
ADI methods for option pricing in the Heston model

Ludovic Goudenège

Janvier 2013

Premia 18
We present here two methods for option pricing in the Heston model. The both methods

use an alternating directional finite difference scheme. First is a componentwise splitting method
developped by Ikonen and Toivanen in [2], the second is an ADI finite difference scheme developed
by In ’t Hout and Foulon in [1] and [3] .

1 Componentwise splitting methods for pricing american

options under stochastic volatility

1.1 Model

Let u(s, v, t) denote the price of a European option if at time T −t the underlying asset price equals
s and its variance equals v, where T is the given maturity time of the option. Heston’s stochastic
volatility model implies that u satisfies the parabolic PDE

∂u

∂t
=

1

2
s2v

∂2u

∂s2
+ ργsv

∂2u

∂s∂v
+

1

2
γ2v

∂2u

∂v2
+ (r − d)s

∂u

∂s
+ α(β − v)

∂u

∂v
− ru, (1)

for 0 ≤ t ≤ T , s > 0 and v > 0. The parameter α > 0 is the mean-reversion rate, β is the long term
mean, γ > 0 is the volatility-of-variance, ρ ∈ [−1, 1] is the correlation between the two underlying
Brownian motions, r denote the interest rate and d the dividend. For this numerical method we
always assume that 2αβ > γ2, which is the Feller condition.

The spatial domain is restricted to a bounded set [0, Smax]×[0, Vmax] with fixed sufficiently large
values Smax and Vmax. The grids 0 = y0 < y1 < · · · < yN = Vmax and 0 = x0 < x1 < · · · < xM are
defined as described in [2]. We use parameters h, kappa and coeff_for_x_1 defined as

h =
Vmax

N
, κ =

hr(Smax)

hr(strike)
and x1 =

h

coeff_for_x_1
.

For a European call or put option, we have the boundary conditions

u(s, v, 0) = max(0, φ(s−K)),

u(0, v, t) =
1− φ

2
K exp(−rt),

∂u

∂s
(Smax, v, t) =

1 + φ

2
exp(−dt),

u(s, Vmax, t) = s exp(−dt)1+1(φ) + K exp(−rt)1
−1(φ).

where K > 0 is the given strike price of the option and φ denotes the binary variable taking the
values +1 for a call and −1 for a put. But we have also implemented other boundary conditions.

1



For a American call or put option, Ikonen and Toivanen recommend

u(s, v, 0) = max(0, φ(s−K)),

u(0, v, t) =
1− φ

2
K,

u(s, 0, t) = max(0, φ(s−K)),

where K > 0 is the given strike price of the option. On the boundaries s = Smax and v = Vmax,
they recommend a Neumann condition.

1.2 Finite difference schemes

We follow [2] for the finite difference schemes on the intermediate form

∂u

∂t
+

[

−
1

2
vs2 + ωργvs

hl

2h
+ (1− ω)ργvs

hr

2h

]

∂2u

∂s2

+

[

−
1

2
γ2v + ωργvs

h

2hl
+ (1− ω)ργvs

h

2hr

]

∂2u

∂v2

+

[

−rs− ωργvs
1

h
+ (1− ω)ργvs

1

h

]

∂u

∂s

+

[

−α(β − v)− ωργvs
1

hl
+ (1− ω)ργvs

1

hr

]

∂u

∂v

+

[

r + ωργvs
1

hlh
+ (1− ω)ργvs

1

hrh

]

u

− ωργvs
1

hlh
u(s− hl, v − h)− (1− ω)ργvs

1

hrh
u(s + hr, v + h).

On the strict interior of the grid, each spatial derivative is replaced by the finite difference
scheme described in [2] in section 6.

For the European options, at the boundary s = 0 or v = Vmax, the solution is given by the
Dirichlet conditions. The boundary v = 0 is treated as an outflow boundary, so the derivative ∂u/∂v
is approximated using the upwind scheme and all other derivatives vanish. At the boundary s =
Smax, we have a Neumann condition treated in the procedure construction_splitting_matrix_neumann.

