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1. GARCH models and option pricing

The GARCH(p,q) [E82, B86] family of time series models provides a parsimo-
nious description of the returns associated to the quoted prices in stock markets that
captures the most important stylized facts that have been empirically described,
namely, leptokurtosis and volatility clustering.

When this family is used in the modeling of the underlying asset of a contingent
product, the incompleteness of the associated market appears immediately as a
problem. Several directions have been proposed to tackle this issue. In these pages
we review the one presented by Duan in [D95] whose legitimacy is based on a utility
maximization argument.

The model. Duan [D95] considers a discrete time economy in which the price
of the asset at time t is given by St. The one-period log-returns associated to
the price process {St}t∈N are conditionally normally distributed under the physical
probability P . More specifically:
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where r is the one-period risk-free interest rate, {ǫt} ∼ IIDN(0, 1), λ ∈ R can be
interpreted as the unit risk premium, and the conditional variance σ2
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where α0 > 0, α1, . . . , αq, β1, . . . , βp ≥ 0 and they are additionally subjected to the
constraint
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so that (1) and (2) admit a unique stationary solution.

The pricing measure. Duan [D95] formulates a valuation principle that he calls
locally risk-neutral valuation relationship (LRNVR) that he proves is satisfied
whenever the market agents fulfill standard risk aversion conditions. The LRNVR
materializes in the existence of a pricing measure Q under which the GARCH pro-
cess given by (1) and (2) takes the form
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Prices and hedging strategies. Using the risk-neutral probability Q, the value
Vt of the derivative product with measurable payoff function h at time t is given
by the conditional expectation

Vt = e−(T −t)rEQ [h | Ft] , (6)

where {Ft}t∈N is the filtration generated by the process (1) and (2). In particular,
the selling price of the option at the beginning of the contract is given by:

V0 = e−T rEQ [h] . (7)

In this pricing framework, the hedging delta is defined as the first partial deriva-
tive of the option price with respect to the underlying asset price. In the particular
case of a European call option with payoff function h = (ST − K)+ delta is given
by

∆C
t = e−(T −t)rEQ

[
ST

St

1ST ≥K | Ft

]
. (8)

Regarding the European put, the delta is obtained out of the call-put parity relation,
that is, ∆P

t = ∆C
t − 1.

2. Historical model calibration

In this section we consider a GARCH(1,1) model of the form

log

(
St

St−1

)
= µt + σtǫt, (9)

where µt is a predictable prescription for the conditional mean and σt is determined
by the autoregressive equation (2), with p = q = 1. More specifically, we will
examine two different prescriptions for the conditional mean µt, namely:

(i): Standard GARCH model [B86]: µt = µ for all t, with µ ∈ R a constant.
(ii): Duan model [D95]: µt := r + λσt − 1

2 σ2
t . This is the model in equa-

tion (1).

The goal of this section is explaining how to estimate the parameters θ := {α0, α1, β, λ}
given a historical prices sample {S0, . . . , ST } and the risk-free interest rate r for that
period. The chosen calibration method consists of taking as estimated parameters
those that maximize the Gaussian quasi-likelihood function at the given sample.

We start by constructing a sample of log-returns r := {r1, . . . , rT } out of the
prices sample, that is rt := log (St/St−1), t ∈ {1, . . . , T}. The Gaussian hypothesis
on the innovations and the predictibility of the conditional mean {µt} and variance
{σt} processes imply that

rt | Ft−1 ∼ N
(
µt, σ2

t

)
,

with Ft the filtration generated by the GARCH process. Consequently, the associ-
ated conditional likelihood is given by
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and hence the quasi log-likehood is:
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conditional on the initial values r0 and σ0. We will set r0 = r and σ0 = α0/(1 −
α1 − β1) which is the stationary variance of the process (1)-(2) with p = q = 1.

It can be shown that the estimator θ̂ of θ obtained out of the constrained op-
timization of (10) is consistent under standard regularity conditions even if the
underlying distribution is not conditionally normal [W81, GMT84]. Besides, this
estimator is asymptotically normal; more specifically:
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The symbol E0 stands for the expectation with respect to the true distribution. In
practice I and J are estimated by replacing E0 with the empirical mean and the

unknown parameter θ with its estimator θ̂ [G97, page 49].
The constrained optimization of the quasi-likelihood is carried out using the PNL

function
pnl_optim_intpoints_bfgs_solve that requires as an input the gradient of this
function with respect to the parameters that need to be calibrated. We now describe
how to compute this gradient for the two different models that we contemplate in
this section.

2.1. Gradient of the quasi-likelihood for the standard GARCH model.
Given a sample of log-returns r := {r1, . . . , rT } we want to calibrate to it a model
of the form {

rt = µ + σtǫt,
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(11)

Given that E[rt] = µ we can estimate the parameter µ by using the sample mean
of r and then we proceed by calibrating the model

{
rt = σtǫt,
σ2

t = α0 + α1σ2
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(12)

to the mean adjusted sample r̂ := r − µ. In view of this, we can focus without
loss of generality on the calibration of a model of the type (12) to a sample r :=
{r1, . . . , rT } with zero mean. In this case, the quasi log-likehood is:
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, θ := (α0, α1, β1) (13)

conditional on the initial values r0 and σ2
0 . We set r0 = 0 and σ2

0 = var(r), that is,
the sample variance of r.The different components of the gradient of log L can be
computed by using the chain rule:
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In order to fully characterize (14), we use (12) to explicitly write down the process
{σ2

t } as a function of the sample r and the parameters θ := (α0, α1, β1). Indeed, it
can be shown by induction that
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Consequently,
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The last four equalities substituted in (14) yield the three components of the gra-
dient ∂ log L(r; θ)/∂θ.

