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Abstract. In this paper we propose a variance reduction technique based
on the Girsanov theorem and importance sampling for the computation of

American option prices via the Longstaff-Schwartz algorithm. We prove the
almost sure convergence of the modified algorithm as well as a central limit
theorem. We give details about numerical results and investigate the existence

and location of a minimum of Monte Carlo variance.

1. Introduction

Premia 18
It is well known that pricing American options is not an easy task and that difficul-
ties arise as we increase the dimension of the underlying (stock) asset. Performing
numerical techniques have been proposed to approximate the unidimensional prob-
lem but unfortunately they cannot be extended to high-dimensional cases and up
to now the more efficient approach is still a Monte Carlo one. In litterature we
find different algorithms involving Monte Carlo techniques1 and we focus on the
one proposed by Longstaff and Schwartz [LS01], which is based on a least squares
approach. The aim of this paper is to show that it is possible to develop for this
algorithm an efficient importance sampling variance reduction technique by means
of theGirsanov theorem.
The paper is organized as follows: in section 2 we summarize basic ideas of the
Longstaff-Schwartz algorithm (namely a least squares regression coupled to a Monte
Carlo procedure) and introduce notation, while in section 3 we recall Girsanov the-
orem and explain how to obtain a family of equivalent pricing problems which al-
lows us to evaluate the same mathematical expectation with different mean squares;
moreover we prove as in [A03] the existence in the above family of an optimal es-
timator which minimize variance. In section 4, following Clément, Lamberton and
Protter [CLP02] we state the convergence of the modified Longstaff-Schwartz algo-
rithm and finally in section 5 we give detailed numerical results and some hints on
how to locate and approximate the optimal estimator.

2. The Longstaff-Schwartz algorithm

We refer to [CLP02] for details about the algorithm and proofs about its rate of
convergence; here we just recall the general framework and the main results.
First of all we discretise in time the American option problem considering an option
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1See for instance [BG97],[BPP02],[LS01],[TVR01].
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which can be exerced only at M + 1 fixed times t0 ≡ 0, t1, . . . , tM ≡ T between
t = 0 and maturity t = T . Then we introduce a probability space (Ω,A,P) with
a discrete time filtration F =

(

Ftj

)

j=1,...,M
. We choose an R

D valued and F-

adapted Markov chain
(

Xtj

)

j=1,...,M
as model for the underlying asset, and a payoff

function f : {t0, t1, . . . , tM }xRD −→ R
+ ∪{0} such that the resulting variables Ztj

.
=

f(tj ,Xtj
)|j=1,...,M are square integrable. The initial asset value X0 is supposed

to be deterministic. Given the set T0,M of all F-stopping times with values in
{t0, t1, . . . , tM } we define the price U0 of the American option of payoff f as

(1) U0 = sup
τ∈T0,M

E(Zτ ).

We can compute (1) by solving the following dynamic programming problem

(2)

{

UM = ZtM

Uj = max{Ztj
,E(Uj+1|Ftj

)}, 0 ≤ j ≤ M − 1

and it possible to show that the sequence of stopping times

τj = min{tk ≥ tj |Uk = Zk}
obey the dynamic programming scheme

(3)

{

τM = M

τj = jI{Ztj
≥E(Uj+1|Ftj

)} + τj+1I{Ztj
<E(Uj+1|Ftj

)}, 0 ≤ j ≤ M − 1.

Remark that it can be proved (by induction on j and as Ftj
⊆ Ftj+1

) that Uj =
E(Zτj

|Ftj
) and in particular U0 = E(Zτ0

) i.e. the sup of eqn. (1) is indeed a max.
Let us analyse the least squares aproach: Markov property allows us to write

(4) E(Uj+1|Ftj
) = φj(Xtj

)

where φj(·) is formally defined as

φj(x)
.
= E(Uj+1|Xtj

= x).

Hence, by definition of conditional expectation, we have that φj(Xtj
) is the projec-

tion of Uj+1 on the space L2
j
.
= {ψ : RD → R | E[ψ2(Xtj

)] < +∞}.
The approximation proposed by Longstaff and Schwartz consists in substituting
infinite dimensional spaces L2

j with a finite dimensional one. Thus we consider a

set of m linearly independent functions e1(·), . . . , em(·) such that E[e2
k(Xtj

)] < +∞
for all k = 1 to m, j = 1 to M and we try to approximate φj ’s in the space spanned
by the ek(·)’s i.e.

(5) φj(Xtj
) ≈ αj · e(Xtj

)

with

αj
.
= arg min

a∈Rm
E
[

Uj+1 − a · e(Xtj
)
]2
.

In terms of stopping time we can now introduce a sequence τm
j solution of the

problem (3) where we have made approximation (5) i.e.

(6)

{

τm
M = M

τm
j = jI{Ztj

≥αj ·e(Xtj
)} + τm

j+1I{Ztj
<αj ·e(Xtj

)}, 0 ≤ j ≤ M − 1.
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The second step consists in solving least squares regression problem (5) via Monte
Carlo sampling paths. If we consider N independent realization of the underlying
process, then it is possible to approximate

(7) φj(Xtj
) ≈ αN

j · e(Xtj
)

where here

(8)

αN
j
.
= arg min

a∈Rm

1

N

N
∑

n=1

(

U
(n)
j+1 − a · e(X(n)

tj
)
)2

= arg min
a∈Rm

1

N

N
∑

n=1

(

Z
(n)

τm,N,n
j+1

− a · e(X(n)
tj

)

)2

.

The corresponding optimal stopping time dynamic is
(9)






τm,N,n
M = M

τm,N,n
j = jI{Z

(n)
tj

≥αN
j

·e(X
(n)
tj

)} + τm,N,n
j+1 I{Z

(n)
tj

<αN
j

·e(X
(n)
tj

)}, 0 ≤ j ≤ M − 1.

