
Convergence results for Tree methods in

finance

Claude Martini

March 16, 1999

Premia 18

Contents

1 Donsker theorem 2

1.1 Theorem statement . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Applying the theorem . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Standard options . . . . . . . . . . . . . . . . . . . . . 2
1.2.2 Path-dependent options . . . . . . . . . . . . . . . . . 2

2 Kushner theorem 3

2.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.1 The continuous time problem . . . . . . . . . . . . . . 4
2.1.2 The Markov chain approximation . . . . . . . . . . . . 5

2.2 Theorem statement . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3.1 Checking the hypothesis . . . . . . . . . . . . . . . . . 6
2.3.2 Barrier options . . . . . . . . . . . . . . . . . . . . . . 6
2.3.3 Bidim trees . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.4 Trees for markovian volatility . . . . . . . . . . . . . . 8

3 Analytical approach 9

3.1 From CRR to the Black-Scholes PDE . . . . . . . . . . . . . . 9
3.2 Formal analytic point of view on Tree methods . . . . . . . . . 10
3.3 Semigroups of linear operators . . . . . . . . . . . . . . . . . . 11
3.4 Approximation theory . . . . . . . . . . . . . . . . . . . . . . 12
3.5 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1



22 pages 2

4 Some words about the rate of convergence 16

4.1 Results for i.i.d. trees for standard options . . . . . . . . . . . 16
4.1.1 Random Walk approximations . . . . . . . . . . . . . . 17

4.2 Results for i.i.d. trees for path-dependant options . . . . . . . 19
4.3 Order of Accuracy and Order of convergence . . . . . . . . . . 19

This follows Introduction to Tree methods in finance

1 Donsker theorem

1.1 Theorem statement

Theorem 1. Let (ξn)n≥1 a sequence of i.i.d. random variables with E [ξn] = 0
and E [ξ2

n] = σ2. Let Sn =
∑n

k=0 ξk. Let h > 0. Then the family of continuous
processes

Xt (h) =

√
h

σ
(Snt

+ (t− nth) ξnt+1)

where nt is the integer such that nth ≤ t < (nt + 1)h, converges in law on
C (R+,R) to the standard Brownian motion as h → 0.

1.2 Applying the theorem

1.2.1 Standard options

As a direct apllication this gives the convergence of the European Put prices
in the Random Walk tree. The application to other trees is not straight-
forward since-take the CRR tree for instance-the distribution itself of the
sequence (ξn)n≥1 depends on h : either a more elaborate version of the the-
orem is needed, or some work is required-like a measure change within the
tree-to fit the hypotheses, in this case the functional at hand will certainly
be modified and will eventually depend on h so that the situation is more
involved: in a few words, a direct application of this theorem is seldom fea-
sible.

1.2.2 Path-dependent options

Of course the interesting feature of this theorem is its ability to deal with
path-dependant functionals which are continuous and bounded for the uni-
form topology on C (R+,R) . To what kind of schemes may this theorem be
applied?
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A first idea is barrier options pricing. Indeed the payoff of the option, after
a Girsanov transform and a suitable change of variables, may be expressed
in terms of the terminal values of a Brownian motion BT and its running
maximum sup0≤t≤T (Bt) . Let us take for instance the quantity

E

[
f (BT ) 1

(
sup

0≤t≤T

(Bt) < l

)]
(1)

with l > 0 and f continuous and bounded. Unfortunately in case of barrier
options the supremum comes into play through an expression like the lat-
ter, 1

(
sup0≤t≤T Bt < l

)
, which is not a continuous function over C (R+,R) :

clearly two trajectories may be uniformly close to each other, the one breach-
ing the barrier and not the other. At first glance the basic property of weak
convergence on C (R+,R) is not enough.

Nevertheless remember that for any measurable set A of C (R+,R) such
that P (∂A) = 0, ie a P−continuity set, then Pn (A) → P (A) if Pn → P in
law. We are exactly in this situation here with

A =

{
ω, sup

0≤t≤T

ωt < l

}

It is easily seen that ∂A = A\ intA {ω ∈ A,ωs = l for some s} . Now the law
of sup0≤t≤T Bt is absolutely continuous with respect to the lebesgue measure,
so it doesn’t weight points, this entails P (∂A) = 0 with P the law of B.

