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Premia 18

The following is based on [A]. Suppose that, for i = 0, . . . , n − 1, we have a martin-

gale (ṽi
t)t∈[0,Ti] representing the discounted value at t of the European option with

maturity Ti and discounted payoff ṽi
Ti

. Suppose that we have the following Markov

functional forms

(1) ṽi
Tj

= fi,j(xTj
) , j = 0, . . . , i .

Here (xt) is a Markov process with values in R
D. I.e., we have a closed formula (or

at least a closed form approximation) for the values of the n European options.

Now consider the Bermudan option given by the payoffs ṽi
Ti

at the exercise times Ti

for i = 0, . . . , n − 1. Let Ṽt denote its discounted value at t. Then

(2) Ṽ0 = E( ṼT0
)

(3) ṼTi
= sup

τ∈T{i,...,n−1}

ṼTi
(τ) , where ṼTi

(τ) := E( ṽτ
Tτ

| FTi
)

and T{i...,n−1} denotes the set of stopping times with values in {i, . . . , n − 1}. We

introduce the indicator function I(Ti) which is one if exercising at Ti is optimal and

zero otherwise; hence

(4) τ ∗
i = inf{ j = i, . . . , n − 1 ; I(Tj) = 1} .

1



2

Here τ ∗
i denotes the optimal stopping time in (3), i.e. ṼTi

= ṼTi
(τ ∗

i ). Now suppose

that I(Ti) has the following Markov functional form:

(5) I(Ti) = b̃i(ṽ
i
Ti

, . . . , ṽn−1
Ti

) = bi(xTi
)

for some deterministic boolean functions b̃i , bi. That is, we assume that the exercise

decision at Ti depends only on the values at Ti of the still-alive European component

options, and this dependance is expressed by b̃i. Of course, once that b̃i is chosen,

one obtains bi directly from (1).

Observe that, denoting ~bi = (bi, . . . , bn−1), the following definition motivated by (4)

and (5) yields an element of T{i...,n−1}:

τ~bi
:= inf{ j = i, . . . , n − 1 ; bj(xTj

) = 1 } ∈ T{i...,n−1} .

Obviously, we find functional forms

τ~bi
= g~bi

(xTi
, . . . , xTn−1

) .

Hence, in view of (1), we obtain functional forms

ṽ
τ~bi

Tτ~bi

= fτ~bi
,τ~bi

(xTτ~bi

) = F~bi
(xTi

, . . . , xTn−1
) .

This yields the following representation of E( ṼTi
(τ~bi

) ) :

(6) E( ṼTi
(τ~bi

) ) = E( ṽ
τ~bi

Tτ~bi

) = E( F~bi
(xTi

, . . . , xTn−1
) ) .

Here we use definition (3) in the first step.

0.1 Monte Carlo approximation of Ṽ0, provided the bi are

chosen

Suppose that, for our Markov process (xt), we are given M Monte Carlo samples

(xm
T0

, . . . , xm
Tn−1

), where m = 0, . . . , M − 1. Then, based on (2) , (3) and (6), we have

the following Monte Carlo approximation of the discounted present value Ṽ0 of our

Bermudan option:

Ṽ0 ≈ 1
M

M−1∑

m=0

F~b0
(xm

T0
, . . . , xm

Tn−1
) .

0.2 Choice of the bi

Concerning the choice of the b0, . . . , bn−1, we note first that one reasonably takes

b̃n−1(vn−1) := 1vn−1>0
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which states that the Bermudan option is exercised at the last exercise date Tn−1

if and only if the lastEuropean component option (which is the only one being still

alive) is in-the-money.

Now the bi for i < n − 1 can be chosen (backward) iteratively via Monte Carlo

maximization over given parametric classes Bi of the expected discounted value

E(ṼTi
) of the Bermudan option at time Ti:

bi = arg max
b∈Bi

E
(

ṼTi
(τ(b,bi+1,...,bn−1))

)
= arg max

b∈Bi

L−1∑

l=0

F(b,bi+1,...,bn−1)(x
l
Ti

, . . . , xl
Tn−1

) .

Here we use (6) in the second step and we consider L Monte Carlo paths independent

of those we use for the approximation of Ṽ0; one should take M >> L. An example

for the choice of the classes Bi of boolean functions

Bi = { b̃H
i ; H ≥ 0 } , where b̃H

i (vi, . . . , vn−1) := 1vi>H .

Hence exercise takes place at Ti if the payoff of the European option maturing at Ti

exceeds some barrier H. A second example is

Bi = { b̃H
i ; H ≥ 0 } , where b̃H

i (vi, . . . , vn−1) := 1vi>max(H,vi+1,...,vn−1) .

