
16 pages 1

Implementation of the Pseudo-Random

Numbers Generators and the Low Discrepancy

Sequences

Anne GILLE-GENEST

February 18, 2016

Contents

1 Implementation 2

2 Pseudo-Random Numbers Generators 2

2.1 Schrage Method . 2
2.2 Park & Miller algorithm . 3
2.3 L’Ecuyer generator . 4
2.4 Knuth generator . 5
2.5 Combined MRG with Order 3 5
2.6 Combined MRG with Order 5 6
2.7 Tausworthe generator . 7

3 Low Discrepancy Sequences 10

3.1 SQRT sequence . 10
3.2 Halton sequence . 10
3.3 Faure sequence . 11
3.4 Sobol Sequence . 12
3.5 Niederreiter sequence . 15

Theoretical aspect for generators is described in the following parts:
Pseudo-Random Numbers Generators
Low Discrepancy Sequences

Some of the algorithms we detail in this part are explained in [4].

16 pages 2

1 Implementation

We use the generators implemented in PNL. These generators are now thread-
safe and stored in the following structure

typedef struct _PnlRng PnlRng;

struct _PnlRng

{

PnlObject object;

PnlRngType type; /*!< generator type */

void (*Compute)(PnlRng *g, double *sample); /*!< the function to compute the

next number in the sequence */

int rand_or_quasi; /*!< can be MC or QMC */

int dimension; /*!< dimension of the space in which we draw the samples */

int counter; /*!< counter = number of samples already drawn */

int has_gauss; /*!< Is a gaussian deviate available? */

double gauss; /*!< If has_gauss==1, gauss a gaussian sample */

int size_state; /*!< size in bytes of the state variable */

void *state; /*!< state of the random generator */

};

We refer the reader to the documentation of the PNL for the list of imple-
mented generators and how to call them.

2 Pseudo-Random Numbers Generators

2.1 Schrage Method

We first present the Schrage Method. It will be used for several implemen-
tations of Pseudo-Random Number generators.
Let xn be a MLCG defined by the recurrence relation :

xn+1 = axn mod m

For a large prime modulus m, the implementation may lead to overflow in
the product ax for x < m. To avoid this problem, we can use the Schrage
Method, based on the fact that a(m mod a) < m under the condition
a2 ≤ m. It is described as follows :
We consider the decomposition m = aq + r where r = m mod a and q =
[m/a]. Thus, we have :

(ax) mod m =





a(x mod q)− r[x/q] if it is ≥ 0

a(x mod q)− r[x/q] + m if it is ≤ 0

16 pages 3

If r < q and 0 < x < m−1, then both a(x mod q) and r[x/q] ∈ {0, . . . , m−
1}.

2.2 Park & Miller algorithm

• Description: CMRG description
We consider the random number generator Un of Park & Miller with Bayes
and Durham shuffling procedure. It is based on a Multiplicative Linear Con-
gruential Generator (MLCG) Xn, with parameters:

a = 75 = 16807, m = 231 − 1 ≃ 2, 15.109.

The implementation uses the Schrage decomposition m = aq + r with q =
127773 and r = 2836.
The period of this generator is ρ = 231 − 2 ≃ 2, 1.109.

• Algorithm:

- /* Initialisation */
Choice for the initial value X0

- /* First call to the sequence */
/* Ensure that X0 differs from 0 */

- /* After 8 "warm-ups", initialisation of the shuffle table */
/* Schrage’s method to avoid overflows */
The table t[] contains the first 32 values of the sequence.

- /* For each call to the sequence, computation of a new point */
The next term Un+1 of the sequence is computed as follows:
The value Xn+1 is computed by the Schrage method.
/* Shuffling procedure of Bayes & Durham */
/* Index j dependent on the last point */
/* Next point dependent on j */
We select the value y = t[j] and return Un+1 = y/m, where the index j
depends on the last value y: j = y/N1 with N1 = (1 + m−1

32
).

We place the value Xn+1 in t[j].