Observe that it is easy to build a three-dimensional tree which approx-
imates the dynamic of the pair

(
Bt, sup0≤s≤t Bs

)
: first draw in the z = 0

plane the standard Random Walk approximation tree of B, which corre-
sponds to Bernoulli random variables in Donsker theorem. Then draw above
each node (n,Xnh (h)) a line and sample along this line the possible values
of sup0≤k≤n Xkh (h) . It is seen that there are at most N + 1 possible val-
ues of MNh (h) = sup0≤k≤N Xkh (h) , so that there is no combinatoric blow
up. The two sons of a point (n, x, M) (with weigths 1

2
) are seen to be(

n+ 1, x+
√
h,max

(
M,x+

√
h
))

and
(
n+ 1, x−

√
h,M

)
.

The algorithm to compute ( 1) by backward induction follows, the con-
vergence is given by Donsker theorem.

2 Kushner theorem

By far the most powerful tool for dealing with the convergence of Markov
chain based algorithms is the work of Harold Kushner in [2] and [6]. It deals
with mixed jump-diffusions processes, for clarity we consider only continuous
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processes. Kushner’s theorem says that the local consistency conditions, that
is the matching of the first and second conditional moments of the increments
of the approximating chain with those of the continuous-time limit with ac-
curacy o (h) grants the convergence of the expectations of usual functionals.
In fact the setting is a stochastic control setting, Kushner’s result deals with
the convergence of the optimal controlled chain to the optimal controlled
process. Here we simplify things in a crude manner by dropping the con-
trol. We also restrict ourselves to very particular stopping times especially
pertaining to option pricing-this avoids the use of highly technical objects in
the theorem statement, more precisely Skorokhod space and topology.

2.1 Notations

2.1.1 The continuous time problem

Consider the s.d.e. with values in R
d

Xt+s = x+
∫ t+s

t
b (u,Xu) du+

∫ t+s

t
σ (u,Xu) .dWu

where W is a k−dimensional Brownian motion. The problem at stake is to
design an approximation of the quantity

V (t, x) = Et,x [g (τ,Xτ )]

wher τ is the first exit time of (s,Xs) an open set G of R1+d , to be specified
later, before a fixed time horizon T > t, ie

τ = inf {u > t, (u,Xu) /∈ G} ∧ T

Assume:
(A1) b and σ are continuous and bounded.
(A2) g is continuous and bounded.
(A3) Either:
(a) G = R

d or:
(b) For some index i

G = { t < u < T, Li (u) < xi < Ui (u)} (2)

where Li, Ui are continuous functions on [t, T ] with values in R. For the same
index i,

∑k
j=1 σ

2
i,j (u,Xu) > α for some α > 0, uniformly in u.

Note that we don’t make any non degeneracy assumptions on σ in (A1).
It is easily seen that in case of a deterministic process X, there is no hope
to approximate V (t, x) for an exit time corresponding to ( 2) under quite
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general and natural continuity requirements for the approximate chain-this
is exactly the same situation as in conitnuity sets for the limiting distribution
in a weak convergence statement. This is the explanation of the additional
“wildness” assumption on σ in that case.

2.1.2 The Markov chain approximation

Let for N a positive integer h = T
N

and let
(
ξh

n

)
n≥0

denote the value at time

nh of a discrete-time Markov chain which satisfies with ∆ξh
n = ξh

n+1 − ξh
n the

following local consistency conditions:

Eh
x,n

[
∆ξh

n

]
= bh (nh, x)h = b (nh, x)h+ o (h)

Eh
x,n

[(
∆ξh

n − Eh
x,n

[
∆ξh

n

])
.
(
∆ξh

n − Eh
x,n

[
∆ξh

n

])′
]

= ah (nh, x)h = a (nh, x)h+ o (h)

which also defines the functions x 7→ bh (nh, x) and x 7→ ah (nh, x) .
Here Eh

x,n denote the conditionnal expectation at time n knowing ξh
n =

x, also a (s, x) = σ (s, x)σ (s, x)′. Notice that these conditions means that
locally the chain has the conditional mean and variance of the continuous
process since

Ex,s [Xs+h] = x+ b (s, x)h+ o (h)

Ex,s

[
(Xs+h − x) . (Xs+h − x)′

]
= a (s, x)h+ o (h)

Assume also
sup
n,ω

∣∣∣∆ξh
n

∣∣∣ → 0as h → 0 (3)

Introduce now the approximating stopping time τ̂h which is defined as
the first exit time of G of the process

(
t, ξ̂h (t)

)
where ξ̂h (t) is the piecewise

constant CADLAG continous time extension of
(
ξh

n

)
, ie the process

ξ̂h (t) = ξh
nth

where nt is the integer such that nth ≤ t < nth+ h.

