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Introduction

The valuation of American options on two stocks, also called two-colours Rainbow options by
practitioners, is an important problem in financial economics since a wide variety of contracts
that are traded in the O.T.C. market involve such options (Exchange options, Best-of options).
Unlike European options, American options cannot be valued by closed-form formulae, even in
the Black-Scholes model, and require the use of numerical methods.

1 American Options on Two Stocks

The price at time 0 of an American option on two stocks in the Black-Scholes setting is given
by

PA(0, s1, s2) = sup
τ∈T0,T

E
[

e−rτψ(S1
τ , S

2
τ )
]

.

This price can be formulated, after a logarithm change of variable, in terms of the solution u to
the following variational inequality (see e.g. [10]),







max
(

ψ−u, ∂u
∂t

+
σ2

1

2
∂2u
∂x2

1

+
σ2

2

2
∂2u
∂x2

2

+α1
∂u
∂x1

+α2
∂u
∂x2

+ρσ1σ2
∂2u

∂x1∂x2
−ru

)

= 0, (t, x1, x2) in [0, T [×R2

u(T, x1, x2) = ψ(ex1 , ex2)

(1)
by PA(t, s1, s2) = u(t, ln s1, ln s2).

With the time change of variable t′ = T − t and the following geometrical transformation :

(x, y) 7−→ (X,Y ) =

(

x ∗ cos(θ) + y ∗ sin(θ),

(
α

β

) 1

2

(y ∗ cos(θ) − x ∗ sin(θ))

)

1
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with, if σ2
1 − σ2

2 6= 0







tan(2θ) = 2ρσ1σ2

σ2
1
−σ2

2

,

α =
(σ2

1
+σ2

2
) cos(2θ)+σ2

1
−σ2

2

4 cos(2θ) ,

β =
(σ2

1
+σ2

2
) cos(2θ)+σ2

2
−σ2

1

4 cos(2θ) .

if, σ2
1 − σ2

2 = 0,






θ = πρ
4|ρ| ,

α =
σ2

1

2 (1 + |ρ|),
β =

σ2
1

2 (1 − |ρ|).
one obtains,

{

min
(

ψ − u, ∂u
∂t

− α∆u− grad(~vu) + ru
)

= 0, (t, x1, x2) in [0, T [×R2

u(0, x1, x2) = ψ(ex1 , ex2)
(2)

with,

~v = ((r−λ1−σ2
1

2
) cos(θ)+(r−λ2−σ2

2

2
) sin(θ),

(

(r − λ2 − σ2
2

2
) cos(θ) − (r − λ1 − σ2

1

2
) sin(θ)

)

(
α

β
)

1

2 ).

2 The finite volume schemes

Let us consider the problem :

∂u

∂t
(x, t) + div(u(x, t)~v) − α∆u(x, t) + ru(x, t) ≥ 0, (x, t) ∈ Ω×]0, T [ (3)

u(x, t) ≥ ψ(x), (x, t) ∈ Ω×]0, T [ (4)

(
∂u

∂t
(x, t) + div(u(x, t)~v) − α∆u(x, t) + ru(x, t)

)

(ψ(x) − u(x, t)) = 0, (x, t) ∈ Ω×]0, T [ (5)

u(x, 0) = ψ(x), x ∈ Ω (6)

under the following assumptions

Assumption 1. 1. d ∈ N
∗,

2. Ω ⊂ R
d is a bounded open polygonal,

3. ψ ∈ H1
0 (Ω) ∩ C2(Ω̄),

4. ψ ≥ 0 a.e on Ω,

5. T > 0.

A weak for of the problem (3)-(6) yields the following variational inequality :







u ∈ L2(0, T ;H1
0 (Ω)), ∂u

∂t
∈ L2(Ω×]0, T [), u(x, 0) = ψ(Ω), p.p. x ∈ Ω, satisfying :

∫

Ω

(
∂u

∂t
(x, t) + ru(x, t) + div(u(x, t)~v)

)

(v(x, t) − u(x, t)) + α∇u(x, t)∇(v(x, t) − u(x, t))dx ≥ 0

p.p t ∈]0, T [,∀v ∈ H1(Ω), v ≥ ψ.