16 pages 4

2.3 L’Ecuyer generator

• Description: CMRG description
We consider the random number generator of L’Ecuyer with Bayes and
Durham shuffling procedure. It is based on the combination of 2 LCG, Xn

and Yn with parameters:

a1 = 40014, m1 = 231 − 1;
a2 = 40692, m2 = 231 − 249.

We use the Schrage decomposition with q1 = 53668, r1 = 12211 and q2 =
52774, r2 = 3791 to compute the values Xn and Yn.
Shuffle procedure is applied only to the first sequence Xn. The computed
value is

Zn = (Xn(j)− Yn) mod m1

where Xn(j) is the value found in the shuffle table. If the value is negative,
add m1.
The output value is Un = Zn

m1
.

The period of this generator is given by:

ρ = (m1 − 1)(m2 − 1)/2 ≃ 2, 3.1018

• Algorithm:

- /* First call to the sequence */
Choice of the initial values X0 and Y0.

- /* After 8 "warm-ups", initialisation of the shuffle table */
/* Park & Miller’s generator */
The table t[] contains the first 32 values of the sequence Xn.

- /* For each call to the sequence, computation of a new point */
The next term Zn+1 is computed as follows:
/* First generator */ Xn+1

/* Second generator */ Yn+1

/* Shuffling procedure of Bayes & Durham */
/* Index j dependent on the last point */
/* Next point dependent on j */
We calculate the value of j and we select t[j] in the shuffle table.
We return Zn+1 = (t[j]− Yn+1)/m2

We replace t[j] by the value Xn+1.

- /* To avoid 0 value */

16 pages 5

2.4 Knuth generator

• Description: MRG description
The generator of Knuth is based on a MRG. Its recurrence relation is given
by:

Xn = (Xn−24 + Xn−55) mod m

with m = 109.

• Algorithm:

- /* Initializes the sequence with a positive seed */
Choice of the initial value X0.

- /* First call to the sequence */
/* Initialization of the table */
The table t[] contains the first 55 values of the sequence. Indices 1 to 55.
/* Randomization of the elements of the table */
The table t[] contains now the first 55 values of the sequence in a random
order.

/* Initialization of the indices inc1 and inc2 */
Indices i1 and i2 are used to find Xn−55 and Xn−24 in the table t[].
- /* For each call to the sequence, computation of a new point */
The term Xn+1 is computed as follows:
Indices i1 and i2 are incremented at each step (until 55, that is the dimension
of the table t[]) then their value is 1. They allow to select the appropriate
values instead shifting all the elements of the table.
/* Substractive method*/
We take values Xn−24 and Xn−55 in table t[].
We compute Xn+1 = Xn−24 −Xn−55 and if the result is negative, we add m.
We put Xn+1 in the table at the index i1.
We return the normalized value Un = Xn/m.

2.5 Combined MRG with Order 3

• Description: CMRG description
This generator is a combination of two MRG of order 3.

zn =




J∑

j=1

δjxj,n


 mod m1, un =

zn

m1

16 pages 6

with the following parameters:
J = 2, k = 3 and δ1 = −δ2 = 1;
m1 = 232 − 209, a1,1 = 0, a1,2 = 1403580, a1,3 = −810728;
m2 = 232 − 22853, a2,1 = 527612, a2,2 = 0, a2,3 = −1370589.

X1,n = a1,2X1,n−2 + a1,3X1,n−3

X2,n = a2,1X2,n−1 + a2,3X2,n−3

Zn = (X1,n −X2,n) mod m1

The period ρ is equal to (m3
1 − 1)(m3

2 − 1)/2 ≃ 2191.

• Algorithm:

- /* First call to the sequence */
/* Initialization */
Initialization of the values X1,0, X1,1, X1,2, X2,0, X2,1, X2,2.

- /* For each call to the sequence, computation of a new point */
/* First generator */
/* Second generator */
/* Combination of the two generators */
Zn = X1,n −X2,n.
If the obtained value is negative, we add m1.
We return the normalized value Un = Zn × 1

m1
.

