
4 pages 1

Source | Model | Option

| Model_Option | Help on mc methods | Archived Tests

mc_parisianupdownout_bs

This algorithm is taken from [1]and allows to numerically compute the price
and the delta of double Knock-Out Parisian Barrier Options with a Monte
Carlo method. The issue, as it is discussed in there , it to provide a good
approximation of the first time HD at which the price of the underlying stock
stays outside the barriers uninterruptedly for longer than a pre-specified delay
D. If such a time is observed to be less or equal to the maturity, the option
is nullified, it is activated otherwise. One could numerically determine how
much time the stock price is observed to stay outside the barrier by a crude
simulation, i.e. through k∗ ·h, where h stands for the time step increment and
k∗ denotes the number of consecutive times the underlying asset price has
been outside the same barrier. Numerical tests show that this method does
not perform well because the stock price is checked at dicrete instants through
simulations and the barrier might have been hit without being detected,
giving rice to a non trivial error for the estimate of the option price.

The algorithm (there) from [1]allows to improve the performance of the
crude Monte Carlo method, by giving a careful estimation of HD as follows.
Setting gu as the final time before u when a barrier is hit, with the constraint
gu = u if no barrier is crossed before u, HD turns out to be the first instant
u such that u − gu ≥ D. Now, when the stock price is observed to stay
outside a barrier either at step k − 1 and k, an accurate approximation ph

k

of the probability that the underlying asset price comes back to the domain
during the time interval ((k − 1)h, kh) is computed and a bernoulli r.v. with
parameter ph

k
is generated: if it is observed to be equal to 1, then g is updated

and set equal to hk, otherwise the value of g does not change.

/*One forces N if necessary so that delay
!!!!!!!!!! WARNING !!!!!!!!

be greater than the time step increment h*/
The time step increment h is initialised; since the value D of the delay has
to be greiter than h, when D ≤ h the number N of the dicretisation points

of the time interval [0, t] (t standing for the maturity date) is increased.

4 pages 2

/*Initialisation*/
The variables giving the price, the delta and the corresponding variances
are initialised. Moreover, since the path really simulated are given by the

logarithm of the underlying asset price starting at s and s + ε, the
considered starting points are actually the logarithm of the starting points.

The coefficients rloc and sigmaloc are used in order to generate the
processes at the discretisation times. Finally, notice that the process
starting at ln(s + ε) is equal to the process starting at ln s added by

ln(1 + ε/s), which is a constant denoted as increment.

/*Coefficient for the computation of the exit probability*/
The constant rap is used to compute the local probability of crossing the

barrier, which turns out to be an exit probability from a barrier.

/*MC sampling*/
In this cicle, at step i the paths ln S(i)(s) and ln S(i)(s + ε), starting at s

and s + ε, are simulated. Thus, it starts by initialising the variables gt, hd,
gt_increment,hd_increment and lnspot, giving the current values for g,

HD and the current position lnspot of the process.

/*Inside=0 if the path stays beyond the barrier*/
/*uninterruptedly for longer than delay*/

inside and inside_increment are boolean variables initialised to 1,
switching to 0 when the corresponding value of HD is greater than D, i.e.

when the path stays beyond a barrier uninterruptedly for longer than delay.

/*Barrier at time*/
The upper and lower barriers are evaluated at time 0 in up and low

respectively.

/*Simulation of i-th path until Inside=0*/
In this cicle, both processes are simulated at the discretisation times kh,

whose current name is time, until k = N or the corresponding value of the
flag is changed, i.e. until inside= 0 or inside_increment= 0. At each
step k, a variable, called correction_active, is introduced in order to

ensure that both paths are generated by means of the same sample.
correction_active is firstly equal to 0 and its value switches to 1

whenever a path is observed to stay locally beyond the barriers whereas the
other one does not behave in the same way. The value of the old and new
simulated points and of the barriers are put in the variables lastlnspot,

lnspot,lastlnspot_increment, lnspot_increment,lastup, up, lastlow,
low respectively.

