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Abstract

We present methodologies to price discretely monitored Asian options when
the underlying evolves according to a generic Lévy process. For arithmetic
Asian options we solve the valuation problem by recursive integration and
derive a recursive theoretical formula for the moments to check the accuracy
of the results.
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1 Introduction

We investigate the pricing problem for Asian options monitored at discrete
times. The payoff of an arithmetic (geometric) Asian option depends on the
arithmetic (geometric) average value of the underlying asset price over a given
time period. Asian options have been very successful in the marketplace,
because they reduce the possibility of market manipulations near the expiry
and they offer better hedging possibilities to firms with a stream of exposures.

Several approaches have been attempted to obtain pricing formulas for
the price of Asian options, assuming a continuous-time monitoring of the
underlying under the geometric Brownian motion hypothesis, see Fusai and
Roncoroni (2008) for a review and numerical comparisons. Among analytical
approaches, we mention the Laplace transform approach in Geman and Yor
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(1993), the spectral expansion derived by Linetsky (2004), and the approxi-
mation of the average distribution by fitting integer moments in Turnbull and
Wakeman (1991), Lévy (1992), Milevsky and Posner (1998) or logarithmic
moments as in Fusai and Tagliani (2002). Another approach uses binomial
trees, such as Gaudenzi et al. (2007). However, a large number of contracts
specify discrete time monitoring, and the impact of the continuous-time as-
sumption can be substantial for some path-dependent derivatives, see for
instance the literature on lookback and barrier options, Kat (2001).

For the discrete case, Clewlow and Carverhill (1990), Andreasen (2002),
Dempster et al. (1998), Zvan et al. (1999) focus their attention on the
geometric Brownian motion. Benhamou (2002) enhances the algorithm of
Clewlow and Carverhill (1990) based on a Fast Fourier technique and adapt
it to some non-lognormal densities, like the Student t. Their approaches,
although innovative, require computationally intensive numerical methods
or approximations for which no clear error bound is available. Albrecher
(2004) and Albrecher and Predota (2004) explore approximations based on
the moments of the average, but in general it is difficult to evaluate the
approximation error.

In particular, we discuss the pricing of arithmetic Asian options when the
underlying asset evolves according to a generic Lévy process. We present a
new numerical procedure which combines a recursive numerical quadrature
with a fast Fourier transform algorithm. Our procedure is also able to provide
estimates of the Greeks, such as delta and gamma.

The paper is organized as follows. In Section 2 we model the underlying
process, starting from the distribution of the log-increments. In Section
3 we present the new recursive algorithm for the valuation of arithmetic
Asian options. In Section 4 we discuss our numerical results with particular
emphasis on the discrete monitoring feature. In Section 5 we conclude.

2 The process for the underlying

We are interested in pricing discrete Asian options, for which the payoff
depends on the geometric or on the arithmetic average of the prices observed
at equally-spaced discrete times t0 ≡ 0, t1 ≡ ∆, . . . , tj ≡ j∆, . . .. We denote
by St the underlying asset price at time t. Consider the demeaned log-
increments of size ∆:

X∆
T ≡ ln (ST ∆) − ln

(

S(T −1)∆

)

−m∆
T ∆, (1)
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where m∆
T is the deterministic component under the risk-neutral measure of

the log-increments X∆
T , whose value will be specified later on:

m∆
T ≡ 1

∆
E

{

ln (ST ∆) − ln
(

S(T −1)∆

)}

. (2)

We consider the demeaned log-increments instead of the simple log-increments
for future notational convenience.