2.6 Combined MRG with Order 5

• Description: CMRG description
This generator is a combination of two MRG of order 5.

zn = (
J∑

j=1

δjxj,n) mod m1, un =
zn

m1

with the following parameters:
J = 2, k = 5 and δ1 = −δ2 = 1;
m1 = 232 − 18269, a1,1 = 0, a1,2 = 1154721, a1,3 = 0, a1,4 = 1739991,
a1,5 = −1108499;
m2 = 232 − 32969, a2,1 = 1776413, a2,2 = 0, a2,3 = 865203, a2,4 = 0, a2,5 =
−1641052.

X1,n = a1,2X1,n−2 + a1,4X1,n−4 + a1,5X1,n−5

16 pages 7

X2,n = a2,1X1,n−1 + a1,3X1,n−3 + a2,5X2,n−5

Zn = (X1,n −X2,n) mod m1

The period ρ is equal to (m5
1 − 1)(m5

2 − 1)/2 ≃ 2319.
The steps of the algorithm are the same than for the one with k = 3.

• Algorithm:

- /* First call to the sequence */
/*Initialization*/
Initialization of the values X1,j and X2,j.

- /* For each call to the sequence, computation of a new point */
/* First generator */
/* Second generator */
/* Combination of the two generators */
Zn = X1,n −X2,n.
If the obtained value is negative, we add m1.
We return the normalized value Un = Zn × 1

m1
.

2.7 Tausworthe generator

• Description: LFSR description
The Tausworthe generator corresponds to the LFSR Generator and it is
included in the Digital Methods for Random Number Generator (see [3]).
The generator we now consider is a combination of 3 Tausworthe generators,
with parameters:

J = 3;
k1 = 31, q1 = 13, s1 = 12;
k2 = 29, q2 = 2, s2 = 4;
k3 = 28, q3 = 3, s3 = 17.

The period length ρ is ρ = (231 − 1)(229 − 1)(228 − 1) ≃ 288.

The program allows to take into account a combination of J generators with
J ≤ TAUS_MAX (value fixed here to 10).
We particularly delail the algorithm implemented for a single Tausworthe
Generator, because it is not completly obvious.

16 pages 8

Let s0 be the initial state. s0 = (x0, . . . , xk−1) ∈ {0, 1}k. We define

un =
L∑

i=1

xns+i−12
−i =

1

2L

L∑

i=1

xns+i−12
L−i

(The second expression is used in the implementation.)
Condition (C) : P (z) = zk − azq − 1 is a primitive trinomial with 0 < 2q <
k, 0 < s ≤ k − q < k ≤ L and gcd(s, 2k − 1) = 1.
Under the condition (C), we give an efficient algorithm to compute the Taus-
worthe generator.

Let r = k − q and A, B and C three bit vectors of size L. Initially, A
contains s̃n−1 and C contains k ones followed by (L− k) zeros.

Notation

⊕ denotes the bitwise exclusive OR, that is addition in base 2.
& denotes multiplication in base 2.
These both operators lead to a very fast implementation because they use
only binary representation for integers.

• Tausworthe’s algorithm

Step 1. B ← q-bit left-shift of A
Step 2. B ← A⊕B
Step 3. B ← (k − s)-bit right-shift of B
Step 4. A← A&C
Step 5. A← s-bit left-shift of A
Step 6. A← A⊕B

Values of A and B during the algorithm are detailed here for n = 1.
Step 0. A : s̃0 = (x0, . . . , xL−1)
Step 1. B = (xq, . . . , xL−1, 0, . . . , 0)
Step 2. We use that xn = xn−r ⊕ xn−k. B = (xk, . . . , xr+L−1, xL−q, . . . , xL−1)
Step 3. B = (0, . . . , 0, xk, . . . , xs+L−1)
Step 4. A = (x0, . . . , xk−1, 0, . . . , 0)
Step 5. A = (xs, . . . , xk−1, 0, . . . , 0)
Step 6. A = (xs, . . . , xk−1, xk, . . . , xs+L−1) = s̃1

• Initialization of the algorithm

A must be initialized with a value s̃0, which agrees the recurrence. We
choose the first k bits arbitrarly, such that s0 = (xo, . . . , xk−1) 6= 0 ; the
other (L − k) bits are computed with so and the recurrence relation. As-
sumed that k + r ≥ L, we can use the following algorithm.