4 pages 3

/*Check if the i-th path has reached the barrier at time*/
/*Otherwise there is no extinction*/

The goal is to estimate the current value for gt and gt_increment, by
making use of the procedure summarised at the beginning, so that the
payoff can be computed. Obviously, it is meaningful only if inside and

inside_increment are not changed, i.e. equal to 0, otherwise the delay has
been reached and the value of the option is known.

Therefore, suppose that the condition “if inside" holds. First of all,
lnspot and lastlnspot, giving the simulated values of ln S

(i)
kh

(s) and

ln S
(i)
(k−1)h(s) respectively, are compared with the (logarithm of the) upper

barrier: if lnspot> up then
– if also lastlnspot> up then the probability ph

k
is computed,

correction_active is set equal to 1 and a bernoulli r.v. with parameter
ph

k
is considered: a uniform r.v. uniform is generated and if uniform< ph

k

then (the path has gone back and) gt is updated as the current time; if
uniform≥ ph

k
then (the path has never gone back and) gt is not changed;

– if lastlnspot≤ up then the final time gt at which the barrier has been
crossed is approximated through a suitable instant between kh and (k − 1)h

(see Monte Carlo for Barrier Option : Algorithm for details).
The same procedure applies to lnspot_increment and

lastlnspot_increment. It is worth to observe that if lnspot_increment

and lastlnspot_increment are both observed to stay above the barrier
then a uniform r.v. is needed; since the paths have to be simulated by

means of the same sample, such a uniform r.v. must be taken as the same
uniform used to compute gt, if it has been generated. Thus, if the

condition “!*correction_active" is true, which means that
correction_active6= 1, a new uniform r.v. is considered; whereas if it is
false, i.e. the correction has been yet activated, uniform does not change
and turns out to be the same one which has been previously generated.

Notice that, since ε > 0, lnspot< lnspot_increment and lastlnspot<
lastlnspot_increment, so that correction_active has to be firstly

activated to the path starting at s.
The comparisons are now made with the lower barrier, in a similar way.

Indeed, the same procedure is applied by changing the role to lnspot and
lastlnspot and to lnspot_increment and lastlnspot_increment,

because in such a case correction_active has to be firstly activated to
the path starting at s + ε.

Finally, if lnspot∈ (low, up), then gt is updated and becomes equal to
time; similarly, if lnspot_increment∈ (low, up), then gt_increment is set
equal to time. Once these values are known, hd and hd_increment can be

4 pages 4

computed and compared with delay: if they are greiter than delay, the
corresponding values of inside and inside_increment change and

price_sample_increment are set equal to 0. If at the end of the cicle,
inside and inside_increment are equal to 0, the payoffs are computed in

price_sample and price_sample_incrementrespectively.

/*Delta*/
The delta of the sample is computed (recall that increment= ln(1 + ε/s) so

that ε ∼ increment*s:that is why the variation of the price sample is
divided by increment*s).

/*Sum*/
The partial sums of the observed price_sample and delta_sample are

computed.

/*Sum of Squares*/
The partial sums of the squares of the observed price_sample and

delta_sample are computed and will be used to evaluate the empirical
variances.

/*Price*/
The price is numerically computed by averaging over the M observed
price_sample. The variable pterror_price is such that the interval

(ptprice− pterror_price, ptprice+ pterror_price) represents the 95%
confidence interval for ptprice.

/*Delta*/
The delta is computed according to the case of a put or call option. The

variable pterror_delta is such that the interval (ptdelta−

pterror_delta, ptdelta+ pterror_delta) represents the 95% confidence
interval for ptdelta.

References

[1] P.BALDI L.CARAMELLINO M.G.IOVINO. Pricing complex barrier op-
tions with general features using sharp large deviation estimate. Proceed-
ings of the MCQMC Conference, Calremont (LA), USA, 1999. 1