Remark 1. Kushner works with this non-continous interpolation for two
purposes: firstly, he deals with mixed jump-diffusion processes. Secondly he
makes use of weak convergence on the Skorokhod space which is easier to get
than the weak convergence on C (R+,R) .
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2.2 Theorem statement

Theorem 2. ([6], theorem 5.1) Assume (A1) , (A2) , (A3) . Then

V (t, x) = E [g (τ,Xτ )] = lim
h→0

E
[
g
(
τ̂h, ξ̂

h (τ̂h)
)]

Notice that an interesting fact in the local consistency condition is that all
quantities of relevant interest need only to be known with an o (h) certainty,
at least as far as convergence is concerned. This maybe especially noteworthy
when the “exact” approximating quantities look like exp (ε (h)) with ε (h)
going to 0 suitably with h whereas they need to be recomputed at each step.

In the sequel we set

Vh (t, x) = E
[
g
(
τ̂h, ξ̂

h (τ̂h)
)]

2.3 Applications

2.3.1 Checking the hypothesis

The first step in most commonly used models for financial markets is to look
at the Markov chain approximation at hand not in terms of the underlying
of the option S, but rather in ln (S) , that is to set Xt = ln (St) . Then (A1)
has a chance to be in force, think at the Black-Scholes model for instance.

What about (A2)? In a derivative context g stands for the discounted
payoff of the option (as a function of the logarithm of S now). It’s always
positive, but may be unbounded (Call options!) and discontinuous (Digit
options). A sound way to proceed is to replace g by g ∧ a for big enough a
and if necessary to regularize g ∧ a by some mollifier ψε. The convergence:

E
[
e−ρτψε ∗ g ∧ a (Xτ )

]
→ E

[
e−ρτg (Xτ )

]

is in practical situations always in force.
As already discussed in order to deal with unbounded payoffs some tricks

like the Call-Put parity may be used.

2.3.2 Barrier options

The convergence of the Derman-Kani algorithm, or the Kamrad-Ritchken
algorithms for say Down and Out European options is easily proved. Notice
that the convergence of the crude CRR scheme is proved in the same way, this
shows that the main interest of such a convergence theorem is theoretical: in
practice, the CRR scheme for barrier options is definitely not usable.
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2.3.3 Bidim trees

Here r stands for the instantaneous interest rate in the Black-Scholes model.
Assume (S1, S2) follows the Black-Scholes dynamic under the risk-neutral

probability and set:
Y 1 = ln (S1)
Y 2 = ln (S2)
Then:

dY 1
t = σ1dB

1
t +

(
r − σ2

1

2

)
dt

dY 2
t = ρσ2dB

1
t +

√
1 − ρ2σ2dB

2
t +

(
r − σ2

2

2

)
dt

Choose:

(
∆ξh

n

)
1

=

(
r − σ2

1

2

)
h+ σ1

√
hε1

n

(
∆ξh

n

)
2

=

(
r − σ2

2

2

)
h+ σ2

√
hε2

n

where: (ε1
n, ε

2
n) is a sequence of iid random variable with

P
(
ε1

0 = 1, ε2
0 = 1

)
= P

(
ε1

0 = −1, ε2
0 = −1

)
=

1 + ρ

4

P
(
ε1

0 = 1, ε2
0 = −1

)
= P

(
ε1

0 = −1, ε2
0 = 1

)
=

1 − ρ

4

Then

bh (x)1 h =

(
r − σ2

1

2

)
h

bh (x)2 h =

(
r − σ2

2

2

)
h

and
ah (x)11 h = σ2

1h ah (x)12 h = ρσ1σ2h
ah (x)22 h = σ2

2h

Notice that the corresponding algorithm is of complexity N3. It seems
that an N4 complexity-a three-dimensionnal problem plus the time compo-
nent, for instance- is a practical limit.
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2.3.4 Trees for markovian volatility

Here r stands for the instantaneous interest rate in the Black-Scholes model.
Assume S follows a one-dimensional Black-Scholes type model with stochas-

tic volatility σ depending on S and t under the risk-neutral probability.
Assume also that

0 < σ < σ ( , ) < σ < ∞
with σ = inf σ, σ = supσ and set:

Y = ln (S)
Then with σ̂ (t, x) = σ (t, exp (x)):

dYt = σ̂ (t, Yt) dBt +

(
r − σ̂ (t, Yt)

2

2

)
dt

Choose:

(∆ξη
n) =

(
r − σ2δ

2

)
h+ σα

√
hεn

where: (εn) is a sequence of iid random variable with

P (ε0 = −1) = β + γ
√
h, P (ε0 = −1) = β − γ

√
h

P (ε0 = 0) = 1 − 2β

Then

bh (x)h =

(
r − σ2δ

2

)
h+ 2γσαh

ah (x)h =
(
β + γ

√
h
)((

r − σ2δ

2

)
h+ ασ

√
h

)2

+ (1 − 2β)

