≥ 0 is given by the risk neutral evaluation formula

pFt = E
[
φ(ST )

∣∣Ft
]

= E
[
(φ ◦G)(XT )

∣∣Ft
]
.

Obviously, claims of the form

F = f ◦G−1(ST ) (5.2)

for f ∈ Pol≤m(S) are analytically tractable, as we have

pFt = E
[
(f ◦G−1)(ST )

∣∣Ft
]

= PT−tf(G−1(St)) = e(T−t)Af(G−1(St))

for 0 ≤ t ≤ T , where A is the previously defined linear operator on Pol≤m(S).
The sensitivities of the price process with respect to the factors of X can then be
calculated by

∇pFt = ∇PT−tf(G−1(St))∇G−1(St). (5.3)

Although claims are in practice not of form (5.2), the explicit knowledge of the
price of polynomial claims can be used for variance reduction techniques based on
control variates. Instead of using the estimator

πF0 =
1

L

N∑

i=1

(φ ◦G)(Xi
T )

in a Monte-Carlo simulation, where X1
N , . . . ,X

N
T are L samples of XT , we can use

π̂F0 =
1

N

N∑

i=1

(
(φ ◦G)(Xi

T ) −
(
f(Xi

T ) − E[f(XT )]
))
,

where f ∈ Pol≤m(S) is an approximation of φ ◦ G and serves as control variate.
Both estimators are unbiased and the second clearly outperforms the first since
Var

(
π̂F0
)
< Var

(
πF0
)
, where the ratio of the variances depends on the accuracy of

the polynomial approximation.

It is worth mentioning that the previous pricing algorithm has also important
consequences for hedging, since the greeks for “polynomial claims” F = f(XT ) can
be explicitly and efficiently calculated, again by matrix exponentials: the matrix
exponential calculates the coefficients of the polynomial x 7→ E[f(XT )], calculating
a derivative of this polynomial is then an algebraic question. These considerations
are then applied in equation (5.3). Now assuming a complete market situation for
the real-world claim φ(ST ) = φ◦G(XT ), i.e. there is a trading strategy η such that

φ(ST ) = E[φ(ST )] +

∫ T

0

ηt • dSt,



10 C. CUCHIERO, M. KELLER-RESSEL, J. TEICHMANN

we can conclude that

φ(ST ) − f(XT ) = E[φ(ST )] − E[f(XT )] +

∫ T

0

(η − ∇pFt ) • dSt.

Therefore, if we assume that φ(ST ) − f(XT ) has a small variance, then also the
stochastic integral representing the difference of the cumulative gains and losses of
the two hedging portfolios, namely the one built by the unknown strategy η and
the one built by the known strategy ∇pFt , is small.

Of course, this method of variance reduction can be applied to all polynomial
processes, including all kinds of examples mentioned in Section 4. However, affine
models for which the generalized Riccati ODEs (see [5]) cannot be explicitly solved
are of particular interest. This is illustrated in the example below.

Example 5.2. The following affine stochastic volatility model comprising two vola-
tility factors is a modification of a model initially proposed by Bates [1]. The price
process is specified as St = S0e

Xt with dynamics

d

(
Xt

Ut

Vt

)
=

(
r− Ut

2 − Vt
2 −λ1Ut

∫
(eξ1 −1)F1(dξ)−λ2Vt

∫
(eξ1 −1)F2(dξ))

b1−β11Ut+β12Vt

b2−β22Vt+β21Ut

)
dt

+

( √
Ut 0

√
Vt 0

σ1ρ1

√
Ut σ1

√
1−ρ2

1

√
Ut 0 0

0 0 σ2ρ2

√
Vt σ2

√
1−ρ2

2

√
Vt

)(
dBt,1

dBt,2

dBt,3

dBt,4

)

+ dZt,1 + dZt,2,

where for k = 1, 2, Zk are pure jump processes in R × R
2
+ with linear jump arrival

intensity λ1u, λ2v and trivariate jump size distribution Fk such that
∫
eξ1Fk(dξ) <

∞. The usual way to obtain the price of European options is to solve the following
Riccati equations

∂φ(t, x, u, v)

∂t
= rx+ b1ψ1(t, x, u, v) + b2ψ2(t, x, u, v),

∂ψ1(t, x, u, v)

∂t
=

1

2
(x2 − x) − β11ψ1(t, x, u, v) + β21ψ2(t, x, u, v)

+
1

2
σ2

1ψ
2
1(t, x, u, v) + ρ1σ1xψ1(t, x, u, v)

+ λ1

(∫

R×R
2
+

(
exξ1+ψ1(t,x,u,v)ξ2+ψ2(t,x,u,v)ξ3 − 1

)
F1(dξ)

− x

∫

R×R
2
+

(eξ1 − 1)F1(dξ)

)
.