In conclusion, the true price of the option

U0 = max(Zt0
,EZτ1

)

is approximated firstly by

Um
0

.
= max(Zt0

,EZτm
1

)

and then by

Um,N
0

.
= max(Zt0

,
1

N

N
∑

n=1

Z
(n)

τm,N,n
1

).

This was the algorithm proposed by Longstaff and Schwartz ([LS01]) in 2001; later
Clément, Lamberton and Protter [CLP02] managed to demonstrate, under some
quite general hypothesis on f and ek’s, the following convergence results:

(10)
Um,N

0
a.s.−−−−→

N→∞
Um

0 ∀m ∈ N

Um
0 −−−−→

m→∞
U0.

They proved moreover that for every j = 1 to M ,

(11)
1√
N

N
∑

n=1

(

f(τm,N,n
j ,X

(n)

τm,N,n
j

) − Ef(τm
j ,Xτm

j
)
)

w−−−−→
N→∞

G

where G is a Gaussian vector and by superscript w we mean weak convergence.

Remark 1. Let us spend a few words on the very last result: the presence of such
a central limit theorem is at the same time a good and a bad news. It is a good

one because even if the {Z(n)

τm,N,n
j

}n=1,...,N are not independent variables, a central

limit theorem holds and ensures us that convergence occurs with the typical MC
behaviour const/

√
N. The bad news is that we cannot find any explicit expression

for the constant to be put in the formula, i.e. we do not know the variance of G.
We could for instance follow the proof in [CLP02] with the toy exemple M = 2
to see that even in this very simple case it is in practice impossible to write down
an expression for const. As we will explain in the following sections, this lack of
information will require an appropriate way to quantify the rate of convergence of
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the algorithm.

3. Variance reduction for the unapproximated problem

The task of reducing MC variance of an estimator of U0 can be achieved by means
of the Girsanov theorem and a standard variance reduction technique: importance
sampling. In this section we will describe the necessary tools and explain how to
develop such a technique.

3.1. Useful results. Let us just recall in this first subsection two results needed
in order to develop our variance reduction technique.

3.1.1. Importance sampling. It is well known from probability and Monte Carlo
estimation theory [PTVF92] that if we are interested in computing mathematical
expectations such as EY , Y square integrable random variable, we can increase
precision by means of an importance sampling technique, i.e. we look for a new
random variable Ỹ such that

(12)
EY = EỸ and

VarY > Var Ỹ

in order to give a standard MC estimate of EY as

(13) EY ≈ 1

N

N
∑

n=1

Ỹ (n) ± 1.96

√

Var Ỹ

N

where
(

Ỹ (n)
)

n=1,...,N
are N independent samples drawn along the law of Ỹ . This

procedure leads to a reduction of a factor Var Ỹ /VarY in the Monte Carlo variance.
Ỹ is usually called estimator for Y .

3.1.2. The Girsanov theorem for Brownian motion.

Theorem (Girsanov). Let (Ω,A,P) be a probability space with a filtration F =
(

Ft

)

0≤t≤T
and let Wt be a d-dimensional F-Brownian motion. Consider an adapted

d-dimensional process
(

θt

)

0≤t≤T
such that

∫ t

0

ds||θs||2 < +∞ a.s. ∀ 0 ≤ t ≤ T

and that

Lt
.
= exp{−

∫ t

0

θs · dWs − 1

2

∫ t

0

||θs||2ds}

is a martingale ∀ 0 ≤ t ≤ T ( || · || is the R
d norm). Then under the probability

measure P
θ defined by LT = dPθ/dP, the stochastic process

(14) W θ
t
.
= Wt +

∫ t

0

θsds

is a F-brownian motion.

Remark 2. Wt under P and W θ
t under P

θ are both brownian motion with respect
to the same filtration F.
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3.2. Estimators for the optimal stopping time problem. Now let us go back
to the initial problem (1) and restrict to the case of a D-dimensional Black and
Scholes model for the asset evolution:

(15)











dXi
t

Xi
t

= µidt+ σdWt i = 1, . . . ,D

X0 = x ∈ R
D

with σ a Dxd definite positive matrix and Wt a d-dimensional standard brownian
motion. This diffusion equation has an explicit solution and one can write Xtj

as

a function of the Brownian motion Wtj
and pose f(tj ,Xtj

)
.
= f̃(tj ,Wtj) .

Now as in [GHS99] let us choose a constant vector θ ∈ R
d and build a drifted

Brownian motion

(16) W θ
t
.
= θt+Wt.

the Girsanov theorem ensures us that there exists a probability measure P
θ defined

by dPθ/dP = Lθ
T where

(17) Lθ
t
.
= exp{−θ ·Wt − 1

2
||θ||2t} = exp{−θ ·W θ

t +
1

2
||θ||2t}

such that W θ
t is a Brownian motion under Pθ and with respect to the same filtration

F. Moreover it is easy to see that Lθ
t is a P-martingale.

Once our framework has been set we can state the following

Proposition 3.1. Let (Ω,A,P) be a probability space enriched with a filtration F =
(

Ft

)

0≤t≤T
and let Wt be a d-dimensional F-Brownian motion. Then ∀ θ ∈ R

d, ∀
F-stopping time τ ∈ T0,M and for all function f̃ : {t0, t1, . . . , tM }xRD −→ R

+ ∪ {0}
such that f̃(ti,Wti

)
∣

∣

i=1,...,M
are integrable variables, we have

(18) Ef̃(τ,Wτ ) = ELθ
τ f̃(τ,Wτ + θτ)

and

(19) sup
τ∈T0,M

Ef̃(τ,Wτ ) = sup
τ∈T0,M

ELθ
τ f̃(τ,Wτ + θτ)

where Lθ
τ is defined according to (17).

