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Let

T = maturity date (7" > t)
K = strike price

L = lower barrier
U = upper barrier
T = spot price

t = pricing date

o = volatility

r = interest rate

0 = dividend yields
0=T-—t
b=r—90

The exact value for double barrier call/put options is given by the Tkeda-
Kunitomo formula [1], which allows to compute exactly the price when the
boundaries suitably depend on the time variable ¢. More precisely, set

U(s) = Ue’* L(s) = Le*

where the constants U, L, 01, 2 are such that L(s) < U(s), for every s € [t, T.
The functions U(s) and L(s) play the role of upper and lower barrier respec-
tively. 0; and ds determine the curvature and the case of ; = 0 and d3 = 0
corresponds to two flat boundaries.

In the software, we consider only flat boundaries.
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The numerical studies suggest that in most cases it suffices to calculate
the leading five terms of the series giving the price of the knock-out and
knock-in double barrier call options.

Let 7 stand for the first time at which the underlying asset price S reaches
at least one barrier, i.e.

T =1inf{s > t; S; < L(s) or S > U(s)}.

We define the following coefficients:

2b — 52 - n(51 - (52)
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Knock-Out Put Option

(K - ST)+ if 7>T
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where E = Le%2? and
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