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1 Preliminaries and notation

Most of what is presented here is taken from [HKP]. Let P (t, T ) denote the value at

time t of a zero-coupon bond which matures and pays unity at time T . We denote

by Ft the information available at time t from observing the values of these assets,

i.e. Ft := σ(P (t, T ); t ∈ R+). Let (N,N) be a numeraire pair, i.e. a numeraire (Nt)

and a measure N equivalent to the original measure such that the P̃ (t, T ) := P (t,T )
Nt

are {Ft}-martingales.

Given payment dates S = (S1, . . . , SM) and daycount fractions τ = (τ1, . . . , τM), we

define

A
S,τ
t :=

M∑

j=1

τj P (t, Sj) principal value of basis point (PVBP) .

Given, in addition, a (swap starting) date T , we define

R
S,τ,T
t :=

P (t, T ) − P (t, SM)

A
S,τ
t

swap rate .

The corresponding (payer) swaption with maturity T and strike K is defined by the

following payoff (at T ) :

A
S,τ
T (RS,τ,T

T − K)+ (payoff of swaption) .

The corresponding digital (payer) swaption with maturity T and strike K is defined

by the following payoff (at T ) :

A
S,τ
T 1

R
S,τ,T

T
>K

(payoff of digital swaption) .

Note that, in the particular case M = 1, the quantity R
S,τ,T
t is nothing but the

(simply compounded) forward rate as seen at time t for the period [T, S].

1
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2 The general model

For i = 0, . . . , m − 1, we fix payment dates Si = (Si
1, . . . , Si

Mi
), daycount fractions

τ i = (τ i
1, . . . , τ i

Mi
) and a swap starting date Ti. Now we denote

Ai
t := A

Si,τ i

t and Ri
t := R

Si,τ i,Ti

t .

We make the following hypotheses:

(i) (xt) is a one-dimensional Markov process under N with a known law.

(ii) For all i = 0, . . . , m − 2, we have Ri
Ti

= Ri(xTi
) for some strictly increasing (but

apriori unknown !) function Ri. [Here we use the fact that (xt) is one-dimensional.]

(iii) We have NTm−1 = Nm−1(xTm−1) for some (known) function Nm−1.

(iv) For all i = 0, . . . , m − 2 and j = 1, . . . , Mi, we have: if Si
j 6∈ {Ti+1, . . . , Tm−1},

then Si
j > Tm−1 and P (Tm−1, Si

j) = Pi,j(xTm−1) for some (known) function Pi,j.

In order to price e.g. Bermudan swaptions with our model by using a tree for

the process (xt), it is crucial to find the functional forms NTi
= Ni(xTi

) for i =

0, . . . , m − 2; see Section 6 for details. A first step towards these functional forms is

the following lemma. We employ the usual evolution family of operators (Ut,s)t≥s≥0

associated to the process (xt):

Ut,sf(y) := EN( f(xt) | xs = y ) .

Recall that we have the following property:

EN( f(xt) | Fs ) = Ut,sf(xs) .

Lemma 2.1. Let i ∈ {0, . . . , m − 2}. Suppose that, for all k = i + 1, . . . , m − 1, we

have NTk
= Nk(xTk

) for some (known) function Nk.

(a) For all j = 1, . . . , Mi, we have

P̃ (Ti, S
j
i ) = P̃i,j(xTi

) , where P̃i,j :=





UTk,Ti

1
Nk

Si
j = Tk with k ∈ {i + 1, . . . , m − 1}

UTm−1,Ti

Pi,j

Nm−1
otherwise

.

(b) We have

Ãi
Ti

= Ãi(xTi
) , where Ãi :=

Mi∑

j=1

τ i
j P̃i,j .

Proof. (a) In the first case, the assertion follows from our hypothesis on the NTk
:

P̃ (t, Si
j) = EN( P̃ (Tk, Tk) | Ft ) = EN( 1

Nk(xTk
)

| Ft ) =
(
UTk,t

1
Nk

)
(xt) .