(7)
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By [12], there exits a unique solution of (7).
In order to obtain a numerical approximation of the solution of (7), let us now describe the
space and time discretization of Ω×]0, T [.

Definition 1 (Admissible meshes). An admissible mesh of Ω is given by a set τ of open bounded
polygonal convex subsets of Ω called control volumes, a family ε of subsets of Ω̄ contained in
hyperplanes of Rd with strictly positive measure, and a family of point (xK)K∈ τ (the "centers"
of control volumes) satisfying the following properties:

(i) The closure of the union of all control volumes is Ω̄.
(ii) For any K ∈ τ , there exits a subset εK of ε such that ∂K = ∪σ∈ εK σ̄. Furthermore,

ε = ∪K∈ τ εK .
(iii) For any (K,L) ∈ τ2 with K 6= L, either the "lenght" (i.e. the (d-1) Lebesgue measure)

of K̄ ∩ L̄ is 0 or K̄ ∩ L̄ = σ̄ for some σ ∈ ε. In the latter case, we shall write σ = K|L
and εint = σ ∈ ε, ∃(K|L) ∈ τ2, σ = K|L. For any K ∈ τ , we shall denote by NK the set
of boundary control volumes of K, i.e. NK = {L ∈ τ,K|L ∈ εK}.

(iv) The family of points (xK)K∈ τ is such that xK ∈ K (for all K ∈ τ) and, if σ = K|L, it
is assumed that the straight line (xK , xL) is orthogonal to σ.

For a control volume K ∈ τ , we will denote by m(K) its measure and εext,K the subset of the
edges of K included in the boundary ∂Ω. If L ∈ NK , m(K|L) will denote the measure of the

edge between K and L, τK|L the "transmissibility" through K|L, defined by τK|L = m(K|L)
d(xK ,xL) .

Similarly, if σ ∈ εext,K , we will denote by m(σ) its measure and τσ the "transmissibility" through

σ, defined by τσ = m(σ)
d(xK ,σ) . One denotes εext = ∪K∈ τ εext,Kan for σ ∈ εext, one denotes by Kσ

the control volume K such that σ ∈ εext,K . The size of the mesh τ is defined by

size(τ) = max
K∈ τ

diam(K), (8)

and a geometrical factor, linked with the regularity of the mesh, is defined by

reg(τ) = max
K∈ τ

(cardεK , max
σ∈ εK

diam(K)

d(xK , σ)
). (9)

Definition 2 (Time discretization of (0, T )). A time discretization of (0, T ) is given by an
integer value N and by an increasing sequence of real values (tn)n∈[0,N+1] with t0 = 0 and

tN+1 = T . The time step is uniform and defined by δt = tn+1 − tn, for n ∈ [0, N ].

Definition 3 (Space-time discretization of Ω × (0, T )). A finite volume discretization D of
Ω × (0, T ) is a family D = (τ, ε, (xK)K∈ τ ,N, (t

n)n∈[0,N ]), where τ, ε, (xK)K∈ τ is an admissible
mesh of Ω in the sense of Definition 1 and N, (tn)n∈[0,N+1] is a time discretization of (0, T ) in
the sense od Definition 2. For a given mesh D, one defines :

size(D) = max(size(τ), δt),
reg(D) = reg(τ).

Let us now introduce the space of piecewise constant functions associated with an admissible
mesh and some "discrete H1

0 " norm for this space. This discrete norm will be used to obtain
some estimates on the approximate solution given by a finite volume scheme.

Definition 4. Let Ω be an open boundedpolygonal subset of R
d, and τ an admissible mesh.

