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Abstract

We present a recursive approach to price discretely monitored arith-

metic Asian options when the underlying asset evolves according to a

generic Lévy process. Our algorithm is based on a general price recur-

sion for Asian contracts, which can be considered to price both Fixed and

Floating options.

Premia 18

1 Introduction

This paper deals with a recursive approach for pricing discretely monitored
arithmetic Asian options under Lévy processes. Asian options have become
very popular instruments for hedging transactions whose costs are related to
the average price of the underlying asset, being much cheaper than the corre-
sponding options on the underlying asset and less subject to price manipulations
near settlement.

An extensive literature deals with the pricing problem under continuous
monitoring. A review can be found in Boyle and Potapchik [4]. In the discrete
monitoring case, where the arithmetic mean is updated only at prefixed points
in time, the pricing of Asian options is not an easy task and even in the Black-
Scholes setting no analytical solution is available.
Recent contributions to Asian option pricing in the exponential Lévy setting
are Albrecher [1] and Albrecher and Predota [2], Benhamou [3], Černý and Kyr-
iakou [5], Fusai and Meucci [8], and Iseger and Oldenkamp [12]. Albrecher [1]
and Albrecher and Predota [2] explore approximations of the arithmetic option
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price based on the moments of the average, but in general it is not clear which
approximate distribution to choose and the approximation error is difficult to
evaluate.
The Fast Fourier Transform (FFT) approach was introduced by Carverhill and
Clewlow [6] in the Black-Scholes framework. Their forward density convolution
algorithm requires a large discretization grid, resulting in slow convergence.
Benhamou [3] extends the algorithm of Clewlow and Carverhill to some non-
lognormal density and improves the numerical efficiency by recentering the den-
sity at each monitoring date, thus reducing the size of the grid. In the Lévy
setting, Fusai and Meucci [8] solve the valuation problem by recursive Gaussian
quadrature and derive a formula for the moments to check accuracy. Černý and
Kyriakou [5] introduce a fast and accurate algorithm, using a backward price
convolution, and provide an analytical upper bound for the pricing error due
to truncations. Finally, Iseger and Oldenkamp [12] propose an algorithm based
on the Laplace inversion technique. A different approach based on the so-called
maturity randomization technique is also presented in [9, 10, 11].

This paper deals with a recursive formula as in [5, 8]. Our recursive approach,
firstly presented in [10], works for very general Asian options.

2 The Exponential Lévy Model

The risk-neutral process for the stock price (St)t≥0 is assumed to be described
by

S(t) = S(0)exp ((r − d+ g) t+ L(t)) ,

where r is the continuously compounded interest rate, d is the dividend yield,
Lt is a Lévy process, and g is the so-called compensator chosen to ensure that
the discounted price process is a martingale. The Lévy process is fully identified
by its characteristic exponent ψ (ω) = logE

(

eiωL1
)

, where i =
√

−1. Following
[13], under the mean-correcting martingale measure, we set g = −ψ(−i).

We are interested in pricing arithmetic Asian options under a discrete moni-
toring rule; that is, prices contributing to the arithmetic average are observed at
equally spaced monitoring dates t0 = 0, t1 = ∆, . . . , tn = n∆, . . . , tN = N∆ =
T . The log-return on a time interval of length ∆ is defined by

Zn ≡ log
Sn
Sn−1

= (r − d+ g)∆ + Ln − Ln−1, (1)

where Sn = S(n∆) and the Lévy increments Ln − Ln−1 = L(n∆) − L((n −
1)∆) are independent and identically distributed. It follows that Zn has a
characteristic function that does not depend on the monitoring time index n,

φZ (ω) = e(ψ(ω)+iω(r−d+g))∆,

and its density fZ can be obtained by numerical inversion of the characteristic
function using the FFT or the fractional FFT, as explained in [7].
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3 Recursion for Arithmetic Asian Options

The starting point of our numerical approach is based on a recursive formulation
for the Asian option price. Under the unified framework of [14], the payoff of
an arithmetic Asian option depends on the following path-dependent random
variable:

