
Transparent boundary conditions for solving

numerically the Black-Scholes equation

Sébastien Tordeux Ekaterina Voltchkova

February 18, 2016

Premia 18

1 Introduction

Numerical solution of the Black-Scholes type pricing equation requires a lo-
calization on a bounded computational domain and, in consequence, a choice
of boundary conditions. The standard approach usually proposed in the text-
books on financial engineering and academic literature is to take Dirichlet or
Neumann boundary conditions deduced from the shape of the payoff function.
Equivalently, one first subtracts the payoff from the solution, and then takes
zero boundary conditions on the excess to payoff. It can be shown that the lo-
calization error in these cases converges to zero when the computational domain
increases. Note that these conditions are only asymptotic, and the localization
error may be large for a fixed finite domaine.

We propose a different approach using the so-called transparent or absorbing
boundary conditions (see e.g. [?],[?], [?] [?]). It is well known that the Black-
Scholes PDE may be transformed by a change of variables to the following
parabolic equation with constant coefficients:

ut = auxx + µux (1)

where a > 0, µ ∈ R. We first derive the exact condition on the boundary for
this PDE given by a Dirichlet-to-Neumann operator in the form

∂u

∂n
+ S−u = g− at xmin,

∂u

∂n
+ S+u = g+ at xmax (2)

where S− and S+ are non-local in time operators. One may discretize these
conditions directly and incorporate them in the standard finite difference (or
finite element) scheme. The localization error is then only due to the discretiza-
tion of (2) and does not depend on the size of the domain. The drawback of

1



Transparent boundary conditions for the Black-Scholes equation 2

this method is that the boundary conditions at tn+1 involve all previous values
of the solution on the boundary, and not only un and un+1.

To avoid this, we approximate integral operators S− and S+ by local differen-
tial operators involving time derivatives. After discretization, we obtain a finite
difference scheme with a small localization error even on a small computational
domain.

We have implemented transparent boundary conditions in Premia for Euro-
pean and American calls and puts. This method may also be used for barrier
options, as well as for other standard payoffs.

2 Black-Scholes equation for European option

prices

We are interested in the numerical computation of the solution of the Black-
Scholes equation

∂τV (S, τ) +
σ2S2

2
∂2
SV (S, τ) + rS ∂SV (S, τ) − r V (S, τ) = 0

defined on one of the following domains in variable S:

0 < S < +∞ (3)

0 < S < U (4)

L < S < +∞ (5)

The first case corresponds to a European vanilla option, while the second and
the third cases correspond to up-and-out and down-and-out barrier options.
The domain of definition in time is [0, T ) where T is the maturity of the option.
At τ = T , we have a terminal condition given by the payoff function

V (T, S) = Φ(S).

The localization technique described in this note applies to all standard payoff
functions.

3 Toward advection diffusion equation

We perform a standard change of variables

x = ln (S/S0), t = T − τ, u(x, t) = ertV (S, τ)

which leads to a forward PDE with constant coefficients

∂tu(x, t) =
σ2

2
∂2
xu(x, t) + µ ∂xu(x, t) with µ = r − σ2

2
. (6)



Transparent boundary conditions for the Black-Scholes equation 3

After this change of variables, the terminal condition becomes an initial condi-
tion at t = 0

u(0, x) = u0(x)

and the domain of definition in x is transformed to an unbounded or semi-
bounded domain:

− ∞ < x < +∞ (7)

− ∞ < x < ln(U/S0) (8)

ln(L/S0) < x < +∞ (9)

4 Localization on a bounded computational do-

main

In order to apply standard methods of numerical solution of PDEs, such as finite
difference or finite element schemes, we need to localize the domain of definition
in x to a bounded interval

x ∈ (x−, x+).

The standard approach consists in choosing the computational domain (x−, x+)
“sufficiently large” and imposing Dirichlet or Neumann boundary conditions
based on the asymptotics of the solution. For instance, in the case of a call
option, we have the following asymptotic behavior of the solution:

V (S, τ) ≃ S −K e−r(T−τ), S −→ +∞,

V (S, τ) ≃ 0, S −→ 0+.