Remark 3. It is worth to stress that as the definition of stopping time 2 involves only
the notion of filtration, all change in probability measure leading from (Ω,A,P) to
(Ω,A,Pθ) leaves F unchanged and thus does not affect the set of F−stopping times
and in particular T0,M . Proof is a direct application of the Girsanov theorem once
we introduce the probability measure P

θ under which the process W θ
t defined in

(16) is a Brownian motion.We have immediately

(20)
Ef̃(τ,Wτ ) =E

θf̃(τ,W θ
τ ) = ELθ

T f̃(τ,Wτ + θτ)

= ELθ
τ f̃(τ,Wτ + θτ),

2

Definition (stopping time). A random variable τ : Ω → R
+ ∪ {0} is a stopping time with respect

to a filtration F = Ft

)

0≤t≤T
if and only if ∀t ∈ [0, T ], {τ ≤ t} is Ft-measurable.
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last equality holding because Lθ
t is a martingale.

The second result of proposition is trivial as T0,M is left unchanged by the choice
of a new probability measure P

θ and as (18) holds for all stopping time in T0,M .

Let us now introduce the underlying asset process Xθ
t solution of the SDE

(21)











dXθ,i
t

Xθ,i
t

= µi + (σθ)idt+ σdWt i = 1, . . . ,D

Xθ
0 = x ∈ R

D

and consider an integrable payoff function f ; corollary allows us to rewrite pricing
problem (1) in the form

(22) U0 = Ef(τ0,Xτ0
) = ELθ

τ0
f(τ0,X

θ
τ0

)
.
= Uθ

0 .

Remark 4. Note that equation (22) implies that the optimal stopping time τ0 does

not depend on θ.

Usual interpretation of eqs. (21)-(22) is that a change in the drift can be compen-
sated by a change in the payoff function to give a set of random variables which
have the same expectation. Thus, the importance of Proposition 3.1 is in the fact
that we now dispose of the family {Uθ

0 }θ∈Rd of estimators of U0 which can be used
to compute Ef(τ0,Xτ0

). Having such a family is useful because, as it is often the
case, we do have a criterion of optimality for estimators and we wish to find the
optimal one (whenever it exists).

3.3. Optimal estimator. Whenever standard Monte Carlo theory is valid, it is
straightworfard to define an optimal estimator. Let us suppose we have to evaluate
mathematical expectation EY of a square integrable random variable Y and that
we dispose of a family of estimators Yη whose laws are known. Importance sam-
pling technique of section 3.1.1 applies then to each estimator Yη and according to
eq.(13) the precision of this procedure depends on the value of VarYη. Consequently
a natural definition of optimality is

the optimal (MC) estimator is the one that minimize VarYη.

In the case of the Longstaff-Schwartz algorithm, as U0 = max{Z0,E(Zτ1
)}, al-

gorithm convergence is driven by the convergence rate of 1/N
∑N

n=1 Z
(n)

τm,N,n
1

to

E(Zτ1
). We can thus exploit proposition 3.1 obtaining a set of estimators for

E(Zτ1
) and defining as optimal the one which minimise approximation error. Un-

fortunately, we know that the Z
(n)

τm,N,n
1

are not independent and that convergence

of 1/N
∑N

n=1 Z
(n)

τm,N,n
1

is not ruled by Var(Zτ1
) but by an unknown constant. As a

consequence we cannot prove by explicit calculus the existence and the unicity of
such an optimal estimator for the L-S algorithm.
The main idea of this section is that we can however try to demonstrate the ex-
istence of an estimator which is optimal for the unapproximated stopping time
problem assuming that the behaviour of the L-S algorithm (which recovers the
original one in the limits m → ∞, N → ∞) in terms of existence/unicity will be
essentially the same.
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Thus, we apply importance sampling (12) to the American option pricing prob-
lem (1), using the set of random variables {Lθ

τ0
f(τ0,X

θ
τ0

)}θ∈Rd as estimators for

f(τ0,Xτ0
) and considering as optimal the one which minimizes Var[Lθ

τ0
f(τ0,X

θ
τ0

)].

Before going on with the search for this optimal estimator, we must be sure that
expressions like Var[Lθ

i f(ti,X
θ
i )] make sense and so we require that the Lθ

i f(ti,X
θ
i )’s

are square integrable variables. As Lθ
t ∈ Lp ∀ p > 0, t ∈ [0, T ], θ ∈ R

d to have the
required property it is sufficient to make the following hypothesis

(H1) There exists a ξ > 0 such that the chosen payoff function f satisfies

f(ti,Xti
) ∈ L2(1+ξ) ∀i = 1, . . . ,M.

We will consider hypothesys (H1) as verified throughout the rest of the paper.

At this point we focus on two questions:

i) Has the optimization problem for the unapproximated model got a solution?
ii) Whenever an optimal estimator exists, how could we find or approximate

it?

In this section we will answer the first question while the location of the minimum
will be investigated in section 5.

One way to proof the existence of a θ minimizing the variance

(23) Var[Lθ
τ0
f(τ0,X

θ
τ0

)] = E
(

Lθ
τ0
f̃(τ0,Wτ0

+ θτ0)
)2 − U2

0
.
= V(θ) − U2

0

consists3 in showing that function V(θ) is strictly convex and tends to infinity as
||θ|| → ∞. These properties are exactly what we state in the following

Proposition 3.2. Assume that (H1) is verified; assume moreover that ∀i = 1, . . . ,M ,
P(f(ti,Xti

) > 0) 6= 0.Then we have that














V(θ) is twice differentiable

HessV(θ) is a positive matrix

lim
||θ||→+∞

V(θ) = +∞.

Proof. The proof of Proposition 3.2 is achieved by adapting with simple algebra a
similar result proved in [A03] for a European option.
First of all we exploit the Girsanov theorem obtaining

V(θ) = E
(

Lθ
τ0
f̃(τ0,Wτ0

+ θτ0)
)2

= E
θLθ

τ0
f̃2(τ0,W

θ
τ0

)

= Ee
1
2 ||θ||2τ0−θ·Wτ0 f̃2(τ0,Wτ0

)
(24)

and then we use the fact that τ0 : Ω → {t0, t1, . . . , T} to write4

(25) V(θ) =

M
∑

j=1

Ee
1
2 ||θ||2tj−θ·Wtj f̃2(tjWtj)Iτ0=tj

.