In the second case, the assertion is seen as follows:

P̃ (t, Si
j) = EN( P̃ (Tm−1, Si

j) | Ft ) = EN(
Pi,j(xTm−1

)

Nm−1(xTm−1
)
| Ft ) =

(
UTm−1,t

Pi,j

Nm−1

)
(xt) ,
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where we used the hypotheses (iii) and (iv) in the second step.

(b) follows directly from (a) and the definition of Ãi
Ti

:

Ãi
Ti

=
Mi∑

j=1

τ i
j P̃ (Ti, Si

j) =
Mi∑

j=1

τ i
j P̃i,j(xTi

) . ✷

By now, we know how to compute Ãi if we have the Ni+1, . . . , Nm−1. But how to

compute Ni in order to pass to the next iteration step ? At first, we compute Ri

by calibrating our model to the digital Ri
Ti

-swaption. Obviously, its value at time 0

given by our model is

V
i,N

0 (K) := EN( N0

NTi

Ai
Ti

1Ri
Ti

>K ) = N0 EN( Ãi
Ti

1Ri
Ti

>K ) .

In order to represent its market value at time 0, we consider strictly decreasing

functions V
i,mkt

0 : R+ → R+.

Proposition 2.2. Let i ∈ {0, . . . , m−2}. Suppose that, for all k = i+1, . . . , m−1,

we have NTk
= Nk(xTk

) for some (known) function Nk. Suppose furthermore that

we calibrate our model to the digital Ri
Ti

-swaption, i.e.

V
i,mkt

0 (K) = V
i,N

0 (K) for all strikes K.

(a) We have

Ri =
(
V

i,mkt
0

)−1
◦ Ji , where Ji(y) := N0 UTi,0 (Ãi 1(y,∞))(x0) .

(b) We have NTi
= Ni(xTi

), where the function Ni is given by

1

Ni

= P̃i,Mi
+ Ãi Ri .

Proof. (a) is obvious in view of

V
i,mkt

0 (K) = V
i,N

0 (K) = N0 EN( Ãi
Ti

1Ri
Ti

>K )

= N0 EN( Ãi(xTi
) 1Ri(xTi

)>K ) = N0 EN( Ãi(xTi
) 1(R−1

i
(K),∞)(xTi

) )

= N0 UTi,0 (Ãi 1(R−1
i

(K),∞))(x0) = Ji(R
−1
i (K)) ,

where we used hypothesis (ii) in the (third and) fourth step. (b) follows directly

from
1

NTi

= P̃ (Ti, Si
Mi

) + Ãi
Ti

Ri
Ti

which is just a reformulation of the definition of Ri
Ti

. ✷
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Remark 2.3. Recall that if the swap rate (Ri
t) is of the type

dRi
t = σ̃i Ri

t dW Ai

t

then the value at time 0 of the digital Ri
Ti

-swaption is given by Black’s formula:

V
i,Ai

0 = Ai
0 EAi

(1Ri
Ti

>K) = Ai
0 Φ




log

(
Ri

0
K

)
− (σ̃i)2Ti

σ̃i
√

Ti


 ,

where Φ denotes the cumulative normal distribution function. If we suppose V
i,mkt

0

to be of this type, then one easily checks that

(
V

i,mkt
0

)−1
(x) = Ri

0 exp
(

−(σ̃i)2Ti − σ̃i
√

TiΦ
−1( x

Ai
0
)
)

.

3 A LIBOR model

Here we consider the particular case of our general model where Mi = 1 and Si
1 =

Ti+1 for i = 0, . . . , m−1 and Tm is some final payment date. In particular, hypothesis

(iv) is empty. We denote

P̃i := P̃i,1 and τi := τ i
1 = τ(Ti, Ti+1) .

We have Ai
t = τiP (t, Ti+1) and Ri

t = R(t, Ti, Ti+1), the forward rate, hence

P̃i = UTi+1,Ti

1
Ni+1

and Ãi = τi P̃i

in the notation of Lemma 2.1. Suppose

dRm−1
t = σm−1

t Rm−1
t dW N

t , where σm−1
t = σeat (1)

for some σ > 0 and some mean reversion parameter a. We choose

Nt := P (t, Tm) and xt :=
∫ t

0
σm−1

s dW N
s .