For the American options, at the boundary s = 0 or v = 0, the solution is given by the Dirichlet
conditions. At the boundary s = Smax or v = Vmax, we have a Neumann condition treated in the
procedure construction_splitting_matrix_neumann.

We use the proposed scheme with a fixed time step ∆t and with temporal grid points given
by tn = n∆t for n = 0, 1, 2, . . . , L. Moreover, we can used two backward Euler steps with an half
time step ∆t/2 as suggested in the article (Rannacher’s idea). But it slows down the computation
when the grids are too large.

1.3 Variables

We give here a list of the “global” variables used in the scheme.

double x = 100.0; // Asset price

double y = 0.01; // Volatility^2 = Variance

double t = 1.0; // Maturity

double r = log(1+10.0/100.0); // Rate = 10% -> r = log(1+Rate) = log(1.1)

double divid = 0.0; // Dividend

double alpha = 2.0; // Mean-reversion rate

double beta = 0.01; // Long term mean

double gamma = 0.2; // Volatility-of-variance

double rho = 0.5; // Correlation

double strike = 100.0; // Strike



int call_or_put = -1; // Binary variable

// Parameters for the grid and the computation.

int mt = 100; // Number of points for the spot grid

int N = 50; // Number of points for the variance grid

int L = 1000; // Number of points for the temporal grid

double X = 800.0; // Variable Smax

double Y = 5.0; // Variable Vmax

double kappa = 5.0; // Parameter kappa for the grid computation

double coeff_for_x_1 = 20.0; // Parameter for the grid computation -> x_1 = h/coeff

double h = Y/((double)(N)); // Size of the step of the uniform grid of volatility.

double omega = 0.5; // Omega parameter for the scheme. Should be between 0 and 1.

We recommend mt = 101, N = 50 and L = 1000. Moreover X should be chosen as X = 8x in
order to ensure a sufficiently large grid. In all cases Y = 1 is a good parameter.

1.4 Procedures and functions

size_grid_generation_IT : Procedure to compute the size of the grid of the spot variable using
the Ikonen and Toivanen algorithm.

grid_generation_IT : Procedure to compute the grid of the spot variable using the Ikonen and
Toivanen algorithm.

grid_generation_uniform : Procedure to compute the uniform grid of the variance variable.

lower_index(double *grid, int size, double value) :
Function to find (in the tabular grid of size size) the index of a given value (value) or the biggest
index of an element in grid which is inferior to the given value.

reorder_unknowns_x_to_xy(PnlVect *Unknowns, int M, int N, PnlVect *Sortie) :
Procedure to reorder a tabular Unknows. The output tabular is Sortie.

reorder_unknowns_xy_to_y(PnlVect *Unknowns, int M, int N, PnlVect *Sortie) :
Procedure to reorder a tabular Unknows. The output tabular is Sortie.

reorder_unknowns_y_to_x(PnlVect *Unknowns, int M, int N, PnlVect *Sortie) :
Procedure to reorder a tabular Unknows. The output tabular is Sortie.

print_unknowns(PnlVect *Unknowns, int M, int N) :
Procedure to print the vector Unknowns. This procedure is not used in the algorithm, but it is for
debugging.

print_unknowns_cross(PnlVect *Unknowns, int M, int N) :
Procedure to print the vector Unknowns if the order is xy (for instance after using procedure
reorder_unknowns_x_to_xy). This procedure is not used in the algorithm, but it is for debugging.

construction_Ax_coefficients(

double r, double divid,

double alpha, double beta, double gamma, double rho,

double X, int M, double *pointsx, int index_pointx,

double Y, int N, double *pointsy, int index_pointy,

double omega, double *lower_d, double *diagonal, double *upper_d) :
Procedure to compute the full matrix A (output is the PnlMat object MatrixTotal) and the mixted
matrix A0 (output is the PnlMat object MatrixMixted) which contains only the mixted terms of
the PDE. Remark : The Douglas scheme does not used this mixted matrix, but other schemes do.



