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We present here the implementation of a methodology for the valuation of Guaranteed Lifelong
Withdrawal Benefits (GLWB) developed by Forsyth and Vetzal1 [1] for the Black-Scholes model.
First we describe the model, then the numerical implementation. Finally we consider the case of
the Black-Scholes model with Hull-White stocastic interest rate and the case of the Heston model.

1 GLWB model

Let the mortality function M(t) be defined such that the fraction of the original owners of the
GLWB who die in the interval [t, t + dt] is M(t)dt. The fraction of the original owners still aliveat
time t, denoted by R(t) is

R(t) = 1 −

∫ t

0

M(s)ds

Time t is measured in years from the contract inception date. Typically, mortality tables are given
in terms of integer ages {0, 1, . . . }. Specifically, let x and y be integers with

x = insured’s age at contract inception,

ypx = probability that an x year old will survive the next y years,
qx+y = probability for an x + y year old to die in the next year.

This gives
M(t) = ypxqx+y where t ∈ [y, y + 1).

Note that M(t) is assumed constant for t ∈ [y, y + 1).
Let S be the amount in the investment account (i.e. mutual fund) of any holder of the GLWB-

contract still alive at time t. Let A be the guarantee account balance. We suppose that percentage
fees based on the value of the investment account S are charged to the policy holder at the annual
rate αtot and withdrawn continuously from that account. These fees include mutual fundman-
agement fees αm and a fee charged to fund the guarantee (also known as the rider) αg, so that
αtot = αg + αm. Let V (S, A, t) be the value of the entire contract (express in backward time) as
sum of the no-arbitage value of the guarantee only portion of the contract (the GLWB rider) and
the amount in the investment accounts of those remaining alive. We have the following dynamics
for V (S, A, t):

Vt =
σ2S2

2
VSS + (r − αtot)SVS − rV + αmR(t)S + M(t)S (1)

with V (S, A, 0) = 0 which is in fact the terminal condition.
Between two annual dates ti and ti+1, the contract follows the dynamics. At date ti+1 there are

jumps depending on the specification of the contract. We assume that the order of event occurring
at an event time ti is ratchet then withdrawal events.
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Ratchet Event. If the contract specifies a ratchet (step-up) feature, then the value of the
guaranteeaccount A is increased if the investment account has increased. The guarantee account
A can neverdecrease, unless the contract is partially or fully surrendered. At a ratchet event time
ti, we then have

V (S, A, t+
i ) = V (S, max(S, A), t−

i ).

General Withdrawal Event. The contract will typically specify a withdrawal rate Gr.
Givena time interval of ti − ti−1 between withdrawals, the contract withdrawal amount at t = ti

isGr(ti − ti−1)A. At this point we do not make any particular assumptions about the withdrawal-
strategy of the policy holder. In general terms, the policy holder’s actions at ti can be representedby
a policy parameter γi, where 0 ≤ γi ≤ 2. Withdrawals of amounts less than or equal to the contract
withdrawal amount Gr(ti − ti−1)A are represented by γi ∈ [0, 1]. Withdrawals in excessof the con-
tract amount are indicated by γi ∈ (1, 2], with γi = 2 corresponding to full surrender.Withdrawal
events can be written in the general form

V (S, A, t+
i ) = V (Sγi , Aγi , t−

i ) + CashF low(S, A, ti, γi),

where Sγi and Aγi are particular values depending on the withdrawal event, and where CashF low
is the cash flow from the event depending on the withdrawal event represented by the value γi.

Bonus Event (γi = 0. If the contract holder chooses not to withdraw at t = ti, this is indicatedby
γi = 0. Let the bonus fraction be denoted by B(ti). If no bonus is possible at t = ti, thenB(ti) = 0.
In this case, we have

Sγi = S, Aγi = A(1 + B(ti)) and CashF low = 0.

Withdrawal not Exceeding Contract Amount (γi ∈ (0, 1]). The withdrawal amount is
γiGr(ti − ti−1)A and we have

Sγi = max(S − γiGr(ti − ti−1)A, 0), Aγi = A and CashF low = R(ti)γiGr(ti − ti−1)A.

Note that withdrawals at the contract rate (or less) are allowed even if the amount in the invest-
ment account S = 0.

Partial or Full Surrender (γi ∈ (1, 2]). Next, consider the case of a withdrawal of an amount-
greater than the contract amount Gr(ti − ti−1)A, i.e. the withdrawal amount is

Gr(ti − ti−1)A + (γi − 1) max(S − Gr(ti − ti−1)A, 0)(1 − κ(ti)

where κ(ti) ∈ [0, 1] is a penalty for withdrawal above the contract amount. In this case we have

Sγi = (2 − γi) max(S − γiGr(ti − ti−1)A, 0), Aγi = A(2 − γi)

and

CashF low = R(ti)(Gr(ti − ti−1)A + (γi − 1) max(S − Gr(ti − ti−1)A, 0)(1 − κ(ti)).

Note that it is assumed that the guarantee account value A is reduced proportionately for any-
withdrawal above the contract rate.