Then the functional form of Rm−1
Tm−1

is evident:

Rm−1
Tm−1

= Rm−1
0 exp

(
−1

2

∫ Tm−1

0 (σm−1
s )2 ds + xTm−1

)
= Rm−1(xTm−1) ,

where the function Rm−1 is obviously given by

Rm−1(x) := Rm−1
0 exp

(
−1

2

∫ Tm−1

0 (σm−1
s )2 ds + x

)

= τ−1
m−1

(
P (0,Tm−1)

P (0,Tm)
− 1

)
exp

(
−1

2
Σ2

Tm−1,0 + x
)

, Σ2
t,s := σ2 e2at−e2as

2a
.



?? pages 5

Hence, since NTm−1 = P (Tm−1, Tm) = (1 + τm−1R
m−1
Tm−1

)−1, the functional form of

NTm−1 required in hypothesis (iii) is easy to deduce: NTm−1 = Nm−1(xTm−1), where

Nm−1(x) := (1 + τm−1 Rm−1(x))−1 = (1 + C2 ex)−1
, (2)

where the constant C2 is given by

C2 :=
(

P (0,Tm−1)
P (0,Tm)

− 1
)

exp(− 1
2

Σ2
Tm−1,0) . (3)

Obviously, xt given xs is normally distributed with mean xs and variance Σ2
t,s. In

other words:

Ut,sf(y) = 1√
2πΣt,s

∫

R

f(x) exp
(

− (y−x)2

2Σ2
t,s

)
dx .

For the iteration step (to deduce Ni from Ni+1), it suffices to represent 1
Ni

in terms

of P̃i since

P̃i = UTi+1,Ti

1
Ni+1

. (4)

This representation is obtained from Proposition 2.2 :

1
Ni

= P̃i

(
1 + τi (V i,mkt

0 )−1 ◦ Ji

)
, (5)

where the function Ji is given by

Ji(y) := P (0, Tm) τi UTi,0 (P̃i 1(y,∞))(0) . (6)

We can summarize the algorithm for the computation of the functional forms Nm−1, . . . , N0

as follows:

1. Initialization (at time Tm−1) : Choose Nm−1 as in (2) .

2. For i = m − 2, . . . , 0 : Define P̃i as in (4) and then J as in (6). Now obtain Ni

via (5).

Observe that the calibration instruments corresponding to the V
i,mkt

0 are the digital

(Ti, Ti+1)-caplets defined by the following payoff at Ti :

τi P (Ti, Ti+1) 1R(Ti,Ti,Ti+1)>K .

For i = m − 1, it can be evaluated explicitly due to the dynamics in (1). This could

be used for the choice of the parameter σ in (1).

Proposition 3.1. The current value of the digital (Tm−1, Tm)-caplet in our LIBOR

model is

V
m−1,N

0 (K) := τm−1 P (0, Tm) Φ
(

σ−1
Q [ log( R(0,Tm−1,Tm)

K
) −

σ2
Q

2
]
)

,
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where the parameter σQ is given by

σQ := σ

√
e2aTm−1 −1

2a
.

Moreover, we have for all x ∈ (0, τm−1 P (0, Tm)) that V
m−1,N

0 (K) = x if and only if

σ =

√
p2

4
−q − p

2√
e2aTm−1 −1

2a

, where p := 2Φ−1( x
τm−1 P (0,Tm)

) , ăq := −2 log
(

Rm−1
0

K

)
.

The proof is straightforward and therefore omitted.

4 A (cancellable) swap model

Here we consider briefly the particular case of our general model where Mi = m − i

and Si
j = Ti+j for i = 0, . . . , m − 1 , j = 1, . . . , Mi and Tm is some final payment

date.