This procedure uses the variables of the PDE with the same name (r, divid, alpha, beta, gamma

and rho) and the grids (pointsx and pointsy) with their sizes (M and N).

construction_Ay_coefficients(

double r, double divid,

double alpha, double beta, double gamma, double rho,

double X, int M, double *pointsx, int index_pointx,

double Y, int N, double *pointsy, int index_pointy,

double omega, double *lower_d, double *diagonal, double *upper_d) :
Procedure to compute the full matrix A (output is the PnlMat object MatrixTotal) and the mixted
matrix A0 (output is the PnlMat object MatrixMixted) which contains only the mixted terms of
the PDE. Remark : The Douglas scheme does not used this mixted matrix, but other schemes do.
This procedure uses the variables of the PDE with the same name (r, divid, alpha, beta, gamma

and rho) and the grids (pointsx and pointsy) with their sizes (M and N).

construction_Axy_coefficients(

double r, double divid,

double alpha, double beta, double gamma, double rho,

double X, int M, double *pointsx, int index_pointx,

double Y, int N, double *pointsy, int index_pointy,

double omega, double *lower_d, double *diagonal, double *upper_d) :
Procedure to compute the full matrix A (output is the PnlMat object MatrixTotal) and the mixted
matrix A0 (output is the PnlMat object MatrixMixted) which contains only the mixted terms of
the PDE. Remark : The Douglas scheme does not used this mixted matrix, but other schemes do.
This procedure uses the variables of the PDE with the same name (r, divid, alpha, beta, gamma

and rho) and the grids (pointsx and pointsy) with their sizes (M and N).

modify_solution_with_neumann_boundary_condition(

double r, double divid, double time,

int M, double *pointsx, int N, double *pointsy, double coeff,

PnlVect *VectOne, PnlVect *Sortie) :
Procedure to modify the boundary coefficients of a vector VectOne in order to take account of the
Neumann condition. The output is in Sortie.

do_rannacher_iteration( double r, double divid, double time,

double alpha, double beta, double gamma, double rho,

int M, double *pointsx, int N, double *pointsy,

double coeff, PnlVect *VectTwo, PnlVect *Sortie) :
Procedure to compute tow backward Euler time steps with ∆t/2. The output is in Sortie.

ComSplitEu(

double x, double y,

double t, double r, double divid, double alpha, double beta, double gamma, double rho,

double E, double X, double Y, int mt, int N, int L, double kappa, double coeff_for_x_1,

double omega_global,int boundary_conditions_method, int call_or_put, double *ptprice,double

*ptdelta) :
Procedure to compute the temporal loop in the European case.
ComSplitAm(

double x, double y,

double t, double r, double divid, double alpha, double beta, double gamma, double rho,

double E, double X, double Y, int mt, int N, int L, double kappa, double coeff_for_x_1,

double omega_global,int boundary_conditions_method, int call_or_put, double *ptprice,double

*ptdelta) :
Procedure to compute the temporal loop in the American case.



1.5 Complete algorithm

- First we create the variables.
- We define the terminal value of the option.
- We build the matrix Ax, Ay and Axy.
- We start a loop on time.

• If it is the first time step, we (can) do two backward Euler iterations with ∆t/2.

• Else

– We do the first step with matrix Ax using Crank-Nicolson scheme.

– We reorder the vector in order xy.

– We do the second step with matrix Axy using Crank-Nicolson scheme.

– We reorder the vector in order y.

– We do the third step with matrix Ay using Crank-Nicolson scheme.

– We reorder the vector in order x.

- End of loop on time.
- Finally, we do an interpolation to find the value of the option at point (x, y).

In the American case, at each time iteration, we have added a step which computes the maxi-
mum between the current value and the payoff function.

1.6 Conclusion

The scheme proposed by Ikonen and Toivanen is easy to understand. But the matrix are difficult
to build, and it is not really clear how to treat the boundary conditions. Indeed the unknowns
u(k+1/3) is not a “consistent” unknowns (it is only a temporary unknown), so it should not verify
the boundary conditions of u(k). In the article, there is no explanation on this difficulty.

Moreover the grid for the spot variable needs some additional requirements with undesired
effects. For instance the grid on the variance variable is uniform, so the grid is not really precise near
the interest points. Furthermore the conditions for the non positiveness of the off-diagonal elements
seem wrong in the article (we have changed it in the algorithm). If ρ < 0, the algorithm should be
changed (the conditions for the non positiveness are changed and it has not been implemented).

