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Introduction

Routines lowlinearprice and uplinearprice compute lower and upper bound ap-
proximations proposed by [1], for the price of a Call or a Put option written on
a linear combination of Black-Scholes asset prices. These routines also give ap-
proximations of the deltas of the claim. Routines lower_basket, upper_basket,

lower_asian and upper_asian barely use these two general routines and just cor-
rectly initialize their parameters. Note that the lower bound approximation is far
better than the upper bound one, so the former is the one to be prefered.

1. Framework

More precisely, routines lowlinearprice and uplinearprice compute lower and up-
per bound approximations of p = E

+, where :

X =

n
∑

i=0

εixi eGi

√
T −Var(Gi)T/2, (1)

with (Gi)06i6n a centered Gaussian vector, of covariance matrix Σ,
εi = ±1 and xi > 0.

One may assume that ∀i 6= j, Gi 6= Gj ; otherwise, one can group the terms with
the same Gaussian random variable in the summation above. If the εi’s are all
equal to +1 then E(X+) = E(X) and if they are all equal to −1 then E(X+) = 0.

We therefore assume from now on that all the εi’s are not equal.
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For a good choice of the parameters ε, x, and G, p is the price of a basket or a
discrete time average Asian option.

1.1. Basket options. In the case of a basket option characterized by the weigths
wi applied to the different assets whose volatilities are stored in vector σ and prices

at T are given by Si(0)eGi

√
T −Var(Gi)T/2−(r−qi)T , the notation means : εi = sgn(wi),

xi = |wi|Si(0)e−qiT , qi being the dividend on stock i. The strike K is included in
the notation as stock 0 : ε0 = −1, x0 = K e−rT , r being the rate of interest, and
σ0 = 0.

The covariance matrix of vector (Gi)06i6n then is : Σij = σiσjCij , where Cij is
the correlation between stocks i and j.

The price p then is given by :

p = e−rT
E





(

n
∑

i=1

wiSi(T ) − K

)+


 .

1.2. Asian options. As for discrete-time average Asian options over n equally
spaced dates, the notation will amount to the following :

ε0 = −1, x0 = K e−rT , and εi = 1, xi = 1
n S(0) e(r−q) iT

n
−rT , q is the dividend

yield on the stock. σ being the volatility of the stock, the covariance matrix of

vector (Gi) is given by Σij = min(i,j)
n σ2.

2. Computing the price

With the previous notation, price p is given by p = E(X+).
Lower and upper bounds derive from the following observation :

sup
06Y 61

E(XY ) = E(X+) = inf
X=Z1−Z2

Z1>0
Z2>0

E(Z1) (2)

where X, Y , Z1 and Z2 are random variables.
Indeed, for 0 6 Y 6 1, E(XY ) = E(X+Y ) − E(X−Y ) 6 E(X+). And, for

Y = 1{X>0} the supremum is attained.

Moreover, if X = Z1 − Z2 with Z1 and Z2 positive, Z1 > X+, leading to
E(Z1) > E(X+). And, for Z1 = X+ (X = X+ − X−), the infimum is attained.

3. Lower bound

3.1. Closed formula for the price. A closed formula is obtained for the lower
bound by restricting the supremum in (2) over {Y, ∃ u ∈ R

n+1 and d ∈ R, Y =
1{u·G6d}}. Letting

p∗ = sup
u,d

E(X1u·G6d),

and rewriting σi =
√

Var(Gi) =
√

Σii, one gets the computationally efficient for-
mula :

p∗ = sup
d∈R

sup
‖v‖=1

n
∑

i=0

εixiΦ(d + σi(
√

Cv)i

√
T ),

where

• Φ(x) = 1√
2π

∫ x

−∞ e− u2

2 denotes the cumulative distribution function of the

Normal law;

• C is the correlation matrix (Cij =
Σij

σiσj
);

•
√

C is such as
√

C
√

C
T

= C.
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Proof :

By conditioning and linearity,

p∗ = sup
d∈R

sup
u∈Rn+1

n
∑

i=0

εixiE

(

E(eGi

√
T −Var(Gi)T/2|u · G)1{u·G6d}

)

.