Since Si = (Ti+1, . . . , Tm), we only have to give the functional form of P (Tm−1, Tm)

in order to check hypothesis (iv). But if we take the numeraire Nt = P (t, Tm) as in

the LIBOR model in Section 3, then P (Tm−1, Tm) = NTm−1 = Nm−1(xTm−1), hence

hypothesis (iv) is implied by hypothesis (iii). Moreover, we have

Ai
t =

m−i∑

j=1

τ i
j P (t, Ti+j) . (7)

As in the LIBOR model, we suppose

dRm−1
t = σm−1

t Rm−1
t dW N

t , where σm−1
t = σeat

for some σ > 0 and some mean reversion parameter a and choose as before

xt :=
∫ t

0
σm−1

s dW N
s .

Now we can again compute the desired functional forms but, due to (7), they are

more complicated than in the LIBOR model in Section 3 where we had Ai
t =

τ i
1P (t, Ti+1).

Observe that here the natural calibration instruments are the digital (European)

(Ti, . . . , Tm−1)-swaptions.
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5 Numerical results: Bermudan swaption pricing

in the LIBOR model

In this section, we will apply the (standard) tree method from Section 6 in order to

price Bermudan swaptions in the LIBOR model of Section 3. Recall that, in this

case, the calibrating instruments used in Proposition 2.2 are the digital (Ti, Ti+1)-

caplets with the following payoff at Ti :

τi P (Ti, Ti+1) 1R(Ti,Ti,Ti+1)>K .

Since we do not have real data for their market prices V
i,mkt

0 (K), we assume them

to be given by a standard Hull-White model for the short rate (rt):

drt = [ θ̄t − ārt ]dt + σ̄dWt . (8)

The proof of the following result on the current price of digital caplets in the Hull-

White model is straight-forward and therefore omitted.

Proposition 5.1. Consider the digital (T, S)-caplet defined by the payoff at T of

τ P (T, S) 1R(T,T,S)>K ,

where τ denotes the year fraction from T to S. Its current value in the Hull-White

model (8) is

V HW
0 (K) := τ P (0, S) Φ

(
σ−1

P [ log( R(0,T,S) + τ−1

K + τ−1 ) −
σ2

p

2
]
)

,

where the parameter σP is given by

σp := σ̄ e−āT −e−āS

ā

√
e2āT −1

2ā
.

Moreover, we have for all x ∈ (0, τP (0, S)) :

(V HW
0 )−1(x) = τ−1 P (0,T )

P (0,S)
exp

(
−

σ2
P

2
− σP Φ−1( x

τP (0,S)
)

)
− τ−1 .

In the following, we denote

V
i,HW

0 (K) := V HW
0 (K) for T = Ti , S = Ti+1 , τ = τi .

We proceed as follows. We fix the Hull-White parameters ā and σ̄ and assume that

the market prices V
i,mkt

0 (K) are given by the corresponding Hull-White prices:

V
i,mkt

0 (K) = V
i,HW

0 (K) for i = 0, . . . , m − 2 and all K .
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Now we choose our LIBOR model parameters a and σ in (1). Then iterative cali-

bration to the digital (Ti, Ti+1)-caplets for i = m − 2, . . . , 0 is used as in Proposition

2.2 [see (5) and (6) ] to obtain the functional forms Nm−2, . . . , N0. In other words,

we suppose that

V
i,N

0 (K) = V
i,HW

0 (K) for i = 0, . . . , m − 2 and all K .

Note that the iterations i = m − 2, . . . , 0 involve (iterated) numerical integration.

Finally, will price the Bermudan (payer) swaption explained in Section 6.3: with

strike K0, with n exercise times T0, . . . , Tn−1 and m swap payment dates T1, . . . , Tm.

The Bermudan swaption is priced on the one hand in our LIBOR model via a tree for

the process (xt) with Nx time steps as explained in Section 6, on the other hand in

our Hull-White model via a tree for the short rate (rt) with Nr time steps. We denote

by Ndisc the number of discretizations steps for the functional forms Nm−2, . . . , N0.

Our parameter values are:

ā = 0.1 , σ̄ = 0.01

a = ā , σ = 0.09

ITM: K0 = 0.0589092 , ATM: K0 = 0.0687274 , OTM: K0 = 0.0785456

n = 1, 3, 5 , m = 5 , Ti = 2 + i
2

Moreover, we use the standard (non-flat) PREMIA data for the intial yield curve.