This motivates the following choice of boundary conditions:

Dirichlet: V (S−, τ) = 0 ⇔ u(x−, t) = 0 (10)

V (S+, τ) = S+ −Ke−r(T−τ) ⇔ u(x+, t) = S0 e
x++rt −K. (11)

or

Neumann: ∂SV (S−, τ) = 0 ⇔ ∂xu(x−, t) = 0 (12)

∂SV (S+, τ) = 1 ⇔ ∂xu(x+, t) = S0 e
x++rt. (13)

It was proved that the localization error due to these boundary conditions
goes to zero exponentially when the size of the computational domain goes to
infinity. However, these results do not indicate whether it is better to take
Dirichlet or Neumann conditions nor how to choose (x−, x+) “sufficiently large”
in practice. One often suggests to take this interval in relation with the standard
deviation of the Brownian motion for the period [0, T ]. That is, x± = ±kσ

√
T

with k = 3, for example.
In the next section, we present a different approach to the choice of the

artificial boundary conditions. This approach uses the so-called transparent
boundary conditions which have the following advantages.



Transparent boundary conditions for the Black-Scholes equation 4

xx+

t

Figure 1:

• Transparent boundary conditions may be used for any interval (x−, x+),
even small, provided it contains the singularities of the payoff.

• They provide exact boundary conditions for the localized PDE (and not
only asymptotically exact). There is still a small numerical error due to
the discretization of these conditions.

• Finally, transparent boundary conditions are almost as easy to implement
as Neumann or Dirichlet conditions.

5 Transparent boundary conditions

The idea of transparent boundary conditions is the following. Take an arbitrary
x+ ∈ R and consider equation (6) on {t > 0} × {x > x+} (the gray domain
on Fig. 1). It is well known that the initial condition on {t = 0} × {x > x+}
and boundary values on {t > 0} × {x = x+} define completely the solution of
the PDE in this domain. In particular, they define the normal derivative at
the boundary: ∂xu(x+, t). So, at least formally, there exists an operator which
relates the initial and boundary values of the solution to its normal derivative
on the boundary:

∂xu(x+, t) = S+[u(x+, t)t>0, u(x, 0)x>x+
] (14)

In fact, due to the constant coefficients of the PDE and simple form of initial
data, the operator S+ may be found explicitly. The idea is then to use (14) as
a boundary condition when solving for x ≤ x+. Of course, the boundary values
u(x+, t)t>0 are not known but we have a kind of mixed boundary condition
relating Dirichlet and Neumann values of the solution on the boundary. For
this reason, the operator S+ is also called Dirichlet-to-Neumann operator.

Note that (14) is an exact relation satisfied by the true solution of the PDE,
and not by its asymptotics as it is the case for (10)–(13).

Boundary condition on {x = x−} is obtained by the same reasoning applied
to the domain {x < x−}. In the next section, we derive the explicit form of the
Dirichlet-to-Neumann operator.



Transparent boundary conditions for the Black-Scholes equation 5

5.1 Dirichlet-to-Neumann operator

We start by the case of a right-open domain. The idea is to apply the Laplace
transform with respect to the time variable, defined as

û(x, p) =

∫ +∞

0

u(x, t) exp(−pt)dt,

to the PDE (6). Note that the time derivative is transformed to

∂̂tu(x, p) = pû(x, p) + u(x, 0).

To get rid of the boundary term u(x, 0), we introduce

uH(x, t) = u(x, t) − ϕ(x, t)

where ϕ(x, t) is a solution of (6) with ϕ(x, 0) = u(x, 0) on {x > x+}. Here x+

is arbitrary but such that all singularities of the payoff u0(x) are on the left of
x+ (in the case of calls and puts it simply means that x+ > ln(K/S0)). It is
important that u(x, 0) has no singularity on {x > x+} because, in this case,
ϕ(x, t) has a simple explicit form. For example,

call: ϕ(x, t) = S0e
x+rt −K, put: ϕ(x, t) = 0.

By construction, uH(x, t) satisfies, for x > x+,

∂tuH(x, t) =
σ2

2
∂2uH(x, t) + µ ∂xuH(x, t) (15)

uH(x, 0) = 0

Applying the Laplace transform to (15), we obtain

p ûH(x, p) =
σ2

2
∂2
xûH(x, p) + µ ∂xûH(x, p).

This is a linear ordinary differential equation with constant coefficients with
respect to the x variable. Its solution which does not explode when x goes to
infinity has the form

ûH(x, p) = A exp
(

−
( µ
σ2

+
|µ|
σ2

√
1 +

2pσ2

µ2

)
x
)
.