This second strategy is a refinement that also checks if at least one of the remaining

European options has a value exceeding the value of the present European option.

If this is the case, the strategy decides that exercise cannot be optimal – a reflection

of the fact that the Bermudan option can always be sold at the value of its most

expensive European component option.

Examples of well-known one-dimensional optimization algorithms include Golden

Section Search and Brent’s method.

0.3 Remarks

(1) One might call the general approach chosen here: Monte Carlo pricing of Markov

functional Bermudan options under the assumption that the optimal stopping time

is also Markov-functional.

(2) We give the precise definition of some of the functional forms used above:

bi(x) := b̃i(fi,i(x), . . . , fn−1,i(x))

g~bi
(xi, . . . , xn−1) := inf{ j = i, . . . , n − 1 ; bj(xj) = 1 }

F~bi
(xi, . . . , xn−1) := fτ,τ (xτ ) , where τ := g~bi

(xi, . . . , xn−1) .

Here x, xi, . . . , xn−1 ∈ R
D.
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1 Numerical results: Bermudan swaption pricing

in the one-factor LIBOR Market Model

We fix a discrete tenor structure

0 = T0 < T1 < . . . < Te with Ti+1 − Ti ≡ δ

and define the rightcontinuous function η(t) by

Tη(t)−1 ≤ t < Tη(t) , in particular η(Ti) = i + 1 .

Denoting by P (t, T ) the time t price of a zero-coupon bond maturing at T , we define

for i = 0, . . . , e − 1 the forward LIBOR rates for the period [Ti, Ti+1]:

Li
t := δ−1

(
P (t,Ti)

P (t,Ti+1)
− 1

)
, t ∈ [0, Ti] .

The method presented in Section 1 will hence be applied for

D = e and xt = (Li
t∧Ti

)i=0,...,e−1 ∈ R
e .

We assume forward measure dynamics of the following simple type:

dLi
t = λ Li

t dW i
t .

This is equivalent to the following spot measure dynamics:

dLi
t = λ Li

t

(
bi(t, Lt)dt + dWt

)
, bi(t, L) := δ λ

i∑

j=η(t)

Lj

1+δLj .

All simulations will be done under these spot measure dynamics. Recall that the

corresponding spot numeraire (Nt) satisfies

NTi
=

i−1∏

j=0

(1 + δL
j
Tj

) .

Let us consider a (payer) interest rate swap where fixed cashflows Kδ paid at

Ts+1, . . . , Te are swapped against floating LIBOR on a unit notional. We will

price the corresponding Bermudan swaption with n exercise dates Ti = Ts+i, where

i = 0, . . . , n − 1. Hence, the discounted payoff at Ti is

ṽi
Ti

= 1
NTi

(
1 − P (Ti, Te) − K δ

e∑

j=s+i+1

P (Ti, Tj)
)

+
, Ti = Ts+i .

Closed form approximations [corresponding to the fi,j needed in (1)] for European

swaption prices can be found e.g. in [AA, § 5]. We consider the following parameter

values:

δ = 0.5 , Li
0 = 0.06 , K = 0.06 , L = 10000 , M = 50000 .
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The following table of prices corresponds to Table 1 in [A]. The letters E and B

correspond to European (n = 1) and Bermudan (n = e − s).

We applied the first strategy presented in Section 1.2 for the choice of the bi. All

Monte Carlo simulations are based on a first-order log-Euler discretization with time

step δ. Numbers in parenthesis denote the 95 % confidence interval.

In the European case, we also give the price obtained via the closed form approxi-

mation mentioned above.

T0 = Ts Te λ E or B CF MC

1 4 0.2 E 122.0 120.9 (1.7)

2 4 0.2 E 111.4 109.3 (1.6)

3 4 0.2 E 66.1 65.8 (1.0)

1 4 0.2 B 157.1 (1.7)

2 5 0.2 E 162.4 159.3 (2.3)

3 5 0.2 E 128.4 127.8 (1.9)

4 5 0.2 E 71.8 71.1 (1.1)

2 5 0.2 B 188.4 (2.3)

5 10 0.15 E 253.6 252.0 (3.4)

6 10 0.15 E 215.3 214.8 (2.9)

7 10 0.15 E 169.0 168.3 (2.3)

8 10 0.15 E 116.7 116.7 (1.6)

9 10 0.15 E 60.0 59.8 (0.8)

5 10 0.15 B 283.6 (3.3)
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