Define X(τ) as the set of functions from Ω to R which are constant over each control volume of
the mesh.
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Definition 5 (Discrete norms). Let Ω be an open bounded polygonal subset of R
d, and τ an

admissible finite volume mesh in the sense of Definition 1. For u, v ∈ X(τ) we define a scalar
product by

[u, v]1, τ =
∑

σ∈ε

TsigmaDσuDσv =
∑

σ∈εint

σ=K|L

TKL(uL − uK)(vL − vK) +
∑

σ∈εext

TKσuKσvKσ (10)

where, for any σ ∈ ε, Tσ = m(σ)
dσ

and

Dσu = |uKuL| if σ ∈ εint, σ = K|L,

Dσu = |uK | if σ ∈ εK,ext,

where uK denotes the value taken by u on the control volume K and the sets ε, εint, εext, εK,ext

are definied in definition 1. We note ‖‖1,τ the discrete H1
0 norm associated.

The schemes :

Let D be a finite volume discretization of Ω × (0, T ). Let us now define an implicit up-
wind finite volume scheme, the discrete unknowns are u = (un+1

K )
K∈ τ, n ∈ [0, T ] and ũ =

(ũn+1
K )

K∈ τ, n ∈ [0, T ] and verify :

u0
K = ψ(xK) = ψK , (11)

un+1
K = max

(

ũn+1
K , u0

K

)

, (12)

mK

(

ũn+1
K − un

K

)

+ ∆t
∑

σ∈εK

vK,σu
n+1
σ,+ + α∆t[un+1, 1K ]1, τ + r∆tmKu

n+1
K = 0, (13)

with,
~v ∈ R

d,

vK,σ = −
∫

σ
~v.~nKσdγ(x) = −~v.~nKσm(σ).

un
σ,+ =







un
K si σ ∈ εint, σ = K|L, vK,σ ≥ 0
un

L si σ ∈ εint, σ = K|L, vK,σ < 0
un

K si σ ∈ εK,ext, vK,σ ≥ 0
0 si σ ∈ εK,ext, vK,σ < 0

Remark 1. we can also consider a implicit central finite volume scheme :

u0
K = ψ(xK) = ψK , (14)

un+1
K = max

(

ũn+1
K , u0

K

)

, (15)

mK

(

ũn+1
K − un

K

)

+∆t








∑

σ∈εK,int

σ=K|L

vKL
un+1

K + un+1
L

2
+

∑

σ∈εK,ext

vKσ
un+1

Kσ

2








+α∆t[un+1, 1K ]1, τ+r∆tmKu
n+1
K = 0.

(16)

Definition 6 (Approximate solution). Let D be an admissible discretization of Ω × (0, T ) in
the sense of definition 3. The approximate solution (C∞ in time on Ω × (0, T ))of (3) − (6)
associated to the discretization D is defined almost everywhere in Ω × (0, T ) by :

uD(x, t) =
t− n∆t

∆t
un+1

K +
(n+ 1)∆t− t

∆t
un

K ,∀(x, t) ∈ K× [n∆t, (n+1)∆t],∀n = 0 . . . N,∀K ∈ τ.
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Thanks to this Definition, one gets almost everywhere in Ω × (0, T ) :

∂uD(x, t)

∂t
=
un+1

K − un
K

∆t
,∀t ∈ [n∆t, (n+ 1)∆t],∀x ∈ K, ∀n = 0 . . . N,∀K ∈ τ.

3 Existence of the solution and stability results for the implicit

schemes

Lemma 1. Under Assumptions 1, let D be a discretization of Ω × (0, T ) in the sense of Defini-
tion 3. If (un

K)K∈ τ
n∈N

is a solution of the implicit upwind finite volume scheme (11) - (13), then

there exists a sequence (θn
K)n=0...N

K∈ τ
∈ [0, 1] such that :

un+1
K − un

K = θn
K

(

ũn+1
K − un

K

)

,∀K ∈ τ, ∀n = 0 . . . N.

Lemma 2 (Existence and uniqueness). Under Assumptions 1, let D be a discretization of Ω ×
(0, T ) in the sense of Definition 3. Then there exists a unique solution (un

K)K∈ τ
n∈N

to the system

of equations (11) - (13).