Therefore, in the Laplace domain, we have the following relation between uH
and ∂xuH :

∂xûH(x+, p) = −
( µ
σ2

+
|µ|
σ2

√
1 +

2pσ2

µ2

)
ûH(x+, p). (16)



Transparent boundary conditions for the Black-Scholes equation 6

function Laplace transform

1√
πt

1√
p

1√
π

∫ t
0

u(s)√
t−sds

û(p)√
p

1√
π

∫ t
0
e−a(t−s)

√
t−s u(s)ds û(p)√

p+a

1√
π

(
∂t + a

) ∫ t
0
e−a(t−s)

√
t−s u(s)ds

√
p+ a û(p)

Table 1: Some useful Laplace transforms.

Going back to the time variable, we obtain1

∂xuH(x+, t) = − µ

σ2
uH(x+, t) −

( 2

σ2π

) 1
2
(
∂t +

µ2

2σ2

)∫ t

0

e− µ2

2σ2 (t−s)uH(x+, s)√
t− s

ds

≡ S+uH(x+, t)

That is, the Dirichlet-to-Neumann operator is a multiplication operator in the
Laplace domain and an integro-differential operator in time domain. In terms
of the non-homogeneous solution, we have

∂xu(x+, t) = S+u(x+, t) + (∂xϕ(x+, t) − S+ϕ(x+, t)) (17)

Using the same arguments for {x < x−}, we obtain

∂xu(x−, t) = S−u(x−, t) + (∂xψ(x−, t) − S−ψ(x−, t)) (18)

where

S−u(t) := − µ

σ2
u(t) +

( 2

σ2π

) 1
2
(
∂t +

µ2

2σ2

)∫ t

0

e− µ2

2σ2 (t−s)u(s)√
t− s

ds

and ψ(x, t) is a solution of (6) with ψ(x, 0) = u(x, 0) on {x < x−}. For example,
if x− < ln(K/S0),

call: ψ(x, t) = 0, put: ψ(x, t) = K − S0e
x+rt.

6 A local transparent boundary condition

It is possible to use exact boundary conditions (17) and (18) directly by dis-
cretizing the integro-differential operators S+ and S−. This gives a very good
precision of the solution on the boundary. Indeed, the error is only due to the
discretization (e.g., trapezoidal rule).

1This may be checked directly. To help the reader, we recall the Laplace transforms of
some useful functions in Table 1.



Transparent boundary conditions for the Black-Scholes equation 7

However, the formulas to implement are rather messy, and, more impor-
tantly, at each time iteration, boundary conditions (17) and (18) involve all

previous values of the solution on the boundary, and not only un and un−1.
The obtained discretization scheme is not local in time.

In the next sections, we propose an approximation of the exact boundary
conditions based on approximation of the Laplace symbol of the Dirichlet-to-
Neumann operator by rational functions.

6.1 Approximating the Laplace symbol by a rational func-

tion

Recall that the Laplace symbol of the Dirichlet-to-Neumann operator (that is,
the multiplication factor in (16)) involves the square root function which corre-
sponds to an integro-differential operator in the time domain. To approximate
this operator by a local one, the idea is to approximate its Laplace symbol by
simpler functions corresponding to differential operators in time variable.

The simplest choice would be a polynomial approximation. However, it does
not work well in practice.2 Instead, we propose to approximate the symbol by
a rational function.

We start by approximating
√
z by a rational function Qn(z) of the form

Qn(z) =
q1z

z + z1
+

q2z

z + z2
+ · · · +

qnz

z + zn

where the coefficients zi and qi have to be strictly positive in order Qn to be
bounded on R+, the domain of definition of

√
z. We first fix interpolation points

zj . The choice is rather arbitrary and is based on numerical tests of the quality
of the approximation that we have performed. We take zi = 1, 2, 1/2, 4, 1/4, . . . .
The number of these interpolation points may be chosen by the user and can
be different on the right and on the left boundary (see parameters mr and ml

below, equations (19) and (20)). In practice, n will usually be less than 10.
Then we compute coefficients qj so that Qn(z) coincides with

√
z at z = zj :

Qn(zj) =
√
zj , j = 1, . . . , n.

(Note that, by construction, we also have Qn(z) =
√
z at z = 0). This leads to

a linear system that can be easily solved:

Find q ∈ R
n : Mq = F with Mi,j =

zi
zi + zj

and Fi =
√
zi.

The coefficients Mi,j and Fi are computed only once for i, j = 1, . . . , Nmax
where we put Nmax = 30 (more interpolation points are hardly useful). They

2Briefly speaking, the reason is that the radius of convergence of polynomial approximations
of the square root (we tried Taylor expansions at different points) is small. This implies a
poor approximation of the symbol for high frequencies (large p). In the original variable,
this corresponds to small t, that is, precisely the region of interest. Numerical experiments
showed that polynomial approximation does not perform better than Dirichlet or Neumann
boundary conditions. Increasing the degree of the approximation does not improve the error
at the boundary.



