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Abstract

This paper is devoted to pricing American options using Monte Carlo

and Malliavin calculus. We introduce two variance reduction techniques,

the first one is based on conditioning and the second one relies on an ap-

propriate choice of the number of simulated paths in the computation of

the quotient of two expectations. We demonstrate our methods on two

types of models, the multidimensional exponential models with determin-

istic volatility and the Heston model. Since our techniques are well-suited

to parallel implementation, our numerical experiments are performed us-

ing multi-core CPU and many-core GPU environments.

Premia 17

Introduction and objectives

In this paper, we explore a Monte Carlo (MC) method based on Malliavin
calculus (MCM) for pricing American Options (AO). Unlike usual American
option algorithms as Longstaff-Schwartz (LS) [16] or Malliavin calculus tech-
niques based on localization, the method presented here does not need any
parametric regression and higher dimensional problems can be dealt with more
easily as the accuracy of results depends only on the number of simulated tra-
jectories.

Assuming that the asset S follows a Markovian model, American contracts
can be exercised at any trading date until maturity and their prices are given,
at each time t, by (see [14]) Pt(St) with

Pt(x) = supθ∈Tt,T
Et,x

(
e−r(θ−t)Φ(Sθ)

)
, (1)
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where Tt,T is the set of stopping times in the time interval [t, T ], Et,x is the
expectation associated to the risk neutral probability given that St = x and r
and Φ(St) are respectively the instantaneous interest rate and the payoff of the
contract.

In order to evaluate numerically the price (1), we first need to approach
continuous stopping times in Tt,T with discrete stopping times taking values in
the finite set t = t0 < t1 < ... < tn = T (Bermudan approximation). When
we do this approximation, pricing American options can be reduced to the
implementation of a discrete time dynamic programming algorithm (see [14]).
Like the LS algorithm [16], we implement the dynamic programming principle
in terms of the optimal stopping times τk, for each path, as follows

τn = T,
∀k ∈ {n − 1, ..., 0}, τk = tk1Ak

+ τk+11Ac
k
,

(2)

where the set Ak = {Φ(Stk
) > C(Stk

)} and C(Stk
) is the continuation value,

given by

C(Stk
) = E

(
e−r∆tPtk+1

(Stk+1
)
∣∣∣Stk

)
, (3)

where ∆t = tk+1 − tk. Thus, to evaluate the price (1), we need to estimate
C(Stk

).
Algorithms devoted to American pricing and based on Monte Carlo, differ

essentially in the way they estimate and use the conditional expectation (3).
For example the authors of [19] perform a regression to estimate the continua-
tion value, but unlike [16], they use C(Stk

) instead of the actual realized cash
flow Ptk+1

(Stk+1
) to update the price in (2). We refer the reader to [10] for a

presentation of the way this estimation is done for the LS algorithm and details
on the convergence. Other methods use the Malliavin calculus with localization
[6] or the quantization method [7] for C(Stk

) computation.
In this work, we rewrite (3) using Malliavin calculus but unlike [6] we use the

induction (2) for the implementation and we propose a new method of variance
reduction, without using localization. Formally speaking, for a constant r, we
can rewrite the conditional expectation using the Dirac distribution εx(·) at
point x then using the Malliavin calculus for a large class of diffusion models,
we get

C(x) =
E
(
e−r∆tPtk+1

(Stk+1
)εx(Stk

)
)

E (εx(Stk
))

=
E
(

e−r∆tPtk+1
(Stk+1

)1Stk
≥xΘtk,tk+1

)

E
(

1Stk
≥xΘtk,tk+1

) . (4)

In this paper, we provide the value of Θtk,tk+1
for two classes of models: Multidimens-

ional Exponential Diffusions with deterministic Coefficients (MEDC) and the
Multi-dimensional Heston (MH) model. In the MEDC models, the dynamics
of the assets {Si

t}1≤i≤d is given by

dSi
t

Si
t

= ridt +

i∑

j=1

σij(t)dW j
t , Si

0 = zi, i = 1, .., d.
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In the MH models, the dynamics of the assets {Si
t}1≤i≤d is given by

for 1 ≤ i ≤ d
dνi

t = κi(θi − νi
t)dt + ηi

√
νi

tdZ̃i
t , νi

0 = yi,

dSi
t = Si

t

(
ridt +

√
νi

tdZi
t

)
, Si

0 = zi.

For the conditional expectation (4) simulation, two variance reduction meth-
ods can be applied for MEDC and MH models as well as for other models. With-
out loss of generality, for the MEDC model, instead of simulating directly the
last term in (4), we project 1Stk

≥x(Stk
)Θtk,tk+1

using a conditioning as follows

C(x) =
E
(

e−r∆tPtk+1
(Stk+1

)E
[
1Stk

≥xΘtk,tk+1

∣∣{
∫ tk+1

0
σij(u)dW j

u}1≤j≤i≤d

])

E
(

E
[
1Stk

≥xΘtk,tk+1

∣∣{
∫ tk+1

0
σij(u)dW j

u}1≤j≤i≤d

]) . (5)

Then, the second variance reduction method is applied by setting the continu-
ation value to the approximation below

C(x) ≈
1

N ′

∑N ′

l=1 e−r∆tP l
tk+1

(Stk+1
)h(x, {

∫ tk+1

0 σij(u)dW j
u}l

1≤j≤i≤d)

1
N

∑N
l=1 h(x, {

∫ tk+1

0
σij(u)dW j

u}l
1≤j≤i≤d)

, (6)

with h(x, {wij}j≤i) = E(1Stk
≥xΘtk,tk+1

∣∣{
∫ tk+1

0 σij(u)dW j
u}1≤j≤i≤d = {wij}1≤j≤i≤d)

and N 6= N ′. Thus, we improve the speed of the convergence using an appro-
priate relation between N and N ′ that reduces the variance of the quotient (6).
Note that, even if one can also reduce the variance by an "appropriate" control
variate, here we choose not to implement this kind of method because it is not
standard for American options.

Regarding the numerical simulation, we test MCM on a multi-core CPU
(Central Processing Unit) as well as a many-core GPU (Graphic Processing
Unit). We will discuss the advantages of the parallel implementation of MCM on
a desktop computer that has the following specifications: Intel Core i7 Processor
920 with 9GB of tri-channel memory at frequency 1333MHz. It also contains
one NVIDIA GeForce GTX 480.

The outline of this paper is as follows. In section 1 we establish the notations
and the Malliavin calculus tools. We give in section 2 (see (14)) the value of
Θtk,tk+1

for the MEDC model and we extend it to the MH model in section 3.
Section 4 is devoted to a variance reduction method based on conditioning and
section 5 to the variance reduction method based on the appropriate relation
between N and N ′ (6). In the last section, we show that the multidimensional
MCM implementation on a many-core GPU is more than 60 times faster than its
implementation on a multi-core CPU. We also provide the numerical comparison
between LS and MCM. Finally, we study the results of using the two variance
reduction methods (5) and (6) which allow to obtain accurate prices even when
simulating only 210 trajectories.
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1 Notations, hypothesis and key tools

Let T be the maturity of the American contract, (Ω, F , P ) a probability space on
which we define a d-dimensional standard Brownian motion W = (W 1, ..., W d)
and F = {Fs}s≤T the P -completion of the filtration generated by W until
maturity. Moreover, we denote by {F i,...,d

s }s≤t the P -completion of the filtration
generated by (W i, ..., W d) until the fixed time t ∈ [0, T ].

Throughout sections 2 and 3, we will use two operators: The Malliavin
derivative D and the Skorohod integral δ and we define them in the same way
as in [5]. For a fixed m ∈ N, we define the subdivision {tk

m}k≤2m of the finite
interval [0, T ] by: tk

m = kT/2m. Then we introduce S(Rd×2m

) the Schwartz
space of infinitely differentiable and rapidly decreasing functions on R

d×2m

. Let
f ∈ S(Rd×2m

), we define the set S
m of simple functionals by

F ∈ S
m ⇔ F = f

(
Wt1

m
− Wt0

m
, Wt2

m
− Wt1

m
, ..., Wt2m

m
− Wt2m

−1
m

)
.

One can prove that S =
⋃

m∈N
S

m is a linear and dense subspace in L2(Ω) and
that the Malliavin derivatives DiF of F ∈ S defined by

Di
tF =

2m−1∑

k=0

∂f

∂xi,k

(
Wt1

m
− Wt0

m
, ..., Wt2m

m
− Wt2m

−1
m

)
1[tk

m,tk+1
m [(t)

is a process in L2(Ω × [0, T ]). We associate to S the norm || · ||1,2 defined by

||F ||21,2 = E|F |2 +

d∑

i=1

E

∫ T

0

(Di
tF )2dt.

Finally, the space D
1,2 is the closure of S with respect to this norm and we say

that F ∈ D
1,2 if there exists a sequence Fm ∈ S that converges to F in L2(Ω)

and that DuFm is a Cauchy sequence in L2(Ω × [0, T ]).
Now we use the duality property between δ and D to define the Skorohod

integral δ. We say that the process U ∈ Dom(δ) if ∀F ∈ D
1,2

∣∣∣∣∣E
(∫ T

0

Ut · DtFdt

)∣∣∣∣∣ ≤ C(U)||F ||1,2,

where C(U) is a positive constant that depends on the process U . If U ∈
Dom(δ), we define the Skorohod integral δ(U) =

∫
UtδWt by

∀F ∈ D
1,2, E

(
F

∫ T

0

Ut · δWt

)
= E (Fδ(U)) = E

(∫ T

0

Ut · DtFdt

)
, (7)

(·) is the inner scalar product on R
d.

Below, we give some standard properties of the operators D and δ:
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1. If the process Ut is adapted, δ(U) =
∫

UtδWt coincides with the Itô integral∫
UtdWt.

2. The Chain Rule: Let F = (F1, F2, ..., Fk) ∈ (D1,2)k and φ : R
k → R

a continuously differentiable function with bounded partial derivatives.
Then:
φ(F1, F2, ..., Fk) ∈ D

1,2 and

Dtφ(F1, F2, ..., Fk) =

k∑

i=1

∂φ

∂xi
(F1, F2, ..., Fk)DtFi.

3. The Integration by Parts: The IP formula will be extensively used in the
next section on the time intervals I = (0, s) and I = (s, t) with s <
t ∈]0, T ]: Assume F ∈ D

1,2, U is an adapted process in Dom(δ) and
FU ∈ Dom(δ). For each 1 ≤ i ≤ d we have the following equality

E

(∫

I

FUuδiWu

)
= E

(
F

∫

I

UudW i
u

)
− E

(∫

I

UuDi
uFdu

)
. (8)

To simplify the notations, we denote Hi(S
i
s) = H(Si

s − xi) for the Heaviside
function of the difference between the ith stock and the ith coordinate of the
positive vector x.