Proposition 1 (L∞ and L2 estimate). Under Assumptions 1, let D be a discretization of Ω ×
(0, T ) in the sense of Definition 3 and let (un

K) K∈ τ
n∈[0,N+1]

be the unique solution of the scheme (11)

- (13). Then,
|un

K | ≤ ‖ψ‖L∞(Ω),∀K ∈ τ, ∀n ∈ [0, N + 1],

and
1

2

∑

K∈ τ
mK(ul+1

K )2 +
∑

K∈ τ
mK

l∑

n=0

(un+1
K − un

K)2 + α
l∑

n=0

∆t[un+1, un+1]1, τ ≤

‖ψ‖2
L∞(Ω)m(Ω) + αT [u0, u0]1,τ ,∀l ≤ N

4 Estimate

Corollary 1. Under Assumptions 1, let (Dm)m∈N be sequence of discretization of Ω × (0, T )
in the sense of Definition 3 such that ∆tm →

︸︷︷︸

m→+∞

0, size(τm) →
︸︷︷︸

m→+∞

0, ζ ∈ R such that ζ ≥

reg(Dm) ∀m ∈ N,and let (un
K) K∈ τ

n∈[0,N+1]
be the unique solution of the scheme (11) - (13). Then,

there exists U ∈ L2 (Ω×]0, T [), and a subsequence noted (uDm
)m∈N

such that uDm
⇀
︸︷︷︸

m→+∞

U

for the weak topology of L2 (Ω×]0, T [) .

Proposition 2. Under Assumptions 1, let (Dm)m∈N be sequence of discretization of Ω × (0, T )
in the sense of Definition 3, ζ ∈ R such that ζ ≥ reg(D) ,and let (un

K) K∈ τ
n∈[0,N+1]

be the unique

solution of the scheme (11) - (13). Then, there exists C > 0 only depending on ψ, α, Ω, T , ~v,
r, such that :

α[uN+1, uN+1]1, τ +
N∑

n=0

∆t
∑

K∈ τ
mK

(

un+1
K − un

K

∆t

)2

≤ C(u0, ψ, α,Ω, T,~v, r).
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Corollary 2. Under Assumptions 1, let (Dm)m∈N be sequence of discretization of Ω × (0, T )
in the sense of Definition 3 such that size(τm) →

︸︷︷︸

m→+∞

0, ζ ∈ R such that ζ ≥ reg(D),and let

(un
K) K∈ τ

n∈[0,N+1]
be the unique solution of the scheme (11) - (13). Then, the set {∂uD

∂t
}N, τ is

borned in L2(Ω×]0, T [) and so, there exists Z ∈ L2(Ω×]0, T [) such that, op to a subsequence,

{∂uDm

∂t
}m∈N tends to Z in the weak topology of L2(Ω×]0, T [) as m → +∞.

Corollary 3 (Space-translate and Time-Translate estimate). Under Assumptions 1, let D be a
discretization of Ω × (0, T ) in the sense of Definition 3, ζ ∈ R such that ζ ≥ reg(D) and let uD

the approximate solution in the sense of Definition 6 be prolonged by zero on R
d+1 \ Ω×]0, T [.

Then there exists C2 only depending on T, ψ, α, τ, d and C3 only depending on T, ψ, α, d, r, ~v such
that :

‖uD(.+ η, .) − uD(., .)‖2
L2(Rd+1) ≤ C2|η| (|η| + 4size(τ)) , ∀η ∈ R

d.

and
‖uD(., .+ λ) − uD(., .)‖2

L2(Rd+1) ≤ λC3, ∀λ ∈]0, T [.

With this preceding estimates, one can apply the Riesz-Frechet-Kolmogorov compactness crite-
rion.

5 Compactness

Corollary 4. Under Assumptions 1, let (Dm)m∈N be sequence of discretization of Ω × (0, T )
in the sense of Definition 3 such that ∆tm →

︸︷︷︸

m→+∞

0, size(τm) →
︸︷︷︸

m→+∞

0, ζ ∈ R such that ζ ≥

reg(Dm) ∀m ∈ N,and let (un
K) K∈ τ

n∈[0,N+1]
be the unique solution of the scheme (11) - (13). Then,

up to a subsequence,
uDm

→
︸︷︷︸

m→+∞

U dans L2(Ω×]0, T [).

where U is defined by the Corollary 1 and checks U ∈ L2
(

0, T ;H1 (Ω)
)

, U(t, .) = 0a.e. on ∂Ω, a.e.t ∈
]0, T [, and ∂U

∂t
= Za.e. on ]0, T [×Ω.