3Remark that as U0 is a constant, the variance is driven by V(θ).
4In the expression for V we omitted the term Ef2(t0, Xt0 )Iτ0=t0 which does not depend on θ

and will not contribute to gradient and Hessian of V.
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Brownian motion is a process with independent and stationary increments and if
we introduce M R

d-valued i.i.d. random variables ǫ1, . . . , ǫM with ǫi ∼ N (0, Idxd)
then we can write for all i = 1, . . . ,M

Wti
= Wti−1

+ ǫi
√

ti − ti−1 = Wti−1
+ ǫi

√

∆i

and introduce a function F such that f̃(ti,Wti
)
.
= F (ti, ǫ1, . . . , ǫi). Using this

notation eq.(25) rewrites

(26) V(θ) =

M
∑

j=1

Ee
1
2 ||θ||2tj−θ·

∑j

i=1

√
∆iǫiF 2(tj , ǫ1, . . . , ǫj)Iτ0=j

.
=

M
∑

j=1

Evj(θ).

The next step is to show that it is possible to pass first and second derivatives with
respect to θ = (θ1, . . . , θk, . . . , θd) into mathematical expectation and get

(27)



























∂θk
V(θ) =

M
∑

j=1

E∂θk
vj(θ)

∂θk
∂θk′ V(θ) =

M
∑

j=1

E∂θk
∂θk′ vj(θ).

We can easily prove that this is possible because, as τ0 is independent from θ (just
recall eqs.(18)-(22)) we have

(28) |∂θk
vj(θ)| ≤

∣

∣

∣

∣

∣

j
∑

i=1

(∆iθk −
√

∆iǫ
(k)
i )

∣

∣

∣

∣

∣

e
1
2 ||θ||2tj−θ·

∑j

i=1

√
∆iǫiF 2(tj , ǫ1, . . . , ǫj)

and

(29)

|∂θk
∂θk′ vj(θ)| ≤

∣

∣

∣

∣

∣

δk,k′ +

(

j
∑

i=1

(∆iθk −
√

∆iǫ
(k)
i )

)(

j
∑

i=1

(∆iθk′ −
√

∆iǫ
(k′)
i )

)∣

∣

∣

∣

∣

·

· e
1
2 ||θ||2tj−θ·

∑j

i=1

√
∆iǫiF 2(tj , ǫ1, . . . , ǫj).

Taking expectation in (28) gives

(30) E|∂θk
vj(θ)| ≤

≤ e
1
2 ||θ||2tj

j
∑

i=1

C
∣

∣

∣

∣

∣

∣(|∆iθk| +
√

∆i|ǫ(k)
i |)e||θ||

∑j

i=1

√
∆i||ǫi||e− 1

2

∑j

i=1
||ǫi||2 ξ

ξ+1

∣

∣

∣

∣

∣

∣

L(ξ+1)/ξ(Rjd)
·

·
∣

∣

∣

∣

∣

∣

∣

∣

F 2(tj , ǫ1, . . . , ǫj)e− 1
2(ξ+1)

∑j

i=1
||ǫi||2

∣

∣

∣

∣

∣

∣

∣

∣

L(ξ+1)(Rjd)

< ∞.

where C is a normalization constant coming from gaussian laws of the ǫi’s and last
inequality holds because F (ti, ǫ1, . . . , ǫi) ∈ L2(1+ξ).
Eq.(30) is valable for all j = 1, . . . ,M and thus first of eqs. (27) holds; the second
can be proved with an analogous argument.
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Directly from the form of the Hessian and given P(f(ti,Xti
) > 0) 6= 0, we have

uT HessV(θ)u =

=

M
∑

j=1

E



||u||2 +

(

u ·
j
∑

i=1

(∆iθ −
√

∆iǫi)

)2


F 2e
1
2 ||θ||2tj−θ·

∑j

i=1

√
∆iǫi > 0

for all u ∈ R
d−0 i.e. the convexity of V(θ). Moreover, for each of the vj ’s reasonings

in [A03] apply and one prove that

lim
||θ||→+∞

vj(θ) = +∞

which implies the analogous property for V(θ).

Remark 5. The results of Proposition 3.2 are important because they ensure us
that V(θ) has a unique minimum and so our search for an optimal drift is not an
ill-posed problem. What they clearly do not tell is whether the finding of such a
minimum will be easy and the gain in term of precision will be worthwile.

4. Construction and convergence of a drift-modified L.-S. algorithm

Thanks to results of section 3 we are finally able to define a modified Longstaff-
Schwartz algorithm as follows: first of all we generate Monte Carlo pathsXt0

,Xθ
t1
, . . . ,

Xθ
tM

according to (21) and then we use them to solve the approximated dynamic

programming problems (2), (9) whith payoff functions fθ(ti,X
θ
ti

)
.
= Lθ

i f(ti,X
θ
ti

)
instead of f(ti,Xti

).
Under our hypothesis fθ ∈ L2 and we just need to set a few technical hypotesis to
prove the following theorems:

Theorem 4.1. If the sequence
(

ek(Xtj
)
)

k≥1
is total in the space L2

j for j = 1 to M

then ∀ θ ∈ R
d,

Uθ,m
0 −−−−→

m→∞
Uθ

0 ≡ U0.

Theorem 4.2. Let P(αj · e(Xtj
) = Ztj

) = 0 for j = 1, . . . ,M . Then for all θ ∈ R
d

and for all m ∈ N

Uθ,m,N
0

a.s.−−−−→
N→∞

Uθ,m
0 .

