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Premia 18

Most of what is presented here is taken from [1].

According to Forde and Jacquier (cf [1]), if we consider S is a non-negative, continuous
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martingale defined as
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where W is a standard Brownian motion, o; is a progressively measurable non-negative
volatility process and r; is a time-dependent interest rate with 0 < r; < r,ax < 400 for
all t, then we have the following relationship between the second moments of S; and the
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A model-independent upper bound for the price of an Asian call option can be derived

from this equality, given by
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Under Black-Scholes model, with r; = r we have
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Under Heston model, where the forward price process S; is defined by the following

stochastic differential equations
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We have
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