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The following method computes the price of American Options whose payoff depends

on the moving average of the underlying asset price. It is based on the paper [1].

1 Introduction

The method computes the price of American Options whose payoff depends on the
moving average X defined by

Xt =

∫ t

t−δ
Sudu, ∀t ≥ δ

where S represents the underlying asset and δ is a fixed time window. The process (S, X)
is not Markovian, and in a continuous time framework it is not possible to find n processes
(X1, · · · , Xn) such that (S, X, X1, · · · , Xn) are jointly Markovian. In a discrete time
framework (Bermudan options), n would be equal to the number of time steps within the
average window.
The paper proposes a method for pricing moving average American options based on
a finite dimensional approximation of the infinite-dimensional dynamics of the moving
average process. The approximation is based on a truncated expansion of the weighting
measure used for averaging in a series involving Laguerre polynomials, truncated at n

terms, which leads to (n + 1)-dimensional Markovian approximation to the initial infinite
dimensional problem.

2 Theoretical framework

We consider a more general moving average process of the form

Mt =

∫ ∞

0
St−uµ(du),

where µ is a finite possibly signed measure on [0, ∞[. The paper proposes a finite-
dimensional approximation to M , that is n processes Xp,1, · · · , Xp,n such that (S, Xp,1, · · · , Xp,n)
are jointly Markov, and Mt is approximated by M

n,p
t , which depends deterministically on

(St, X
p,1
t , · · · , X

p,n
t ) (see [1, Proposition 2.2]). More precisely, we have

M
n,p
t = (H(0) − Hp

n(0))St +
n−1
∑

k=0

a
p
kX

p,k
t ,
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where

X
p,k
t =

∫ ∞

0
L

p
k(v)St−vdv, ∀k = 0, · · · , n − 1

and L
p
k(t) =

√
2pPk(2pt)e−pt, k ≥ 0 are the scaled Laguerre functions, in which (Pk)k≥0

is the family of Laguerre polynomials (see [1, (9)]) and p is a parameter to be fixed. The
functions H and Hp

n are defined by

H(x) = µ([x, ∞[), Hp
n(x) =

n−1
∑

k=0

A
p
kL

p
k(x), where A

p
k = 〈H, L

p
k〉.

Coefficients (ap
k)k are defined in [1, (11)].

2.1 Uniformly weighted measure

When µ(dx) = 1
δ
1{[0,δ]}dx, the Laguerre coefficients A

δ,p
k = 〈H, L

p
k〉 are defined by

A
δ,p
k = (−1)k

√
2p

p
− 1

p
c

δ,p
k − 2

p

k−1
∑

i=0

(−1)k−ic
δ,p
i ,

where

cδ,p
n =

√
2p

δp

[

1 − e−pδPn(2pδ) + 2
n

∑

k=1

(−1)k(1 − e−pδPn−k(2pδ))

]

.

The optimal scale parameter popt(δ, n) can be computed using the relation popt(δ, n) =
popt(1,n)

δ
and [1, Table 1].

3 Monte Carlo-based numerical method

We consider a uniformly weighted moving average. The following method computes
the price of the discrete time version of the American option supτ E[φ(Sτ , Mτ )], in which
the moving average X has been replaced by its approximation Mn,popt , and the exercise
is possible on an equidistant time grid π with N time steps ∆t = T

N
. The approach

corresponds to the one of Longstaff and Schwartz, and the computation of conditional
expectations is done with a regression based approach. Nδ denotes the number of time
steps within the average window of length δ : Nδ = δ

T
N . The spot price is discretised on

π and is written Sπ, the discretised version of X is given by

Xπ
ti

=
1

Nδ

i
∑

j=i−Nδ+1

Sπ
tj

, ∀ti ∈ π.

The discrete time version of the Laguerre processes are defined by

X
p,k,π
ti

=
i

∑

j=1

(Sπ
tj

− Sπ
tj−1

)(i − j + 1)∆tc
(i−j+1)∆t,p
k + S0(−1)k

√
2p

p
, ∀ti ∈ π.
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3.1 The Lag − LS∗ algorithm

The backward algorithm works as follows

1. Initialization : τ
π,(m)
N = T, m = 1, · · · , M

2. Backward induction for i = N − 1, · · · , Nδ, m = 1, · · · , M

τ
π,(m)
i = ti1{A

(m)
i

}
+ τ

π,(m)
i+1 1

{(A
(m)
i

)c}
,

A
(m)
i =

{

Φ(S
π,(m)
ti

, X
π,(m)
ti

) ≥ Eti
[Φ(Sπ

τπ
i+1

, Xπ
τπ

i+1
)]

}

where Eti
[·] = E[·|(Sπ

ti
, X

popt,0,π
ti

, · · · , X
popt,n−1,π
ti

)].

Estimators of the conditional expectations are constructed with a Monte Carlo based
technique.

3.2 The NM − LS algorithm

The following algorithm is a non-markovian approximation of the previous algorithm.
Let (θπ

i )i=Nδ ,··· ,N denote the discrete time sequence of the estimated optimal exercies times.
The algorithm works as follows

1. Initialization : θπ
N = T

2. Backward induction for i = N − 1, · · · , Nδ,

θπ
i = ti1{Ai} + θπ

i+11{(Ai)c},

Ai =
{

Φ(Sπ
ti

, Xπ
ti

) ≥ E[Φ(Sπ
θπ

i+1
, Xπ

θπ
i+1

)|(Sπ
ti,X

π
ti

)]
}

3. Estimation of the option price at time 0 Uπ
0 = E[Φ(Sπ

θπ
Nδ

, Xπ
θπ

Nδ

)].

4 Numerical experiments

4.1 Moving average without time delay

In the case of an American moving average Call, the numerical data used by default
are the following

S0 T r σ r δ

100 0.2 0.05 0.3 0.05 0.02

The number of trajectories of S is M = 105. The number of discretization time steps
used for the discretization of S is N = 50 (then Nδ = 5). The number of polynomial basis
functions is 4. When using the Lag − LS∗ algorithm, n = 3.
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4.2 Moving average with time delay

We consider a moving average American option with time delay l ≥ 0 whose value at
time 0 is

sup
τ∈T[δ+l,T ]

E[Φ(Sτ , Xτ )], Xτ =
1

δ

∫ τ−l

τ−l−δ
Sudu.

In this case,

Xπ
ti

=
1

Nδ

i−Nl
∑

j=i−Nδ−Nl+1

Sπ
tj

, ∀ti ∈ π,

where Nl = l N
T

. The numerical data used by default are the following

S0 T r σ r δ l

100 0.2 0.05 0.3 0.05 0.02 0.1

The number of trajectories of S is M = 105. The number of discretization time steps
used for the discretization of S is N = 50 (then Nδ = 5 and Nl = 25). The number of
polynomial basis functions is 4. When using the Lag − LS∗ algorithm, n = 3.

References

[1] M. Bernhart, P.Tankov, and X. Warin. A finite dimensional approximation for pricing
moving average options. SIAM Journal of Financial Mathematics, 2:989–1013, 2011.
1, 2


	Introduction
	Theoretical framework
	Uniformly weighted measure

	Monte Carlo-based numerical method
	The Lag-LS* algorithm
	The NM-LS algorithm

	Numerical experiments
	Moving average without time delay
	Moving average with time delay