Throughout this article, we will suppose that g ∈ Eb(R
d) is a measurable

function with polynomial growth

Eb(R
d) =

{
f ∈ M(Rd) : ∃C > 0 and m ∈ N; |f(y)| ≤ C(1 + |y|d)m)

}
, (9)

where M(Rd) is the set of measurable functions on R
d and | · |d is the euclidean

norm. The elements of the set Eb(R
d) satisfy the finiteness of the expectations

computed in this article.

2 The expression of the continuation value for

multidimensional exponential diffusions with

deterministic coefficients

The process St models the price of a vector of assets S1
t , ..., Sd

t which constitute
the solution of the following stochastic differential equation

dSi
t

Si
t

= ridt +

i∑

j=1

σij(t)dW j
t , Si

0 = zi, i = 1, .., d, (10)

where ri are constants and σ(t) = {σij(t)}1≤i,j≤d is a deterministic triangular
matrix ({σij(t)}i<j = 0). We suppose that the matrix σ(t) is invertible, bounded
and uniformly elliptic which ensures the existence of the inverse matrix ρ(t) =
σ−1(t) and its boundedness. Dynamics (10) is widely used for equity models,
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HJM interest rate models and variance swap models. Moreover, one should
note that in the case where the dynamics of S is given by local volatility model,
we can use a discretization scheme to reduce it to an SDE of type (10) on
subintervals.

The first theorem of this section provides the expression of the continuation
value (3) when using Malliavin calculus for MEDC models. This theorem can
be considered as an extension of the results on the continuation value for the
multidimensional model with constant parameters detailed in [6]. In Theorem 2,
we provide a closed-form expression for Γk

s,t, introduced in Theorem 1. Corollary
1 treats the special case σij(t) = σiδ(i − j) (σij is a constant) that will be used,
with other models, to test numerically our nonparametric variance reduction
methods detailed in section 4 and section 5.

Theorem 1. For any s ∈]0, t[, g ∈ Eb(R
d) and x = (x1, ..., xd) with xi > 0,

E
(

g(St)
∣∣∣Ss = x

)
=

Ts,t[g](x)

Ts,t[1](x)
, (11)

where Ts,t[f ](x) is defined for every function1 f ∈ Eb(R
d) by

Ts,t[f ](x) = E

(
f(St)Γs,t

d∏

k=1

Hk(Sk
s )

Sk
s

)
, (12)

Γs,t = Γ1
s,t and Γ1

s,t can be computed by the following induction scheme

Γd
s,t = πd,d

s,t , for k ≤ d − 1: Γk
s,t = Γk+1

s,t πk,d
s,t −

d∑

j=k+1

∫ t

0

Dj
uΓk+1

s,t Dj
uπk,d

s,t du,(13)

with

πk,d
s,t = 1 +

d∑

j=k

∫ t

0

ϕjk(u)dW j
u , ϕjk(u) =

1

s
ρjk(u)1u∈]0,s[ − 1

t − s
ρjk(u)1u∈]s,t[,

where ρ is the inverse matrix ρ(u) = σ−1(u).

Hk(Sk
s ) is the Heaviside function of the difference between the kth stock and

the kth coordinate of the positive vector x, Eb(R
d) is defined in (9).

From this theorem we obtain

Θtk,tk+1
=

Γtk,tk+1∏d
i=1 Si

tk

. (14)

To prove Theorem 1, we need the following two lemmas which are proved in
the appendix. It follows from Lemma 1 that the sum

∑d
i=k ρik(u)Di

ug(St) does
not depend on u.

1In our case f = g or f = 1
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Lemma 1. For any u ∈]0, t[, f ∈ C1(Rd) and S given by the SDE (10), we
have

d∑

i=k

ρik(u)Di
uf(St) = Sk

t ∂xk
f(St). (15)

The second lemma is based on the duality property of the Malliavin calculus.

Lemma 2. For any I ⊂]0, t[, h ∈ C∞
b (R), x ∈ R

d
+, F ∈ D

1,2 and S given by
the SDE (10), we have

E
(∫

I
F Dk

uh(Sk
s )

σkk(u) du
)

= E
(

h(Sk
s )F

∑d
i=k

∫
I

ρik(u)dW i
u

)

− E
(

h(Sk
s )
∑d

i=k

∫
I ρik(u)Di

uFdu
)

.
(16)

Proof. of Theorem 1 We will prove that for hi ∈ C∞
b (R), 0 ≤ k ≤ d and

f ∈ Eb(R
d)

E

(
f(St)

d∏

i=1

h′
i(S

i
s)

)
= E

(
f(St)Γ

k+1
s,t

k∏

i=1

h′
i(S

i
s)

d∏

i=k+1

hi(S
i
s)

Si
s

)
(17)

and that Theorem 1 is obtained directly from (17) by setting k = 0.
Step 1: ((17) with k = 0) ⇒ (11).

Heuristically E
(

g(St)
∣∣∣Ss = x

)
can be viewed as E (g(St)εx(Ss)) /E (εx(Ss))

where εx is the Dirac distribution at x and we know that εxi
= H ′

i. In order to
make our reasoning rigorous, we will replace the expectation of εx(Ss) by the
density of Ss evaluated at x.

Let φ ∈ C∞
c (R) be a mollifier function with support equal to [−1, 1] and such

that
∫
R

φ(u)du = 1, then for any u ∈ R we define

hmk(u) = (Hk ∗ φm)(u) ∈ C∞
b (R), φm(u) = mφ(mu).

If the equality (17) is correct for any k, then it is correct for k = 0 which means

E

(
f(St)

d∏

k=1

h′
mk(Sk

s )

)
= E

(
f(St)Γs,t

d∏

k=1

hmk(Sk
s )

Sk
s

)
. (18)

On the one hand, hmk(u) converges to Hk(u) except at u = xk and the absolute
continuity of the law of Sk

s ensures that hmk(Sk
s ) converges almost surely to

Hk(Sk
s ). Using the dominated convergence theorem, we prove the convergence

of hmk(Sk
s ) to Hk(Sk

s ) in Lp(Ω) for p ≥ 1. By Cauchy-Schwarz inequality, we
prove the convergence

E

(
f(St)Γs,t

d∏

k=1

hmk(Sk
s )

Sk
s

)
−→ E

(
f(St)Γs,t

d∏

k=1

Hk(Sk
s )

Sk
s

)
.
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On the other hand, h′
mk(uk) =

∫
R

Hk(vk)φ′
m(uk −vk)dvk = φm(uk −xk). More-

over, we observe that, according to our assumption, the distribution of the
vector (S1

s , ..., Sd
s , S1

t , ..., Sd
t ) admits a log-normal joint density with respect to

the Lebesgue measure on R
d
+ ×R

d
+ we denote it by ps,t(u, v) with u = (u1, ..., ud)

and v = (v1, ..., vd) such that

E

(
f(St)

d∏

k=1

h′
mk(Sk

s )

)
=

∫

Rd

f(v)

(∫

Rd

d∏

k=1

φm(uk − xk)ps,t(u, v)du1...dud

)
dv1...dvd

Because
∫
Rd

∏d
k=1 φm(uk − xk)ps,t(u, v)du1...dud converges to ps,t(x, v) and due

to the regularity properties of the density and the growth condition on f , we
easily have

E

(
f(St)

d∏

k=1

h′
mk(Sk

s )

)
−→

∫

Rd

f(v)ps,t(x, v)dv1...dvd,

which concludes this step of the proof.

Step 2: We prove (17). Note that by a standard density argument of S in

L2(Ω), we can assume f ∈ C1(Rd) ∩ Eb(Rd).
We prove (17) by induction, we introduce the following notations:

ĥd
k(x) =

d∏

i=k

hi(xi)

xi
, ĥ′

k(x) =

k∏

i=1

h′
i(xi), x = (x1, ..., xd).

When k = d, we have by the chain rule h′
d(Sd

s ) =
Dd

uhd(Sd
s )

Dd
uSd

s
and Dd

uSd
s =

σdd(u)Sd
s , thus

E
(

f(St)ĥ′
d(Ss)

)
= E

(
1
s

∫ s

0
f(St)ĥ′

d−1(Ss)
Dd

uhd(Sd
s )

Dd
uSd

s
du
)

= E
(

1
s

∫ s

0
f(St)ĥ′

d−1(Ss)
Dd

uhd(Sd
s )

σdd(u)Sd
s

du
)

.

Using Lemma 2 with

F =
f(St)

Sd
s

d−1∏

i=1

h′
i(S

i
s) =

f(St)

Sd
s

ĥ′
d−1(Ss)

and the fact that ĥ′
d−1(Ss) does not depend on the dth coordinate of the Brow-

nian motion yields

E
(

1
s

∫ s

0 f(St)ĥ′
d−1(Ss)

Dd
uhd(Sd

s )du
σdd(u)Sd

s

)

= E
(

Fhd(Sd
s )1

s

∫ s

0
dW d

u

σdd(u)

)
− E

(
hd(Sd

s )1
s

∫ s

0 Dd
u

ĥ′
d−1(Ss)f(St)

Sd
s

du
σdd(u)

)

= E
(

Fhd(Sd
s )1

s

∫ s

0
dW d

u

σdd(u)

)
− E

(
ĥ′

d−1(Ss)hd(Sd
s )1

s

∫ s

0
Dd

u
f(St)

Sd
s

du
σdd(u)

)
.

(19)



?? pages 9

Besides using Lemma 1 for the Malliavin derivative of f(St), we get for v ∈]s, t[

1

σdd(u)
Dd

u

[
f(St)

Sd
s

]
=

1

Sd
s σdd(v)

Dd
vf(St) − f(St)

Sd
s

.

Thus, the value of the last term of (19) is given by

E
(

ĥ′
d−1(Ss)hd(Sd

s )1
s

∫ s

0
Dd

u
f(St)

Sd
s

du
σdd(u)

)
= −E

(
ĥ′

d−1(Ss)hd(Sd
s )f(St)

Sd
s

)

+E
(

ĥ′
d−1(Ss)

hd(Sd
s )

Sd
s

1
t−s

∫ t

s Dd
vf(St)

dv
σdd(v)

)
.

And by duality (7) we remove the Malliavin derivative of f(St) in the last term
of the previous equality

E

(
ĥ′

d−1(Ss)hd(Sd
s )

Sd
s

1
t−s

∫ t

s
Dd

v f(St)dv
σdd(v)

)
= E

(
ĥ′

d−1(Ss)hd(Sd
s )

Sd
s

E
{

1
t−s

∫ t

s
Dd

v f(St)dv
σdd(v)

∣∣∣Fs

})

= E

(
ĥ′

d−1(Ss)hd(Sd
s )

Sd
s

E
{

f(St)
1

t−s

∫ t

s
dW d

v

σdd(v)

∣∣∣Fs

})
.

Regrouping all terms together gives

E
(

f(St)ĥ′
d(Ss)

)
= E

(
f(St)Γ

d
s,tĥ

′
d−1(Ss)ĥd

d(Ss)
)

, Γd
s,t = πd,d

s,t .