Since (Gi, u · G) forms a centered Gaussian vector, E(Gi|u · G) = Cov(Gi,u·G)
Var(u·G)

u · G, and

E(eGi

√
T −Var(Gi)T/2|u · G) = eE(Gi|u·G)

√
T −Var(E(Gi|u·G))T/2

Since Var(u · G) = u · Σu,

p∗ = sup
u,d

n
∑

i=0

εixiE

(

exp

(

Cov(Gi, u · G)

u · Σu
u · G

√
T − Cov(Gi, u · G)2

u · Σu
T/2

)

1{u·G6d}

)

= sup
d∈R

sup
u·Σu=1

n
∑

i=0

εixiE(eCov(Gi,u·G)u·G
√

T −Cov(Gi,u·G)2T/2
1{u·G6d})

= sup
d∈R

sup
u·Σu=1

n
∑

i=0

εixiE(e(Σu)iu·G
√

T −(Σu)2
i

T/2
1{u·G6d})

= sup
d∈R

sup
u·Σu=1

n
∑

i=0

εixiΦ(d + (Σu)i

√
T )

Then defining D as the diagonal matrix with diagonal coefficients σi, Σ = D
√

C
√

C
T

D,

so that u · Σu = u · D
√

C
√

C
T

Du

= ‖
√

C
T

Du‖2 = 1, taking v =
√

C
T

Du leads to (Σu)i = (D
√

Cv)i = σi(
√

Cv)i, and
finally :

p∗ = sup
d∈R

sup
‖v‖=1

n
∑

i=0

εixiΦ(d + σi(
√

Cv)i

√
T ),

3.2. Implementation. The goal of routine lowlinearprice is therefore to com-
pute the maximum of the function (v, d) 7→ ∑n

i=0 εixiΦ(d + σi(
√

Cv)i

√
T ), under

the constraint ‖v‖ = 1. Rather than optimizing under this constraint, routine
lowlinearprice computes the unconstrained maximum of the function F (v, d) =
∑n

i=0 εixiΦ(d + σi
(
√

Cv)i

‖v‖
√

T ).

The lower bound approximation of the price will therefore be :

p∗ =

n
∑

i=0

εixiΦ

(

d∗ + σi
(
√

Cv∗)i

‖v∗‖
√

T

)

, (3)

where d∗ and v∗ are the solution of the unconstrained problem.
Optimization in lowlinearprice routine uses a simple conjugate gradient method.

First-order derivatives must therefore be known. One can check that :

∂F

∂vj
=

n
∑

i=0

εixiσi

√
T

‖v‖ × ϕ

(

d +
σi(

√
Cv)i

√
T

‖v‖

)

×
(√

Cij − vj

‖v‖2
(
√

Cv)i

)

∂F

∂d
=

n
∑

i=0

εixiϕ

(

d +
σi(

√
Cv)i

√
T

‖v‖

)

,

with

ϕ(x) =
1√
2π

e− x2

2

The matrix
√

C which is a parameter of this problem, is computed by Cholesky
decomposition, and Φ is obtained thanks to the incomplete Gamma function, itself
computed as a series. The other parameters ε, x, σ, T and dimension n are known
(cf. 1), so there is no need for further computation to implement the algorithm.
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Finally note that the correlation between two distinct stocks is not necessar-
ily constant in routines lowlinearprice and uplinearprice, but it is supposed so in
routines that specifically price basket or Asian options.

3.3. Computing the deltas. The point (d∗, v∗) where the function F reaches its
maximum depends on the xi’s. But because of the Euler equations of optimality
for d∗ and v∗, one simply has :

∂p∗
∂xi

= εiΦ

(

d∗ + σi
(
√

Cv∗)i

√
T

‖v‖

)

3.3.1. Basket options. In the case of basket options, xi = |wi|Si(0)e−qiT for i > 0,
thus leading to :

δi =
∂p∗

∂Si(0)
=

∂p∗
∂xi

× xi

Si(0)
= εiΦ

(

d∗ + σi
(
√

Cv∗)i

√
T

‖v‖

)

× xi

Si(0)
.