One obtains the following prices (given in BP); the third column of prices can be

seen as Hull-White benchmarks.

n Strike K0 Nx = 50 , Ndisc = 5000 Nr = 150 Nr = 1500

1 ITM 231.33 231.77 231.75

1 ATM 97.73 97.70 97.76

1 OTM 28.59 27.96 27.92

3 ITM 249.38 249.85 249.93

3 ATM 122.60 123.16 122.98

3 OTM 48.83 47.89 47.87

5 ITM 252.15 253.35 253.36

5 ATM 127.68 129.01 128.94

5 OTM 54.51 54.41 54.30

With only one fixed value for the LIBOR model parameters a and σ it might be

hopeless to reobtain all the Hull-White prices of the rather different swaptions we

consider: European (n = 1) and Bermudan (n = m) swaptions which ITM, ATM

or OTM.
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6 Pricing of Markov-functional Bermudan options

via trees and Monte Carlo (Appendix)

Consider the Bermudan option given by the payoffs h0, . . . , hn−1 at the exercise times

0 < T0 < . . . < Tn−1 . Its discounted value ṼT0 at time T0 is given by

ṼT0 = sup
τ∈T{0,...,n−1}

E( h̃τ | FT0 ) , where h̃i := hi

NTi

,

(Nt) is the numeraire and T{0,...,n−1} denotes the set of stopping times with values in

{0, . . . , n − 1}. The discounted value Ṽ0 at time 0 can be computed as follows via

dynamic programmation:

ṼTn−1 = h̃n−1

ṼTi
= E( ṼTi+1

| FTi
) ∨ h̃i for i = n − 2, . . . , 0

Ṽ0 = E( ṼT0 )

Now suppose that the h̃i have the following Markov-functional form:

h̃i = fi(xTi
) for i = 0, . . . , n − 1 . (9)

Here (xt) is a Markov process with values in R
D. Then simulating (xt) by trinomial

trees or Monte Carlo yields standard methods to approximate Ṽ0.

6.1 Trinomial trees

Suppose (D = 1 and) that, for our Markov process (xt), we are given a trinomial

tree built for the time instants

0 = t0 < t1 < . . . < tN = Tn−1 .

For i = 0, . . . , n − 1, let td(i) = Ti, in particular d(n − 1) = N . Suppose that, at

time tl, the tree has Sl nodes and that, from the j-th node at time tl, one can move

to the (kl,j + 1)-th, the kl,j-th and the (kl,j − 1)-th node at time tl+1. In order

to approximate the discounted present value Ṽ0 of the Bermudan option using our

given trinomial tree, we only need (apart from the payoff functions f0, . . . , fn−1) its

following quantities:

• For l = 0, . . . , N − 1 and j = 0, . . . , Sl − 1, let pu
l,j, pm

l,j and pd
l,j be the up-,

middle- and down-probability to move from the j-th node at time tl to the

(kl,j + 1)-th, the kl,j-th and the (kl,j − 1)-th node at time tl+1
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• For i = 0, . . . , n − 1 and j = 0, . . . , Sd(i) − 1, let xd(i),j be the value of x at the

j-th node at time td(i) = Ti (in other words, the xd(i),j are the values of xTi
in

the tree).

Then the following tree algorithm yields the approximation ṽ 0
0,0 of Ṽ0. The ṽl,j

represent the discounted value of the Bermudan option at time tl.

1. Initialization (at time Tn−1 = td(n−1) = tN) :

ṽN,j := fn−1(xN,j) for j = 0, . . . , SN − 1 .

2. For i = n − 1, . . . , 1 :

(a) For l = d(i) − 1, . . . , d(i − 1), we set

ṽl,j := pu
l,j ṽl+1,kl,j+1 + pm

l,j ṽl+1,kl,j
+ pd

l,j ṽl+1,kl,j−1 for j = 0, . . . , Sl − 1 .

(b) Early exercise at Ti−1 = td(i−1):

ṽd(i−1),j := ṽd(i−1),j ∨ fi−1(xd(i−1),j) for j = 0, . . . , Sd(i−1) − 1 .