IN ≡
N
∑

n=0

λnSn, (2)

where λn are deterministic. For example, the payoff of an Asian call option is
given by

V (SN , IN ;N) ≡ (IN − cSN )+
,

where (·)+ is the positive part function.
By suitable choices of {λn}Nn=0 and c, we can describe a wide class of Asian
options. In particular, standard cases are

λ0 =
γ

N + γ
− K

S0
; λn =

1
N + γ

, n = 1, . . . , N ; c = 0 (3)

for fixed strike call options and

λ0 = − αγ

N + γ
; λn = − α

N + γ
, n = 1, . . . , N ; c = −1 (4)

for floating strike calls, where γ = 1 if S0 is included in the average, 0 otherwise,
and α is a coefficient of partiality for the floating strike case. In our case, we
set both α and γ equal to 1.

For pricing purposes, we can combine (1) and (2) and observe that:

In+1 = In + λn+1Sne
Zn+1 , n = 0, . . . , N − 1. (5)

Therefore, using (5) and the standard backward pricing procedure, we obtain
the following recursion for the option price:

V(SN , IN ;N)= (IN − cSN )+
,

V (Sn, In;n)=e−r∆

∫ +∞

−∞

fZ (s)V (Sne
s, In+λn+1Sne

s;n+ 1) ds,

for n = N − 1, . . . , 0.
Since the return distribution is independent of the current stock level and

the payoff function is a homogeneous function of the spot price, then the price
function is itself a homogeneous function of degree one. Thus, we can write

V (Sn, In;n) = Sn V

(

1,
In
Sn

;n

)

.

If we set x = In/Sn, we can define

vn(x) ≡ V (1, x;n) ,
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where we have omitted the dependence of x on n. The function v satisfies the
recursion

vN (x) = (x− c)+
,

vn(x) = e−r∆

∫ +∞

−∞

fZ (s) esvn+1

(

xe−s + λn+1

)

ds, n = N − 1 . . . , 0.

Notice that, if x = 0, then vn(0) = e−d∆vn+1(λn+1). Otherwise, by a change of
variable in the integration (y = xe−s + λn+1, i.e., log (x/ (y − λn+1)) = s), we
obtain:

vn(x) =







e−r∆
∫ +∞

λn+1
fZ

(

log
(

x
y−λn+1

))

x

(y−λn+1)2 vn+1(y) dy if x > 0,

−e−r∆
∫ λn+1

−∞
fZ

(

log
(

x
y−λn+1

))

x

(y−λn+1)2 vn+1(y) dy if x < 0,

(6)
for n = N − 1, . . . , 0. The desired option price will be S0v0(λ0) . Notice that if
x ≥ 0, c ≤ 0 and λn > 0, for n = 1, . . . , N, then

vn (x) = e−r(N−n)∆

[

x+
N−n−1
∑

i=0

λN−ie
(N−n−i)(r−d)∆ − ce(N−n)(r−d)∆

]

, (7)

for n = N, . . . , 0. See [10] for details.

3.1 Put-Call Parity

In the previous section we show a recursion to price Asian call option (C) with
arithmetic average and discrete monitoring dates. The corresponding put price
(P ) can be computed by the following put-call parity condition: since

(IN − cSN )+ − (cSN − IN )+ = IN − cSN

then it holds

C(S0, I0; 0) − P (S0, I0; 0) = e−rN∆
E0(IN − cSN )

= S0

(

N
∑

n=0

e−r∆(N−n)λn − c

)

.

Thus, given the price of a fixed strike call option, we can compute easily the
price of the corresponding put option using the put-call parity above.