We have not implemented the Strang symmetrized splitting method or Euler algorithm, but all
the procedure have been written.

In the American case, we have not implemented the Brennan-Schwartz algorithm, but we
have compared the solution with the payoff at each time iteration. It gives good results without
difficulties.

2 ADI finite difference schemes for option pricing in the

Heston model with correlation

2.1 Model

Let u(s, v, t) denote the price of a European option if at time T −t the underlying asset price equals
s and its variance equals v, where T is the given maturity time of the option. Heston’s stochastic
volatility model implies that u satisfies the parabolic PDE

∂u

∂t
=

1

2
s2v

∂2u

∂s2
+ ργsv

∂2u

∂s∂v
+

1

2
γ2v

∂2u

∂v2
+ (r − d)s

∂u

∂s
+ α(β − v)

∂u

∂v
− ru, (2)

for 0 ≤ t ≤ T , s > 0 and v > 0. The parameter α > 0 is the mean-reversion rate, β is the long term
mean, γ > 0 is the volatility-of-variance, ρ ∈ [−1, 1] is the correlation between the two underlying
Brownian motions, r denote the interest rate and d the dividend. For this numerical method we
always assume that 2αβ > γ2, which is the Feller condition.



The spatial domain is restricted to a bounded set [0, Smax] × [0, Vmax] with fixed sufficiently
large values Smax and Vmax. We take Smax = 8K and Vmax = 5. For a European call or put option,
we have the boundary conditions

u(s, v, 0) = max(0, φ(s−K)),

u(0, v, t) =
1− φ

2
K exp(−rt),

∂u

∂s
(Smax, v, t) =

1 + φ

2
exp(−dt),

u(s, Vmax, t) = s exp(−dt)1+1(φ) + K exp(−rt)1
−1(φ).

where K > 0 is the given strike price of the option and φ denotes the binary variable taking the
values +1 for a call and −1 for a put.

For a American call or put option, (following [2]) we recommend

u(s, v, 0) = max(0, φ(s−K)),

u(0, v, t) =
1− φ

2
K,

u(s, 0, t) = max(0, φ(s−K)),

where K > 0 is the given strike price of the option. On the boundaries s = Smax and v = Vmax,
we recommend a Neumann condition.

Let M ≤ 1 be an integer and c > 0 a constant, let equidistant points ξ0 < ξ1 < · · · < ξM given
by

ξi = sinh−1(−K/c) + i∆ξ, 0 ≤ i ≤M,

with

∆ξ =
1

M

(

sinh−1((Smax −K)/c)− sinh−1(−K/c)
)

.

Then a non-uniform mesh 0 < s0 < s1 < · · · < sM = Smax is defined through the transformation

si = K + c sinh(ξi), 0 ≤ i ≤M.

For the v-direction, we choose N ≤ 1 and a constant d > 0. Consider equidistant points given by
ηj = j∆η for 0 ≤ j ≤ N with

∆η =
1

N
sinh−1(Vmax/d).

Then we define a mesh 0 = v0 < v1 < · · · < vN = Vmax through

vj = d sinh(ηj), 0 ≤ j ≤ N.

Figure 1 displays the spatial grid obtained for Smax = 800, Vmax = 5, K = 100, c = K/5,
d = Vmax/500, M = 30 and N = 15.



2.2 Finite difference schemes

We follow [1] for the finite difference schemes. On the strict interior of the grid, each spatial
derivative is replaced by its corresponding central finite difference scheme. Except in the region
v > 1 where we apply upwind scheme for ∂u/∂v whenever the flow in the v-direction is towards
v = Vmax. At the boundary s = 0 or v = Vmax, the solution is given by the Dirichlet condition.
The boundary v = 0 is treated as an outflow boundary, so the derivative ∂u/∂v is approximated
using the upwind scheme and all other derivatives vanish. At the boundary s = Smax, we use
the Neumann condition to simplify the scheme. The derivative ∂u/∂s is directly given and we
approximate ∂2u/∂s2 using a virtual point s̃ = 2sM − sM−1 where the value at this point is given
by

u(s̃, v, t) = u(sM , v, t) +
1 + φ

2
exp(−dt)(s̃− sM ) = u(sM , v, t) +

1 + φ

2
exp(−dt)(sM − sM−1).