Now, let us suppose that (17) is satisfied for k and prove it for k − 1. We

have by the chain rule h′
k(Sk

s ) =
Dk

uhk(Sk
s )

Dk
uSk

s
and Dk

uSk
s = σkk(u)Sk

s , thus

E
(

f(St)ĥ′
d−1(Ss)

)
= E

(
f(St)Γ

k+1
s,t ĥd

k+1(Ss)ĥ′
k(Ss)

)

= E
(

1
s

∫ s

0
f(St)Γ

k+1
s,t ĥd

k+1(Ss)ĥ′
k−1(Ss)

Dk
uhk(Sk

s )
σkk(u)Sk

s
du
)

= E

(
1
s

∫ s

0

f(St)Γk+1
s,t ĥd

k+1(Ss)ĥ′
k−1(Ss)

Sk
s

Dk
uhk(Sk

s )
σkk(u) du

)
.

Using Lemma 2 with

F =
f(St)Γ

k+1
s,t ĥd

k+1(Ss)ĥ′
k−1(Ss)

Sk
s

and the fact that ĥ′
k−1(Ss) does not depend on the jth coordinate (j ≥ k) of

the Brownian motion yields

E
(

1
s

∫ s

0
F Dk

uhk(Sk
s )

σkk(u) du
)

=
∑d

j=k E
(
Fhk(Sk

s )1
s

∫ s

0 ρjk(u)dW j
u

)

−∑d
j=k E

(
hk(Sk

s )ĥ′
k−1(Ss)1

s

∫ s

0
Dj

u

[
f(St)̂hd

k+1(Ss)Γk+1
s,t

Sk
s

]
ρjk(u)du

)
.

(20)

Besides, if for x = (x1, ..., xd) we denote Π(x) =
ĥd

k+1(x)

xk
, the Malliavin derivative

of the last term of (20) provides

Dj
u

[
Γk+1

s,t Π(Ss)f(St)
]

= Dj
uΓk+1

s,t Π(Ss)f(St) + Γk+1
s,t Dj

uΠ(Ss)f(St)

+ Γk+1
s,t Π(Ss)Dj

uf(St).
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Using Lemma 1 for the Malliavin derivative in the two last terms, we get

d∑

j=k

ρjk(u)Dj
uΠ(Ss) = Sk

s ∂xk
Π(Ss) = −Π(Ss), (21)

d∑

j=k

ρjk(u)Dj
uf(St) = Sk

t ∂xk
f(St). (22)

From (21), we deduce that

ĥ′
k−1(Ss)hk(Sk

s )f(St)Γ
k+1
s,t

1

s

∫ s

0

d∑

j=k

ρjk(u)Dj
uΠ(Ss)du = − ĥ′

k−1(Ss)ĥd
k(Ss)f(St)Γ

k+1
s,t

Sk
s

.

Thus, introducing the random variable π̃k,d
s,t = 1 + 1

s

∑d
j=k

∫ s

0 ρjk(u)dW j
u and

using (20)

E
(

1
s

∫ s

0
F Dk

uhk(Sk
s )

σkk(u) du
)

= E

(
ĥd

k(Ss)ĥ′
k−1(Ss)f(St)Γk+1

s,t

Sk
s

π̃k,d
s,t

)

− E

(
ĥd

k(Ss)ĥ′
k−1(Ss)f(St)

Sk
s

1
s

∫ s

0

∑d
j=k ρjk(u)Dj

uΓk+1
s,t du

)

− E

(
ĥd

k(Ss)ĥ′
k−1(Ss)Γk+1

s,t

Sk
s

1
t−s

∫ t

s

∑d
j=k ρjk(u)Dj

uf(St)du

)
,

(23)

where we used the fact (22) that
∑d

j=k ρjk(u)Dj
uf(St) does not depend on u.

Let us develop the last term of (23)

E

(
ĥd

k(Ss)ĥ′
k−1(Ss)Γk+1

s,t

Sk
s

1
t−s

∫ t

s

∑d
j=k ρjk(u)Dj

uf(St)du

)

= E

(
ĥd

k(Ss)ĥ′
k−1(Ss)

Sk
s

∑d
j=k E

[
1

t−s

∫ t

s Γk+1
s,t ρjk(u)Dj

uf(St)du
∣∣∣Fs

])

= E

(
ĥd

k(Ss)ĥ′
k−1(Ss)

Sk
s

∑d
j=k E

[
f(St)

1
t−s

∫ t

s
Γk+1

s,t ρjk(u)δW j
u

∣∣∣Fs

])

=
∑d

j=k E

(
f(St)̂hd

k(Ss)ĥ′
k−1(Ss)Γk+1

s,t

Sk
s

1
t−s

∫ t

s
ρjk(u)dW j

u

)

− ∑d
j=k E

(
f(St )̂hd

k(Ss)ĥ′
k−1(Ss)

Sk
s

1
t−s

∫ t

s ρjk(u)Dj
uΓk+1

s,t du

)
.

We applied (7) in the third equality to remove the Malliavin derivative of f(St).
We also used (8) in the last equality. To complete the proof, we should remark
that

1

s

∫ s

0

Dj
uΓk+1

s,t ρjk(u)du − 1

t − s

∫ t

s

Dj
vΓk+1

s,t ρjk(v)dv = −
∫ t

0

Dj
yΓk+1

s,t Dj
yπk,d

s,t dy
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and because Γk+1
s,t is an Fk+1,...,d

t -measurable random variable (F i,...,d
t defined

in section 1)

Γk
s,t = Γk+1

s,t πk,d
s,t −

d∑

j=k

∫ t

0

Dj
uΓk+1

s,t Dj
uπk,d

s,t du = Γk+1
s,t πk,d

s,t −
d∑

j=k+1

∫ t

0

Dj
uΓk+1

s,t Dj
uπk,d

s,t du.

Although Dj
uπk,d

s,t = ϕjk(u), note that the Malliavin derivative of Γk+1
s,t in-

tervenes in the induction (13) which is difficult to compute numerically. Con-
sequently, we propose in Theorem 2 a new formula which enables us to get rid
of the Malliavin derivatives and its computation can be easily done using (27).

We will use in Theorem 2 the set of the second order permutations Pk,d

defined as the following

Pk,d = {p ∈ Pk,d; p ◦ p = Id}, (24)

where Pk,d is the set of permutations on {k, ..., d} and Id is the identity appli-
cation. By induction, one can easily prove that

Pk,d = {τk
k ◦ p; p ∈ Pk+1,d} ∪ {τ l

k ◦ p; p ∈ Pk+1,d, p(l) = l, l ∈ {k + 1, ..., d}}, (25)

with τ j
i : i 7→ j as the transposition application on {k, ..., d}. We also denote by

∆ the determinant that involves only the permutations of Pk,d, that is to say,
the ∆ associated to the matrix C = {Ci,j}k≤i,j≤d is given by

∆ =
∑

p∈Pk,d

ǫ(p)

d∏

i=1

Ci,p(i)

where ǫ(p) is the signature of the permutation p.

Theorem 2. Based on the assumptions of Theorem 1, for k ∈ {1, ..., d} the
value of Γk

s,t is given by

Γk
s,t =

∑

p∈Pk,d

ǫ(p)Ak,p(k)Ak+1,p(k+1)...Ad,p(d) =
∑

p∈Pk,d

ǫ(p)

d∏

i=k

Ai,p(i), (26)

with ǫ(p) as the signature of the permutation p ∈ Pk,d, Pk,d defined in (24) and

A =




π1,d
s,t C1,2 C1,3 · · · C1,d

1 π2,d
s,t C2,3 · · · C2,d

...
. . .

. . .
. . .

...

1 · · · 1 πd−1,d
s,t Cd−1,d

1 1 · · · 1 πd,d
s,t




,

where Ck,l is the covariance of πk,d
s,t and πl,d

s,t.
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C11 C12 C13

C21 C22 C23

C31 C32 C33

= +( 12)( 11) ( 13)+

=

C11 C12 C13

C21 C22 C23

C31 C32 C33

+

C11 C12 C13

C21 C22 C23

C31 C32 C33

C11 C12 C13

C21 C22 C23

C31 C32 C33

-C11 C12C21 C13C31

= +-C11 C12C21 C13C31(C22 C23)C32C33- C33 C22

1211 13C11 C12C21 C13C31

Figure 1: Illustration of the computation of ∆ (27) for d = 3 and k = 1.

Remark: In the theorem above, Ck,l admits a closed-form expression be-

cause πk,d
s,t and πl,d

s,t are two correlated Gaussian variables whose general value
is given in Theorem 1. Please remark that Γ1

s,t = Γs,t is a determinant that in-

volves only the permutations of P1,d and for a determinant ∆, associated to an
arbitrary (d−k +1)× (d−k +1) matrix C = {Ci,j}k≤i,j≤d, whose permutations
are in Pk,d, we use (25) to prove easily that

∆ = Ck,k∆k,k +

d∑

i=k+1

ǫ(τ i
k)Ci,kCk,i∆k,i, (27)

where ∆k,i is the ∆ associated to the Ci,k obtained from C by suppressing
the line and the column i as well as the line and the column k. Based on
the development according to the first line, relation (27) provides a recursive
formula which is even more efficient than the determinant formula. Of course,
we can generalize the relation (27) to the one that involves the development
according to a jth line or a jth column with k ≤ j ≤ d. In Figure 1, we provide
an illustration of the computation of ∆ when C is a 3 × 3 matrix.

Proof. of Theorem 2 We prove (26) by a decreasing induction. For k = d,
the expression (26) is clearly satisfied. We suppose that (26) is satisfied for

k + 1 and we prove it for k. According to Theorem 1, Γk
s,t = Γk+1

s,t πk,d
s,t −∑d

j=k+1

∫ t

0
Dj

uΓk+1
s,t Dj

uπk,d
s,t du, but

Dj
uΓk+1

s,t =
∑d

l=k+1

∑
p∈Pk+1,d

ǫ(p)
∏d

i=k+1,i6=l Ai,p(i)D
j
uAl,p(l)

=
∑d

l=k+1

∑
p∈Pk+1,d,p(l)=l ǫ(p)

∏d
i=k+1,i6=l Ai,p(i)D

j
uAl,l,

the second equality is due to the fact that Al,p(l) is a constant except for p(l) = l.
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Subsequently

−∑d
j=k+1

∫ t

0 Dj
uΓk+1

s,t Dj
uπk,d

s,t du

= −∑d
l=k+1

∑
p∈Pk+1,d,p(l)=l ǫ(p)

∏d
i=k+1,i6=l Ai,p(i)

∑d
j=k+1

∫ t

0 Dj
uAl,lD

j
uπk,d

s,t

= −∑d
l=k+1

∑
p∈Pk+1,d,p(l)=l ǫ(p)

∏d
i=k+1,i6=l Ai,p(i)Ck,l.

