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Input parameters

• Number of iterations N

• Generator type

• Increment inc

• Confidence Value

• Volatility of volatility

Output parameters

• Price P

• Error price σP

• Delta δ

• Error delta σdelta

• Price Confidence Interval: ICp [Inf Price,Sup Price]

• Delta Confidence Interval: ICp [Inf Delta,Sup Delta]

Description
Computation of a european or a asian option in the Hull and White stochastic
volatility model.
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The model is defined by

dSt = (r − q)Stdt +
√

σtStdW 1
t ,

dσt = νσtdt + ζσtdW 2
t ,

where W 1 and W 2 are two correlated Brownian motions with 〈W 1, W 2〉t = ρt.
In this model, St has a finite mean but an infinite variance. With a linear
discretization of St (Euler scheme), we see numericaly that the variance is
finite but increases very quickly with the number of steps. To reduce this
effect, we need to truncate this variance.
In their original paper Hull and White, [1] suggested that ζ = 1 may be more
realistic. However, one can use larger values for ζ in order to get a sharper
contrast with the constant volatility case.

Algorithm:

/*The price*/
The objective is to compute V0 = E[φ(St, t ≤ T )] where (St)t≤T is the
Hull and White model.
/*Simulate the discretized underlying*/
Following Glasserman Heidelberger and Shahabuddin (1999)[2], we consider
this discretisation of the model:

STi+1
= STi

(1 + (r − q)∆t +
√

σi∆tZi),

σi+1 = min{c, σie
(ν− 1

2
ζ2)∆t+ζ

√
∆t(ρZi+

√
1−ρ2Zm+i)},

where c is a non-negative constant. The truncation has little impact on the
mean but makes the estimated variances much more stable. The constant
volatility case corresponds to ζ = 0.
At each iterations we generate a random gaussian vector of size 2 × N where
N is the total number of MC iterations. Then separate this vector in two
vectors af same size N to simulate both the underlying asset and the volatility.
/*Importance sampling*/

In the discretized problem we have to evaluate V̂0 = E[φ̂(Z)] where
Z = (Z1, . . . , Zm) is a standard gaussian vector. Using an elementary version
of Girsanov theorem leads to the following representation of V̂0:

V̂0 = E[g(µ, Z)], (1)

with
g(µ, Z) = φ̂(Z + µ)e−µ·Z− 1

2
‖µ‖2

, (2)

where ‖x‖ denotes the Euclidean norm of a vector x ∈ R
m and x · y is the

inner product of two vectors x, y ∈ R
m.
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/*Variance reduction*/
The idea is then to make use of a Robbins and Monro algorithm to assess
the optimal µ∗ that minimizes the variance of g(µ∗, Z).
/*The price computation and confidence interval*/
By rebalancing this optimal µ∗ in the MC computation of the price we reduce
the variance by a factor of 5 and more. Finally by the use of the central limit
theorem we get a confidence interval with a length equal to the length of the
MC standard confidence interval by a factor of 2.5 to 3 and even more for
options that are far from the money.
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