As far as the underlying process is concerned, we only assume that, under
the risk-neutral measure, non-overlapping log-increments be independent and
that increments of equal size be identically distributed. In other words, we
assume that the logarithm of the prices be a Lévy process under the risk
neutral measure. Then m∆

T ≡ m does not depend on either the time step T
or the step size ∆ and the underlying asset price reads:

ST ∆ = S0e
mT ∆+X∆

1 +···+X∆
T . (3)

Lévy processes display a number of palatable features: they are the most
direct generalization of the Brownian motion (BM); they are analytically
tractable; Lévy processes are general enough to include a wealth of patterns
and thus they account for smile and skew effects in option prices; the i.i.d.
structure of the Lévy processes simplifies the estimation of the respective
parameters under the real measure, see Meucci (2005). For a thorough in-
troduction to Lévy processes with applications to finance see Geman (2002),
Schoutens (2003), Cont and Tankov (2004a), Carr et al. (2003), Geman
(2005).

A generic Lévy process is fully determined by the characteristic exponent
of the log-increments, which is defined as the logarithm of the characteristic
function:

ψ∆ (ω) ≡ ln
(

E

{

eiωX∆
T

})

. (4)

In Table 1 we list a few parametric Lévy processes and their associated
characteristic exponent.

[INSERT TABLE 1 HERE]

he Gaussian model (g) is the benchmark assumption: the ensuing pro-
cess is the purely diffusive Brownian motion, which gives rise to the geometric
Brownian motion (GBM) process for the price of the underlying. The model
(jd) introduced by Merton (1976) and the double exponential (de) model
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introduced by Kou (2002) are jump-diffusion processes that account for the
presence of fat tails in the empirical distribution of the underlying1. The re-
maining models (nig and cgmy) are pure jump processes with finite variation
that can display both finite and infinite activity2. They are subordinated
Brownian motions: in other words, they can be interpreted as Brownian mo-
tions subject to a stochastic time change which is related to the level of
activity in the market. In particular, stable processes (st) display the ad-
ditional feature that their distribution does not depend on the monitoring
interval, modulo a scale factor.

So far the drift parameter m in (3) has been left unspecified. Due to
the incompleteness of the market, we have to choose a martingale measure
for the risk-neutral pricing of derivatives. Except in the special case of the
geometric Brownian motion, there are many equivalent measures under which
the discounted price process is a martingale. Several different approaches
have been suggested to select an appropriate martingale measure, but there
is as yet no definitive way of pricing contingent claims in incomplete markets.
A discussion on the different choices of an equivalent martingale measure with
reference to Lévy Processes can be found for example in Chan (1999) and in
Hubalek and Sgarra (2006). A mathematically tractable choice consists in
choosing the value of m in such a way that the price St discounted by the
money-market account Bt be a martingale, i.e. E [ST/BT ] = S0/B0, ∀T ≥ 0,
see Schoutens (2003). A simple algebraic manipulation shows that m must
solve

m = (r − q) − ψ∆ (−i)
∆

, (5)

where r denotes the constant risk-free rate and q denotes the constant div-
idend payout rate. Another possible choice is represented by the Esscher

1In these models σ2 represent the instantaneous variance of the diffusion part, whilst
λ is the jump-intensity. In the jd model, α and δ2 refer respectively to the mean and the
variance of the jump size. In the de model, p is the probability of a up jump, whilst η1

and η2 govern the decay of the tails of the up and down jump sizes, that are exponentially
distributed.

2In particular, the nig model has stochastic time change given by an Inverse Gaussian
Process It with parameters 1 and δ

√

α2 − β2, so that nigt = βδ2It + δWIt
, where Wt

is a Wiener process. The path behaviour of the CGMY process is determined by the Y

parameter. If Y < 0, the paths have finite jumps in any finite interval; if not, the paths
have infinitely many jumps in any finite time interval, i.e. the process has infinite activity.
Moreover, if the Y parameter lie in the interval [1, 2), the process is of infinite variation.
See Schoutens (2003).
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transform, as advocated at first in Gerber and Shiu (1994). In the following
we will also specify the process for the underlying price when the underlying
itself represents the numeraire, see El Karoui et al. (1995). In other words,
we need to set m equal to a parameter m̄ such that, under the new measure,
the equality E [BT/ST ] = B0/S0 is satisfied for all T > 0. Another simple
algebraic manipulation yields the appropriate value m̄ = (r − q)+ψ∆ (i) /∆.