((
r − σ2δ

2

)
h

)2

+
(
β − γ

√
h
)((

r − σ2δ

2

)
h− ασ

√
h

)2

−
[(
r − σ2δ

2

)
h+ 2γσαh

]2

=
(
β + γ

√
h
)
σ2α2h+

(
β − γ

√
h
)
σ2α2h− 4γ2σ2α2h

=
(
2β − 4γ2

)
σ2α2h

So we’re led to the choice:
(
r − σ2δ

2

)
h+ 2γσαh =

(
r − σ̂ (nh, ξη

n)2

2

)
h

(
2β − 4γ2

)
σ2α2h = σ̂ (nh, ξη

n)2 h
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ie

γσα =
1

4

(
σ2δ − σ̂ (nh, ξη

n)2
)

βσ2α2 =
1

2

[
σ̂ (nh, ξη

n)2 +
1

4

(
σ2δ − σ̂ (nh, ξη

n)2
)2
]

A natural choice which yields a symmetric scheme for constant volatility is
δ = 1, whence:

γσα =
1

4

(
σ2 − σ̂ (nh, ξη

n)2
)

βσ2α2 =
1

2

[
σ̂ (nh, ξη

n)2 +
1

4

(
σ2 − σ̂ (nh, ξη

n)2
)2
]

Considering α as a constant parameter we must check 1 − 2β ≥ 0 ie:

[
σ̂ (nh, ξη

n)2 +
1

4

(
σ2 − σ̂ (nh, ξη

n)2
)2
]

≤ σ2α2

Therefore it is enough to choose α2 such that

α2 ≥ sup
u∈[σ2,σ2]

[
u+ 1

4
(σ2 − u)

2
]

σ2

Note that the best choice of α is questionable.

3 Analytical approach

An alternative route to the convergence of Tree methods is provided by the
classical theory of approximation of semigroups of linear operators. An au-
thority book on the subject is [5] (The 3rd chapter is devoted to approxima-
tion issues). A survey may be found in [3].

3.1 From CRR to the Black-Scholes PDE

This corresponds to the well-known elementary calculation which relates the
backward recursion scheme in the CRR model and the Black-Scholes PDE.
The corresponding relations for other schemes may be found in [7].

One can re-write

C (nh, x) = e−ρh [p∗ (h)C ((n+ 1)h, xu (h)) + (1 − p∗ (h))C ((n+ 1)h, xd (h))]
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as

C (nh, x) − C ((n+ 1)h, x)

= e−ρh [p∗ (h) (C ((n+ 1)h, xu (h)) − C ((n+ 1)h, x))

+ (1 − p∗ (h)) (C ((n+ 1)h, xd (h)) − C ((n+ 1)h, x))]

+
(
1 − e−ρh

)
C ((n+ 1)h, x)

Now by Taylor expansion

F (xu (h)) = F (x) + (u (h) − 1)xF ′ (x) +
1

2
(u (h) − 1)2 x2F ′′ (x) + o

(
(u (h) − 1)2

)

F (xd (h)) = F (x) + (d (h) − 1)xF ′ (x) +
1

2
(d (h) − 1)2 x2F ′′ (x) + o

(
(d (h) − 1)2

)

Since p∗ (h) is the risk-neutral probability

p∗ (h) (u (h) − 1) + (1 − p∗ (h)) (d (h) − 1) = eρh − 1

It is easily proved (this is the second moment condition from a probabilistic
point of view) that

p∗ (h) (u (h) − 1)2 + (1 − p∗ (h)) (d (h) − 1)2 = σ2h+ o (h)

so that putting all things together yields

C (nh, x) − C ((n+ 1)h, x)

h

= e−ρh




(
eρh − 1

)

h
x
∂C ((n+ 1)h, x)

∂x
+

1

2
σ2x2∂

2C ((n+ 1)h, x)

∂x2




+

(
1 − e−ρh

)

h
C ((n+ 1)h, x) + o (h)

Therefore by taking h to zero we get that C solves the PDE

−∂C (t, x)

∂t
= ρx

∂C (t, x)

∂x
+

1

2
σ2x2∂

2C (t, x)

∂x2
− ρC (t, x)

which is the Black-Scholes PDE.