3.3.2. Asian options. In this case, xi = 1
n S(0) e(r−q) iT

n
−rT , and

∂p∗
∂S(0)

=
n
∑

i=1

(

∂p∗
∂xi

× xi

S(0)

)

=
n
∑

i=1

[

εiΦ

(

d∗ + σi
(
√

Cv∗)i

√
T

‖v‖

)

× ∂xi

∂S(0)

]

,

4. Upper bound

4.1. Additional definitions and computation. For 0 6 i, k 6 n, let σk
i =√

Σii − 2Σik + Σkk =
√

Var(Gi − Gk). σk
i = 0 only for i = k.

Then choosing (λk
i )i6=k such as

∑

i6=k λk
i = −εk, and λk

i εi > 0 for all i 6= k (it is

possible because all the εi do not have the same sign), X in (1) can be rewritten
as :

X =
∑

i6=k

(

εixi eGi

√
T −Var(Gi)T/2 − λk

i xk eGk

√
T −Var(Gk)T/2

)

(4)

for every k = 0, ... ,n.

4.2. Closed formula. A closed formula is obtained for the upper bound by re-

stricting the infimum in (2) over {∑i6=k(εixi eGi

√
T −Var(Gi)T/2−λk

i xk eGk

√
T −Var(Gk)T/2)+},

with the same notations as in (4).
Letting

p∗ = min
06k6n

inf
∑

i6=k
λk

i
=−εk

E





∑

i6=k

(

εixie
Gi

√
T −Var(Gi)T/2 − λk

i x̃keGk

√
T −Var(Gk)T/2

)+



 ,

the efficient computational formula is :

p∗ = min
06k6n

(

n
∑

i=0

εixiΦ(dk + εiσ
k
i

√
T )

)

,

with dk being the one solution of
n
∑

i=0

εixiϕ(dk + εiσ
k
i

√
T ) = 0

Proof :

Price is given by :

p∗ = min
06k6n

inf
∑

i6=k
λk

i
=−εk

E

[

∑

i6=k

(

εixie
Gi

√
T −Var(Gi)T/2 − λk

i xkeGk

√
T −Var(Gk)T/2

)+

]

,
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and

E

[

(

εixie
Gi

√
T −Var(Gi)T/2 − λk

i xkeGk

√
T −Var(Gk)T/2

)+
]

= E

[

eGk

√
T −Var(Gk)T/2

(

εixie
(Gi−Gk)

√
T −(Var(Gi)−Var(Gk)T/2 − λk

i xk

)+
]

= E
k

[

(

εixie
(Gi−Gk)

√
T −(σ2

i
−σ2

k
)T/2 − λk

i xk

)+
]

Under probability P
k given by dPk

dP
= eGk

√
T −Var(Gk)T/2, Gk

σk
− σk

√
T = gk ∼ N (0, 1).

Letting gi = Gi

σi
− Σik

σiσk
gk − Σik

σi

√
T , gi and gk are independent and are both normally

distributed under P
k, and :

(Gi − Gk)
√

T − σ2
i − σ2

k

2
T =

(

σigi −
(

σk − Σik

σk

)

gk

)√
T − (σk

i )2T

2
.

Now,

Var
(

σigi −
(

σk − Σik

σk

)

gk

)

= σ2
i + σ2

k − 2 × σk
Σik

σk
= (σk

i )2.

Hence,

E
k

[

(

εixie
(Gi−Gk)

√
T −(σ2

i
−σ2

k
)T/2 − λk

i xk

)+
]

= E
k

[

(

εixie
σk

i
g

√
T −(σk

i
)2T/2 − λk

i xk

)+
]

,

with g ∼ N (0, 1), and

εixie
σk

i
g

√
T −(σk

i
)2T/2 − λk

i xk > 0

⇔















εi > 0 and ln
(

εixi

λk
i

xk

)

> −σk
i

√
T g + (σk

i )2T/2

or

εi < 0 and ln
(

εixi

λk
i

xk

)

6 −σk
i

√
T g + (σk

i )2T/2

⇔ − εig 6
εi

σk
i

√
T

ln

(

εixi

λk
i xk

)

− εiσ
k
i

√
T

2
.