3. For l = d(0) − 1, . . . , 0, we set

ṽl,j := pu
l,j ṽl+1,kl,j+1 + pm

l,j ṽl+1,kl,j
+ pd

l,j ṽl+1,kl,j−1 for j = 0, . . . , Sl − 1 .

6.2 Monte Carlo (Longstaff-Schwartz algorithm)

Suppose that, for our Markov process (xt), we are given M Monte Carlo sam-

ples (xm
T0

, . . . , xm
Tn−1

), where m = 0, . . . , M − 1. Suppose furthermore that, for

i = 0, . . . , n − 2, we have suitably chosen functions gi
0, . . . , gi

d(i)−1 representing a

basis of a d(i)-dimensional subspace of L2(R
D, µi), where µi denotes the law of xTi

.

For α ∈ R
d(i) and x ∈ R

D, we denote (α.gi)(x) =
∑d(i)−1

j=0 αj gi
j(x).

Then, the following Longstaff-Schwartz algorithm approximates the current dis-

counted value Ṽ0 of our Bermudan option. Here, at the i-th iteration step, ṽ repre-

sents ṼTi
, the discounted value of the Bermudan option at Ti.

1. Initialization (at time Tn−1) :

ṽm := fn−1(x
m
Tn−1

) for m = 0, . . . , M − 1 .

2. For i = n − 2, . . . , 0 :

(a) Let α ∈ R
d(i) be the unique solution of the least square problem

min
α∈Rd(i)

M−1∑

m=0

(
(α.gi)(xm

Ti
) − ṽm

)2

.

(b) For m = 0, . . . , M − 1: if fi(x
m
Ti

) > (α.gi)(xm
Ti

) then ṽm := fi(x
m
Ti

).
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3. Return the estimate 1
M

∑M−1
m=0 ṽm of the current discounted value Ṽ0.

6.2.1 Modification for large dimensions (explanatory process)

If the dimension D of our driving process (xt) is too large (D > 10), a reasonable

basis gi of functions on R
D would need too many functions. Hence the parameter

d(i) would be too large for a sufficiently fast solution of the least square problem.

This difficulty arises for example in LIBOR Market models where (xt) represents a

vector of D different LIBOR rates.

In this situation, one modifies the approach from above by considering - besides the

driving process (xt) - an “explanatory process” (yt) with values in R
d and d << D.

It should be chosen such that simulating (xt) in order to obtain our Monte Carlo

samples (xm
T0

, . . . , xm
Tn−1

) yields also Monte Carlo samples (ym
T0

, . . . , ym
Tn−1

) without

additional computational costs. Natural choices of (yt) could be yt = Wt [if (xt) is

a diffusion with Brownian motion (Wt) ] or yt = F (t, xt). The latter choice is made

e.g. in [PPR] where, in the LIBOR Market model situation we just mentioned, the

authors consider the case y = swap-rate.

Suppose that, for i = 0, . . . , n − 2, we have suitably chosen functions gi
0, . . . , gi

d(i)−1

representing a basis of a d(i)-dimensional subspace of L2(R
d, νi), where νi denotes

the law of yTi
.

Now, in the modified Longstaff-Schwartz algorithm, one only has to replace all

occurences of (α.gi)(xm
Ti

) by (α.gi)(ym
Ti

).

6.3 Example: Bermudan swaptions in the Markov-functional

LIBOR model

Consider an interest rate swap first resetting in T0 and paying at T1, . . . , Tm , with

fixed rate K0 and year fractions τ0, . . . , τm−1. Assume that one has the right to enter

the swap at the times T0, . . . , Tn−1, where n ≤ m.

Then the corresponding Bermudan (payer) swaption fits in our general setting from

above as the following particular case:

hi =
(

value of the interest rate swap at Ti

)

+

=
(

1 − P (Ti, Tm) − K0

m∑

k=i+1

τk−1 P (Ti, Tk)
)

+
. (10)

In the notation of our Markov-functional LIBOR model in Section 3, we can rewrite

line (10) as follows:

h̃i =
(

1
NTi

− P̃ (Ti, Tm) − K0

m∑

k=i+1

τk−1 P̃ (Ti, Tk)
)

+
.
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Since Nt = P (t, Tm), we have P̃ (Ti, Tm) = 1. Moreover, for k = i + 1, . . . , m − 1,

P̃ (Ti, Tk) = EN( P̃ (Tk, Tk) | FTi
) = EN( 1

Nk(xTk
)

| FTi
) = (UTk,Ti

1
Nk

)(xTi
) .