Finally

Γk
s,t = Γk+1

s,t πk,d
s,t −

d∑

j=k+1

∫ t

0

Dj
uΓk+1

s,t Dj
uπk,d

s,t du

= πk,d
s,t

∑

p∈Pk+1,d

ǫ(p)

d∏

i=k+1

Ai,p(i) −
d∑

l=k+1

Ck,l

∑

p∈Pk+1,d,p(l)=l

ǫ(p)

d∏

i=k+1,i6=l

Ai,p(i)

=
∑

p∈Pk,d

ǫ(p)

d∏

i=k

Ai,p(i).

The last equality is due to the development of
∑

p∈Pk,d
ǫ(p)

∏d
i=k Ai,p(i) accord-

ing to the kth line of A which can be justified by (25).
As a corollary of Theorem 1 and Theorem 2, we obtain the following result

for the multidimensional Black & Scholes model with independent coordinates

Corollary 1. For any s ∈]0, t[, g ∈ Eb(R
d) and x = (x1, ..., xd) with xi > 0, if

σij(t) = σiδ(i − j) then

E
(

g(St)
∣∣∣Ss = x

)
=

Ts,t[g](x)

Ts,t[1](x)
,

with

Ts,t[f ](x) = E

(
f(St)

d∏

k=1

Hk(Sk
s )W k

s,t

σks(t − s)Sk
s

)
, (28)

and

W k
s,t = (t − s)(W k

s + σks) − s(W k
t − W k

s ), k = 1, ..., d.

3 Extension to the multidimensional Heston model

In this section, we consider the multidimensional Heston model

for 1 ≤ i ≤ d
dνi

t = κi(θi − νi
t)dt + ηi

√
νi

tdZ̃i
t , νi

0 = yi,

dSi
t = Si

t

(
ridt +

√
νi

tdZi
t

)
, Si

0 = zi,
(29)
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where (Z1, ..., Zd, Z̃1, ..., Z̃d) is a vector of correlated Brownian motions with
R as a non-singular correlation matrix. The first step is to rewrite (29) using
independent Brownian motions by the Cholesky decomposition of R = LL′

where L is a lower triangular matrix which provides




dν1
t

...
dνd

t

dS1
t

...
dSd

t




=




κ1(θ1 − ν1
t )

...
κd(θd − νd

t )
r1S1

t
...

rdSd
t




dt + diag




η1

√
ν1

t
...

ηd

√
νd

t√
ν1

t S1
t

...√
νd

t Sd
t




L




dW̃ 1
t

...

dW̃ d
t

dW 1
t

...
dW d

t




,
νi

0 = yi

Si
0 = zi , (30)

where (W̃ 1, ..., W̃ d, W 1, ..., W d) is a vector of independent Brownian motions.
Because the matrix L is a lower triangular matrix, conditionally to the Brownian
motions (W̃ 1, ..., W̃ d), the dynamics of the asset vector S = (S1, ..., Sd) is similar
to the one given in (10). This basic argument is the first we use to extend the
results of the previous section to the multidimensional Heston model and it can
also be used with other stochastic volatility models. Indeed, it allows us to use
the Malliavin calculus directly on (W 1, ..., W d) as in the previous section and to

completely forget the dependence on (W̃ 1, ..., W̃ d). The second argument used
in our extension is based on the following result, proved in [12].

Lemma 3. E
[(∫ t

0
νi

sds
)r]

is finite for all r ∈ R and i ∈ {1, ..., d}.

Before stating Theorem 3, we decompose the matrix L into three d×d blocks
and we define the matrix σ(u) using the third block σ.

L =

(
σ′ 0
σ′′ σ

)
, σ(u) =




√
ν1

uσ11 0 ... 0
...

. . .
. . .

...√
νd−1

u σd−11 ...
√

νd−1
u σd−1d−1 0√

νd
uσd1 ...

√
νd

uσdd−1

√
νd

uσdd




(31)

Theorem 3. For any s ∈]0, t[ let

Γs,t =
∑

p∈P1,d

ǫ(p)A1,p(1)A2,p(2)...Ad,p(d) =
∑

p∈P1,d

ǫ(p)

d∏

i=1

Ai,p(i), (32)

with ǫ(p) as the signature of the permutation p ∈ P1,d, P1,d defined in (24) and

A =




π1,d
s,t C1,2 C1,3 · · · C1,d

1 π2,d
s,t C2,3 · · · C2,d

...
. . .

. . .
. . .

...

1 · · · 1 πd−1,d
s,t Cd−1,d

1 1 · · · 1 πd,d
s,t




,
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πk,d
s,t = 1 +

d∑

j=k

∫ t

0

ϕjk(u)dW j
u , ϕjk(u) =

1

s

ρjk√
νk

u

1u∈]0,s[ − 1

t − s

ρjk√
νk

u

1u∈]s,t[, (33)

and

Ck,l =

d∑

j=k

ρjkρjl

s2

∫ s

0

du√
νk

uνl
u

+

d∑

j=k

ρjkρjl

(t − s)2

∫ t

s

du√
νk

uνl
u

. (34)

ρ is the inverse matrix ρ = σ−1 and σ is the third-block matrix in the decompo-
sition (31). If there is 1 < q < ∞ such that Γs,t ∈ Lq(Ω) then, for g ∈ Eb(R

d)
and x = (x1, ..., xd) with xi > 0

E
(

g(St)
∣∣∣Ss = x

)
=

Ts,t[g](x)

Ts,t[1](x)
, (35)

where Ts,t[f ](x) is defined for every function f ∈ Eb(R
d) by

Ts,t[f ](x) = E

(
f(St)Γs,t

d∏

k=1

Hk(Sk
s )

Sk
s

)
. (36)

Proof. of Theorem 3 To prove Theorem 3, it is sufficient to prove the following
recursive relation for k = 0, hi ∈ C∞

b (R) and f ∈ Eb(R
d)

E

(
E

[
f(St)

d∏

i=1

h′
i(S

i
s)
∣∣∣F̃t

])
= E

(
E

[
f(St)Γ

k+1
s,t

k∏

i=1

h′
i(S

i
s)

d∏

i=k+1

hi(S
i
s)

Si
s

∣∣∣F̃t

])
, (37)

where F̃t is the completed filtration generated by (W̃ 1, ..., W̃ d) until t. If we
subdivide this proof into two steps, Step 2 is similar to the one in the proof

of Theorem 1 because, as we said earlier, conditionally to (W̃ 1, ..., W̃ d), the
processes {νi

t}1≤i≤d can be considered as deterministic. Moreover the expression
of Γs,t can be found in the same fashion as for Theorem 2.

Step 1: ((37) with k = 0) ⇒ (35).
Let φ ∈ C∞

c (R) be a mollifier function with support equal to [−1, 1] and such
that

∫
R

φ(u)du = 1, then for any u ∈ R we define

hmk(u) = (Hk ∗ φm)(u) ∈ C∞
b (R), φm(u) = mφ(mu).

If the equality (37) is correct for any k, then it is correct for k = 0 which means

E

(
f(St)

d∏

k=1

h′
mk(Sk

s )

)
= E

(
f(St)Γs,t

d∏

k=1

hmk(Sk
s )

Sk
s

)
.

The proof of the convergence

E

(
f(St)Γs,t

d∏

k=1

hmk(Sk
s )

Sk
s

)
−→ E

(
f(St)Γs,t

d∏

k=1

Hk(Sk
s )

Sk
s

)
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is also similar to the one in the proof of Theorem 1, the only difference is due
to the replacement of the Cauchy-Schwartz inequality by the Hölder inequality
that uses the Lq-boundedness of Γs,t.

Besides, h′
mk(uk) =

∫
R

Hk(vk)φ′
m(uk − vk)dvk = φm(uk − xk) and the distri-

bution of the vector (S1
s , ..., Sd

s , S1
t , ..., Sd

t ), conditionally to (W̃ 1, ..., W̃ d), admits
a log-normal joint density with respect to the Lebesgue measure on R

d
+ × R

d
+,

we denote it by p̃s,t(u, v) with u = (u1, ..., ud) and v = (v1, ..., vd) where

p̃s,t(u, v) =
1

(det(Σ1) det(Σ2))
1
2

q(u, v)

and

q(u, v) =

∏d
i=1 1ui>0,vi>0

(2π)d
∏d

i=1 ui

∏d
i=1 vi

exp

(
− 1

2 (ln u − d1)′Σ−1
1 (ln u − d1)

− 1
2 (ln v − ln u − d2)′Σ−1

2 (ln v − ln u − d2)

)
,

d1 =
(
sr1 − 1

2 Σ11
1 , ..., srd − 1

2 Σdd
1

)
, d2 =

(
(t − s)r1 − 1

2 Σ11
2 , ..., (t − s)rd − 1

2 Σdd
2

)
,

Σ1 =
∫ s

0
σ(w)σ′(w)dw, Σ2 =

∫ t

s
σ(w)σ′(w)dw and σ(w) is given in (31), thus

E

(
f(St)

d∏

k=1

h′
mk(Sk

s )
∣∣∣F̃t

)
=

∫
Rdf(v)

(∫
Rd

∏d
k=1 φm(uk − xk)q(u, v)du1...dud

)
dv1...dvd

(det(Σ1) det(Σ2))
1
2

To prove the convergence

E

(
f(St)

d∏

k=1

h′
mk(Sk

s )

)
−→ E

(∫

Rd

f(v)p̃s,t(x, v)dv1...dvd

)
,

we should first remove the term (det(Σ1) det(Σ2))
1
2 using the Cauchy-Schwarz

inequality thanks to Lemma 3, then we use the convergence of
∫
Rd

∏d
k=1 φm(uk−

xk)q(u, v)du1...dud to q(x, v) as in Step 1 of the proof of Theorem 1.
In Theorem 3, we made the assumption that Γs,t ∈ Lq(Ω) and one should

find the parameters κi, θi and ηi of νi
u that fulfill this condition. In this article,

we test only the one-dimensional Heston model for which the Feller conditions
are sufficient to ensure that Γs,t ∈ L2(Ω). Indeed, if d = 1, Γs,t = π1,1

s,t and it

is sufficient to prove that
∫ t

0
du
ν1

u
∈ L1(Ω) which is given in the following lemma.

Because d = 1, in the lemma below, we remove the dimension index.

Lemma 4. If κ ≥ 0 and 2κθ ≥ η2 then E
(∫ t

0
du
νu

)
is finite.