16 pages 9

Step 1. B ← q-bit left-shift of A
Step 2. B ← A⊕B
Step 3. B ← k-bit right-shift of B
Step 4. A← A⊕B

Step 0. A = (x0, . . . , xk−1, 0, . . . , 0)
Step 1. B = (xq, . . . , xk−1, 0, . . . , 0)
Step 2. We use that xn = xn−r⊕xn−k. B = (xk, . . . , xr+k−1, xk−q, . . . , xk−L, 0, . . . , 0)
Step 3. B = (0, . . . , 0, xk, . . . , xsL−1)
Step 4. A = (x0, . . . , xk−1, xk, . . . , xL−1)

• Algorithm:

- /* First call to the sequence. Initialisation */
/* Choice of the parameters to have ME-CF generators (cf L’Ecuyer) */
Choice of k[j], q[j], and s[j]. Computation of r[j] and t[j].

- /* Constant c : k bits to one and (L− k) bits to zero */
c[j] = 232 − 2(L−k[j])

- /* Initialisation of each generator */
/* The first k bits are chosen randomly */
Call to functions random-word and random-bit. Algorithm for this last func-
tion is based on a prime polynomial : here we choose x18 + x5 + x2 + x + 1.
It is described in ’Numerical Recipes in C’ page 296.
/* The next L− k bits are initially fixed to zero */
/* Now they are computed with the recurrence on u */
See the previous description about the initialization of the algorithm.

- /* For each call to the sequence, computation of a new point */
/* Calculus of the next point for the J generators */
/* 6 steps explained by L’Ecuyer */
See the previous description about the Tausworthe algorithm.
/* Combination : XOR between the J generators */

/* Normalisation by 1
232 */

16 pages 10

3 Low Discrepancy Sequences

3.1 SQRT sequence

• Description: SQRT description
The SQRT sequence is a particular case of the Tore sequence with α =
(
√

p1, . . . ,
√

pd) and where (p1, . . . , pd) are the first d prime numbers. The
d-dimensional sequence is given by:

ξn = ({n.α} = ({n.α1}, . . . , {n.αd})

where {x} = x− [x] is the fractional part of x.

• Algorithm:

- /* Verification of the dimension. It must not change without reinitial-
izing */
If the dimension d changed, a reinitialization must be done.

- /* First call : initialization */
Computation of the first d prime numbers.

- /* For each call to the sequence, computation of a new point */
xm[i] = m

√
pi − [m

√
pi].

3.2 Halton sequence

• Description: Halton description
The Halton sequence is a d-dimensional generalization of the Van Der Corput
sequence. It is defined by:

ξn = (ϕp1
(n), . . . , ϕpd

(n))

where (p1, . . . , pd) are the d first prime numbers and where ϕp(n) =
∑R(n)

i=0
ai

pi+1

with ai given by the digit expansion in base p of n.

• Algorithm:

- /* Verification of the dimension. It must not change without reinitial-
izing */
If the dimension d changed, a reinitialization must be done.

16 pages 11

- /* First call : initialization */
Computation of the first d prime numbers.

- /* For each call to the sequence, computation of a new point */
/* Radical inverse function */
Van der Corput sequence for each pi.

3.3 Faure sequence

• Description: Faure description
The d-dimensional Faure sequence is given by:

ξn =
(
ϕr(n), T (ϕr(n)), . . . , T d−1(ϕr(n))

)

where ϕr is the Van der Corput sequence in base r.
The transformation T depends on the binomial coefficients and the r-digit
expansion of n.

Regarding implementation, it should be noticed that indices i, j of the bino-
mial coefficients Comb[i][j] we need, depend on the r digit expansion of n, the
highest coefficient goes to infinity with n. Since we store the binomial coeffi-
cients as LONG integers, we can not go further than Comb[32][16]. The corre-
sponding value of n is stored in the (macro) MAX_SAMPLE_FAURE. Bino-
mial coefficients are computed at the launching of Premia (routine InitMC()
). They are stored this way:
#define MAXI 33

long Comb[MAXI][MAXI];

• Algorithm:

- /* Verification of the dimension. It must not change without reinitial-
izing */
If the dimension d changed, a reinitialization must be done.