3.2 Formal analytic point of view on Tree methods

A more synthetic way to write the above calculation is the following: a Tree
method is specified by a backward functional operator which maps the price
at time (n+ 1)h to the price at time nh, formally

Cnh = FhC(n+1)h
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Here the price should be seen as a function which gives the price of the option
for any value of the underlying, that is

Cnh : x 7→ C (nh, x)

Define now an operator Ah by the relation

Fh = Id+ hAh

Then the above computation says AhCt → ACt where A is in our case the
Black-Scholes differential operator, ie

Af = ρxf ′ (x) +
1

2
σ2x2f ′′ (x) − ρf (x)

Now the price of the option at time 0 is given by

C0 (N) = FN
T

N

ϕ =
(
Id+

T

N
A T

N

)N

ϕ

We may therefore hope that

lim
N→∞

C0 (N) = lim
N→∞

(
Id+

T

N
A
)N

ϕ = exp (T A)ϕ

where t 7→ exp (tA)ϕ is defined as the solution to the equation

du

dt
= Au (4)

with initial condition u (0) = ϕ.

3.3 Semigroups of linear operators

Assume that the above linear equation has a unique solution. Then by unicity

the map u (0)
Qt→ u (t) satisfies

Qt+s = QtQs

ie we face a semigroup of linear operators. The theory of such objects has
been extensively developed in relations to various PDE problems.

A good framework for these operator semigroups is that of Banach spaces.
From now on we consider a semigroup Q of contraction operators on a

Banach space G, which is continuous, ie for any g in G

Qtg → g
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as t → 0.
It may be shown that there is a dense subspace of G on with t 7→ Qtg is

differentiable. If we denote A the linear operator (with domain) such defined,
Qtg formally solves

du

dt
= Au

with initial condition u (0) = g.
The operator A is called thye infinitesimal generator of the semigroup.
As an exemple:

Lemma 1. Let G =
{
g : R∗

+ → R, g C0, ∃ limx→0+
g(x)
1+x

, ∃ limx→∞
g(x)
1+x

}
. Then

G is a Banach space for the norm

‖g‖ = sup
x

|g (x)|
1 + x

Moreover, if Qtg (x) is the price of an European option with maturity t ≥ 0
and payoff g in the Black-Scholes model, for a value x of the underlying, then
Q is a continuous semigroup of contraction operators on G. Moreover if g is
a C∞ function then t 7→ Qtg is differentiable and

dQtg

dt
= AQtg = ρx

∂Qtg (x)

∂x
+

1

2
σ2x2∂

2Qtg (x)

∂x2
− ρQtg (x)

Lastly the space C∞
0 is dense in G.

3.4 Approximation theory

The first ingredient is a quantitative estimate:

Lemma 2. ([5], section 3.5, corollary 5.2) Let R a linear contraction oper-
ator. Then for every integer n ≥ 0 and g ∈ G

‖exp (n (R − Id)) g −Rng‖ ≤
√
n ‖g −Rg‖

The second ingredient is:

Theorem 3. Let (Ah)h>0 a family of bounded operators such that

sup
h

‖exp (tAh)‖

is uniformly bounded for t in a compact set.
Let on a dense subset H of G

Ahg → Ag
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as h → 0 Then for any g ∈ G

exp (tAh) g → Qtg

as h → 0 and the convergence is uniform for t in a compact set.

We give the proof only in the case where A and Ah commute. Then for
g ∈ H

exp (tAh) g −Qtg

= [exp (sAh)Qt−sg]
s=t

s=0

=
∫ t

0

d

ds
exp (sAh)Qt−sgds

=
∫ t

0
(Ah exp (sAh)Qt−sg − exp (sAh)AQt−sg) ds

=
∫ t

0
(exp (sAh)Qt−sAhg − exp (sAh)Qt−sAg) ds

=
∫ t

0
exp (sAh)Qt−s (Ah − A) gds

Whence

‖exp (tAh) g −Qtg‖ ≤
∫ t

0
exp (sAh)Qt−s (Ah − A) gds

≤
∫ t

0
‖exp (sAh)‖ ‖Qt−s‖ ‖(Ah − A) g‖ ds

= ‖(Ah − A) g‖
∫ t

0
‖exp (sAh)‖ ds

≤ t ‖(Ah − A) g‖ sup
h,[0,t]

‖exp (sAh)‖

which gives the result for g ∈ H.
The result for g ∈ G follows by density since both g 7→ exp (tAh) and

g 7→ Qtg are continuous on G.
Here is now the main result:

Theorem 4. Let (Fh)h>0 a family of bounded linear operators such that for
some M and every h, k ∈ N

∥∥∥F k
h

∥∥∥ ≤ M (5)

Let for a dense subset H of G

Fhg − g

h
→ Ag (6)
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as h → 0 Then for any t ≥ 0 and g ∈ G

F n
t

n

g → Qtg

as n → ∞

Indeed

Qtg − F n
t

n

g = Qtg − exp

(
t
F t

n

− Id
t
n

)
g + exp

(
t
F t

n

− Id
t
n

)
g − F n

t

n

g

Setting now Ah = Fh−Id
h

let us notice

∥∥∥∥∥exp

(
t
Fh − Id

h

)∥∥∥∥∥ = exp
(

− t

h

)∑

k

(
t
h

)k ∥∥∥F k
h

∥∥∥

k!

