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Abstract

In this paper we show the implementation of the exact simulation
methods presented in the paper of Galsserman and al. [2]. We derive
two methods, the first one is based on the truncation series simulation,
and the second one deals with inversion techniques of both the Laplace
transform and the cumulative function.
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1 Introduction

We consider the following Heston model, given by the following stochastic dif-
ferential equation

dSt

St
= µdt +

√

Vt(ρdW 1
t +

√

1 − ρ2dW 2
t )

dVt = κ(θ − Vt)dt + σ
√

VtdW 1
t ,

where (W 1
t , W 2

t ) is a standard two dimensional Browian motion. The variable St

describes the level of an underlying asset and Vt the variance of its instantaneous
returns. The parameters κ, θ, σ (and typically also µ) are positive, and ρ takes
values in [−1, 1]. We take the initial conditions S0 and V0 to be strictly positive.

It is well know [1], that the CIR process Vt is given by

Vt ∼ σ2(1 − e−κt)

4κ
χ2

δ

(

4κe−κt

σ2(1 − e−κt)
V0

)

, t > 0, δ =
4κθ

σ2
,

where χ2
delta(λ) denotes non central chi-square variable with δ degrees freedom

and non central parameter λ.
Broadie and Kaya rewrite the exact simulation of the couple (St, Vt) as

follows

log(
St

S0
) ∼ N

(

(µ − ρκθ

σ
)t + (

κρ

σ
− 1

2
)

∫ t

0

Vsds +
ρ

σ
(Vt − V0), (1 − ρ2)

∫ t

0

Vsds

)

,
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where N (m, var) is an independent Gaussian randon variable with mean m and

variance var. It is then sufficient to know the joint distribution of (Vt,
∫ t

0
Vsds)

to sample exactly the couple (St, Vt). The problem of the exact simulation can
be reduced to sample exactly just

(
∫ t

0

Vsds|V0, Vt

)

. (1)

The main result of the paper is given by the following theorem

Theorem 1. — The distribution of 1 admits the following representation

(
∫ t

0

Vsds|V0, Vt

)

∼ X1 + X2 + X3 ≡ X1 + X2+ ∼η
j=1 Zj ,

in which X1, X2, µ, Z1, Z2 . . . are mutually independent, the Zj are independent
copies of a random variable Z, and η is a Bessel random variable with parameter

ν = δ
2 − 1, and z = 2κ/σ2

sinh(κt/2)

√
VtV0.

Moreover, X1, X2, and Z have the following representations:

X1 ∼
∞

∑

n=1

1

γn

Nn
∑

j=1

Expj(1), X2 ∼
∞

∑

n=1

1

γn
Γ(δ/2, 1), Z ∼

∞
∑

n=1

1

γn
Γ(2, 1), (2)

where

λn =
16πn2

σ2t(κ2t2 + 4π2n2)
, γn =

κ2t2 + 4π2n2

2σ2t2
. (3)

The Nn are independent Poisson random variable with parameter λn(V0 +
Vt), the Expj(1) are independent, unit mean exponential random variable, and
the Γ(α, β) denote the independent gamma random variable with shape of pa-
rameter α and scale one β.

2 First Method: Series truncation

This section concerns the method named mcGlassermanKim1. The idea is to go
back to the thoerem and replace the infinite series by a finite one. The rest of
each truncation is approximated by a non central chi-square random variable.
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Technical details are given in [2].

Input: ordertr, θ, κ, σ, t, Vt and V0

Output: The value of the random variable X1

Truncation method
X1 ∼ ∑ordertr

n=1
1

γn

∑Nn

j=1 Expj(1) + Chi-square random variable

Algorithm 1: The function X1Sample

Input: ordertr, θ, κ, σ, and t.
Output: The value of the random variable X2

Truncation method ∼ ∑ordertr
n=1

1
γn

Γ(δ/2, 1) + Chi-square random variable

Algorithm 2: The function X2Sample

Input: ordertr, θ, κ, σ, and t.
Output: The value of the random variable Z
Truncation method Z

∑ordertr
n=1

1
γn

Γ(2, 1) + Chi-square random variable

Algorithm 3: The function X3Sample

Input: θ, κ, σ, t, Vt

Output: The value of the random variable (Vt,
∫ t

0
V sds)

Using the representation of Theorem 1 taking a default value
ordertr = 20

Algorithm 4: The function SampleC

3 First Method: Series truncation

This last section concerns the method named mcGlassermanKim2. Since all
variables X1, X2, Z given in Theorem 1 have an explicit Laplace transform, we
can thus use the inverse of both the Laplace transform and the cumulative
function of each variable to sample exactly. Technical details are given in [2].
However this method is very expensive in term of time computation. One has
to notice that X2 and X3 do not depend on the initial value of the couple
(Vt,

∫ t

0
V sds). We can then inverse the cumulative function of both variable,

and be use on one shot for all available values of the couple (Vt,
∫ t

0
V sds). How

ever, X1 is given by its truncation value. The Cumulative function can be then
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computed using Abatt algorithm (used by Broadie and Kaya [3]).

Input: vector, mprecision, θ, κ, σ and t.
Output: The vector value of the inverse Cumulative function of the

random variable X2

We use the same technique as in [3], for a vector input we derive the
inverse of the cumulative function with respect to the components value
of the vector

Algorithm 5: The function CumuX2M

Input: vector, mprecision, θ, κ, σ and t.
Output: The vector value of the inverse Cumulative function of the

random variable Z
We use the same technique as in [3], for a vector input we derive the
inverse of the cumulative function with respect to the components value
of the vector

Algorithm 6: The function CumuX3M

The method has to be used carefully, because one has to calculate the inverse
of the cumulative function of X2 and Z before doing Monte Carlo to compute
the price.
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