Theorem 4.3. Assume the following hypothesis

(H2) For all θ ∈ R
d and for j = 1 to M , there exists a neighbourhood V θ

j of

αθ
j ,ηθ

j > 0 and kθ
j > 0 such that for aj ∈ V θ

j and for ǫ ∈ [0, ηθ
j ],

E

[

(

1 +

M
∑

i=1

|fθ(ti,X
θ
ti

)| +

M−1
∑

i=1

|ek(Xθ
ti

)|
)

·
(

1 +

M−1
∑

i=1

|ek(Xθ
ti

)|
)

·

·I{|fθ(tj ,Xθ
tj

)−aj ·ek(Xθ
tj

)|<ǫ|ek(Xθ
tj

)|}

]

≤ ǫkθ
j .

(H3) For j = 1 to M and ∀ θ ∈ R
d, fθ(tj ,X

θ
tj

) and e(Xθ
ti

) are in Lp for all
1 ≤ p < +∞.

(H4) For j = 1, . . . ,M − 1 and ∀ θ ∈ R
d, E[fθ(τm

j ,Xθ
τm

j
)] and E[fθ(τm

j ,Xθ
τm

j
)·

·e(Xθ
j−1)] thought as function of α are of class C1 in a neighbourhood of α.
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Then

1√
N

N
∑

n=1

(

fθ(τm,N,n
j ,X

θ,(n)

τm,N,n
j

) − Efθ(τm
j ,Xθ

τm
j

)

)

converges weakly to a Gaussian random variable as N goes to infinity.

Proof. Theorems 4.1, 4.2, 4.3 are only corollaries of theorems 3.1, 3.2, 4.2 of
[CLP02]. In particular the first one is based on the fact that

E[fθ(τm
j ,Xθ

τm
j

)|Ftj
]

L2

−−−−→
m→∞

E[fθ(τj ,X
θ
τj

)|Ftj
] j = 1, . . . ,M ,

the second rests on the almost sure convergence

1

N

N
∑

n=1

fθ(τm,N,n
j ,X

θ,(n)

τm,N,n
j

)
a.s.−−−−→

N→∞
Efθ(τm

j ,Xθ
τm

j
)

which holds for all excercise time j and the third is indeed the result of a compli-
cated and technical proof.

At this point of discussion a question arises: if we cannot apply standard MC es-

timation theory to 1/N
∑N

n=1 Z
θ,(n)

τm,N,n
1

, then how could we quantify the convergence

rate in order to verify whether our drift-modified algorithm increases precision or
not?
Let us look carefully at theorem 4.3: it states that if we introduce a random variable

Y θ,N .
=

1

N

N
∑

n=1

Z
θ,(n)

τm,N,n
1

,

then when N ≫ 1, the law of Y θ,N will be (approximatively) gaussian with mean
EZθ

τm
1

and variance AN (θ)/N . As stressed before, AN (θ) is unknown and cannot

be empirically estimated by means of the Z
θ,(n)

τm,N,n
1

’s because they are not indepen-

dent.
One possible way to quantify AN (θ) is to sample N · N ′ independent paths and
to group them in N ′ clusters of N paths each. We then apply L-S algorithm to each

cluster obtainingN ′ independent and identically distributed samples {Y θ,N
n′ }n′=1,...,N ′

to which standard Monte Carlo theory applies; hence the empirical variance VareY θ,N

can be considered as a good measure of the rate of convergence of 1
N ′

∑N ′

n′=1 Y
θ,N

(n′) .

In particular, we have AN (θ) = N · VarY θ,N ≈ N · VareY θ,N , and thanks to this
procedure we can now estimate the speed of convergence of the algorithm. Obvi-
ously, this technique is slow because, in order to have good accuracy, both N ′ and
N must be large. However, as we are firstly interested in testing the algorithm in
order to see whether VareY θ,N presents a minimum or not, this does not constitute
a problem.

5. Numerical results

In this section we will give details about numerical results and we will discuss
applicability of the introduced algorithm, which was tested in the special case of
an American put basket option with t0 = 0, maturity T = 1 year and an annual
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interest rate of 10%. Given a D-dimensional asset model, a strike K > 0 and a

weight array w ∈ [0, 1]D such that
∑D

i=1 wi = 1 the basket put price is

(31) Ztj
= f(tj ,Xtj

)
.
= max(K −

D
∑

i=1

wiX
i
tj
, 0).

In order to simplify calculus we chose an uncorrelated model such that

(32)











d = D

wi = 1/D i = 1, . . . , d

σ = σ̃Idxd, σ̃ = 0.2

Let us stress that a priori the choice of correlated or uncorrelated assets will not
affect the presence of a minimum, but only its location. Actually, if for a particular
i we chose a weight wi >> wj , j 6= i, then the basket option price would roughly
behave as max(K − wiXti

, 0) and we would expect changes of drift on the other
d− 1 components not to be relevant for variance reduction.

This section is divided in 2 subsections: in the first one we present variance re-
duction results obtained with different choices of basket dimension, strike and spot
vector, emphasizing that, because of some unavoidable numerical effects, some re-
strictions to the applicability of our technique exist. In the second subsection we
will give some rules of thumb on how to locate the requested minimum.

All simulations were performed according to the procedure illustrated in section 4
with 80 clusters of 2000 MC calls each.

5.1. Variance reduction results. The reason for which we introduced a drifted
model was to increase the precision of the algorithm; consequently, in order to quan-
tify the gain we may have obtained, we must choose two benchmarks to compare
our results: one for the price itself and one for Monte Carlo variance. The more
natural choice, taking into account what said in section 4, is to consider as reference

the estimated pair (price, variance) (U0,m,N
0 ,VareY 0,N ) of the original model, i.e.

when θ ≡ 0.
We can thus start listing numerical results by considering an unidimensional case

and plotting in figure ?? the price ratio Uθ,m,N
0 /Ub and the convergence rate ratio

(33) R(θ)
.
=

√

VareY θ,N

VareY 0,N
.