3 Arithmetic Asian options

The payoff of an arithmetic Asian option depends on the following path-
dependent random variable:

A∆
T ≡ 1

T + 1

T
∑

k=0

S∆k. (6)

Notice that we use the convention that the average starts at period k ≡ 0.
In the following, we exploit a recursive formulation to price the fixed strike
arithmetic Asian option. For the floating strike version see Fusai and Meucci
(2007). The payoff of an arithmetic Asian call option with fixed strike K
reads:

Ca
fx (K,T ) ≡ max

{

A∆
T −K, 0

}

. (7)

As realized in Clewlow and Carverhill (1990), the distribution of A∆
T can be

obtained recursively. If we define Z∆
k ≡ m∆+X∆

k , from (6) we are interested
in the distribution of the following quantity

T
∑

k=1

S∆k = eZ∆
1

(

1 + eZ∆
2

(

· · ·
(

1 + eZ∆
T

)))

.

Starting from L∆
T ≡ eZ∆

1 and introducing recursively the quantities

L∆
k ≡ eZ∆

k

(

1 + L∆
k+1

)

, k = T − 1, ..., 1, (8)

we obtain A∆
T ≡ S0

(

1 + L∆
1

)

/ (T + 1). Therefore, the key ingredient for the

computation of fixed-strike arithmetic Asian options is the density of L∆
1 or

equivalently, the density of B∆
1 ≡ ln

(

L∆
1

)

. We discuss this computation in
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Section 3.1. Once we obtain the density fB1
we can price call options3 with

an additional numerical integration:

E

{

Ca
fx (K,T )

}

= e−rT
∫ +∞

γ

(

S0

T + 1
(1 + ex) −K

)

fB1
(x) dx, (9)

where γ ≡ ln (K (T + 1) /S0 − 1). Furthermore, once we have the density
fB1

we can compute option prices for different strikes K and spot prices S0.
From (9) we can also easily compute the Greeks. For instance, for the delta
we obtain:

∆ =
e−rT∂E

{

Ca
fx (K,T )

}

∂S0

=
e−rT

T + 1

∫ +∞

γ
(1 + ex) fB1

(x) dx. (10)

Similarly, for the gamma we obtain:

Γ =
e−rT ∂2

E{Ca
fx

(K,T )}
∂S2

0

= e−rT
(

K
S0

)2
T +1

K(T +1)−S0
fB1

(γ) . (11)

Finally, notice that the recursion (8) translates into a formula for the
moments of the arithmetic average. Indeed, from the independence of Z∆

k

and L∆
k+1 as well as from the definition of Z∆

k , we obtain:

E

{(

L∆
k

)n}

= E

{(

eZ∆
k

(

1 + L∆
k+1

))n}

(12)

= enm∆φX∆ (−in)
n
∑

q=0

(

n

q

)

E

{(

L∆
k+1

)q}

,

where the recursion starts with the following initial condition:

E

{(

L∆
T

)n} ≡ E

{

enZ∆
1

}

= φX∆ (−in) . (13)

The moments of the arithmetic average then can be computed as follows:

E

{(

A∆
T

)n} ≡
(

S0

T + 1

)n n
∑

j=0

(

n

j

)

E

{

(

L∆
T

)j
}

. (14)

We will use this result to verify the accuracy of our numerical method. An
expression similar to (14) was obtained also in Albrecher (2004).

3If we are interested in pricing put options, we have to integrate over the relevant
domain or to exploit the put-call parity for Asian options.
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3.1 Computation of the pricing density

Since Z∆
k and L∆

k+1 are independent, the density of Bk ≡ ln
(

L∆
k

)

= Z∆
k +

ln
(

1 + L∆
k+1

)

is the convolution of the density fZ∆
k

and that of ln
(

1 + eB∆
k+1

)

.