So the scheme (in the s-direction) is given by

∂u

∂t
=

1

2
s2v

(

1

(sM − sM−1)2
u(sM−1, v, t)−

2

(sM − sM−1)2
u(sM , v, t) +

1

(sM − sM−1)2
u(s̃, v, t)

)

+(r − d)s
1 + φ

2
exp(−dt) +

1

2
γ2v

∂2u

∂v2
+ α(β − v)

∂u

∂v
− ru

=
1

2
s2v

(

1

(sM − sM−1)2
u(sM−1, v, t)−

1

(sM − sM−1)2
u(sM , v, t)

)

+

(

s2v

2(sM − sM−1)
+ (r − d)s

)

1 + φ

2
exp(−dt)

+
1

2
γ2v

∂2u

∂v2
+ α(β − v)

∂u

∂v
− ru.

The term

(

s2v

2(sM − sM−1)
+ (r − d)s

)

1 + φ

2
exp(−dt) explicitly appears in the procedures which

solve linear systems.
We use ADI schemes with a fixed time step ∆t and with temporal grid points given by tn = n∆t

for n = 0, 1, 2, . . . , L. We have implemented the Douglas scheme (with parameter θ = 1/2), but
the Craig-Sneyd, modified Craig-Sneyd and Hundsdorfer-Verwer schemes can also be treated in
the same way. Moreover, we have used two backward Euler steps with an half time step ∆t/2 as
suggested in the article (Rannacher’s idea).

In the American case, we have implemented the dynamics programming algorithm and not the
algorithm implemented in [3].

2.3 Variables

We give here a list of the “global” variables used in the scheme.

double x = 100.0; // Asset price

double y = 0.01; // Volatility^2 = Variance

double t = 1.0; // Maturity

double r = log(1+10.0/100.0); // Rate = 10% -> r = log(1+Rate) = log(1.1)

double divid = 0.0; // Dividend

double alpha = 2.0; // Mean-reversion rate

double beta = 0.01; // Long term mean

double gamma = 0.2; // Volatility-of-variance

double rho = 0.5; // Correlation

double strike = 100.0; // Strike

int call_or_put = -1; // Binary variable

// Parameters for the grid and the computation.



int M = 80; // Number of points for the spot grid

int N = 20; // Number of points for the variance grid

int L = 20000; // Number of points for the temporal grid

double X = 800.0; // Variable Smax

double Y = 5.0; // Variable Vmax

double theta = 0.5; // Theta parameter for the Douglas scheme. Should be between 0 and 1.

int computation_lu = 1; // Make the computation of the LU decomposition only once.

int scheme = 0; // The ADI scheme. 0 is for Douglas scheme.

int am = 0; // Flag for the american options (European = 0 and American = 1).

We recommend M = 80, N = 20 and L = 20000. Moreover X should be chosen as X = 8x in
order to ensure a sufficiently large grid. In all cases Y = 5 is a good parameter. The computation
is accelerated as the LU decomposition is pre-calculated, so we recommend computation_lu = 1.
The only implemented scheme is the Douglas scheme (i.e. scheme = 0). Finally the parameter
theta should be ≥ 1/2.