≤ M exp
(

− t

h

)∑

k

(
t
h

)k

k!

= M

From the previous theorem it follows that

exp

(
t
F t

n

− Id
t
n

)
g → Qtg

as n → ∞ For the other term if g ∈ H

∥∥∥∥∥exp

(
t
F t

n

− Id
t
n

)
g − F n

t

n

g

∥∥∥∥∥

=
∥∥∥exp

(
n
(
F t

n

− Id
))
g − F n

t

n

g
∥∥∥

≤
√
n
∥∥∥F t

n

g − g
∥∥∥

≤
√
n
t

n
2 ‖Ag‖

for big enough n.
The result is proved for g ∈ H, the theorem follows from the density of

H in G since for (g, h) ∈ G×H

∥∥∥F n
t

n

g − F n
t

n

h
∥∥∥ =

∥∥∥F n
t

n

(g − h)
∥∥∥ ≤ M ‖g − h‖

‖Qtg −Qth‖ = ‖Qt (g − h)‖ ≤ ‖g − h‖
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Remark 2. The first condition in the theorem is a stability condition in the
numerical analysis language, the second one a consistency condition. Thus
this theorem may be seen as a version of the statement: consistency and
stability yield convergence.

Remark 3. In practice, the tough part is to prove the consistency condition
( 6 on page 13). Indeed it must be shown that the limit holds in the Banach
space sense, which is a much stronger assertion than a pointwise limit. On the
other hand, the convergence of the approximation also holds in the Banach
space sense, in this direction it is a stronger result than a statement in a
probabilistic theorem which holds given the starting point of the diffusion, for
instance.

3.5 Application

As an application, let us prove the convergence of the Call option price in
the CRR model to the Black-Scholes price.

First observe that the Call option payoff belongs to the above Banach
space G. Now by the lemma 1 on page 12 and the approximation theorem
it is enough to show that, if Fh denotes the backward transition operator in
the CRR model, ( 5 on page 13) and ( 6 on page 13) hold.

For ( 5 on page 13):

Fhg (x) = e−ρh [p∗ (h) g (xu (h)) + (1 − p∗ (h)) g (xd (h))]

whence

|Fhg (x)| ≤ ‖g‖ e−ρh [p∗ (h) (1 + xu (h)) + (1 − p∗ (h)) (1 + xd (h))]

= ‖g‖ e−ρh
(
1 + xeρh

)

≤ ‖g‖ (1 + x)

Thus
‖Fhg‖ ≤ ‖g‖

and Fh is a contraction, in particular ( 5 on page 13) holds.
For ( 6 on page 13), for g in C∞

0

Fhg (x) − g (x)

h
= e−ρh [p∗ (h) (g (xu (h)) − g (x)) + (1 − p∗ (h)) g (xd (h) − g (x))]

= ρxg′ (x) +
1

2
σ2x2g′′ (x) − ρg (x) +

√
hR (g, x)
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where R (g, x) vanishes outside the support of g, by the computation in the
beginning and Taylor’s formula. This entails

Fhg − g

h
→ Ag

in G,where A is the infinitesimal generator of the Black-Scholes semigroup,
whence the result.

4 Some words about the rate of convergence

The question of the rate of convergence of a given tree for a given payoff is
crucial: in practice a behavior in O

(
1
N

)
(ie Vh (t, x) − V (t, x) = Ot,x,g

(
1
N

)
)

of the algorithm is satisfactory, whereas O
(

1√
N

)
is not.

Unfortunately this is a very tough question. Only a few tree algorithms
have been studied in detail from that point of view until now, mostly for
standard options. The main point is that the rate of convergence depends
heavily not only on the scheme but also on the smoothness of the payoff.

4.1 Results for i.i.d. trees for standard options

By i.i.d. tree we mean a Markov chain approximation such that, with the
notations of the Kushner theorem, the sequence

(
∆ξh

n

)
n≥0

is i.i.d. for every

fixed h. The first idea in this case is to make use of the characteristic function
to study the convergence rate. Indeed for suitable f

f (x) =
∫
eiλxf̂ (λ) dλ (7)

where f̂ is the Fourier Transform of f. Therefore

Et,x [f (XT )] − Et,x

[
f
(
ξh

N

)]

=
∫ (

Et,x

[
eiλXT

]
− Et,x

[
eiλξh

N

])
f̂ (λ) dλ

=
∫ (

Et,x

[
eiλ(XT −x)

