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The following method computes the price of American Options on Maximum in High

dimensions using a stochastic grid method. It is based on the paper [2].

1 Introduction

1.1 Problem Formulation

We consider a d-dimensional Brownian motion, whose augmented filtration is de-
noted Ft, and a d-dimensional Ft-adapted asset St = (S1

t , · · · , Sd
t ). The payoff of the

option is represented by h(t, St) and the riskless savings account process is denoted Bt :=
exp(

∫ t
0 rsds), where rt denotes the instantaneous risk-free rate of return. The problem is

to compute

V0 = max
τ

E

(
h(τ, Sτ )

Bτ

)

,

where τ is a stopping time taking values in a finite set {t0 = 0, t1, · · · , tN = T}. The value
of the option at terminal time T is V (T, x) = h(T, x). The conditional continuation value
Q(ti, Sti

= x), i.e. the expected future payoff at time ti and state Sti
= x, is given by

Q(ti, Sti
= x) =

Bti

Bti+1

E
(
V (ti+1Sti+1

)|Sti
= x

)
. (1)

The Bermudan option value at time ti and state Sti
= x is given by

V (tiSti
) = max (h(ti, Sti

), Q(ti, Sti
)) .

We are interesting in finding the value of the option at the initial state S0, i.e. V (0, S0).

1.2 The Stochastic Grid Method

The stochastic grid method (SGM) solves a general optimal stopping problem using a
hybrid of dynamic programming and Monte Carlo methods. The method first computes
the optimal exercise policy and a direct estimator of the true option price. Then, a
lower bound value of the price is obtained by discounting the payoff obtained by following
the exercise policy. Unlike the Longstaff-Schwartz algorithm, the conditional expectation
appearing in (1) are not computed using a least-square method. In an approach similar to
Barraquand and Martineau [1], Jain and Oosterlee reduce the dimensions of the problem
by using g(Sti+1

) (where g : R
d 7−→ R) for the regression of the continuation value Q

at time ti+1. Then, they use the distribution of the transition g(Sti+1
)|Sti

to get the
approximation of E[Q(ti+1, Sti+1

)|Sti
]. We refer to Section 2 for more details.
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2 Details on the Method

We are interested in computing an approximation V̂ (tiSti
) of V (tiSti

) backwards in
time. By using nested conditional expactations, we have

V (tiSti
) = max







h(ti, Sti
),

Bti

Bti+1

E






E
[
V (ti+1Sti+1

)|(g(Sti+1
), Sti

)
]

︸ ︷︷ ︸

Z(ti+1,g(Sti+1
),Sti

)

|Sti













.

Similar to regression-based algorithms, SGM approximates the unknown functional
form Z(ti+1, g(Sti+1

), Sti
) by projecting it on P polynomial basis functions. Z(ti+1, g(Sti+1

), Sti
)

is approximated by

Ẑ(ti+1, g(Sti+1
)) = E[V̂ (ti+1Sti+1

)|g(Sti+1
)] =

P −1∑

p=0

apΨp(g(Sti+1
))

at each time step, where (Ψp)p=0,··· ,P −1 form a set of basis functions. It remains to compute
an approximation of the continuation value Q(ti, Sti

) defined by (1)

Q̂(ti, Sti
= x) =

Bti

Bti+1

E

[

Ẑ(ti+1, g(Sti+1
))|Sti

= x
]

,

=
Bti

Bti+1

∫ P −1∑

p=0

apΨp(g(Sti+1
))dP(g(Sti+1

)|Sti
= x).

2.1 Computation of the distribution of g(Sti+1
) given state Sti

The computation of the distribution of g(Sti+1
) given Sti

can be computed more or less
easily

• if the exact transition probability density function P(g(Sti+1
)|Sti

= x) is known, for
example for a call or a put on a single asset in the Black-Scholes framework, or a
call or a put on the geometric mean of d assets,

• if the first four centered moments (µi)i=1···4 of the distribution are known, we can
use the Gram-Charlier Series, which approximates the density function f(x) as

f̂(x) =
1√
2πσ

exp

(

−(x − µ)2

2σ2

)(

1 +
κ3

3!σ3
H3

(
x − µ

σ

)

+
κ4

4!σ4
H4

(
x − µ

σ

))

,

where Hi is the ith Hermite polynomial and κi is the ith cumulant, i.e. κ1 = µ1,
κ2 = µ2 = σ2, κ3 = µ3 and κ4 = µ4 − 4µ2

2.