2.4 Procedures and functions

asinh1 : Function to compute the hyperbolic arcsinus.

grid_generation_HF_spot : Procedure to compute the grid of the spot variable using the t’Hout
and Foulon algorithm.

grid_generation_HF_variance : Procedure to compute the grid of the variance variable using
the t’Hout and Foulon algorithm.

lower_index(double *grid, int size, double value) :
Function to find (in the tabular grid of size size) the index of a given value (value) or the biggest
index of an element in grid which is inferior to the given value.

reorder_unknowns_x_to_y(PnlVect *Unknowns, int M, int N, PnlVect *Sortie) :
Procedure to reorder a tabular Unknows ordered in increasing spot then increasing variance. The
output tabular is Sortie.

reorder_unknowns_y_to_x(PnlVect *Unknowns, int M, int N, PnlVect *Sortie) :
Procedure to reorder a tabular Unknows ordered in increasing variance then increasing spot. The
output tabular is Sortie.

construction_matrix_A_and_A0(

double r, double divid,

double alpha, double beta, double gamma, double rho,

int M, double *pointsx, int N, double *pointsy,

PnlMat *MatrixTotal, PnlMat *MatrixMixted) :
Procedure to compute the full matrix A (output is the PnlMat object MatrixTotal) and the mixted
matrix A0 (output is the PnlMat object MatrixMixted) which contains only the mixted terms of
the PDE. Remark : The Douglas scheme does not used this mixted matrix, but other schemes do.
This procedure uses the variables of the PDE with the same name (r, divid, alpha, beta, gamma

and rho) and the grids (pointsx and pointsy) with their sizes (M and N).

construction_matrix_A1(

double r, double divid,

double alpha, double beta, double gamma, double rho,

int M, double *pointsx, int N, double *pointsy,

PnlTridiagMat *MatrixX) :
Procedure to compute the matrix A1 (output is the PnlTridiagMat object MatrixX) which con-
tains only the terms in the s-direction (spot grid) of the PDE. This is a tridiagonal matrix because



we only use centered schemes.
This procedure uses the variables of the PDE with the same name (r, divid, alpha, beta, gamma

and rho) and the grids (pointsx and pointsy) with their sizes (M and N).

construction_matrix_A2(

double r, double divid,

double alpha, double beta, double gamma, double rho,

int M, double *pointsx, int N, double *pointsy,

PnlBandMat *MatrixY) :
Procedure to compute the matrix A2 (output is the PnlBandMat object MatrixY) which contains
only the terms in the v-direction (variance grid) of the PDE. This is a band matrix because we use
different schemes. The size of the band is less than 5.
This procedure uses the variables of the PDE with the same name (r, divid, alpha, beta, gamma

and rho) and the grids (pointsx and pointsy) with their sizes (M and N).

computation_explicit_syslin_total_matrix(

double r, double divid, double time, int call_or_put, double strike,

int M, double *pointsx, int N, double *pointsy,

PnlVect *VectOne, double coeff,

PnlMat *Matrix, PnlVect *VectTwo, PnlVect *Sortie) :
Procedure to compute the solution Sortie of (Id + coeff * Matrix) Sortie = VectTwo. Matrix

is a full matrix. This procedure uses the variables of the PDE with the same name (r, divid,
alpha, beta, gamma and rho) and the grids (pointsx and pointsy) with their sizes (M and N).But
it also uses the variables time, call_or_put and strike in order to compute the boundary con-
ditions.

computation_explicit_syslin_tridiag_matrix_without_boundary_conditions(

const PnlVect *VectOne, double coeff,

PnlTridiagMat *Matrix, const PnlVect *VectTwo, PnlVect *Sortie) :
Procedure to compute the solution Sortie = VectOne + coeff * Matrix * VectTwo. Matrix is
a tridiagonal matrix.

computation_explicit_syslin_band_matrix(

const PnlVect *VectOne, double coeff,

PnlBandMat *Matrix, const PnlVect *VectTwo, PnlVect *Sortie) :
Procedure to compute the solution Sortie = VectOne + coeff * Matrix * VectTwo. Matrix is
a band matrix.

modify_solution_with_neumann_boundary_condition(

double r, double divid, double time,

int M, double *pointsx, int N, double *pointsy, double coeff,

PnlVect *VectOne, PnlVect *Sortie) :
Procedure to modify the boundary coefficients of a vector VectOne in order to take account of
the Neumann condition. The output is in Sortie. This procedure is essentially used after the
procedure computation_explicit_syslin_tridiag_matrix_without_boundary_conditions.

do_rannacher_iteration( double r, double divid, double time,

double alpha, double beta, double gamma, double rho,

int M, double *pointsx, int N, double *pointsy,

double coeff, PnlVect *VectTwo, PnlVect *Sortie) :
Procedure to compute tow backward Euler time steps with ∆t/2. The output is in Sortie.