6 Convergence

Proposition 3. Under Assumptions 1, let (Dm)m∈N be sequence of discretization of Ω × (0, T )
in the sense of Definition 3 such that ∆tm →

︸︷︷︸

m→+∞

0, size(τm) →
︸︷︷︸

m→+∞

0, ζ ∈ R such that ζ ≥

reg(Dm) ∀m ∈ N,and let (un
K) K∈ τ

n∈[0,N+1]
be the unique solution of the scheme (11) - (13). Let

(uDm
)m∈N the sequence of approximate solution in the sense of the Definition ??, and let

U the limit of a subsequence (uDm
)m∈N

thanks to Corollary 4. Then, for all function w ∈
L2
(

0, T ;H1
0 (Ω)

)

, such that w(t, .) ≥ ψ a.e. on Ω, the following inequality holds :

∫

Ω

∂U

∂t
(x, t)(w(x, t) − U(x, t)) + α∇U(x, t)∇(w(x, t) − U(x, t))+

rU(x, t)(w(x, t) − U(x, t)) + (w(x, t) − U(x, t))div(U(x, t)~v)dx ≥ 0 p.p t ∈]0, T [.
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7 Numerical Results

7.1 Localization and Stability

We define three localizations.

Lemma 3 (Localization). We consider,

PAloc(0, s1, s2) = sup
τ∈T0,T

E

[

e−rτ∧T
0,s

loc ψ(S1
τ∧T

0,s

loc

, S2
τ∧T

0,s

loc

)

]

,

with T 0,s
loc = inf{t > 0, |S1

t − s1| < loc, |S2
t − s2| < loc}.

Then, if ψ(s1, s2) = (K − min(s1, s2))+,

|PA(0, s1, s2) − PAloc(0, s1, s2)| ≤ 4K

[

2 −N(
loc− a1√
Tσ1

) −N(
loc− a2√
Tσ2

)

]

if ψ(s1, s2) = (max(s1, s2) −K)+,

|PA(0, s1, s2) − PAloc(0, s1, s2)| ≤

8

[

exp

(

s1 + T (|r − λ1| +
σ2

1

2
)

)

+ exp

(

s2 + T (|r − λ2| +
σ2

2

2
)

)]√

(2 −N(
loc− a1√
Tσ1

) −N(
loc− a2√
Tσ2

)

if ψ(s1, s2) = (s1 − µs2)+,

|PA(0, s1, s2)−PAloc(0, s1, s2)| ≤ 8 exp

(

s1 + T (|r − λ1| +
σ2

1

2
)

)√

(2 −N(
loc− a1√
Tσ1

) −N(
loc− a2√
Tσ2

)

where, ai = T |ri − λi − σ2
i

2 | and N is the repartition function of a standard normal distribution.

One uses the following polynomial approximation for the repartition function of a standard
normal distribution :

N(x) ≈ 1 − 1√
2Π

exp

(

−x2

2

)

(b1t+ b2t
2 + b3t

3 + b4t
4 + b5t

5), si x > 0,

with
p = 0.2316419
b1 = 0.319381530
b2 = −0.356563782
b3 = 1.781477937
b4 = −1.821255978
b5 = 1.330274429
t = 1

1+px
.

Explicit central finit volume scheme :

u0
K = ψK , (17)

un+1
K = max

(

ũn+1
K , u0

K

)

, (18)

mK

(

ũn+1
K − un

K

)

+ ∆t
∑

L∈NK

(
un

K + un
L

2

)∫

K|L
−~v.~nKLdγ(x)

︸ ︷︷ ︸

vKL

+∆t
∑

σ∈εK,ext

un
K

2

∫

σ
−~v.~nKσdγ(x)

︸ ︷︷ ︸

kKσ

+

α∆t[un, 1K ]1, τ + r∆tmKu
n
K = 0.