This leads to :

E
k

[

(

εixie
(Gi−Gk)

√
T −(σ2

i
−σ2

k
)T/2 − λk

i xk

)+
]

=εixiE
k



e−
(g−σk

i

√
T )2

2
+

g2

2 1

{−εig6
εi

σk
i

√
T

ln

(

εixi

λk
i

xk

)

−
εiσk

i

√
T

2
}



− λk
i xkΦ

(

εi

σk
i

√
T

ln

(

εixi

λk
i xk

)

− εiσ
k
i

√
T

2

)

,

and finally :

p∗ = min
06k6n

inf
∑

i6=k
λk

i
=−εk

∑

i6=k

[

εixiΦ

(

εi

σk
i

√
T

ln

(

εixi

λk
i xk

)

+
εiσ

k
i

√
T

2

)

− λk
i xkΦ

(

εi

σk
i

√
T

ln

(

εixi

λk
i xk

)

− εiσ
k
i

√
T

2

)]

Using the Lagrangian :

L =
∑

i6=k

[

εixiΦ

(

εi

σk
i

√
T

ln

(

εixi

λk
i xk

)

+
εiσ

k
i

√
T

2

)

− λk
i xkΦ

(

εi

σk
i

√
T

ln

(

εixi

λk
i xk

)

− εiσ
k
i

√
T

2

)]

− µ

(

∑

i6=k

λk
i + εk

)

,
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the first-order conditions give :

∂L
∂λk

i

= −xkΦ

(

εi

σk
i

√
T

ln

(

εixi

λk
i xk

)

− εiσ
k
i

√
T

2

)

− µ = 0,

implying that the arguments of Φ are all equal : for each i 6= k,

εi

σk
i

√
T

ln

(

εixi

λk
i xk

)

− εiσ
k
i

√
T

2
= dk.

Consequently,

λk
i xk = εixie

−εiσk
i

√
T dk−

σk
i

2
T

2 ,

this leading to :

∑

i6=k

εixie
−εiσk

i

√
T dk−

σk
i

2
T

2 = −εkxke−εkσk
k

√
T dk−

σk
k

2
T

2 ,

because σk
k = 0. As a consequence,

n
∑

i=0

εixie
−εiσk

i

√
T dk−σk

i

2
T/2 = 0 =

n
∑

i=0

εixiϕ(dk + εiσ
k
i

√
T ) × e

dk2

2 .

The left-hand term is a decreasing function of dk. Since not all the εi have the same sign,
its limits at ±∞ are ±∞, and dk is the only solution of :

n
∑

i=0

εixiϕ(dk + εiσ
k
i

√
T ) = 0.

Moreover,

p∗ = min
06k6n

∑

i6=k

(

εixiΦ(dk + εiσ
k
i

√
T ) − λk

i xkΦ(dk)
)

= min
06k6n

∑

i6=k

εixiΦ(dk + εiσ
k
i

√
T ) + εkxkΦ(dk)

= min
06k6n

n
∑

i=0

εixiΦ(dk + εiσ
k
i

√
T ).

4.3. Implementation. For each k, dk is computed by a bisection method.
The minimum in k then is computed, as well as the optimal k = k∗.
Upper bound approximation of the price therefore is :

p∗ =
n
∑

i=0

εixiΦ(dk∗
+ εiσ

k∗

i

√
T ). (5)

4.4. Computing the deltas. The same calculus as before shows that :

∂p∗

∂xi
= εiΦ(dk∗

+ εiσ
k∗

i

√
T )

4.4.1. Basket options. Just as in the case of the lower bound :

δi =
∂p∗

∂Si(0)
= εiΦ(dk∗

+ εiσ
k∗

i

√
T ) × xi

Si(0)
.

4.4.2. Asian options. Likewise :

∂p∗

∂S(0)
=

n
∑

i=1

(

∂p∗

∂xi
× xi

S(0)

)

.
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