- /*First call to the sequence */
Computation of the first d prime numbers and the binomial coefficients;
Research of the smallest odd prime r such that r ≥ d.

- /* Initialization */

- /* For each call to the sequence, computation of a new point */
/* r-digit expansion of n -> first term of the sequence */

16 pages 12

/* Other terms of the sequence */
/* Successive transformations of the r-digit expansion.*/
T uses the binomial coefficients Comb[i][j].

3.4 Sobol Sequence

• Description: Sobol description
The d-dimensional Sobol sequence is defined by

ξn =
(
a1V

(1)
1 ⊕ · · · ⊕ ar(n)V

(1)
r(n); . . . ; a1V

(d)
1 ⊕ · · · ⊕ ar(n)V

(d)
r(n)

)

where the V
(j)

i are direction numbers obtained from d primitive polynomials
and the ai are the coefficients from the binary decomposition of n.

To reduce the computing time, we will use the Gray Code of n instead its
digit expansion in base 2. Antonov and Saleev proved in [1] that it does not
affect the asympotic discrepancy of the sequence.

Result: The set of all binary segments of length 2s is transformed one-to-
one into itself if we use the Gray Code transformation. Then the uniformity
property is preserved.

Gray Code : (see Numerical Recipes [4], chapter 20)
A Gray code is a function G, such that for each integer i ≥ 0, the binary
representation of G(i) differs from the representation of G(i + 1) in exactly
one bit (the position of the rightmost zero bit of i in its digit decomposition
in base 2)
To obtain the Gray Code of n, we apply a XOR between n and n/2, that is:

G(n) = n⊕ (n >> 1)

where >> is the right shift operator.

• Sobol implementation:
Using the properties of the Gray Code, we can compute the term ξn+1 from
the term ξn and only one direction number Vk (see Antonov and Saleev[1] or
Bratley and Fox [2]). We have

ξn+1 = ξn ⊕ Vk

where k is the index of the rightmost zero bit in the binary representation of
n.

16 pages 13

Finally we use the representation of ξ in the following form :

ξn+1(j) = γn+1(j)× 1

2BIT _MAX

γn+1(j) = γn(j)⊕ (C[k][j]≪ (BIT_MAX − k))

The initial value is fixed to γ0 = 0. This implementation allows to keep
integer values.

BIT_MAX denotes the maximum number of bits allowed to a digit ex-
pansion in base 2. N = 2BIT _MAX is the greater integer for which we can
compute ξN .
DIM_MAX denotes the maximal dimension allowed for this sequence. At
present, it is equal to 39.
We can increase this value, but we have to complete the initialization of the
Ci,j. It is not an easy step to select good constants Ci,j (as explained in the
presentation of the Sobol sequence ????).

• Algorithm:

- /* Degree of the DIM_MAX primitive polynomials */
Degree of the primitive polynomials are stored in a table of size DIM_MAX,
the maximal dimension allowed for this sequence. Remark about this pa-
rameter is given in the description of the sequence. We recall that we cannot
simulate Sobol Sequence for dimensions greater than DIM_MAX because of
the unknown initialization of constants Cij.

- /* Index of each primitive polynomial. It determines coefficients bi */
Indices of primitive polynomials are stored in a table of size DIM_MAX.
Each index associated with the degree of the polynomial characterizes its
coefficients. Coefficients bi are obtained from the decomposition in base 2 of
its index.
The index of the following polynomial

P (j) = xs(j) + b1x
s(j)−1 + · · ·+ bs(j)−1x + 1

with degree s(j), is given by

s(j)−1∑

i=1

bi2
s(j)−i−1

Terms of order s(j) and 0 always have a coefficient equals to 1 (else the

16 pages 14

considered polynomial can not be primitive). They are not included in the
coefficients bi.