(19)
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Explicit upwind finite volume scheme

u0
K = ψK , (20)

un+1
K = max

(

ũn+1
K , u0

K

)

, (21)

mK

(

ũn+1
K − un

K

)

+ ∆t
∑

σ∈εK

vKσu
n
σ,+ + α∆t[un, 1K ]1, τ + r∆tmKu

n
K = 0. (22)

with,

~v = ((r−λ1−σ2
1

2
) cos(θ)+(r−λ2−σ2

2

2
) sin(θ),

(

(r − λ2 − σ2
2

2
) cos(θ) − (r − λ1 − σ2

1

2
) sin(θ)

)

(
α

β
)

1

2 ).

Lemma 4 (L∞ stability). Let D be an admissible discretization of Ω × (0, T ) in the sense of
definition 3.
Let (un

K)K,n be the unique solution of the explicit central scheme (17) - (19).

If, ∆t ≤ mK

mK
r
2

+ α
2

∑

σ∈εK,ext
TKσ+

∑

L∈NK

(

αTKL +
|vKL|

4

) ,∀K ∈ τ and if TKσ ≥ 1
2α

∣
∣
∣
∣

∫

σ
−~v. ~nKσdγ(x)

∣
∣
∣
∣ ,∀K ∈

τ, ∀σ ∈ εK , then :

‖un+1
τ ‖L∞ ≤ ‖u0

τ ‖L∞ ,∀n = 0 . . . N.

Let (un
K)K,n be the unique solution of the explicit upwind scheme (20) - (22).

If ∆t ≤ mK

rmK+(
∑

σ∈εK
(vKσ)++αTKσ)

,∀K ∈ τ , then :

‖un+1
τ ‖L∞ ≤ ‖u0

τ ‖L∞ ,∀n = 0 . . . N.

7.2 Pratical implementation and results

We choose to evaluate the American Put option on the minimum of two underlying assets with

payoff ψ(S1, S2) =
(

K − min(S1, S2)
)+

. We assume that the initial values of the stock prices

are s1 = 100, s2 = 100, the volatility σ1 = 0.2, σ2 = 0.2, the interest rate r = log(1.05), the
continuous dividend rates δ1 = 0, δ2 = 0, the exercice price K = 100, the maturity T = 1 and
the correlation ρ = 0. We take as the "true" reference price, the one issued of the multinomial
BEG tree-method with 3000 step and compare it wich the following algrithm :

1. the explicit DPEXP algorithm

2. the DPADI algorithm

3. the BEG algorithm

4. the explicit finite volume algorithm

5. the explicit finite volume algorithm with a smaller time step

For the last algorithm, we multiply by 0.6 the time step obtained by the stability condition.
All computation was perfomed on a PC Pentium IV 2.4 GH computer with 512 Mb of RAM.
The "centers" of control volumes are defined as follow :

xK = x[i ∗N + j] = (v1 − loc+ i ∗ h, v2 − loc+ j ∗ g),∀(i, j) ∈ [0, N ]2
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N ×M DP-EXP DP-ADI BEG FV-EXP FV-EXPdt*0.6 TRUE

100 × 100 10.3065;1s 10.2947;1s 10.2974;1s 10.3196;1s 10.3081;1s 10.3080

200 × 200 10.3054;6s 10.3031;2s 10.3030;1s 10.3108;3s 10.3095;4s 10.3080

300 × 300 10.3073;32s 10.3050;7s 10.3048;1s 10.3098;11s 10.3084;19s 10.3080

400 × 400 10.3082;100s 10.3058;18s 10.3057;2s 10.3085;35s 10.3082;59s 10.3080

Table 1: American Put option on the minimum of two underlying assets

where the space steps are defined by h = 2∗loc
N

and g =
2∗loc∗

√
α
β

N
. The control volume K is the

rectangle centered in xK with the measure m(K) = hg.
It appears that the numerical FV-EXP method are finally faster than DP-EXP and slower than
DP-ADI or BEG.
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