Proof. of Lemma 4 According to Lemma A.2. in [8]

E exp




η2
(

2κθ
η2 − 1

)2

8

∫ t

0

du

νu


 < ∞

and the finiteness of E
(∫ t

0
du
νu

)
follows directly from the application of the

Jensen’s inequality on the logarithmic function.
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4 Variance reduction method based on condi-

tioning

As was said in the previous section, conditionally to the Brownian motions that
generate the volatilities, studying the stochastic volatility model (30) is equiva-
lent to studying the MEDC model (10). Thus, except for Theorem 6, in this sec-
tion we suppose that the price of the asset St is given by (10) for which we show

that one can reduce the variance by a projection on L2

({∫ t

0 σij(u)dW j
u

}
i,j

)

and by using the closed-form expression of Ts,t[1](x).
We begin with Ts,t[1](x), we can compute the explicit value of this function

of x. The Ts,t[1](x) closed formula can be got, for instance, from a change of

probability. Indeed, we define the probability P = Ncoeff(
∏d

k=1 Sk
0 /Sk

s )P which
yields

Ts,t[1](x) =
1

Ncoeff
E

([
d∏

k=1

Hk(Sk
s )

]
Γs,t

)
,

Ncoeff is a deterministic normalization coefficient such that Ms = Ncoeff (
∏d

k=1 Sk
0 /Sk

s )
is an exponential martingale with E(Ms) = 1. Under P, Γs,t has the same law
as a polynomial of Gaussian variables which is sufficient to conduct the compu-
tations.

Let us now denote

h(x, wij) = E

(
Γs,t

d∏

k=1

Hk(Sk
s )

Sk
s

∣∣
{∫ t

0

σij(u)dW j
u

}

1≤j≤i≤d

= {wij}1≤j≤i≤d

)
(38)

In what follows, we are going to prove that the function h(x, {wij}1≤j≤i≤d)
can be explicitly known if, for each j, the (d − k) × (d − k) matrix Σjt ={

Σik
jt

}
j≤i,k≤d

=
{∫ t

0 σij(u)σkj(u)du
}

j≤i,k≤d
is invertible. First, please note

that according to our notations i − j + 1 and k − j + 1 are the indices of the
element Σik

jt in the matrix Σjt (we will use a similar convention for Aj , Bj ,
Ψjt and Φjt). Also, we notice that the invertibility condition of Σjt is not an
important constraint, because one can choose a time discretization {tm} such
that the matrices {Σjtm

}k≤d fulfill this condition2.

The computation of h(x, {wij}1≤j≤i≤d) is based on a regression of Gaussian

variables according to the Gaussian variables Yij =
∫ t

0
σij(u)dW j

u . First, we

perform a linear regression of
∫ t

0
ϕjk(u)dW j

u according to Yij

∫ t

0

ϕjk(u)dW j
u =

d∑

i=j

aj
i,kYij + Xjk, (39)

2Nevertheless, this is a difficult task when the dimension is sufficiently big.
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where {Xjk}1≤k≤j≤d is a Gaussian vector N (0, CX) orthogonal to Y . Using Itô
isometry twice and the orthogonality of Y and X , we obtain

E

(∫ t

0

ϕjk(u)dW j
uYlj

)
=

∫ t

0

ϕjk(u)σlj(u)du =

n∑

j=k

Σli
jta

j
i,k.

If we denote Aj = {aj
i,k}j≤i,k≤d and Ψjt =

{∫ t

0
ϕjk(u)σlj(u)du

}
k,l

, we get

Aj = Σ−1
jt Ψjt.

In the same way, we perform a linear regression of
∫ s

0
σkj(u)dW j

u according to
Yij

∫ s

0

σkj(u)dW j
u =

d∑

i=j

bj
i,kYij + Zkj , (40)

where {Zkj}1≤j≤k≤d is a Gaussian vector N (0, CZ) orthogonal to Y . Using Itô
isometry twice and the orthogonality of Y and Z, we obtain

E

(∫ s

0

σkj(u)dW j
uYlj

)
=

∫ s

0

σkj(u)σlj(u)du =

d∑

i=j

Σli
jtb

j
i,k.

If we denote Bj = {bj
i,k}j≤i,k≤d, we get

Bj = Σ−1
jt Σjs.

Now using (39), (40) and the value of A and B, the covariance matrices CX ,

CZ and CXZ = E(XZ) are given by (Φi,k
jt =

∫ t

0 ϕji(u)ϕjk(u)du)

[CX ]ji,k = E(XjiXjk) = Φi,k
jt − (Aj

k)′Ψi
jt − (Aj

i )′Ψk
jt + (Aj

k)′ΣjtA
j
i ,

[CZ ]ji,k = E(ZijZkj) = Σi,k
js − (Bj

k)′Σi
js − (Bj

i )′Σk
js + (Bj

k)′ΣjtB
j
i ,

[CXZ ]ji,k = E(XjiZkj) = Ψi,k
js − (Aj

k)′Σi
js − (Bj

i )′Ψk
jt + (Aj

k)′ΣjtB
j
i .

Employing (39) and (40), we express Γs,t and Sk
s according to Yij , Zij and

Xji then we conduct standard Gaussian computations to obtain the expression
of h(x, wij) 3. In Theorem 4, we give an explicit expression of Ts,t[1](x) and
h(x, wij) in the case of multidimensional B&S models with independent coordi-
nates.

3One can use Mathematica to compute it formally.
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Regarding the model (10), we see that now that we know the explicit value
of Ts,t[1](x) and h(x, {wij}1≤j≤i≤d), subsequently, we should choose between
the simulation of:
P1) N paths of g(St)h

(
x, {
∫ t

0 σij(u)dW j
u}i,j

)
then set the continuation value

to

C(x) :=

1
N

∑N
l=1 gl(St)h

(
x, {
∫ t

0
σij(u)dW j

u}l
1≤j≤i≤d

)

Ts,t[1](x)
.

P2) N ′ paths of g(St)h
(

x, {
∫ t

0
σij(u)dW j

u}i,j

)
and N paths of h

(
x, {
∫ t

0
σij(u)dW j

u}i,j

)

then set the continuation value to

C(x) :=

1
N ′

∑N ′

l=1 gl(St)h
(

x, {
∫ t

0
σij(u)dW j

u}l
1≤j≤i≤d

)

1
N

∑N
l=1 h

(
x, {
∫ t

0 σij(u)dW j
u}l

1≤j≤i≤d

) .

Based on a variance reduction argument, Proposition 1 will indicate asymp-
totically, for some cases, the preferable method to use. In the case of the mul-
tidimensional Heston model, please note that Ts,t[1](x) is not given explicitly,
however we explicitly know the value of the function

h(x, {wij}j≤i)=E
(

1Ss≥xΓs,t

∏d
k=1

Hk(Sk
s )

Sk
s

∣∣F̃t

∨{
∫ t

0

√
νi

udW j
u}j≤i ={wij}j≤i

)
, (41)

for 1 ≤ j, i ≤ d. Thus, we will exclusively use a P2) alike procedure, that

is to say, simulate N ′ paths of g(St)h
(

x, {
∫ t

0

√
νi

udW j
u}i,j

)
and N paths of

h
(

x, {
∫ t

0

√
νi

udW j
u}i,j

)
then set the continuation value to

C(x) :=

1
N ′

∑N ′

l=1 gl(St)h
l
(

x, {
∫ t

0

√
νi

udW j
u}1≤j≤i≤d

)

1
N

∑N
l=1 hl

(
x, {
∫ t

0

√
νi

udW j
u}1≤j≤i≤d

) .

In this approximation of the continuation value, the trajectory index l is on
the function h because it resulted from a conditioning according to F̃t and
consequently h is not deterministic.

We provide in Theorem 4, Theorem 5 and Theorem 6 the expression of the
conditioning for three cases that will be tested in section 6. The proofs of these
theorems are given in the appendix. Unlike in the Theorem 4, in Theorem 5
and Theorem 6 we only give the expression of the function h because we will
only use the procedure P2) for the simulation.

Theorem 4. We suppose that St has the dynamics (10) and σij(t) = σijδ(i −
j) then, by conditioning, the function h defined in (38) and the denominator
Ts,t[1](x) given in Theorem 1 have the following values

Ts,t[1](x) =

d∏

k=1

e(σ2
k−rk)s

σkSk
0

1√
s2π

e−
d̃2

xk
2 , d̃xk

=
ln
(

xk

Sk
0

)
− rks +

3σ2
ks

2

σk
√

s
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and

h(x, {wk}1≤k≤d) =

d∏

k=1

e(σ2
k−rk)s

σkSk
0

√
t

s(t − s)2π
exp

(−sσk

t

(sσk

2
+ wk

)
− (dxk

(wk))2

2

)
,

with

dxk
(wk) =

(
ln
(

xk

Sk
0

)
− rks +

3σ2
ks

2 − (sσk + wk) sσk

t

)/(
σk

√
s(t − s)/t

)
.

Theorem 5. We suppose that St has the dynamics (10) and that d = 2 with ρ,
σ1 and σ2 three constants such that

σ(u) =

(
σ1 0

ρσ2

√
1 − ρ2σ2

)
, |ρ| < 1.

By conditioning, the expression of the function h defined in (38) is given by

h(x, w1, w2) = E
(

Γs,t

∏2
k=1

Hk(Sk
s )

Sk
s

∣∣W 1
t = w1, W 2

t = w2

)

= e

(
(σ2

1
+σ2

2
)

2
−r1−r2

)
s+

s(t−s)(σ2
1

+2ρσ1σ2+σ2
2

)

2t
−

(σ1+ρσ2)sw1+σ2

√
1−ρ2sw2

t

S1
0S2

0
Λx1,x2,w1,w2 ,

(42)

with

Λx1,x2,w1,w2 = tρ(σ2−σ1)
s(t−s)(1−ρ2)σ2

1σ2
2
Λ1

x1,x2,w1,w2
+

t((1−ρ2)σ2+ρ2σ1)
s(t−s)σ1σ2

22π
√

1−ρ2
Λ2

x1,x2,w1,w2

+
√

t
s(t−s)

ρ(σ1−σ2)
σ1σ2

[
1 +

d2

√
1−ρ2

σ2

√
t

s(t−s)

]
1√
2π

Λ3
x1,x2,w1,w2

,

and

Λ1
x1,x2,w1,w2

= 1

2π
√

1−ρ2

∫ d1

−∞
∫ d2

√
1−ρ2

−∞ e
−

u2
1

+u2
2

−2ρu1u2

2(1−ρ2) du1du2,

Λ3
x1,x2,w1,w2

= e−
(1−ρ2)d2

2
2

1√
2π

∫ d1√
1−ρ2

−ρd2

−∞ e− u2

2 du, Λ2
x1,x2,w1,w2

= e
−

d2
1

2(1−ρ2)
+

ρd1d2√
1−ρ2

−
d2

2
2 ,

where d1 and d2 are functions of x1,x2,w1 and w2

d1(x1, w1) =
ln

(
S1

0
x1

)
+r1s+

σ1sw1
t

−
s(3t−2s)σ2

1
2t

− s(t−s)ρσ1σ2
t

σ1

√
s(t−s)

t

,

d2(x2, w1, w2) =
ln

(
S2

0
x2

)
+r2s+

σ2ρsw1
t

+
σ2

√
1−ρ2sw2

t
−

s(3t−2s)σ2
2

2t
− s(t−s)ρσ1σ2

t

√
1−ρ2σ2

√
s(t−s)

t

.
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Theorem 6. For d = 1, we suppose that St has the dynamics (29), σ(u) =√
1 − ρ2

√
νu with |ρ| < 1 and κ > 0, 2κθ > η2. By conditioning, the expression

of the function h defined in (41) is given by

h(x, w) =
F
(∫

t

0
νudu,

∫
s

0
νudu

)

S0

√
2π(1−ρ2)

exp




−d2
x(w) − rs −

√
1 − ρ2

∫
s

0
νudu∫

t

0
νudu

w − ρ
∫ s

0

√
νudW̃u

+
(

1 − ρ2

2

) ∫ s

0 νudu − 1−ρ2

2

(∫
s

0
νudu

)2

∫
t

0
νudu


 ,

with

dx(w) =

ln( S0
x )+rs+

√
1−ρ2

(∫ s

0
νudu∫

t

0
νudu

)
w+ρ

∫
s

0

√
νudW̃u+(ρ2− 3

2 )
∫

s

0
νudu+

(1−ρ2)

(∫
s

0
νudu

)2

∫
t

0
νudu

√
1−ρ2

√(∫
t

0
νudu

)(∫
s

0
νudu

)
−
(∫

s

0
νudu

)2
/

√∫
t

0
νudu

,

and

F

(∫ t

0

νudu,

∫ s

0

νudu

)
=

√∫ t

0
νudu

√∫ t

0
νudu

∫ s

0
νudu −

∫ s

0
νudu

∫ s

0
νudu

.