Transparent boundary conditions for the Black-Scholes equation 8

are written in the file "InterpolationParameters.txt" which remains constant.3

On the contrary, vector q is computed each time we use transparent boundary
conditions because it depends on the user-chosen parameter n. To compute q,
we use a direct LU-solver for the system Mq = F (recall that the size n of this
system is small, so it is not time consuming).

The Laplace symbol of the Dirichlet-to-Neumann operator at x = x+ is now
approximated in the following way:

−
( µ
σ2

+
|µ|
σ2

√
1 +

2pσ2

µ2

)
≈ −

( µ
σ2

+

√
2

σ
Qmr

(
p+

µ2

2σ2

))

= η0 +
β1

p+ δ1
+ · · · +

βmr

p+ δmr

. (19)

A straightforward computation yields

η0 = − µ

σ2
−

√
2

σ

mr∑

j=1

qj , βj =

√
2

σ
qjzj , δj =

µ2

2σ2
+ zj .

Similarly, at x = x−, we get

−
( µ
σ2

− |µ|
σ2

√
1 +

2pσ2

µ2

)
≈ −

( µ
σ2

−
√

2

σ
Qml

(
p+

µ2

2σ2

))

= ξ0 +
α1

p+ γ1
+ · · · +

αml

p+ γml

(20)

with

ξ0 = − µ

σ2
+

√
2

σ

mr∑

j=1

qj , αj = −
√

2

σ
qjzj , γj =

µ2

2σ2
+ zj .

6.2 Approximate transparent boundary conditions

Using the rational approximation of the Laplace symbol described above, we
obtain the following relation at x = x+ in Laplace domain:

∂xûH(x+, p) =
(
η0 +

β1

p+ δ1
+ · · · +

βmr

p+ δmr

)
ûH(x+, p).

Substituting uH = u − ϕ and going back to the time variable, we obtain the
following approximate boundary condition:

∂xu(x+, t) = η0u(x+, t) + β1ρ1(t) + · · · + βmr
ρmr

(t)

+ (∂xϕ(x+, t) − η0ϕ(x+, t) − β1ω1(t) − · · · − βmr
ωmr

(t))(21)

3These coefficients should be recomputed only if we want to change interpolation points
zj .



Transparent boundary conditions for the Black-Scholes equation 9

where the auxiliary functions ρi and ωi satisfy, respectively, the following ODEs:

∂tρj(t) + δjρj(t) = u(x+, t), ρj(0) = 0, j = 1, . . . ,mr (22)

∂tωj(t) + δjωj(t) = ϕ(x+, t), ωj(0) = 0, j = 1, . . . ,mr (23)

Indeed, applying the Laplace transform to (22), we get

(p+ δj)ρ̂j(p) = û(x+, p) or ρ̂j(p) =
1

p+ δj
û(x+, p).

Since the Laplace transform is one-to-one, ρj is the inverse of 1
p+δj

û. The same

reasoning applies to ωj .
To write (21)–(23) in a short way, we may introduce the notation

S̃+v(t) ≡ η0v(t) + β1f
v
1 (t) + · · · + βmr

fvmr
(t)

with the auxiliary functions fvj satisfying

∂tf
v
j (t) + δjf

v
j (t) = v(t), fvj (0) = 0, j = 1, . . . ,mr

Then (21) becomes

∂xu(x+, t) = S̃+u(x+, t) + (∂xϕ(x+, t) − S̃+ϕ(x+, t)) (24)

with fuj ≡ ρj and fϕj ≡ ωj . Relation (24) is the approximate transparent
boundary condition at x = x+ that we will use instead of usual Dirichlet or
Neumann conditions.

Similarly, the approximate transparent boundary condition at x = x− takes
the form

∂xu(x−, t) = S̃−u(x−, t) + (∂xψ(x−, t) − S̃−ψ(x−, t)) (25)

with
S̃−v(t) ≡ ξ0v(t) + α1g

v
1(t) + · · · + αml

gvml
(t)

where the auxiliary functions gvj are solutions of the ODEs

∂tg
v
j (t) + γjg

v
j (t) = v(t), gvj (0) = 0, j = 1, . . . ,ml.