]
−
(
E
[
eiλ∆ξh

0

])N
)
eiλxf̂ (λ) dλ

where we made use of the i.i.d. assumption. Assume for instance Xt = x+Bt,

then Et,x

[
eiλXT

]
= e− λ

2

2
T , and denoting by ψh (λ) the characteristic function

of ∆ξh
0 :

ψh (λ) = E
[
eiλ∆ξh

0

]
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we get

Et,x [f (XT )] − Et,x

[
f
(
ξh

N

)]
(8)

=
∫ (

e− λ
2

2
T − ψh (λ)N

)
eiλxf̂ (λ) dλ

Of course for these formal calculations to be meaningful we require that the
inversion formula ( 7 on the previous page) holds and also to justify Funbini’s
theorem

∫
e− λ

2

2
T
∣∣∣f̂ (λ)

∣∣∣ dλ < ∞

For every N,
∫
ψh (λ)N

∣∣∣f̂ (λ)
∣∣∣ dλ < ∞

By standard Fourier transform theory it is seen that these requirements
involve the smoothness of f . Expression ( 8) clearly shows that the rate

of convergence depends on the control of e− λ
2

2
T − ψh (λ)N in terms of λ

altogether with integrability properties of f̂ (λ) , that is smoothness of f.

4.1.1 Random Walk approximations

A particular case which has been investigated in great detail is the Random
Walk case, which means that we look at the approximation of say E [f (B1)]

by E
[
f
(
ξh

N

)]
where

(
∆ξh

n

)
n≥0

i.i.d.with ∆ξh
0 =

√
hε

E [ε] = 0, E
[
ε2
]

= 1

where ε does not depend on h. Note that we relax here the boundedness
assumption ( 3 on page 5). This subsection is taken from [1]

The above route leads to the following statements:

Theorem 5. Assume f is C5
b . Then

∣∣∣E [f (XT )] − E
[
f
(
ξh

N

)]∣∣∣ =
E [ε3]√
N

a (f) +
E [ε4] − 3

N
b (f) + o

(
1

N

)

with a (f) = 1
6
E [f ′′′ (B1)] and b (f) = 1

24
E
[
f (4) (B1)

]
.

For f ressembling a Call or a Put payoff we have:
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Theorem 6. Assume f is Lipschitz and that f ′′ (taken in the sense of dis-
tributions) is a bounded measure. Then if X = B and where and also

E
[
ε4
]
< ∞, E

[
ε3
]

= 0

then ∣∣∣E [f (B1)] − E
[
f
(
ξh

N

)]∣∣∣ ≤ C

N

(
‖f ′′‖Mb(R) + ‖f ′‖L∞

)

where C depends only on the law of ε.

By a suitable change of variables this result applies to European Call and
Put options in the Random Walk tree.

It is interesting to note that in contrary to the C5
b case with E [ε3] = 0,

there is no expansion in 1
N

in general under the assumptions of the theorem:
indeed for f (x) = |x| it may be proved when P (ε = 1) = P (ε = −1) = 1

2

that

E [f (B1)] − E
[
f
(
ξh

N

)]
=

1

2N
√

2π
+ o

(
1

N

)
if N is odd

= − 1

2N
√

2π
+ o

(
1

N

)
if N is even

The corresponding result for the CRR tree for Call and Put option has been
obtained recently by M&F Diener in [4] by a direct calculation:

Proposition 1. Let a Call ATM option in the Black-Scholesmodel with no
interest rate. Then if N is even

CRR (N) = BS − 1

192
√
π
σ

√
2e− 1

8σ2

(
σ2 + 12

)
× 1

m
+ o

(
1

m

)

where N = 2m.
If N is odd

CRR (N) = BS − 1

192
√
π
σ

√
2e− 1

8σ2

(
σ2 − 12

)
× 1

m
+ o

(
1

m

)

where N = 2m+ 1

Along this line one can wonder about Digit options. Not very surprisingly
the following holds-this can be proved by a direct caclulation:

Proposition 2. Assume P (ε = 1) = P (ε = −1) = 1
2

(in particular, E [ε3] =
0). Then

E [1 (B1 < 0)] − E
[
1
(
ξh

N < 0
)]

=
1√

2πN
+ o

(
1√
N

)
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4.2 Results for i.i.d. trees for path-dependant options

Very few is known, even for barrier options. Empirical studies suggest a
convergence with a 1

N
rate for improved trees like the Derman-Kani or the

Kamrad-Ritchken tree. Fore more general situations, the general feeling is
that a convergence rate of O

(
1√
N

)
is in some sense the worst that can be

achieved.