2.2. Gradient of the quasi-likelihood for the Duan GARCH model. In
this case a sample of log-returns r := {r1, . . . , rT } and a risk-free interest rate r are
given to which we want to calibrate a model of the form

{
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t−1 + β1σ2
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with µt := r + λσt − 1
2 σ2

t . In this case:
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(20)
As we saw before, the different components of the gradient of log L can be computed
by using the chain rule:
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In this expression the variables {σ2
t } are determined recursively using (19) and

setting r0 = 0 and σ2
0 = var(r). Additionally:
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Finally, in order to fully characterize (21) and (22), we need to compute the deriva-
tives ∂σ2

t /∂θ. Given the complexity of the conditional mean term, in this situation
it is very difficult to write down an explicit expression like (15) and use it to com-
pute ∂σ2

t /∂θ and ∂σ2
t /∂λ. We will therefore compute these derivatives recursively



7 pages 5

by differentiating with respect to the parameters θ and λ on both sides of the sec-
ond equality in (19) where the variables {σ2

t−1ǫ2
t−1} are replaced by {(rt − µt)

2}.
The following recursions are initialized by setting ∂σ2
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0/∂λ = 0:
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The last six equalities substituted in (21) and (22) yield the four components of
the gradient ∂ log L(r; θ)/∂θ and ∂ log L(r; θ)/∂λ.

3. Variance reduction via Empirical Martingale Simulation (EMS)

In view of (7), option prices are computed in this context using Monte Carlo
simulations. Given that the standard estimator of the mean does not respect the
martingale condition Duan et al [DS98, DGS01] have proposed a correction that
fixes this problem and additionally reduces its variance. We briefly review the
construction in [DS98, DGS01].

Let Ŝ0(i), . . . , ŜT (i), i ∈ {1, . . . , n}, be a family of n simulated asset prices paths
using (4) and (5). The goal is constructing a new family of paths S∗

0 (i), . . . , S∗
T (i),

i ∈ {1, . . . , n} that can be used as Monte Carlo sample paths to compute option
prices using (7); the construction requires the use of a family of n + 1 auxiliary
paths Z∗

1 (i), . . . , Z∗
T (i), i ∈ {0, . . . , n} recursively defined together with the S∗

j (i)
as:

(i): For t = 0: for any i ∈ {1, . . . , n} we have Ŝ0(i) = S0 and S∗
0 (i) := S0.

(ii): For t = 1: define

Z1(i) := Ŝ1(i), for any i ∈ {1, . . . , n}, (27)
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1

ner
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Z1(i), (28)
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1 (i) := S0

Z1(i)

Z1(0)
, for any i ∈ {1, . . . , n}. (29)

(iii): For t ∈ {2, . . . , T}: define
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j−1(i)

Ŝj(i)

Ŝj−1(i)
, for any i ∈ {1, . . . , n}, (30)
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1
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S∗
j (i) := S0

Zj(i)

Zj(0)
, for any i ∈ {1, . . . , n}. (32)
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4. Premia functions

All the functions below use the library Pnl which is a scientific library originally
designed to provide a unified framework for contributors to Premia.

4.1. Function to carry out the EMS correction.

• int ems(const PnlMat* path, double interest, int frequency, PnlMat*
ems_path)
Description: this function carries out the EMS correction method on
a family of simulated paths that are given in the columns of PnlMat*
path. interest contains the annualized interest and frequency the rate
at which the quotes contained in PnlMat* path are given (1 for daily, 5
for weekly, etc).

4.2. Functions for GARCH pricing and hedging.

• int pnl_garch_price(double today_price, double alpha_zero, double
alpha_one,double beta_one, double lambda, double interest, int fre-
quency, double K, int T, int N, emsopt choice, int type_generator, op-
tion_price* garch_price)
Description: computes the price of a European vanilla option (call and
put) using a Duan-type GARCH(1,1) model for the underlying asset.
today_price denotes the price of the underlying asset at the begin-
ning of the contract, garch_price alpha_zero, alpha_one, beta_one

, and lambda are the parameters of the GARCH model, interest is
the annualized interest, frequency is the frequency associated to the
model used (1 for daily, 5 for weekly, etc), K and T are the option strike
and time to maturity, N is the number of Monte Carlo paths, emsopt

(ems_on or ems_off) selects if the EMS correction is used or not, and
type_generator declares the pnl random generator used in the creation
of Monte Carlo paths.

• int pnl_garch_delta(const PnlVect* h, double alpha_zero, double al-
pha_one, double beta_one, double lambda, double interest, int fre-
quency, double K, int T, int N, emsopt choice, int type_generator, op-
tion_price* delta)
Description: computes the hedging delta for a vanilla option (call and
put)whose underlying asset is modeled using a GARCH(1,1) model. The
price of the underlying asset between the beginning of the contract and
the moment at which delta is computed has followed the path specified
by the column vector h.

The rest of the parameters use the same syntax as in the preceding
function.

4.3. Functions for historical GARCH model calibration.

• int garch_historical_fit(param* input, double tolerance, PnlVect* start-
point, option opt, int iter_max, int print_algo_steps, PnlVect* x_output)
Description: fits either a standard GARCH(1,1) or a Duan model to a
historical sample via quasi log-likelihood maximization. The optimiza-
tion is carried out using the BFGS interior point algorithm presented
in [AGJ00]. input contains the historical prices and in the Duan model
case the annualized interest rate and the frequency associated to the
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historical quotes (1 for daily, 5 for weekly, etc). The chosen model is
selected in opt.
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