5 Advanced variance reduction method

In this section, we present a less intuitive variance reduction method that is
based on an appropriate relation between N and N ′ in (6). This method can
be applied independently of conditioning detailed in the previous section.

Let us denote Q as the quotient given by

Q =
1

N ′

∑N ′

i=1 Xi

1
N

∑N
i=1 Yi

(43)

where {Xi}1≤i≤N ′ and {Yi}1≤i≤N are respectively independent copies of the
square integrable random variables X , Y . If |E(Yi)| ≥ ε > 0, Q converges to
E(Xi)/E(Yi). In the following two theorems we will prove asymptotically that
we can speed up the convergence when acting on the relation between N and
N ′.

We will use the notations

A = E(X), B = E(Y ), σ2
1 = V ar(X), σ2

2 = V ar(Y ) and ρ = Cov(X, Y )/(σ1σ2),(44)

and we consider the two cases:

case 1: N ′ = ⌈λ1N⌉ with λ1 ∈]0, 1[, then (43) becomes

Q =
1

N ′

∑N ′

i=1 Xi

1
N

(
N ′

N ′

∑N ′

i=1 Yi + N−N ′

N−N ′

∑N
i=N ′+1 Yi

) = g1(AN ′ , BN ′ , BN,N ′),
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where

g1(x, y, z) = x/(λ1y + (1 − λ1)z),

AN ′ = 1
N ′

∑N ′

i=1 Xi, BN ′ = 1
N ′

∑N ′

i=1 Yi, BN,N ′ = 1
N−N ′

∑N
i=N ′+1 Yi.

(45)

case 2: N = ⌈λ2N ′⌉ with λ2 ∈]0, 1[, then (43) becomes

Q =

1
N ′

(
N
N

∑N
i=1 Xi + N ′−N

N ′−N

∑N ′

i=N+1 Xi

)

1
N

∑N
i=1 Yi

= g2(AN , AN ′,N , BN ),

where

g2(x, y, z) = (λ2x + (1 − λ2)y)/z,

AN = 1
N

∑N
i=1 Xi, AN ′,N = 1

N ′−N

∑N ′

i=N+1 Xi, BN = 1
N

∑N
i=1 Yi.

(46)

Theorem 7. Based on the notations (44) and the variables defined in (45) and
(46), if |B| > 0 then as N → ∞ and N ′ → ∞

g1(AN ′ , BN ′ , BN,N ′) a.s.−→
A

B
,

√
N ′
(

g1(AN ′ , BN ′ , BN,N ′) − A

B

)
law−→ N (0, Σ1(λ1)),

Σ1(λ1) =
σ2

1

B2
+ λ1

4A2σ2
2

B4

(
1

4
− Bσ1ρ

2Aσ2

)
. (47)

and

g2(AN , AN ′,N , BN ) a.s.−→
A

B
,

√
N

(
g2(AN , AN ′,N , BN ) − A

B

)
law−→ N (0, Σ2(λ2)),

Σ2(λ2) =
A2σ2

2

B4
+ λ2

4σ2
1

B2

(
1

4
− Aσ2ρ

2Bσ1

)
. (48)

Asymptotically (N and N ′ sufficiently large), Theorem 7 tells us that one
should use either λ1 < 1 or λ2 < 1 depending on the positivity of the terms(

1
4 − Bσ1ρ

2Aσ2

)
and

(
1
4 − Aσ2ρ

2Bσ1

)
in (47) and (48). In this paper, we will take

λ1 =
1

2
+

Bσ1ρ

2Aσ2
if A2σ2

2 ≥ B2σ2
1 and λ2 =

1

2
+

Aσ2ρ

2Bσ1
if A2σ2

2 ≤ B2σ2
1 . (49)

This choice allows λ1 ∈]0, 1[ and λ2 ∈]0, 1[ depending on the value of ρ. More-
over, if we replace the (49) given value of λ1 and λ2 in Σ1(λ1) and Σ2(λ2)
respectively, we obtain

Σ1(λ1) =
(1−ρ2)σ2

1

B2 +
A2σ2

2

2B4 − Aσ1σ2ρ
2B3 ,

Σ2(λ2) =
(1−ρ2)A2σ2

2

B4 +
σ2

1

2B2 − Aσ1σ2ρ
2B3 .

(50)
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From (50), we conclude that if

ρ2 ≤ 1

2
(51)

then Σ1(λ1) ≤ Σ2(λ2) if and only if A2σ2
2 ≥ B2σ2

1 , which means that one should
use λ1 for the simulation if A2σ2

2 ≥ B2σ2
1 and λ2 otherwise. We also point out

that the condition (51) is numerically always satisfied in our simulations.

Proof. of Theorem 7 Since the computations are similar for the case 2, we give
only the proof associated to the case 1. First, the variables AN ′ , BN ′ and BN,N ′

are square integrable thanks to the fact that the variables X , Y that intervene
in Q are square integrable. The almost sure convergence of g1(AN ′ , BN ′ , BN,N ′)
follows from the law of large numbers and from the continuity of g1 at (A, B, B).
For the same reasons, the gradient vector ∇g1(AN ′ , BN ′ , BN,N ′) converges a.s.
to ∇g1(A, B, B). Besides

√
N ′(g1(AN ′ , BN ′ , BN,N ′) − g1(A, B, B))

=
√

N ′(AN ′ − A)∂g1

∂x (A, B, B) +
√

N ′(BN ′ − B)∂g1

∂y (A, B, B)

+
√

N ′

N−N ′

√
N − N ′(BN,N ′ − B)∂g1

∂z (A, B, B) +
√

N ′(AN ′ − A)ǫ(AN ′ − A)

+
√

N ′(BN ′ − B)ǫ(BN ′ − B) +
√

N ′(BN,N ′ − B)ǫ(BN,N ′ − B).

Using the Slutsky Theorem, with G ∼ N (0, C) and the continuity of (x, y) 7→ xy
and (x, y) 7→ x + y provide

√
N ′(g1(AN ′ , BN ′ , BN,N ′) − g1(A, B, B)) law−→




∂g1

∂x (A, B, B)
∂g1

∂y (A, B, B)√
λ1

1−λ1

∂g1

∂z (A, B, B)


 · G,

where

C =




σ2
1 σ1σ2ρ 0

σ1σ2ρ σ2
2 0

0 0 σ2
2


 ,

which allows us to compute Σ1(λ1).
In order to use the values (49), we should have a "sufficiently good" approx-

imation of σ1, σ2, A, B and ρ. Consequently, we can implement one of the two
methods below:

M0) If B = Ts,t[1](x) and σ2 are explicitly known, using all the simulated paths
Nmax, we approximate the values of σ1, A and ρ then we compute λ1 or
λ2 given in (49) that we use to re-simulate Q.

M1) Using all the simulated paths Nmax, we approximate the values of σ1,
σ2, A, B and ρ then we compute λ1 or λ2 given in (49) that we use to
re-simulate Q.

Procedure P2 (see section 4) is implemented using M0) in subsection 6.2,
when it is implemented using M1) in subsections 6.3 and 6.4.
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When the model allows the choice between P1 and P2, the following theorem
tells us which one to take.

Proposition 1. Based on the assumption (51) and the values (50), if
1. A2σ2

2 ≥ B2σ2
1 and ρ > −1/2 then

(
B2Σ1(λ1) − σ2

1

)
< 0.

2. 8A2σ2
2 ≤ 7B2σ2

1 then
(
B2Σ2(λ2) − σ2

1

)
< 0.

Proposition 1 tells us that, when Ts,t[1](x) is known explicitly, one can accel-
erate the convergence when using the quotient of two Monte Carlo estimators.
The proof of Proposition 1 is straightforward.

6 Simulation and numerical results

In this section, we perform three sets of tests that involve the results of Theorem
4, Theorem 5 and Theorem 6. But before that, we study the parallel adaptability
of MCM as well as some considerations that one should respect when using
GPUs to reduce the execution time.

6.1 Parallel considerations

To manage CPU (Central Processing Unit) power dissipation, the processor
makers have oriented their architectures to multi-cores. This switch in technol-
ogy led us to study the pricing algorithms based on Monte Carlo for multi-core
and many-core architectures using CPUs and GPUs (Graphics Processing Units)
in [2] and [1]. In the latter articles we basically studied the impact of using GPUs
instead of CPUs for pricing European options using MC and American options
using the Longstaff and Schwartz algorithm [16]. The results of this study prove
that we can greatly decrease the execution time and the energy consumed dur-
ing the simulation. Unlike the LS method that uses a regression phase which
is difficult to parallelize according to [1], the MCM is a squared4 Monte Carlo
method which is more adapted to multi-core and many-core environments than
the LS method. Moreover, since using MCM without localization does not in-
volve any parametric regression, higher dimensional problems can be dealt with
more easily and the accuracy of results depends only on the number of simulated
trajectories.

Let us study the parallel adaptability of MCM for parallel architectures.
In Figure 2, we present the speedup of parallelizing5 MCM on the four cores
of the CPU instead of implementing it on only one core. We notice that the
speedup increases quickly according to the number of simulated trajectories and
it reaches a saturation state for > 9000 trajectories. For a large dimensional
problem, the maximum speedup obtained is greater than the number of physical

4What we mean by squared Monte Carlo is not necessarily simulating a square number of
trajectories, but a Monte Carlo simulation that requires a Monte Carlo estimation, for each
path, of an intermediate value (here the continuation value) and this can be done by using
the same set of trajectories as the first Monte Carlo simulation.