4 Numerical Discretization

This section aims to describe how the recursive algorithm can be efficiently
implemented. For ease of exposition, we consider only the fixed (3) and floating
case (4).
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4.1 Floating Strike Asian Option

For a floating strike call option, being λn = λ := −α/(N + γ) < 0, for n =
1, . . . , N , we always have x < 0; thus the general recursion (6) can be written
as:

vN (x) = (x+ 1)+
,

vn(x) = −e−r∆

∫ λ

−∞

fZ

(

log

(

x

y − λ

))

x

(y − λ)2 vn+1(y) dy, (8)

for n = N − 1, . . . , 0.
In order to compute the recursive integrals above, we have to

1. truncate the domain to a finite one ΩT = (T, λ). Numerical experiments
show that the best choice is to consider a bound T such that |T | decreases
with respect to the number of monitoring dates N . In our numerical
experiments, we set T = − 3

2 − 30
N

, see [10] for details.

2. discretize the integral in (8) by applying an appropriate quadrature for-
mula. In our numerical experiments we consider a Gauss-Legendre quadra-
ture rule.

If the chosen quadrature rule provides nodes xi and weights wi, i = 1, . . . ,m,
(8) is approximated by

vn (xi) = −e−r∆
m
∑

j=1

wjfZ

(

log

(

xi
xj − λ

))

xi

(xj − λ)2 vn+1 (xj) , i = 1, . . . ,m,

which can be rewritten in matrix form as

vn = KDvn+1, n = N − 1, . . . , 0, (9)

where

• (vn)i = vn(xi), i = 1, . . . ,m;

• K is the square matrix with elements

Kij = −e−r∆fZ

(

log
(

xi

xj−λ

))

xi

(xj−λ)2 ,

i, j = 1, . . . ,m;

• D is the diagonal matrix containing the weights wi, i = 1, . . . ,m.
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4.2 Fixed Strike Asian Option

For a fixed strike call option, being λn = λ := 1/(N + γ) > 0, for n = 1, . . . , N ,
considering Equation (7), the general price recursion (6) becomes:

vN (x) = (x)+
,

vn(x) =







e−r(N−n)∆
[

x+ λe(r−d)∆ 1−e(N−n)(r−d)∆

1−e(r−d)∆

]

if x ≥ 0,

−e−r∆
∫ λ

−∞
fZ

(

log
(

x
y−λ

))

x

(y−λ)2 vn+1(y) dy if x < 0,
(10)

for n = N − 1, . . . , 0. Since the above formula can be rewritten as

vn(x) = −e−r∆
(

∫ 0

−∞

fZ

(

log

(

x

y − λ

))

x

(y − λ)2 vn+1(y) dy

+
∫ λ

0

fZ

(

log

(

x

y − λ

))

x

(y − λ)2 vn+1(y) dy
)

if x < 0,

we implement the recursive formula truncating the domain as above and con-
sidering nodes xi and weights wi, i = 1, . . . ,m, for the interval (T, 0), and xm+i

and weights wm+i, i = 1, . . . ,m, for the integral on (0, λ). Thus the recursive
formula can be rewritten in matrix form as

vn = KDwn+1, n = N − 1, . . . , 0, , (11)

where

• (vn)i = vn(xi), i = 1, . . . ,m;

• (wn)i = vn(xi), i = 1, . . . , 2m;

• K is a rectangular matrix with elements

Kij = −e−r∆fZ

(

log
(

xi

xj−λ

))

xi

(xj−λ)2 ,

i = 1, . . . ,m, j = 1, . . . , 2m;

• D is the diagonal matrix containing the weights wi, i = 1, . . . , 2m.

4.3 Implementation

The pricing algorithm based on the recursive procedures (9) and (11) is:

1. compute the density fZ by numerical inversion of the characteristic func-
tion using the fractional FFT;

2. compute the quadrature nodes and weights, and thus the diagonal matrix
D;
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3. compute the matrix K and the vector vN (wN ) for the floating (fixed)
case;

4. for n = N − 1, · · · , 0

• compute z := Dvn+1 (z := Dwn+1) - the computational cost is O(m)
operations;

• compute vn = Kz - the computational cost is O(m2) operations;

• for the fixed strike case, using vn and (7), compute wn;

5. given v0 or w0, compute the option price S0v0(λ0) by using an interpola-
tion technique.