Furthermore, since the Z∆
k are i.i.d. the density fZ∆

k
does not depend on the

monitoring time index k, which we drop from the notation. With a change
of variable we obtain that the density of fBj

satisfies the recursion:

fBk
(x) =

∫ +∞

−∞

fZ∆ (x− ln (ey + 1)) fBk+1
(y) dy, k = T − 1, ..., 1, (15)

where the initial condition is set as fBT
≡ fZ∆ . For some specifications of

the underlying Lévy process such as Gaussian, NIG, Double Exponential and
Jump-Diffusion this density is known analytically; for other specifications,
such as CGMY, it can be obtained by inverting the characteristic function
of the log returns with the FFT. We remark that a recursion similar to (15)
appears in Clewlow and Carverhill (1990) and then in Benhamou (2002).
These authors exploit the convolution structure of the recursion to obtain
the density of B∆

k by applying an FFT and an inverse FFT at each mon-
itoring date. Instead, we use the FFT once to generate the density of Z∆

k

given its characteristic function and then we implement a series of recursive
quadratures.

We proceed by approximating the integral (15) using an M -point quadra-
ture formula, see Press et al. (1997):

fBk
(x) ≈

∫ u

l
ϕZ∆ (x− ln (ey + 1)) fBk+1

(y) dy (16)

≈
M
∑

j=1

wjφ (x− ln (eyj + 1)) fBk+1
(yj) ,

where yj are the abscissas and wj the corresponding weights in the quadra-
ture formula. An issue in the implementation of the above procedure is the
choice of the domain [l, u]. We use the results in Philips and Nelson (1995)
that, for a given random variable X, yield a bound to Pr (X > c) and to
Pr (X < −c) in terms of the integer moments of X. In our implementation
we focus on the first ten integer moments of B∆

T to determine l such that

Pr
(

B∆
T < l

)

≤ 10−8 and similarly we focus on the first ten integer moments

of L∆
T ≡ exp

(

B∆
T

)

to determine u such that Pr
(

L∆
T > eu

)

≤ 10−8 (the latter
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moments are readily provided by (12)). These choices have proved sufficient
to achieve accurate results. Another issue in the implementation of (16) is
the choice of the quadrature rule: in our numerical implementation we adopt
a Gaussian quadrature rule. To motivate this choice with respect to alterna-
tive procedures we observe that the quantity to be estimated, i.e. the option
price, can be represented as a multiple integral

I =
∫ +∞

ln

(

KT
S0

) dx
∫ +∞

−∞

dyn · · ·
∫ +∞

−∞

dy1ζ (x,y) , (17)

where

ζ (x,y) ≡
(

S0

T + 1
(1 + ex) −K

)

ϕZ∆ (x− ln (eyn + 1)) · · ·ϕZ∆ (y1) . (18)

An M -point numerical quadrature approximates (17) with the following ex-
pression:

Î ≡
M
∑

kn+1=1

M
∑

kn=1

· · ·
M
∑

k1=1

wk1
· · ·wkn

wkn+1
ζ
(

xkn+1
, yk1

, · · · , ykn

)

. (19)

The convergence rate using the trapezoid rule is O
(

J−2/n
)

, where J is the

number of evaluations of ζ (x,y), see Haselgrove (1961). Using the Simpson

rule we have an improvement to O
(

J−4/n
)

. A crude Monte Carlo simulation
samples points uniformly and averages the function at these points, providing
an approximation to (17) which is characterized by a standard error which

is independent of n and of order O
(

J−1/2
)

: for sufficiently large values of
n, this convergence rate is better than either the trapezoid or the Simpson
rule. On the other hand, using an M -point Gaussian quadrature, the error is
O
(

J−(2M+1)/2n
)

, and for M sufficiently large we obtain a faster convergence
than with any of the above methods, including Monte Carlo simulations. We
mention that recursive quadrature has received attention in the literature on
barrier options, see Aitsahalia and Lai (1997), Sullivan (2000), Andricopoulos
et al. (2003), Fusai and Recchioni (2005).