5We use OpenMP directives.
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cores6 on the CPU which indicates that MCM is very appropriate for parallel
architectures. We point out, however, that our parallelization of MCM is done
on the trajectories7, so the speedup is invariable according to dimensions and
time steps.
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Figure 2: The speedup of using all the CPU cores according to the number of
trajectories.

Regarding GPU implementation, we also use a path parallelization of simu-
lations. In Figure 3, we present the speedup of parallelizing8 MCM on the GPU
instead of implementing it on the four cores of the CPU. The speedup increases
quickly not only according to the number of simulated trajectories, but also ac-
cording to the dimension of the contract. The latter fact can be easily explained
by the memory hierarchy of the GPU [18]. The speedups provided in Figure 3
prove, once again, the high adaptability of MCM on parallel architectures.

MCM is well suited to parallel architecture because it is completely based on
Monte Carlo, unlike the Longstaff-Schwartz algorithm that performs a regression
which cannot be efficiently parallelized. Indeed, for a regression that uses less
than 10 polynomials, the Longstaff-Schwartz algorithm have almost the same
behavior on the CPU as the one described for MCM in Figure 2. However, the
many-core GPU implementation of the Longstaff-Schwartz algorithm is at most
two times faster than its multi-core CPU implementation. For more details, we

6which is due to hyper-threading.
7which is the most natural procedure of parallelizing Monte Carlo.
8We use CUDA language.
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Figure 3: The speedup of using the GPU instead of the CPU cores according
to the number of trajectories.

refer the reader to [1] which compares the GPU implementation of the Longstaff-
Schwartz algorithm to its one-core CPU implementation.

Although MCM is based on Monte Carlo, one should, at least, respect the
four points below when programming MCM on GPUs:

• Reduce the communication between CPU and GPU to its minimum, even
more when implementing MCM whose trajectories are coupled, that is to
say, one needs the other trajectories’ data to simulate one value associated
to one trajectory.

• Ensure the maximum coalescence of the data on the GPU because it affects
greatly the execution time.

• Find the right compromise between the number of threads on each block
and the number of blocks on the GPU when implementing MCM using
less than 216 trajectories.

• Saturate the GPU with as many instructions as possible thanks to the use
of multi-streaming.

We refer the reader to [18] and [17] for more details on programming GPUs
using CUDA.

6.2 Geometric average on independent B&S model

In this part, we simulate the prices associated to Theorem 4 and we test our
simulations on a geometric average payoff that has the following expression

Φd
geo(ST ) =

(
K −

d∏

i=1

(Si
T )1/d

)

+

. (52)
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The parameters of the simulations are the following: The strike K = 100, the
maturity T = 1, the risk neutral interest rate r = ln(1.1), the time discretization
is defined using the time steps that is given as a parameter in each simulation,
Si

0 = 100 and σij(t) = σij(t)δ(j −i) with σii = 0.2. The true values, to which we
compare our simulation results, are set using the one-dimensional equivalence
and a tree method [9], available in Premia [15].

In Figure 4, we compare the P2 (6=) version of MCM with a standard LS
algorithm. The LS is implemented using linear regression for multidimensional
contracts and using up to three degree monomials for the one-dimensional con-
tract. The reason behind the choice of linear regression in the multidimensional
case is the fact that the regression phase of LS can really increase the execution
time without a significant improvement of the prices tested.

In Figure 4, even if all the prices are sufficiently good, we see that MCM
provides better prices than those of LS. Also when we increase the time steps,
MCM is more stable than LS. However, for n = 10 and time steps > 10, we
remark that one should simulate 214 trajectories to stablize MCM. This fact is
expected due to the high variance of the ten dimension contract and that one
should simulate more trajectories, on the one hand, to obtain an asymptotically
good approximation of the relation between N and N ′ and, on the other, to have
a sufficient number of trajectories for the approximation of the continuation
value. The executions of MCM and LS with 210 trajectories are carried out
in less than one second. Moreover, using 214 trajectories the LS and MCM are
executed within seconds (< 5s). As a conclusion from this figure, MCM provides
better results than LS in approximately the same execution time. When we
increase the simulated trajectories to 214, the MCM prices are stabilized for
high dimensions and are always better than LS prices.

In Table 1, we remain with the same payoff Φd
geo(ST ) but this time we

compare the different nonparametric methods of implementing MCM. In P2(=)
and P2(6=), we use the same P2 method but with N = N ′ for the first one
and N 6= N ′ for the second (The relation between N and N ′ is detailed in
pages 19 and 20). First, due to the high variance, we notice that P2(=) is
not stable in the multidimensional case and can give wrong results if the time
steps > 10. This kind of bad results are also obtained for different values of the
model parameters. However the P2 method is stabilized when we implement
the version N 6= N ′ of the advanced variance reduction method detailed in
section 5. Also when we use 210 trajectories, P1 and P2(6=) are almost similar.
Nevertheless, with 214 trajectories, P2(6=) outperforms P1 which indicates that
the conditions of Proposition 1 are fulfilled and we have an asymptotically good
approximation of the relation between N and N ′. As far as the execution time
is concerned, the time consumed by P2(6=) is not very different from P1 when
we use 210 trajectories. In addition, using 214 trajectories, the computations
of the relation between N and N ′ is performed on the GPU independently on
each trajectory and P2(6=) is < 5% slower than P1 for the tests that we have
implemented.



?? pages 28

0 20 4010 30
4.4

4.6

4.8

5

5.2

Time Steps

P
ric

es

1 Dimension and 210 Trajectories 

0 20 4010 30
4.4

4.6

4.8

5
1 Dimension and 214 Trajectories 

 

 

PM
PL
PR

0 10 20 30 40
1.4

1.5

1.6

1.7

1.8

Time Steps

P
ric

es

5 Dimensions and 210 Trajectories 

0 10 20 30 40

1.5

1.55

1.6
5 Dimensions and 214 Trajectories 

 

 

PM
PL
PR

0 10 20 30 40
0.8

0.85

0.9

0.95

1

Time Steps

P
ric

es

10 Dimensions and 210 Trajectories 

0 10 20 30 40
0.75

0.8

0.85

0.9

0.95
10 Dimensions and 214 Trajectories 

 

 

PM
PL
PR

Figure 4: MCM Vs. LS for Φd
geo(ST ): PR is the real price. PM and PL are

the prices obtained respectively by MCM and LS represented with their standard
deviations.

6.3 Call on max and put on min on two-dimensional B&S

model

In this part, we simulate the prices associated to Theorem 5 and we test our
simulations on the American put on minimum and on the American call on
maximum that have the following payoffs

Φmin(ST ) =
(
K − min(S1

T , S2
T )
)

+
, Φmax(ST ) =

(
max(S1

T , S2
T ) − K

)
+

. (53)
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Table 1: P1 Vs. P2 for Φd
geo(ST ): The real values are equal to 4.918, 1.583 and

0.890 for dimensions one, five and ten respectively

Simulated Dim Time Price Std Deviation
Paths d Steps P1 P2(=) P2(6=) P1 P2(=) P2(6=)

210 1 10 4.750 4.826 4.789 0.213 0.167 0.160
210 1 20 4.729 4.880 4.800 0.270 0.226 0.216
210 1 30 4.679 4.909 4.853 0.270 0.179 0.190
210 5 10 1.548 1.681 1.526 0.071 0.073 0.067
210 5 20 1.632 > 2.0 1.588 0.070 0.048
210 5 30 1.650 > 2.3 1.619 0.074 0.069
210 10 10 0.900 1.112 0.869 0.039 0.045 0.044
210 10 20 0.921 > 1.3 0.936 0.043 0.047
210 10 30 0.908 > 1.5 0.949 0.035 0.046

214 1 10 4.738 4.812 4.807 0.057 0.046 0.047
214 1 20 4.675 4.869 4.825 0.047 0.044 0.043
214 1 30 4.638 4.876 4.856 0.072 0.059 0.058
214 5 10 1.487 1.526 1.506 0.057 0.012 0.012
214 5 20 1.504 1.639 1.534 0.047 0.021 0.016
214 5 30 1.508 > 1.8 1.543 0.072 0.015
214 10 10 0.845 0.938 0.842 0.013 0.015 0.012
214 10 20 0.901 > 1.2 0.893 0.012 0.014
214 10 30 0.923 > 1.3 0.916 0.015 0.016

The parameters of the simulations are the following: The strike K = 100, the
maturity T = 1, the risk neutral interest rate r = ln(1.1), the time discretization
is defined using the time steps that is given as a parameter in each simulation,
Si

0 = 100.
The true values, to which we compare our simulation results, are set using

the Premia implementation of a finite difference algorithm [20] in two dimen-
sions. Besides, we use the approximation presented in [11] for the bivariate cu-
mulative distribution in the expression of Λ1

x1,x2,w1,w2
(Theorem 5). For higher

dimensions, we refer the reader to [13] for the approximation of the multivariate
normal cumulative distribution.

Because of the bad results obtained previously with P2(=), we eliminate
this method and we only consider P2(6=) and P1. In Table 2, we analyze the
American put on minimum and the American call on maximum in two dimen-
sions. As far as Φmin is concerned, P2(6=) outperforms P1 even when we use
only 210. Regarding Φmax, P1 performs better than P2(6=) for 210 trajectories
which indicates that, because of the big variance produced by Φmax relatively
to Φmin, the relation between N and N ′ is not well estimated. Simulating 214

trajectories, we obtain similar results for P1 and P2(6=) for Φmax.
In Table 3, we show that our results are accurate even when ρ 6= 0 and when

simulating only 210 trajectories with P2(6=).
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Table 2: P1 Vs. P2 for Φmin and Φmax: Simulations for ρ = 0 and σ1 = σ2 =
0.2. The real values are equal to 8.262 and 21.15 respectively

Simulated The Time Price Std Deviation
Paths Payoff Steps P1 P2(6=) P1 P2(6=)

210 Φmin 10 7.734 7.986 0.190 0.248
210 Φmin 20 7.618 7.895 0.257 0.270
210 Φmin 30 7.564 7.920 0.224 0.263
210 Φmax 10 21.03 20.33 0.66 0.86
210 Φmax 20 20.46 19.38 0.61 0.73
210 Φmax 30 19.73 18.13 0.73 0.93

214 Φmin 10 7.755 8.088 0.058 0.067
214 Φmin 20 7.584 8.098 0.098 0.052
214 Φmin 30 7.467 8.087 0.082 0.043
214 Φmax 10 20.96 20.91 0.09 0.24
214 Φmax 20 20.58 20.56 0.16 0.16
214 Φmax 30 20.36 20.05 0.15 0.22