∂ψ2(t, x, v)

∂t
=

1

2
(x2 − x) − β22ψ2(t, x, u, v) + β12ψ1(t, x, u, v)

+
1

2
σ2

2ψ
2
2(t, x, u, v) + ρ2σ2xψ2(t, x, u, v)

+ λ2

(∫

R×R
2
+

(
exξ1+ψ1(t,x,u,v)ξ2+ψ2(t,x,u,v)ξ3 − 1

)
F2(dξ)

− x

∫

R×R
2
+

(eξ1 − 1)F2(dξ)

)
.
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and to apply Fourier pricing methods as suggested in [6]. As in this case explicit
solutions of the Riccati equations are not available, our approach to use an approx-
imating polynomial as control variate in the Monte-Carlo simulation is particularly
expedient. For the calculation of the matrix exponential yielding the price of the
polynomial claim, we only need to apply the infinitesimal generator A to polynomi-
als of the form xk1uk2vk3 , k1 + k2 + k3 ≤ m in order to determine the matrix A.
The price of the approximating polynomial claim is then simply calculated by means
of (5.1).

6. Implementation in Premia

6.1. Model description. In Premia, we implemented the above described algo-
rithm to price an European call or put option under the original Bates model [1]
(a simplified 2-dimensional version of Example 5.2). The function is called MC-
CuchieroKellerResselTeichmann.
In the Bates model the price process is given by St = S0e

Xt with dynamics of the
form

d

(
Xt

Vt

)
=

(
r − divid− Vt

2 − λ(eµ+
γ2
2 − 1)

κ(θ − Vt)

)
dt

+

( √
Vt 0

σvρ
√
Vt σv

√
1 − ρ2

√
Vt

)(
dBt,1
dBt,2

)
+

(
dZt
0

)
,

where Z is a pure jump process in R with jump intensity λ and normally dis-
tributed jump sizes with mean µ and variance γ2. Additionally to the option and
model parameters the function MCCuchieroKellerResselTeichmann requires
the following inputs

• N: number of iterations in the Monte Carlo simulation,
• M: number of time steps in the Euler scheme,
• Nb_Degree_Pol: degree of approximating polynomial for variance reduc-

tion, between 0 and 8,
• generator: specification of the random generator,
• confidence: confidence level (for example 0.05, needed to determine the the

upper and lower bounds for the option price).

and produces then the following outputs

• Price,
• Delta,
• Error Price,
• Error Delta,
• Inf Price,
• Sup Price,
• Inf Delta,
• Sup Delta.

Beside the procedures available in the PNL library, the function MCCuchieroKeller-
ResselTeichmann calls

• pol_approx and
• matrix_computation (which in turn calls moments_normal).

These procedures are described below.
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6.2. Implementation. As described above, we approximate the (undiscounted)
European call/put payoff function by a polynomial whose degree can be chosen
between 0 and 8. The function doing this job is called pol_approx. Therein
we generate a vector x of equally spaced points with distance 0.01 in the inter-
val [log(S0/10), log(10S0)] and evaluate the payoff function at these points (vector
y). The approximating polynomial is then obtained by applying the procedure
pnl_fit_least_squares(coeff,x,y,&f,Nb_Degree_Pol+1), where f corresponds to
the CANONICAL basis and Nb_Degree_Pol denotes the degree of the polynomial
(between 0 and 8). The coefficients of the approximating polynomial are stored
in coeff in increasing order starting with the coefficient corresponding to degree
0. The coefficients of the polynomial approximating the option’s delta are sim-
ply calculated by taking the derivative of the polynomial approximating the payoff
function.

In order to compute the expectation of the approximating polynomial, the next
step is the implementation of the matrix A corresponding to the generator of the
Bates model applied to the polynomials xivj , (i + j) ≤ Nb_Degree_Pol, where x
corresponds to the logprice and v to the variance. The procedure computing A is
called matrix_computation. In our case the infinitesimal generator is given by

Au(x, v) =
(
r − divid− v

2
− λ(eµ+

γ2
2 − 1)

) ∂u
∂x

+ κ (θ − v)
∂u

∂v

+
v

2

∂2u

∂x2
+
vσ2

v

2

∂2u

∂v2
+ σvρv

∂2u

∂v∂x

+ λ

∫
(u(x+ ξ, v) − u(x, v))

1

γ2

√
2π
e

−
(

(ξ−µ)2

2γ2
2

)

dξ.

(6.1)

When u is a polynomial, the evaluation of the integral in (6.1) is equivalent to
computing the moments of the normal distribution. This computation is carried
out in the procedure moments_normal. Finally, the expectation of the polyno-
mial approximating the option’s payoff (the option’s delta) is denoted by polyprice
(polydelta respectively) and calculated as described at the beginning of Section 5
by exponentiating the matrix A.

Having implemented the price of the polynomial payoff, we can start the Monte
Carlo simulation. Using an Euler scheme we sample the log stock price at op-
tion maturity T and evaluate the approximating polynomial for the option (for
the delta) at each of the replications. This value is then denoted by poly_sample
(delta_poly_sample respectively). As described in Subsection 5.2, the estimator for
the (call) option price is finally obtained by

Π̂
e−rT (eXT −K)+

0 =
1

N

N∑

i=1

e−rT
(

(eX
i
T −K)+ − (poly_sample − polyprice)

)
,

where K denotes the strike price. The estimator for the option’s delta is computed
analogously. This then gives the output values for “Price” and “Delta”. The re-
maining output values simply correspond to the empirical standard deviations and
the bounds for the confidence interval of “Price” and “Delta”.
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