In this first example, in order to show that our data fit well literature, we used as
benchmark for the price Ub, price obtained through a Tree method matching third
moment5.
We can thus notice that there is minimum located more or less at θ∗ ≈ −2.4
which gives a ratio R(θ∗) ≈ 0.1419 and a correct value for price. In addition,
there exists a narrow neighbourhood of θ∗ (approximatively [−3,−1.9]) on which
variance ratio is kept under the threshold of 0.2 and a larger interval [−3.5,−0.8]
on which R(θ) . 0.4. This is remarkable because it means that our procedure is
good for it is reliable and leads to a variance reduction of more than a factor 25

5We used a routine of ENPC/INRIA software Premia. Information about the pricing software

Premia can be found at: http://cermics.enpc.fr/˜premia/
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with respect to the case θ = 0. This implies that, if we were in some way able to
predict the location of minimum, we could have really performing calculus.
In figures ?? and ?? we show results obtained in the case of a 2-dimensional asset
with strike K = 90 but when we consider respectively a symmetrical (X1

0 = X2
0 =

100) and an asymmetrical (X1
0 = 105, X2

0 = 70) spot asset. In the symmetrical
case, one would expect to have a minimum with θ∗

1 ∼ θ∗
2 (remember we chose

symmetrical weights too); this revealed to be exactly the case as we found the
estimated minimum at θ∗ ≈ (−1.6,−1.6) with a corresponding mean square ratio
of 0.1533.
On the other hand, in the asymmetrical case, as shown by the two projections of
figure ??, we find θ∗ ≈ (−1.48,−1.08), i.e. location is asymmetrical, too.

Finally, we performed simulations with D > 2 finding similar results. As an

exemple we report in table 1 the ratios Uθ,m,N
0 /U0,m,N

0 and R(θ) obtained for some
values of θ in a neighbourhood of the minimum in the case D = 5.

5.1.1. Real convergence of the algorithm: a range for θ. The reader could have
noticed that in all the presented pictures we plotted a (relatively) narrow region
around the estimated minimum obtaining nice figures. If we did not plot results
on a larger range of variation for θ, it was not for propaganda reasons. Actually,
even if from a theoretical point of view, once model’s parameters are fixed, each
estimator constructed according to section 4 is expected to return the same option
price, from a numerical point of view things are more delicate. Let us take a look
at figure ??-top where we report results obtained in the unidimensional case when
θ ∈ [−14, 8]; we would be induced to state that, except for a region where our datas
fit with literature benchmarks6, prices are sensible to the choice of θ and theory is
not verified by practice.
The point is that nor theory nor our results are wrong. Let us carefully analyse
formulae (17) and (31); as payoffs are given by the product of two functions of
Brownian motion Wt, namely the Girsanov factor and the put basket payoff, it is

6Here again we consider Premia’s price as reference.

θ1 θ2 θ3 θ4 θ5 Uθ,m,N
0 /Uθ,m,N

0 R(θ)

-2 -2 -2 -2 -2 0.897768 1.08737
· · · · · · · · · · · · · · · · · · · · ·
-1 -1 -1.5 -0.5 -0.5 1.01046 0.443951
-1 -1 -1 -0.5 -0.5 1.01677 0.345993
-1 -1 -1 -1 -1.5 0.963821 0.266572
-1 -1 -1 -1 -1 1.01038 0.208331

-1 -1 -1 -0.5 -1.5 0.956187 0.337243
-1 -1 -1 -0.5 -0.5 1.01677 0.345993
· · · · · · · · · · · · · · · · · · · · ·
-1 -0.5 -2 -0.5 -2 0.920403 0.626063

Table 1. D=5, K=100, X0 = (100, 100, 100, 100, 100); region in
the neighbourhood of minimum θ∗ = (−1,−1,−1,−1, −1).
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possible that one among them presents an anomalous behaviour for some values
of θ. Let us fix D = 1 and let us separate two cases: θ ≫ 1 and θ ≪ −1. As θ
represents the drift, large positive values will force the price to grow while large
negative ones will drive it to zero. In our case, we have X0 ≥ K and consequently,
when θ is large enough, the simulated trajectories stay completely beyond K, forc-
ing the payoff in case of exercise fθ(ti,X

θ
ti

) to be equal to zero for all i = 0 to
M . The result of this artificious behaviour is that, if we performed MC simulation,
we would obtain a set of paths on which estimated prices are equal to zero and we

would deduce that Uθ,m
0 ∼ N (≈ 0,≈ 0). In particular, we would say that our algo-

rithm has infinite precision because VareY θ,N = 0. Obviously, when X0 < K, we
have a similar behaviour: a large value for θ drives the paths beyond the threshold
value X0. Therefore, the optimal stopping time is t0 and the price of the option is
K − X0 on all the paths. Once again, we find that the empirical MC variance is
zero.
On the other hand, if θ is large and negative, then on almost each path the ex-
pected basket payoff will approximatively be equal to Lθ

iK. What now causes our
algorithm to fail is the fact that when θ << −1, then7 Lθ

ti
K ≈ exp {−θ2ti/2}K ≈ 0

and again the algorithm returns a wrong price.
Let us go back to figure ?? where bottom picture is only an enlargement of the top
one: here it is evident that there is a region in which our prices fit the reference and
this tells us our results are only in part affected by the defaults described above. In
order to obtain reliable results, we are obliged to consider the minimization problem
only on a narrowed range for θ, i.e. under the somewhat unnatural constraint that
evaluated prices do not differ so much from the real one. The point is: real price

is unknown and it is exactly what we want to evaluate. As the effects described
above arise only when θ 6= 0, one possible rule of thumb to obtain coherent data
and investigate location of minimum is the following:

(1) Set θ ≡ 0 and price.

(2) Consider U0,m,N
0 as reference price.