- /* Sobol’s constants C_i_(j) */
Initialization of the first values, that are the ones for i < s(j). The next
ones are computed during the initialization algorithm at the first call of the
sequence.
Initialization of the constants C_i_(j) is stored in a two-dimensional table
of size DIM_MAX*8 (actually, dimensions are DIM_MAX+1 and 9, but we
do not use the first element of each vector, that is the one with index 0). The
value 8 corresponds to the highest degree for the considered polynomials.
Values Ci(j) in this table are choosen to satisfy the condition

c
(j)
i < 2i, 1 ≤ i ≤ s(j)

They were found on the web page www.math.hkbu.edu.hk/qmc/software.html.
They are supposed to be good and to satisfy conditions for uniformity prop-
erty A defined by Sobol but we don’t have tested this criterion.
For i > s(j) and i ≤ 8, we first put 0; the exact values will be computed in
the next step.

- /* Test of the dimension */
Test that the required dimension is not greater than DIM_MAX, the maxi-
mum dimension allowed for the algorithm.

- /*First call to the sequence */
/* Initialization of the full array C[i][j] */
We now fill the full table of size DIM_MAX * BIT_MAX we will use to
generate terms of the Sobol sequence.
/* Recurrence relation to compute the other C[i][j] */
For i > s(j), the computation is based on the recurrence relation given in
the description of Sobol sequence. Firstly, terms without coefficients bk are
added with the operator ⊕.
/* Test for the coefficient b(k) */
Then, coefficients bk are computed from the decomposition in base 2 of thein-
dex of the appropriate primitive polynomial. If bk = 1 a factor is added in
the recurrence.
Computation of the first vector.

- /* Calculation of a new quasi-random vector on each call */
/* Research of the rightmost 0 bit */

16 pages 15

We find an index i.
/* Computation of the term n from the term (n− 1) */
With the index i and the recurrence formula γn+1(j) = γn(j)⊕(C[i][j] << (BIT_MAX − i))
/* Normalization */
We obtain a value in [0, 1] by normalizing with 2−BIT _MAX .

3.5 Niederreiter sequence

• Description:

When b = 2, we can use the Gray Code of n instead its binary decompo-
sition. Then we obtain a recurrence relation between ξn+1 and ξn and the
implementation goes faster.

ξn+1(j) = γn(j)× 1

2BIT _MAX+1

γn+1 = γn ⊕ (C[k][j])

where k is the index of the rightmost zero bit in the binary representation of
n.

At the moment, Niederreiter sequence is only available for base b = 2.

• Algorithm:

- /* Niederreiter’s constants */

- /* Test of the dimension */
Test that the required dimension is not greater than DIM_MAX, the max-
imum dimension allowed for the algorithm, particularly for the C[i][j] con-
stants.
DIM_MAX is equal to 12. We can increase this value, but we have to com-
plete the initialization of the Ci,j.

- /* First call to the sequence */
/* Initialization of initX_n[] */
/* Gray code of saut */
/* XOR sum */

- /* Calculation of a new quasi-random vector on each call */
/* Research of the rightmost 0 bit */
We find an index i.

16 pages 16

/* Computation of the term n from the term n− 1 */
Normalization to obtain ξn+1.
Calculation of γn+1 with the index i and the recurrence formula γn+1 =
γn ⊕ (C[i][j]).

References

[1] I.A. ANTONOV and V.M. SALEEV. An economic method of computing
lpτ -sequences. USSR Comput. Maths. Math. Phys, 19:252–256, 1980. 12

[2] P. BRATLEY and B.L. FOX. Algorithm 659. implementing sobol’s
quasirandom sequence generator. ACM Transactions on Mathematical
Software, 14(1):88–100, 1988. 12

[3] P. L’ECUYER. Maximally equidistributed combined tausworthe gener-
ators. 7

[4] W.T. VETTERLING W.H. PRESS, S.S. TEUTOLSKY and B.P. FLAN-
NERY. Numerical Recipes in C. The art of scientific computing. Cam-
bridge University Press, 1992. 1, 12

	Implementation
	Pseudo-Random Numbers Generators
	Schrage Method
	Park & Miller algorithm
	L'Ecuyer generator
	Knuth generator
	Combined MRG with Order 3
	Combined MRG with Order 5
	Tausworthe generator

	Low Discrepancy Sequences
	SQRT sequence
	Halton sequence
	Faure sequence
	Sobol Sequence
	Niederreiter sequence