The computational cost of the procedure is O(m2), due to the matrix vector
multiplication Kz. The density function fZ is computed on an interval (l, u)
such that the probability for Z to fall out of this interval is 10−8. Out of this
interval, fZ is set equal to 0. Thus we can speed up the algorithm storing only
the non-zero elements of the matrix K.

4.4 Numerical Validation

In this section we validate our pricing algorithm. In Table 2 we assume that the
underlying asset evolves according to the Double Exponential (DE) Lévy process
introduced by Kou and we price fixed strike Asian options; in Table 3 we deal
with both the CGMY and the Normal-Inverse Gaussian (NIG) process, consid-
ering the same kind of derivative contracts. Finally, in Table 4 we price floating
strike Asian options considering the Jump Diffusion (JD) process proposed by
Merton. See Table 1 for the characteristic functions of the considered Lévy pro-
cesses. We recall that the two parametrizations of the characteristic exponent of
the NIG process are connected by the relation α = σ−1

√
k−1 + θ2σ−2, β = θσ−2

and δ = σk−0.5.

Table 1: Characteristic exponents of some parametric Lévy processes
Model ψ (ω)

CGMY CΓ (−Y )
(

(M − iω)Y −MY + (G+ iω)Y −GY
)

DE − 1
2
σ2ω2 + λ

(

(1−p)η2
η2+iω

+ pη1
η1+iω

− 1
)

NIG −δ
(

√

α2 − (β + iω)2 −
√

α2 − β2

)

NIG 1
k

− 1
k

√
1 − 2θkω − kσ2ω2

JD − 1
2
σ2ω2 + λ

(

eiωµ− 1
2

ω2γ2
− 1

)

First of all, we consider as a benchmark the MC method. We price a fixed
strike call option with strike K = 100, 250 monitoring dates, and maturity
T = 1. We assume that the risk-free interest rate is equal to 3.67% and that
the underlying asset does not pay any dividend (d = 0), S(0) = 100. All the
numerical experiments have been performed with a personal computer equipped
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with Windows 7 and an Intel Core i7 Q720 1600 MHz processor with 6 GB of
RAM. All the computed prices fall into the confidence intervals.

Table 2: Fixed strike Asian Call options: prices and CPU time (in seconds).
Model Parameters m Price CPUtime CI

DE σ = 0.120381 1000 5.34888 6.8 4.837-5.301
λ = 0.330966 2000 5.07276 10.3
p = 0.2071 3000 5.07061 21.8

η1 = 9.65997, η2 = 3.13868 4000 5.07025 39.9
5000 5.07017 54.8

We now consider as a benchmark the results reported in [5], pricing a fixed
strike call option with strike K = 100, 50 monitoring dates, and maturity T = 1.
We assume that the risk-free interest rate is equal to 4% and that the underlying
asset does not pay any dividend (d = 0), S(0) = 100. The prices are reported
in Table 3.

Table 3: Fixed strike Asian Call options: prices. A comparison with [5].
Model Parameters m Price Benchmark
CGMY C=0.6509 1000 7.34768 7.3474

G=5.853 2000 7.34628
M=18.27 3000 7.34692

Y=0.8 4000 7.34714
5000 7.34723
6000 7.34731

NIG δ = 0.7543 1000 7.33883 7.3426
α = 12.3407 2000 7.34150
β = −5.8831 3000 7.34214

4000 7.34236
5000 7.34247
6000 7.34254

Finally we deal with a floating strike Asian option, pricing a contract with
maturity T = 1 and with 100 monitoring dates. We assume that the underlying
asset evolves according to the Jump Diffusion model proposed by Merton. The
option prices are reported in Table 4, while as benchmark price we consider the
one proposed in [9].

Table 4: Floating strike Asian Call options: prices. A comparison with [9].
Model Parameters m Price Benchmark

JD σ = 0.126349 1000 3.91208 5.1701
λ = 0.174814 2000 5.17883
µ = −0.390078 3000 5.17025
γ = 0.338796 4000 5.17032

5000 5.17025
6000 5.17026

From Tables 3 and 4 we notice that setting m = 4000 is enough to obtain three
decimal places accuracy.
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