(3) Choose two real positive numbers ǫ ≪ 1, ǫ′ ≪ 1, price for different values

of θ and discard results such that Uθ,m,N
0 /∈ [U0,m,N

0 (1 − ǫ), U0,m,N
0 (1 + ǫ′)].

This was exactly the way we proceeded to obtain the results presented at the
beginning of section 5.1.

5.2. Empirical approach to minimization problem. In the previous subsec-
tion we gave numerical results and showed that our procedure is able to appreciably
reduce the variance of the Longstaff-Schwartz algorithm. Nevertheless our good
outcomes are not enough to state that we achieved our goal. Actually, the above
discussion was made after choosing an R

D grid as a set of possible values for θ
and performing calculus for each grid’s value. The point is that, when dimension
grows, this way of proceeding becomes unbearable as in real life we want to be
as fast and precise as possible and therefore we do not have time to waste for the
pricing of the whole grid (note that a five dimensional grid is indeed very large!)
and the manual search of a minimum.
Thus the challenge is to find a kind of empirical procedure which gives us a

7It is sufficient to consider that, as W is a brownian motion, then with probability p = 0.95
the value of Wti will fall into the interval [−2tiσ̃, 2tiσ̃] which, in our case (T = 1), is included in

[−0.4, 0.4]. Consequently, θW ∈ [−0.4θ, 0.4θ].
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sub-optimal value for θ to be used in pricing.
As dealing with optimal stopping time is complicated, the first thing that comes
into mind is to use some European-derived criterion which turns out to be quite
reliable in the sense that it can be considered as sufficently sub-optimal when ap-
plied to American case.
We start by analysing the results of the application of our drift-changing procedure
to the corresponding European basket option: M = 1 and exercise possible only
at maturity. As this is only a particular case of the American problem, all results
exposed in the paper like the existence of a variance minimum and convergence,
still hold.
In figures ?? and ?? we trace European versus American mean square ratios for
the unidimensional and bidimensional symmetrical models described in section 5.1
in order to compare goodness of results and location of minima. At a first glance
we notice that the European case too has a mean square ratio minimum and we
see moreover that it seems to be slightly superior in value than the American one.
Concerning its location, we have that for each component i = 1 to D, optimal
European θ∗ EU and optimal American θ∗ USA verify8

θ∗ USA
i ≤ θ∗ EU

i ;

we will come back on this property later.
It is then very useful to estimate from data the location of θ∗ EU and to compare9

R(θ∗ USA) and R(θ∗ EU ). We evaluated these two quantities and we found out that
choosing θ∗ EU to perform American pricing algorithm leads to good sub-optimal
results as we obtained a variance reduction of at least a factor 10. Hence, we
decided to consider as a quite reliable approximation for the optimal drift the θ
which minimize European problem instead of the real minimum θ∗ USA.
Switching from American to European to find a substitute for the minimum presents
real advantages because even if we do not dispose of an explicit formula for θ∗ EU , we
are able to propose two procedures to approximate it: an empirical and a numerical
one.

5.2.1. An empirical estimation of θ∗ EU . Let us describe the empirical (and less
precise) one first.
From the results of section 3.3 and from the equation (28) we have

(34) ∂θk
V(θ) = E∂θk

v1(θ) = E

[

(Tθk −
√
Tǫ

(k)
1 )e

1
2 ||θ||2T −θ·ǫ1

√
TF 2(T, ǫ1)

]

which, given (31) and (32), has the explicit form

(35) ∂θk
V(θ) =

= E



(Tθk −
√
Tǫ

(k)
1 )e

1
2 ||θ||2T −θ·ǫ1

√
T

(

K −
D
∑

i=1

λie
σ

√
T ǫ

(i)
1

)2

I
{K≥

∑D

1
λie

σ
√

T ǫ
(i)
1 }





where by definition λi
.
= wiX

i
0eT (r−σ2/2).

The main idea is to study the behaviour of V(θ) when θ varies on a particular
direction of RD. In this case we are able to prove the following

8Empirically we have 0.7 . |θ∗ EU

i
/θ∗ USA

i
| . 0.9 but do not think of it as to a general result

because a priori the ratio depends on the maturity T .
9By definition R is the mean square ratio of American problem M > 1 defined in eq.(33).
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Proposition 5.1. Set θ = λσα, α ∈ R. Then for all α ≥ K−
∑D

1
λi

T σ2
∑D

i=1
λ2

i

.
= ᾱ, ∂αV(α) ≥

0.
Assume moreover K ≤ ∑D

i=1 λi; then

V(α) ≤ V(0) ∀ ᾱ ≤ α ≤ 0

Proof. It is very simple to see that when we set θ = αc, c constant vector in R
D,

the derivative of V with respect to α becomes

(36) ∂αV(θ(α)) = E

[

g(ǫ1, α)I
{K≥

∑D

1
λie

σ
√

T ǫ
(i)
1 }

D
∑

i=1

(Tc2
iα− ci

√
Tǫ

(i)
1 )

]

with g non negative function.

On the integration domain we have K ≥ ∑D
i=1 λie

√
T σǫ

(i)
1 which implies

K −
D
∑

i=1

λi ≥
D
∑

i=1

λiσ
√
Tǫ

(i)
1 .

Consequently, it sufficient to choose ci = λiσ to find the first result. The second is
trivial as, under the additional assumption, ᾱ ≤ 0.

At this point of discussion we have time for three remarks

Remark 6. Proposition 5.1 reveals to be useful because, when K ≤ ∑D
i=1 λi, as

we are sure to reduce the European variance up to ᾱ, we can roughly approximate
θ∗ EU with ᾱλσ

.
= θ∗ e and then price with θ∗ e instead of θ∗ USA.