A third issue in the implementation of the recursion (16) is the compu-
tational cost. We can write that recursion in matrix form as follows:

fk = KDfk+1, (20)

where fk is a vector with elements fBk
(xj); K is an M × M kernel whose

(k, j)-th element reads φ (xk − ln (eyj + 1)); and D is a diagonal matrix with
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elements djj = wj. The density at the n-th monitoring date is then given by
iterating (20) starting from fn. Therefore, the solution at the n-th monitoring
date for each value of x requires O (nM2) function evaluations (matrices K),
plus O (nM2) elementary operations. Therefore the total cost is of the order
of O (nM2) elementary operations.

To summarize, the algorithm, which was implemented in C, proceeds as
follows:

• Define the parametric model for log-returns as in Table 1.
• Using the FFT algorithm compute the density function of the log-

returns, and assign it as initial condition fT to the recursion (20).
• Using the weights and abscissas of the Gaussian quadrature, construct

the product matrix KD and then iteratively compute fn, fn−1, . . . , f1.
• Compute the option price by numerical integration of the payoff function

with the density f1 as in (9).
• Check the accuracy of the results by comparing the numerical moments

of the arithmetic average with the theoretical expression provided by (14).

4 Numerical experiments

In this section we perform numerical tests to examine the accuracy of our
procedure. More precisely, we compare our recursive pricing procedure with
the results of a standard Monte Carlo-based pricing with one million scenarios
and using the price of the Geometric option as control variate4.

The first issue is the impact of the monitoring frequency. It is well known
that for barrier options the discrepancy between option prices under con-
tinuous and discrete monitoring can be significant. Indeed, the convergence
of the discrete monitored barrier option prices to the continuous case is ex-
tremely slow, of the order of n−1/2, where n is the number of monitoring
dates. In the sequel, we investigate if this is also the case for Asian options
when the underlying follows a Lévy process.

4.1 Parameter settings

To perform a comparison between different Lévy models, we proceed as
follows. We consider the calibration results reported in Fusai and Meucci

4For details on the Monte Carlo simulation, the control variate and for more detailed
results see Fusai and Meucci (2007).
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(2007).

• The calibrated volatility parameter for the GBM is σ̂ = 0.17801.

• The calibrated parameters for the NIG process are:

α̂ = 6.1882, β̂ = −3.8941, δ̂ = 0.1622.

• The calibrated parameters for the CGMY process are:

Ĉ = 0.0244, Ĝ = 0.0765, M̂ = 7.5515, Ŷ = 1.2945. (21)

• The calibrated parameters for the Merton model are:

σ̂ = 0.126349, α̂ = −0.390078, λ̂ = 0.174814, δ̂ = 0.338796.

• The calibrated parameters for the double-exponential model are:

σ̂ = 0.120381, λ̂ = 0.330966, p̂ = 0.20761, η̂1 = 9.65997, η̂2 = 3.13868.
(22)

Figure 1 shows the density of the log-returns for the calibrated models.
The Merton jump-diffusion model, the Kou double exponential model and
the CGMY densities appear very similar and remarkably different from the
Gaussian case. In particular, the skewness and kurtosis parameters are re-
spectively equal to -19.813 and 986.936 for the CGMY model, to -2.16016
and 7.46374 for the Merton model, to -2.77006 and 13.5805 for the double
exponential model and to -2.13745 and 9.93736 for the NIG model.

[Insert Figure 1 here]

4.2 Numerical Results

We consider now arithmetic-average Asian options. In Table 2 we report
the CPU time and the square root of the sum of squared errors, where the
errors are the differences between the analytical moments and the numerical
moments of order 0 to 5. The analytical moments are computed according
to formula (14), whilst the numerical are computed in two ways: using one
million Monte Carlo simulations (with and without the Geometric Average
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as control variate; for these results we report the standard error) and using
the density obtained by recursion (20).