• if the first four moments are unknown, we can compute an approximation of these
moments by using Monte Carlo techniques.

2.2 Algorithm

We summarize the SGM algorithm.

1. Generate M sample paths {St0
, · · · , StN

} starting from S0.



5 pages 3

2. Compute the option value for the grid points at times tN = T : V (T, ST ) =
h(T, ST ) = (g(ST ) + X)+

3. Compute the approximate functional form Ẑ(tN , StN
) = E[V (tN , StN

)|g(StN
)] by

regressing the option value at the grid points over polynomial basis functions of
g(StN

)

4. Perform the following steps for each exercise time ti moving backward in time, start-
ing from tN−1 till t0, to obtain V (0, S0)

(a) If necessary, compute the first four centered moments of g(Sti+1
) to get the

density function P(g(Sti+1
)|Sti

= x)

(b) Compute the continuation value for grid points at ti using Ẑ(ti+1, Sti+1
)

Q̂(ti, Sti
) =

Bti

Bti+1

E

[

Ẑ(ti+1, g(Sti+1
))|Sti

]

(c) Compute the option value for grid points at ti

V̂ (ti, Sti
) = max(h(ti, Sti

), Q̂(ti, Sti
))

(d) Compute the functional approximation for the conditional expectation, i.e.

Ẑ(ti, Sti
) = E[V̂ (ti+1, Sti+1

)|g(Sti
)]

by regressing the option value obtained at each grid point ti over the polynomial
basis functions of g(Sti

)

5. Using the exercise strategy obtained while computing the direct SGM estimator V̂ ,
for each path determine the earliest time to exercise τ̃ = min{t ∈ [0, T ] : Q̂t ≤ ht}.
Obtain the lower bound option value E[ hτ̃

Bτ̃
].

3 The Model

For the numerical experiments, we consider the pricing of an American Call on Max-
imum of d assets. We assume that the asset prices follow correlated geometric Brownian
motion processes, i.e.

dSi
t = Si

t((r − qi)dt + σidWt), S0 = x

where each asset pays a dividend at a continuous rate qi. r is the riskless short interest
rate, and σ is the vector of volatilities. W i, i = 1, · · · , d are standard Brownian motions
and the instantaneous correlation between W i

t and W
j
t is ρ. We assume that the option

expires at time T and there are N + 1 equally spaced exercise dates in the interval [0, T ].
The strike price of the option is K, and the payoff is

h(t, St) =
(

max(S1
t , · · · , Sd

t ) − K
)

+
.
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3.1 Continuation Value for the Single Asset case

In case of a single asset in the Black-Scholes model, we have

P(g(Sti+1
)|Sti

= x) = x exp

((

r − q − σ2

2

)

h + σ
√

hG

)

,

where h = ti+1 − ti and G ∼ N (0, 1). Then, if we choose the canonical polynomial basis,
we get

Q̂(ti, Sti
) = e−rh

∫

R

P −1∑

p=0

ap(g(Sti+1
))pdP(g(Sti+1

)|Sti
),

= e−rh
P −1∑

p=0

ap(Sti
)peph((r−q−

σ2

2
)+ p

2
σ2).

3.2 Continuation Value for Max options

In this case, we need to know P(g(Sti+1
)|Sti

), i.e. P(max(S1
ti+1

, · · · , Sd
ti+1

)|Sti
). In the

case of the Black-Scholes model, we can rewrite

P(max(S1
ti+1

, · · · , Sd
ti+1

) = X|Sti
) = P(max(Y 1

ti+1
, · · · , Y d

ti+1
) = log(X)|Sti

),

where (Y 1
ti+1

, · · · , Y d
ti+1

) has a multivariate normal distribution. Using Clark’s algorithm
(see [2, Appendix A]), we can obtain the first four moments of the random variable Y :=
max(Y 1

ti+1
, · · · , Y d

ti+1
). The continuation value is given by

Q̂(ti, Sti
) = e−rh

∫

R

P −1∑

p=0

apepxdP(Y = x|Sti
),

= e−rh
P −1∑

p=0

apepµ+p2 σ2

2

(

1 +
κ3

6
p3 +

κ4

24
p4

)

4 Numerical experiments

In the case of an American Call on Maximum, the numerical data used by default are
the following

S0 K T σ r q ρ

90 100 3 0.2 0.05 0.1 0

The number of trajectories of S is M = 104. The number of discretization time steps
used for the discretization of S is N = 50. The number of polynomial basis functions is 6.
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