Remark 7. To prove the second part of proposition 5.1, we needed condition K ≤
∑D

i=1 λi. Let us stress that
∑D

i=1 λi represents the value of the basket at the time
T in the case ǫ1 ≡ 0 and is related to the expected basket return. This means
that, whenever the basket tends to a value superior to K (which corresponds to a
European price equal to zero), we can reduce variance by driving the price process

towards K. On the other side, when K ≥ ∑D
i=1 λi, we have two possible scenarios:

∑D
i=1 λi >

∑D
i=1 wiX

i
0 or

∑D
i=1 λi ≤ ∑D

i=1 wiX
i
0. In the first case, which is the

more typical one, we expect the optimal stopping time to be t0 and therefore, price

is ≈ K−∑D
i=1 wiX

i
0. In the second case, our euristic approach cannot be used and

we must switch to the numerical approximation of θ∗ e.

Remark 8. When D = 1 the integration domain is ǫ1 < (
√
Tσ)−1 ln(K/λ) and, as

ln(K/λ) ≤ (K/λ) − 1 ≤ 0, we find out that variance is indeed reduced when α goes
down to α∗ .

= (1/Tσ2λ) ln(K/λ) i.e. even beyond ᾱ. This is only a consequence of

the fact that domain K −∑D
1 λi ≥ ∑D

1 λi

√
Tσǫ

(i)
1 is included in the integration

domain K >
∑D

i=1 λie
√

T σǫ
(i)
1 for all D ≥ 1. As there are reasons why when D > 1

things should be different, we expect to have always (when K ≤ ∑D
i=1 λi, of course)

the existence of an α∗ such that θ∗ EU . λσα∗ ≤ ᾱλσ.
Finally, let us spend a word about the signification of ᾱ and α∗. Obviously, as we
want to set θ ∝ α, α plays a role in the drift-change of the modified model. In
dimension 1 it easy to see that when θ = λσα∗, then

D≡1
∑

i=1

wiX
λσα∗,i
T |ǫi≡0 = Xλσα∗,1

T |ǫ1≡0 ≡ K
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Model R(θ∗ USA) R(θ∗ RM ) R(θ∗ e)

1D, K = 80, X0 = 100 0.14 0.16 0.30
2D, K = 90, X0 = (100, 100) 0.15 0.17 0.35
2D, K = 90, X0 = (105, 70) 0.23 0.37 0.74
3D, K = 95, X0 = (100, 100, 100) 0.200 0.31 0.49
5D, K = 100,X0 = (100, 100, 100, 100, 100) 0.21 0.31 0.67

Table 2. Comparison between American mean square ratios eval-
uated at the American minimum, at the Robbins Monro minimum,
at the euristic θ∗ e.

that is variance is reduced at least as far as θ drifts the basket price on K.
As α∗ ≤ ᾱ, we believe that even when D > 1, θ = λσᾱ leads the spot price with
ǫi ≡ 0 towards a value strictly superior to K and that driving the basket to K on a
direction which keeps memory of λ and σ is still a good way of proceeding. Let us
notice that, if we had tried very simply to choose θ so that each component Xi

T had
been drifted separately to K, then we would have found very bad variance results.
This strenghten the idea that our empirical proposal, even if simple, captures the
essential behaviour of the model.

To conclude this subsection, let us just stress that we have different possibilities
if we want to increase precision of this rough estimate of θ∗ EU : we can for instance
keep θ in the form σλα and try to find a better approximation of integration domain
or alternatively we can choose another parametrization for theta, simple enough to
allow us to perform explicit calculus.

5.2.2. A numerical estimation of θ∗ EU . The proposal is simple: as we find in lit-
erature some very fast algorithms (see [A03] for a Robbins-Monro-based example)
which allows us to estimate with a good precision θ∗ EU , we just have use one of
them, obtain a θ∗ RM ≈ θ∗ EU and then do price the American option with it.
In table 2 we reported values of R(θ) at the estimated θ∗ USA, at the Robbins-Monro
θ∗ RM and at the empirical θ∗ e .

= λσᾱ. We didn’t reported results when θ = θ∗ EU

because θ∗ EU essentially coincides with θ∗ RM . The outcome is that, exactly as we
expected, when θ = θ∗ RM , variance reduction is still remarkable, while in the case
θ = θ∗ e the reduction vary between a factor 10 and a factor 2. If we want to have
really good results, it is then worthwile to use a reliable (numerical) estimation of
θ∗ EU , while the empirical procedure will be precise enough if we are satisfied by a
variance reduction of one half .

6. Conclusions and perspectives

In this paper we showed how, thanks to a simple application of Girsanov theorem
[GHS99] and importance sampling, it is possible to develop a variance reduction
technique which works for American option pricing, thus extending some similar
results already proved in the European case [A03]. The construction of a suitable
set of estimators and the existence among them of an optimal one minimising the
variance was demonstrated under quite general hypothesis on the payoff function.
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We then restricted ourselves to the Longstaff-Schwartz pricing algorithm of which
we introduced a modified version obtained by changing the drift of the underlying
diffusion processs. Almost sure convergence of the modified algorithm was proved.
Finally, we chose a Black-Scholes uncorrelated multidimensional model and we nu-
merically tested the case of a put basket option. We showed how at the minimum
variance could be reduced of more than a factor 25 with respect to the original
algorithm. As we cannot predict the location of the minimum and as the search for
it can be slow, we suggested two ways of proceeding in order to approximate it by
the optimal estimator of the corresponding European option pricing problem. We
gave moreover some hints on possible improvements of these approximations.
It is worth to stress that the coordinates of the drift which realise American mini-
mum appear to be larger in absolute value than the corresponding European ones,
all of them being negative in the relevant case; the optimal drift seems to drive the
basket towards a neighbourhood of the strike. As for any given time the price of
an American option is superior or equal to the corresponding European one, there
are good reasons to believe that if, we disposed of some reliable approximation of
critical price S̄, then we could improve empirical criterion of section 5.2.1 togheter
with remark 7 and price with the drift which drives the basket toward S̄.
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