The most interesting results are that, except for the NIG process, the
proposed numerical integration procedure provides much more accurate esti-
mates in lesser computational time than Monte Carlo simulation also if im-
plemented using control variates. We stress that the Monte Carlo approach
is a viable alternative only if enhanced by the control variates.

The computational cost of our technique is linear in the number of mon-
itoring dates and quadratic in the number of quadrature points. Extremely
accurate result can be obtained for the Gaussian, jump-diffusion and double
exponential processes, even with a very large number of monitoring dates (≈
250) and a low number of nodes (≈ 3000). Slightly less accurate results are
obtained for the CGMY process, but in this case the Monte Carlo simulations
do not appear to provide a reliable alternative at all. Instead, for the NIG
model, our approach does not perform well, because the density peaks as we
increase the monitoring frequency. In this case the Monte Carlo appears to
be the only viable alternative.

[Insert Table 2 here]

In Tables 3-7 we consider prices of arithmetic Asian options. The nu-
merical results previously presented seem to justify that model risk does not
seem to be an issue (although Gaussian and NIG models produce somewhat
different option prices), as important as for barrier options. Intuitively, the
averaging process tapers the thickness of the tails, whilst for barrier options
the model sensitivity is much higher, as different path properties are empha-
sized by the knock-out/in effect of the barrier, see Schoutens et al. (2004).
The tapering effect for Asian options is confirmed by Figure 2, which displays
the densities of the geometric and arithmetic average according to different
models. As we can see, with the exception of the Gaussian and NIG cases,
these densities look very similar.

Furthermore, the number of monitoring dates does not seem as crucial as
for barriers. Therefore, in order to approximate the continuously monitored
solution, we can use the discrete solution with a low number of monitoring
dates, for which our algorithm is reliable and fast.

[Insert Table 3 here]
[Insert Table 4 here]
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[Insert Table 5 here]
[Insert Table 6 here]
[Insert Table 7 here]
[Insert Figure 2 here]

Finally, in Figures 3, 4 and 5 we report the differences in prices, deltas and
gammas computed according to the different models taking as benchmark
the geometric Brownian motion. The differences among the Levy models are
small whilst appear remarkable if compared to the GBM case: even from
a hedging perspective the effect of model risk is limited, unlike in the case
of barrier options, see Schoutens et al. (2004). This is welcome news from
a risk-management perspective. Clearly, it remains to be investigated the
relevance of the i.i.d. assumption, that underlies all Lévy processes. This
will be possibly the topic of future work, although in the non i.i.d. setting
our formulae for the geometric case and the numerical approximation for the
arithmetic case do not apply.

[Insert Figure 3 here]
[Insert Figure 4 here]
[Insert Figure 5 here]

5 Conclusions

We introduce a recursive algorithm to price arithmetic Asian options un-
der the general assumption that the underlying evolves according to a Lévy
process. Moreover, we consider discretely monitored options. However, dif-
ferently from other path-dependent options like barrier and lookback, Asian
option prices do not seem to be affected by the monitoring frequency. We
also evaluate the impact of different model specification. As it turns out,
model risk is significant in the case of the Gaussian and NIG models. It
remains to be investigated the effect of stochastic volatility. Unfortunately,
both the closed-form analytical formulas for the geometric Asian options and
the numerical algorithm for the arithmetic Asian options rely on the i.i.d.
assumption for the log-increments of the underlying: this assumption is not
satisfied by non-Lévy stochastic volatility models.
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Model ψ∆ (ω)

g −σ2

2
ω2∆

nig −δ∆
(

√

α2 − (β + iω)2 −
√
α2 − β2

)

cgmy C∆Γ (−Y )
(

(M − iω)Y −MY + (G+ iω)Y −GY
)

de −1
2
σ2ω2∆ + λ∆

(

(1−p)∗η2

η2+iω
+ p∗η1

η1+iω
− 1

)

jd −1
2
σ2ω2∆ + λ∆

(

eiωα−
1
2

ω2δ2 − 1
)

st −κα |ω|α ∆
(

1 − iβ sign (ω) tan
(

απ
2

))