4.3 Order of Accuracy and Order of convergence

A widely-used concept in numerical analysis of a finite-difference scheme is
that of order of accuracy: in the calculation above (cf 4 on page 10), this
is the order in power of h at which the Black-Scholes PDE is satisfied. In
a heuristic manner this amounts to look how far, locally, is the numerical
approximation scheme from its continuous limit. A detailed study of the
order of accuracy of tree methods may be found in [7], where also classical
finite-difference schemes are studied (see also [8]).

The main thing to say about this concept is that it is not directly related
in full generality to the good notion which is that of order of convergence as
studied before. In analytical terms the point is that the order of accuracy is
a local (event pointwise) measurement of the convergence of the infinitesimal
generator of the semigroup, whereas because of the diffusive feature of the
semigroups at hand a kind of uniform control is required to give something
about convergence. This is well-explained by the proof of the abstract theo-
rem (cf theorem 4 on page 13). Moreover, it was shown that for non-smooth
payoffs, even for a scheme with high degree of accuracy the order of conver-
gence is much lower. This is perfectly in tune with the fact that there is no
smoothing effect of the discrete semigroup of the approximating scheme, so
that the above computation can not be performed in the non-smooth case.

Nevertheless it seems it is possible in many cases to go from the order
of accuracy to the order of convergence for sufficiently smooth intial condi-
tion (or payoff functions for us)-unfortunately, this is almost never the case
in finance. An interesting exemple of this is the analytical reading of the
previous Lamberton’s theorem 5 on page 17. Let us look for a trinomial tree
(in logarithm) such that the two first moments are 0 and 1. Let us denote
by A the upper node, B the lower node, a and b the corresponding weights.
Suppose also the middle node is centered, and let us compute the order of
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accuracy. Let f a smooth space-time function, c = 1.0 − a− b

af
(
x+ A

√
h, t+ h

)
+ cf (x, t+ h) + bf

(
x−B

√
h, t+ h

)
− f (t, x)

=
∂f

∂t
h+

∂f

∂x

(
aA

√
h− bB

√
h
)

+
1

2

∂2f

∂x2

(
aA2h+ bB2h

)

+
∂2f

∂x∂t

(
aAh

√
h− bBh

√
h
)

+
1

6

∂3f

∂x3

(
aA3h

√
h− bB3h

√
h
)

+
1

24

∂4f

∂x4

(
aA4h2 + bB4h2

)
+

1

2

∂2f

∂t2
h2

+
∂3f

∂x2∂t

(
aA2h2 + bB2h2

) 1

2
+ o

(
h2
)

Now by the first and second moment conditions:

aA
√
h− bB

√
h = 0

aA2h+ bB2h = 1

Therefore

1

h

[
af
(
x+ A

√
h, t+ h

)
+ cf (x, t+ h) + bf

(
x−B

√
h, t+ h

)
− f (t, x)

]
−
(
∂f

∂t
+

1

2

∂2f

∂x2

)

=
1

6

∂3f

∂x3

(
aA3 − bB3

)
h

√
h

+

(
1

2

∂2f

∂t2
+

1

24

∂4f

∂x4

(
aA4 + bB4

)
+

1

2

∂3f

∂x2∂t

(
aA2 + bB2

))
h2

Now the condition E [ε3] = 0 in Lamberton’s theorem reads

aA3h
√
h− bB3h

√
h = 0

which cancels the term of order h
√
h.

Let us now turn to the condition E [ε4] = 3 in the theorem. This amounts
here to

aA4 + bB4 = 3

The coefficient of the h2 term is then

1

2

∂2f

∂t2
+

3

24

∂4f

∂x4
+

1

2

∂3f

∂x2∂t

=
1

2

∂2f

∂t2
+

1

8

∂4f

∂x4
+

1

2

∂3f

∂x2∂t
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which does not vanish for an arbitrary function f. Nevertheless, if f satisfies
the limiting PDE

∂f

∂t
+

1

2

∂2f

∂x2
= 0

then 1
2

∂4f
∂x4 = − ∂3f

∂x2∂t
whence

1

2

∂2f

∂t2
+

1

8

∂4f

∂x4
+

1

2

∂3f

∂x2∂t

=
1

2

∂2f

∂t2
+

1

4

∂3f

∂x2∂t

=
1

2

∂

∂t

(
∂f

∂t
+

1

2

∂2f

∂x2

)

= 0

Thus a kind of reverse accuracy matching property is satisfied at one order
further: if f is the solution to the PDE, then the backward scheme of the
discrete algorithm is matched at order o (h2) .
Nevertheless a general result about equivalence for smooth intial conditions
between the order of accuracy and the order of convergence does not seem
to be available yet.
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