Withdrawal strategy :
The risk neutral price is the cost of hedging. If we consider that the insurer should charge a price
which ensures that no losses can occur (assuming that the claim is hedged), then the withdrawal
strategy is assumed to be

γi = argmax
γ∈[0,2]

(

V (Sγ , Aγ , t−

i ) + CashF low(S, A, ti, γ)
)

Assuming such a strategy by policy holders and hedging against it is obviously very conserva-
tive from the standpoint of the insurer, since it seeks to provide complete protection against policy



holder withdrawal behaviour(given assumptions about parameter values such as volatilities). In
other words, if investors follow this strategy, and if the insurer hedges continuously, the balance
in the insurer’s overall hedged portfolio will be zero. On the other hand, if investors deviate from
this strategy, then the insurer’s portfolio will have a positive balance.

There is an other strategy which depends on a parameter denoted F referred as suboptimal
withdrawal. The assumption of worst case hedging is often referred to as optimal withdrawal.
This terminologyis unfortunate, in that any withdrawal strategy different from strategy (4.1) is
suboptimal only inthe sense that it does not maximize the cost of hedging. This may have little to
do with any givenpolicy holder’s economic circumstances. Completely rational actions for a given
policy holder maydepart from the previous strategy. As noted by many authors, and particularly
in Cramer et al. (2007), this is controversial issue. One possible approach that is quite simple is
to assume that the contract holder will follow thedefault strategy of withdrawing at the contract
rate at each event time ti unless the extra valueobtained by withdrawing optimally is greater than
FGrA(ti−ti−1). In this case, F = 0 correspondsto withdrawing optimally, while F = 1 corresponds
to withdrawing at the contract rate.

2 Numerical method

We solve the PDE using second order (as much as possible) finite difference methods in the S
directions, while still retaining the positive coefficient condition, and θ-scheme timestepping is
used. The PDE is originally posed on the domain (S, A, t) ∈ [0, +∞) × [0, +∞) × [0, T ]. For
computational purposes, we need to truncate this domain to [0, Smax]× [0, Amax]× [0, T ]. Moreover
we will use a similarity reduction since for any scalar η > 0, we have

V (ηS, ηA, t) = ηV (S, A, t).

Therefore, choosing η = A∗/A for a fixed value A∗, we obtain

V (S, A, t) = η−1V (Sη, A∗, t)

which means that we need only solve for this single representative value A∗ (which is chosen as S0

the initial amount in the investment). The domain is now [0, Smax] × [0, T ]. At initial time (which
is in fact the terminal condition) we impose V = 0. At S = 0, we solve Vt = −rV and at S = Smax

we impose a second order Neumann condition VSS = 0. If the domain is chosen sufficiently large
(typically Smax = 100S0), this condition does not affect the solution.

Between dates ti−1 and ti we solve the PDE using a classical LU algorithm for a tridiagonal
matrix. Then

At date ti, we need to compute the withdrawal strategy, so we search the maxima by a linear
search on values γ ∈ [0, 2]. From the experience, in case of F = 1, we can say that only values
0, 1 and 2 are selected by this linear search. When withdrawal is chosen, only full withdrawal is
selected, and in case of surrender event, only a full surrender event is selected.

The pricing problem now reduces to find the rider fee αg such that

Vαg
(S = S0, A∗ = S0, t = T ) = S0 (2)

when Vαg
is the solution of the PDE (1). Viewing Vαg

as being parametrized by the rider fee αg,
we solve the equation (2) using a classical secant method. Typically, only 5 or 7 iterations are
necessary to obtain convergence of the algorithm under a fixed tolerance of 10−8.

2.1 Numerical examples

There is multiple choices for parameters. Most of them can be treated by giving values in fixed
arrays or modifying correct lines in the program:



• The surrender fee κ(t) can be specified in the array Kt. By default it has the value

κ t
0.05 0 ≤ t ≤ 1
0.04 1 < t ≤ 2
0.03 2 < t ≤ 3
0.02 3 < t ≤ 4
0.01 4 < t ≤ 5
0.00 5 < t

• The bonus can be specified in the array Bt. By default it has the value Bt=0.05 at all dates
(every year)

• The withdrawal rate Gr can be specified in the array Gt. By default it has the value Gt=0.05

at all dates.

• The date of ratchet events can be specifiediat every year.

• The values for computing M(t) and R(t) are given by a table (DAV 2004R - 65 years old
male) recorded in a file named mortalityDAV2004R.dat. The program reads this file then
computes values saved in the arrays Mt and Rt.

• The suboptimal strategy has been implemented but has been commented in the program.

• Then there are the numerical parameters used in the PDE. By default the volatility σ has
value 0.15, the interest rate r has value 0.04, expiry time T is 60, initial payment S0 is 100
and management fee αm = 0.

3 Conclusion

The method is relatively easy to implement, the main difficulty is to understand the specifications
of the contract. I hope that this documentation is easier to read than the original article.

An other PDE (with other coefficients given by a logarithmic change of variables on S) has
been implemented, but it does not give better results.

4 Black-Scholes HW and Heston Models

In these models we use the same algorithm developped in the Black-Scholes case. For the numerical
resolution of the PDE associated to the variables annuities pricing problems we use the method
developped in there and there.
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