Table 1: Characteristic exponents of some parametric Lévy processes

Monte Carlo Number of Quadrature Points

7000 5000 1000

Modello Dates MC CPU MC+CV CPU MSE CPU MSE CPU MSE CPU

g 12 0.08439 63 0.03525 68 0.00000 119 0.00000 65 0.00000 6

g 50 0.97323 125 0.02433 130 0.00640 135 0.00640 52 0.00640 5

g 250 0.56911 454 0.01786 459 0.02621 250 0.02621 130 0.02537 8

nig 12 0.93767 88 0.01573 93 0.01106 67 0.01106 35 1.91168 5

nig 50 0.85467 225 0.03892 230 0.02555 97 0.06330 52 n.a. 6

nig 250 1.69247 952 0.01453 957 n.a. 252 n.a. 131 n.a. 8

cgmy 12 25.37854 105 2.84911 111 0.52170 64 0.52170 37 0.52115 8

cgmy 50 7.25580 293 0.77980 299 1.07702 95 1.07702 53 4.10542 10

cgmy 250 4.00879 997 0.43916 1005 1.18273 218 4.74037 126 n.a. 12

jd 12 0.82418 70 0.82418 75 0.03609 65 0.03609 34 0.03609 5

jd 50 1.50117 156 1.50117 161 0.04138 95 0.04138 51 0.04138 6

jd 250 1.81340 602 1.81340 607 0.04307 246 0.04307 131 6.36434 9

de 12 0.38332 73 0.38332 78 0.10211 73 0.10211 40 0.10211 6

de 50 0.90982 156 0.90982 161 0.14144 107 0.14144 57 0.14145 6

de 250 0.99756 601 0.99756 606 0.11956 261 0.11956 144 n.a. 11

Table 2: In this table we give, for different models, the 1000*Squared Root of Sum of Squared (column

ERR), the CPU time in Seconds (CPU column) for the Monte Carlo simulation (Crude and with Control

Variate) and for the recursive quadrature method (with different number of grid points: from 1000 to

7000). As benchmark we have used the first five moments computed according to formula (14)
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MC simulation Numerical Quadrature

n K MC+CV se 10000 5000 1000

12 90 11.90505 0.213 11.90497 11.90498 11.90428

12 100 4.88207 0.173 4.88210 4.88212 4.88199

12 110 1.36329 0.145 1.36314 1.36314 1.36371

50 90 11.93302 0.203 11.93301 11.93299 11.93339

50 100 4.93735 0.169 4.93736 4.93738 4.93711

50 110 1.40267 0.150 1.40264 1.40262 1.40199

250 90 11.94096 0.201 11.94068 11.94069 11.94137

250 100 4.95244 0.169 4.95233 4.95239 4.94942

250 110 1.41359 0.151 1.41351 1.41350 1.41290

Table 3: Prices of arithmetic Asian options for Gaussian process. Parameters:
S0 = 100, r = 0.0367, σ = 0.17801.

MC simulation Numerical Quadrature

n K MC+CV se 11000 5000 1000

12 90 12.62293 0.341 12.62243 12.62243 12.61315

12 100 5.06077 0.223 5.06060 5.06057 5.05723

12 110 1.01374 0.176 1.01355 1.01355 1.01379

50 90 12.66112 0.333 12.66118 12.66160 14.11925

50 100 5.10359 0.221 5.10367 5.10383 4.88735

50 110 1.03770 0.177 1.03770 1.03774 0.75191

250 90 12.67186 0.329 n.a. n.a. n.a.