computation_implicit_syslin_tridiag_matrix_without_boundary_conditions(

int M, int N,

double coeff, PnlTridiagMat *Matrix, PnlVect *VectTwo, PnlVect *Sortie) :
Procedure to compute the solution Sortie of (Id + coeff * Matrix) Sortie = VectTwo. Matrix



is a tridiagonal matrix.

computation_implicit_syslin_band_matrix(

int M, int N,

double coeff, PnlBandMat *Matrix, PnlVect *VectTwo, PnlVect *Sortie) :
Procedure to compute the solution Sortie of (Id + coeff * Matrix) Sortie = VectTwo. Matrix

is a band matrix.

computation_lu_implicit_band_matrix(

int M, int N,

double coeff, PnlBandMat *Matrix, PnlBandMat *Working_Matrix, PnlVectInt *p) :
Procedure to compute the LU decomposition of (Id + coeff * Matrix). The output is in
Working_Matrix (it uses a permutation vector p).

computation_implicit_syslin_band_matrix_using_lu(

const PnlBandMat *Working_Matrix,PnlVectInt *p,PnlVect *VectTwo,PnlVect *Sortie) :
Procedure to compute the solution of a system with an already computed LU decomposition.

AdiHoutFoulon (

double x, double y, double t,

double r, double divid, double alpha, double beta, double gamma, double rho,

double strike, double X, double Y, int M, int N, int L,

double theta, int computation_lu, int scheme, int call_or_put,

double *ptprice,double *ptdelta) :
Procedure to compute the temporal loop (see next section for the details of the algorithm).

2.5 Complete algorithm

- First we create the variables.
- We define the terminal value of the option.
- We build the matrix A, A0, A1 and A2.
- We compute the LU decomposition of the matrix A2.
- We start a loop on time.

• If it is the first time step, we do two backward Euler iterations with ∆t/2.

• Else

– We do the first step of the Douglas scheme :

∗ Explicit linear system Un−1 + ∆tF (tn−1, Un−1).

∗ Dirichlet boundary conditions.

– We do the second step of the Douglas scheme :

∗ Explicit linear system Z ← Y0 − θ∆tF1(tn−1, Un−1).

∗ Implicit linear system Y1 − θ∆tF1(tn, Y1) = Z.

∗ Dirichlet boundary conditions.

– We reorder the vector. The unknowns are now ordered with increasing variance then
increasing spot.

– We do the third step of the Douglas scheme :

∗ Explicit linear system Z ← Y1 − θ∆tF2(tn−1, Un−1).

∗ Implicit linear system Y2 − θ∆tF2(tn, Y2) = Z.

∗ Dirichlet boundary conditions.

– We reorder the vector. The unknowns are now ordered with increasing spot then in-
creasing variance.

- End of loop on time.
- Finally, we do an interpolation to find the value of the option at point (x, y).



2.6 Conclusion

References

[1] K.J. in ’t Hout and S. Foulon. Adi finite difference schemes for option pricing in the heston
model with correlation. Int. J. Numer. Anal. Mod., 7:303–320, 2010. 1, 7

[2] S.Ikonen J.Toivanen. Componentwise splitting methods for pricing american options under
stochastic volatility. International Journal of Theoretical and Applied Finance, 2:331–361, 2007.
1, 2, 6

[3] K.J. in ’t Hout T. Haentjens and K. Volders. Adi schemes with ikonen-toivanen splitting for
pricing american put options in the heston model. Numerical Analysis and Applied Mathematics,

eds. T. E. Simos et. al., AIP Conf. Proc., 1281:231–234, 2010. 1, 7


	Componentwise splitting methods for pricing american options under stochastic volatility
	Model
	Finite difference schemes
	Variables
	Procedures and functions
	Complete algorithm
	Conclusion

	ADI finite difference schemes for option pricing in the Heston model with correlation
	Model
	Finite difference schemes
	Variables
	Procedures and functions
	Complete algorithm
	Conclusion