Hence, we obtain the desired Markov-functional forms in (9) as follows:

h̃i = fi(xTi
) ,

where the function fi is obviously given by

fi(x) :=
(

1
Ni(x)

− (1 + Kτm−1) − K0

m−1∑

k=i+1

τk−1 (UTk,Ti

1
Nk

)(x)
)

+
.

6.4 Example: (European) digital caplets in the Markov-

functional LIBOR model

In order to test the calibration of our Markov-functional LIBOR model to a Hull-

White model as in Section 5, one might wish to price the calibrating instruments

which are the digital (Ti, Ti+1)-caplets. This does not involve the functional forms

N0, . . . , Ni−1, hence by replacing m by m − i if necessary, we can assume i = 0.

The digital (T0, T1)-caplet fits into our general setting from above as the following

particlar case: n = 1 (European !) and

h0 = τ0 P (T0, T1) 1R(T0,T0,T1)>K .

Since τ0R(T0, T0, T1) = P (T0, T1)
−1 − 1, we can rewrite this as follows, denoting

K1 := τ0K + 1:

h̃0 = τ0 P̃ (T0, T1) 1P (T0,T1)−1>K1
.

Notice that P̃ (T0, T1) = (UT0,T1

1
N1

)(xT0) =: L(xT0) as before and

P (T0, T1)
−1 = P (T0, Tm)−1P̃ (T0, T1)−1 = 1

N0 L (xT0) =: M(xT0) .

Hence, we obtain the desired Markov-functional form in (9) as follows:

h̃0 = f0(xT0) ,

where the function f0 is obviously given by

f0(x) := τ0 L(x) 1M(x)>K1 .
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7 An explicit formula for Nm−2 in the LIBOR model

(Appendix)

The following lemma is helpful for a (more or less) explicit formula for the func-

tional form Nm−2 in the LIBOR model. It can be used to avoid the first numerical

integration in the iterations. On the other hand, one needs an approximation of the

cumulative normal distribution function Φ.

Lemma 7.1. We have for all x, y ∈ R:

Ut,s(exp 1(y,∞))(x) = e
1
2

Σ2
t,s+x Φ(x−y

Σt,s
+ Σt,s)

Ut,s(1(y,∞))(x) = Φ(x−y

Σt,s
)

The proof of Lemma 7.1 is elementary and therefore omitted.

Corollary 7.2. We have for all x, y ∈ R:

P̃m−2(x) = 1 + C0 ex

Jm−2(y) = P (0, Tm) τm−2

(
Φ(− y

ΣTm−2,0
) + C1 Φ(− y

ΣTm−2,0
+ ΣTm−2,0)

)

Here we denote, using the constant C2 from (3) :

C0 := C2 exp(1
2
Σ2

Tm−1,Tm−2
) and C1 := C0 exp(1

2
Σ2

Tm−2,0) .

Proof. We have Nm−1 = (1 + C2 exp)−1, hence Lemma 7.1 (for y = −∞) yields the

first assertion:

P̃m−2(x) = (UTm−1,Tm−2

1
Nm−1

)(x) = (UTm−1,Tm−2(1 + C2 exp))(x)

= 1 + C2 e
1
2

Σ2
Tm−1,Tm−2

+x
= 1 + C0 ex .

Now the second assertion can be deduced from the first and again Lemma 7.1:

N−1
0 Jm−2(y) = UTm−2,0(Ãm−2 1(y,∞))(x0) = τm−2UTm−2,0((1 + C0 exp)1(y,∞))(0)

= τm−2

(
Φ(− y

ΣTm−2,0
) + C0 e

1
2

Σ2
Tm−2,0 Φ(− y

ΣTm−2,0
+ ΣTm−2,0)

)
. ✷
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