250 100 5.11558 0.218 n.a. n.a. n.a.

250 110 1.04446 0.176 n.a. n.a. n.a.

Table 4: Prices of arithmetic Asian options for NIG process. Parameters:
S0 = 100, r = 0.0367, α = 6.1882, β = −3.8941, δ = 0.1622.
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MC simulation Numerical Quadrature

n K MC+CV se 10000 5000 1000

12 90 12.69114 0.360 12.70625 12.70626 12.70557

12 100 5.02787 0.211 5.03492 5.03486 5.03649

12 110 1.01895 0.156 1.02115 1.02110 1.02214

50 90 12.73548 0.371 12.73854 12.73855 12.74033

50 100 5.07403 0.223 5.07570 5.07577 5.07225

50 110 1.04594 0.165 1.04674 1.04669 1.04948

250 90 12.74864 0.393 12.74737 12.72731 n.a

250 100 5.08744 0.233 5.08694 5.07912 n.a

250 110 1.05377 0.170 1.05389 1.05251 n.a

Table 5: Prices of arithmetic Asian options for CGMY process. Parameters:
S0 = 100, r = 0.0367, C = 0.0244, G = 0.0765, M = 7.5515, Y = 1.2945.

MC simulation Numerical Quadrature

n K MC+CV se 10000 5000 1000

12 90 12.71298 0.379 12.71236 12.71236 12.71252

12 100 5.01729 0.243 5.01712 5.01705 5.01772

12 110 1.04141 0.183 1.04142 1.04147 1.03957

50 90 12.74420 0.371 12.74369 12.74369 12.74386

50 100 5.05849 0.243 5.05809 5.05814 5.05781

50 110 1.06886 0.184 1.06878 1.06877 1.06983

250 90 12.75141 0.358 12.75241 12.75242 12.86165

250 100 5.06910 0.232 5.06949 5.06943 5.11830

250 110 1.07632 0.177 1.07646 1.07637 1.08915

Table 6: Prices of arithmetic Asian options for Double Exponential process.
Parameters: S0 = 100, r = 0.0367, σ = 0.120381, λ = 0.330966, p = 0.2071,
η1 = 9.65997, η2 = 3.13868.
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MC simulation Numerical Quadrature

n K MC+CV se 10000 5000 1000

12 90 12.71035 0.375 12.71066 12.71065 12.71038

12 100 5.01117 0.248 5.01127 5.01124 5.01008

12 110 1.05141 0.189 1.05162 1.05165 1.05140

50 90 12.74051 0.367 12.74093 12.74093 12.74112

50 100 5.05226 0.245 5.05246 5.05243 5.05337

50 110 1.07959 0.192 1.07959 1.07962 1.07966

250 90 12.74964 0.366 12.74917 12.74918 12.78492

250 100 5.06417 0.244 5.06381 5.06387 5.08129

250 110 1.08772 0.189 1.08740 1.08737 1.09043

Table 7: Prices of arithmetic Asian options for Merton Jump-Diffusion pro-
cess. Parameters: S0 = 100, r = 0.0367, σ = 0.126349, α = −0.390078,
λ = 0.174814, δ = 0.338796.
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Figure 1: Densities of the log-returns at the 1 yr horizon.
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Figure 2: Density of the log(arithmetic mean) for the different Lévy models
(25 monitoring dates).
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Figure 3: Price differences (Lévy model vs Gaussian) of the arithmetic Asian
option under different Lévy models (25 monitoring dates).
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Figure 4: Delta differences (Lévy model vs Gaussian) of the arithmetic Asian
option under different Lévy models (25 monitoring dates). The delta has been
computed using formula (10).
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Figure 5: Gamma differences (Lévy model vs Gaussian) of the arithmetic
Asian option under different Lévy models (25 monitoring dates). The gamma
has been computed using formula (11).
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