Table 3: Φmin and Φmax: Simulations for ρ 6= 0 and σ1 = σ2 = 0.2 using 210

trajectories
Real The Time Price Std Deviation

values Payoff Steps ρ = 0.5 ρ = −0.5 ρ = 0.5 ρ = −0.5
(+)7.23 Φmin 10 7.31 9.10 0.06 0.03

Φmin 20 7.47 9.29 0.07 0.06
(−)9.05 Φmin 30 7.64 9.48 0.09 0.08
(+)18.74 Φmax 10 18.78 23.23 0.53 0.35

Φmax 20 19.03 23.57 0.37 0.12
(−)23.08 Φmax 30 19.29 23.94 0.19 0.20

Table 4: Φmax: Simulations for ρ 6= 0, σ1 = 0.1 and σ2 = 0.2 using 210

trajectories
Time Price Std Deviation
Steps ρ = 0.3 −0.3 0.7 −0.7 0.3 −0.3 0.7 −0.7

10 17.17 19.07 15.44 20.20 0.29 0.24 0.29 0.22
20 17.17 19.24 15.37 20.36 0.20 0.23 0.27 0.27
30 17.22 19.30 15.40 20.44 0.15 0.18 0.25 0.19

Real values 17.27 19.11 15.70 20.21

When σ1 = σ2, the terms Λ1
x1,x2,w1,w2

and Λ3
x1,x2,w1,w2

of (42) do not in-
tervene, thus in Table 4, we show that our results are also accurate even when
σ1 6= σ2 and when simulating only 210 trajectories with P2(6=). We also con-
sidered, in Table 3, the case of highly correlated assets |ρ| = 0.7.
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6.4 Put on Heston model

In this part, we simulate the prices associated to Theorem 6. Unlike the previ-
ous tests, in this part we do not know the real price of the American options.
Thus, we will test the coherency of the results obtained with MCM to the re-
sults obtained using two different algorithms in Premia [15] (version 13). The
methods to which we compare MCM are: The Longstaff-Schwartz(LS) method
[16] implemented with a second order discretization scheme for the CIR process
[3] and the Andersen-Broadie(AB) method [4] also implemented with a second
order discretization scheme for the CIR process. We take the default parameters
given in Premia for the two methods and we have tested various model param-
eters configurations including the one associated to Table 5: Dimension d = 1,
maturity T = 1, strike K = S0 = 100, ν0 = 0.01, κ = 2, θ = 0.01, η = 0.2 and
r = ln(1.1). Moreover, we have implemented MCM using the Milstein scheme
for the CIR process and we used only 210 trajectories with P2(6=) because we
judged it sufficient for our simulations.

According to Table 5, the results obtained with MCM are coherent to the
one obtained with LS and AB. In Table 5, we only present the results for the
put option, but we obtained the same kind of coherence for the call option and
even for high values of ν0, θ and η but always under the Feller conditions.

Table 5: Put option using 210 trajectories and 50 time steps
Correlation(ρ) Price(MCM) Std Deviation(MCM) LS AB

−0.5 1.79 0.05 1.78 1.74
0.0 1.60 0.05 1.61 1.59
0.5 1.41 0.05 1.41 1.35

7 Conclusion and Future Work

In this article we provided, on the one hand, theoretical results that deal with
the computation of the continuation value using the Malliavin calculus and how
one can reduce the Monte Carlo variance when simulating this value. On the
other hand, we presented numerical results related to the accuracy of the prices
obtained and the parallel adaptability of the MCM method on multi-core and
many-core architectures.

As far as the theoretical results are concerned, based on the Malliavin calcu-
lus, we provided a generalization of the value of the continuation for the multidi-
mensional models with deterministic and nonconstant triangular matrix σ(t) as
well as for the multidimensional Heston model. Moreover, we pointed out that
one can judiciously reduce the variance by a simple conditioning method. Fi-
nally, we presented a less intuitive but very effective variance reduction method
based on an appropriate choice of the number of trajectories used to approxi-
mate the quotient of two expectations.

Regarding the numerical part, we proved that instantaneous simulations on
the CPU can be obtained using only 210 trajectories and the results got with
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MCM are sufficient and better than with LS. Also, unlike LS, our nonpara-
metric variance reduction implementation of MCM does not require parametric
regression. Thus we improve the results of the simulation by only increasing
the number of trajectories. Finally, increasing the number of trajectories is
time consuming but MCM can be effectively parallelized on CPUs and GPUs.
Indeed, for all the implemented tests, the MCM simulation of 214 trajectories
using the GTX 480 GPU can be performed within seconds (< 5s).

As future work, we plan to extend the results presented for the multidimen-
sional Heston model to other stochastic volatility models. We will also look
for a weaker and sufficient condition than the one presented in Lemma 4 for
the Heston model and to extend it for the multidimensional case. Regarding
the parallelization aspects, we are working on the parallelization of MCM on a
CPU/GPU cluster using MPI+OpenMP+CUDA.

Appendix

Proof. of Lemma 1 The equality (15) can be easily proved. Indeed, using the
chain rule

Dk
uf(St) =

d∑

p=k

σpk(u)Sp
t ∂xp

f(St)

Besides, we assumed that ρ(u) = σ−1(u) which completes the proof.

Proof. of Lemma 2 Using duality (7) we have

E
(

h(Sk
s )F

∑d
i=k

∫
I

ρik(u)dW i
u

)
= E

(∑d
i=k

∫
I

Di
u

[
h(Sk

s )F
]

ρik(u)du
)

= E
(

h(Sk
s )
∑d

i=k

∫
I

Di
uFρik(u)du

)
+ E

(
F
∑d

i=k

∫
I

h′(Sk
s )σki(u)ρik(u)Sk

s du
)

Moreover, the fact that σ(u) and ρ(u) are two triangular matrices such that
ρkk(u) = 1/σkk(u) simplifies the last term which can be also rewritten using the
Malliavin derivative

E

(
F

∫

I

h′(Sk
s )Sk

s du

)
= E

(
F

∫

I

Dk
uh(Sk

s )

σkk(u)
du

)

This provides the required result.

Proof. of Theorem 4 Let us begin with Ts,t[1](x), by independence of the coor-
dinates we obtain

Ts,t[1](x) = E

(
d∏

k=1

Hk(Sk
s )W k

s,t

σks(t − s)Sk
s

)
=

d∏

k=1

1

σks(t − s)
E

(
Hk(Sk

s )W k
s,t

Sk
s

)
.
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Afterwards, we use the independence of the increments to obtain

E
(

Hk(Sk
s )

Sk
s

W k
s,t

)
= E

(
Hk(Sk

s )
Sk

s
[(t − s)(W k

s + σks) − s(W k
t − W k

s )]
)

= (t − s)E
(

Hk(Sk
s )

Sk
s

(W k
s + σks)

)
− sE

(
Hk(Sk

s )
Sk

s

)
E(W k

t − W k
s )

= (t − s)E
(

Hk(Sk
s )

Sk
s

(
√

sG + σks)
)

,

where the random variable G has a standard normal distribution. Moreover we
have the following equality in distribution

Sk
s

.
= Sk

0 exp

((
rk − σ2

k

2

)
s + σk

√
sG

)
.

By computing the expectation, we obtain the requested result.
Regarding function h, we condition according to W k

t = wk and we use the
independence of coordinates

E

(
g(St)

d∏

k=1

Hk(Sk
s )W k

s,t

σks(t − s)Sk
s

)
= E

(
g(St)

d∏

k=1

1

σks(t − s)
hk(xk, W k

t )

)
,

with

hk(xk, wk) = E
(

Hk(Sk
s )W k

s,t/Sk
s

∣∣∣W k
t = wk

)
.

Knowing W k
0 = 0 and W k

t = wk, when we fix s the random variable W k
s

.
=

swk

t +
√

s(t−s)
t G and G has a standard normal distribution. Also, we have the

following equality in distribution for W k
s,t: W k

s,t
.
= σks(t − s) +

√
ts(t − s)G

and Sk
s

.
= Sk

0 exp

((
rk − σ2

k

2

)
s + σk

swk

t + σk

√
s(t−s)

t G

)
. Then we compute

hk(xk, wk) which yields:

hk(xk, wk) =
e(σ2

k−rk)s

Sk
0

√
ts(t − s)

2π
exp

(−sσk

t

(sσk

2
+ wk

)
− (dxk

(wk))2

2

)
.

Proof. of Theorem 5 For this model Γs,t = π1,2
s,t π2,2

s,t − C1,2 with

π1,2
s,t = 1 +

√
1 − ρ2W 1

s − ρW 2
s

sσ1

√
1 − ρ2

−
√

1 − ρ2(W 1
t − W 1

s ) − ρ(W 2
t − W 2

s )

(t − s)σ1

√
1 − ρ2

,

π2,2
s,t = 1 +

W 2
s

sσ2

√
1 − ρ2

− (W 2
t − W 2

s )

(t − s)σ2

√
1 − ρ2

, C1,2 =
−tρ

s(t − s)(1 − ρ2)σ1σ2
.

For k = 1, 2, knowing W k
0 = 0 and W k

t = wk, when we fix s the random

variable W k
s

.
= swk

t −
√

s(t−s)
t Gk where G1 and G2 are two independent with
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standard normal distribution. In addition, we obtain the following equalities in
distribution

∏2
i=1 Si

s

S1
0S2

0

.
= e

(
(−σ2

1
−σ2

2
)

2 +r1+r2

)
s+

(σ1+ρσ2)sw1+σ2

√
1−ρ2sw2

t
−
√

s(t−s)
t

(
(σ1+ρσ2)G1+σ2

√
1−ρ2G2

)

Γs,t
.
=

(
1 +

√
t

s(t − s)

[
ρG2

σ2

√
1 − ρ2

− G1

σ1

])(
1 −

√
t

s(t − s)

G2

σ2

√
1 − ρ2

)
− C1,2,

which allows us to compute h(x, w1, w2) and obtain the result of Theorem 5.

Proof. of Theorem 6 We perform the regression presented in pages 15 and 16
that provides the following equalities in distribution when we condition accord-
ing to F̃t and

∫ t

0

√
νudWu = w

1

s
√
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∫ s

0
dWu√

νu
− 1

(t−s)
√

1−ρ2

∫ t

s
dWu√

νu

.
= −1
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√
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0
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s
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0

√
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∫
s
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t

0
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√(∫
t

0
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)(∫
s

0
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)
−
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0
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)2

√∫
t

0
νudu

G2,

where the Gaussian vector (G1, G2) ∼ N (0, Γ) with

Γ =

(
1 R
R 1

)
, R =

s(t−s)

√∫
t

0
νudu

√(∫
t

0
νudu

)(∫
s

0
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)
−
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0
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t

s
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Thus Ts,t[g](x) = E
(

E
(

g(St)h
(

x,
∫ t

0

√
νudWu

) ∣∣∣F̃t

))
with

h(x, w)=E

(
H(Ss)

Ss

(
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√
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√
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0
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+ s2
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s
du
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)

and after Gaussian computations we get the requested result.
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