For simplicity, we denote gvj ≡ λj and gψj ≡ µj , so that (25) may also be
expanded as follows:

∂xu(x−, t) = ξ0u(x−, t) + α1λ1(t) + · · · + αml
λml

(t)

+ (∂xψ(x−, t) − ξ0ψ(x−, t) − α1µ1(t) − · · · − αml
µml

(t))(26)

where

∂tλi(t) + γiλi(t) = u(x−, t), λi(0) = 0, i = 1, . . . ,ml (27)

∂tµi(t) + γiµi(t) = ψ(x−, t), µi(0) = 0, i = 1, . . . ,ml (28)



Transparent boundary conditions for the Black-Scholes equation 10

7 Discretization of the approximate transparent

boundary conditions

In this section, we explain how to incorporate boundary conditions (24) and
(25) into a standard finite difference θ-scheme for equation (6).

We introduce a regular grid on [x−, x+] × [0, T ]:

xi = x− + i∆x, ∆x = (x+ − x−)/(N − 1),

tn = n∆t, ∆t = T/Ntime.

We denote by uni = u(xi, tn) the unknown values of the solution of (6) on the
grid. To take into account boundary conditions, we will also need un−1 and unN ,
as well as auxiliary unknowns λn1 , . . . , λ

n
ml

and ρn1 , . . . , ρ
n
mr

corresponding to the
functions λi(t) and ρi(t) in (27) and (22).

Recall that values u0
i are given by the initial condition: u0

i = u0(xi). For
any n > 0, we have a usual three-point finite difference scheme:

alu
n+1
i−1 + adu

n+1
i + auu

n+1
i+1 = blu

n
i−1 + bdu

n
i + buu

n
i+1, i = 0, . . . , N − 1. (29)

In the case of the θ-scheme, the coefficients are given by

al = θ∆t

(
− σ2

2∆x2
+

µ

2∆x

)
,

ad = 1 + θ∆t
σ2

∆x2
,

au = θ∆t

(
− σ2

2∆x2
− µ

2∆x

)
,

bl = −(1 − θ)∆t

(
− σ2

2∆x2
+

µ

2∆x

)
,

bd = 1 − (1 − θ)∆t
σ2

∆x2
,

bu = −(1 − θ)∆t

(
− σ2

2∆x2
− µ

2∆x

)
.

At the boundary points x0 = x− and xN−1 = x+ we use boundary conditions
(25) and (24) also discretized using standard finite difference schemes. Let us
explain this in more details for the left boundary. We discretize (26) as follows

un+1
1 − un+1

−1

2∆x
= ξ0u

n+1
0 + α1λ

n+1
1 + · · · + αml

λn+1
ml

+

(
ψn+1

1 − ψn+1
−1

2∆x
− ξ0ψ

n+1
0 − α1µ

n+1
1 − · · · − αml

µn+1
ml

)
. (30)

Note that, while it is possible to compute ∂xψ(x−, t) − S̃−ψ(x−, t) analytically,
we don’t need to do it. We just discretize this expression in the same way as



Transparent boundary conditions for the Black-Scholes equation 11

1 + ∆t

2
γ1

1 + ∆t

2
γ2

1 + ∆t

2
γ3

−2∆xα1 −2∆xα2 −2∆xα3 −1 −2∆xξ0

−

∆t

2

−

∆t

2

−

∆t

2

1

al ad au

al ad au

−2∆xβ3−2∆xβ2−2∆xβ11−2∆xη0−1

−

∆t

2

−

∆t

2

−

∆t

2
1 + ∆t

2
δ3

1 + ∆t

2
δ2

1 + ∆t

2
δ1

Figure 2: Extended matrix Ã of the scheme (35).

∂xu(x−, t) − S̃−u(x−, t). Moreover, it is necessary to proceed so if we want to
avoid numerical instability.

We also discretize ODEs (27) and (28):

λn+1
j − λnj

∆t
+ γj

λn+1
j + λnj

2
=

un+1
0 + un0

2
, λ0

j = 0, j = 1, . . . ,ml (31)

µn+1
j − µnj

∆t
+ γj

µn+1
j + µnj

2
=

ψn+1
0 + ψn0

2
, µ0

j = 0, j = 1, . . . ,ml(32)

One way to implement these boundary conditions is to introduce an extended
vector of unknowns at t = tn

ũn = (λnml
, . . . , λn1 , u

n
−1, u

n
0 , . . . , u

n
N−1, u

n
N , ρ

n
1 , . . . , ρ

n
mr

)′. (33)

It is initialized at

ũ0 = (0, . . . , 0, u0(x−1), u0(x0), . . . , u0(xN−1), u0(xN ), 0, . . . , 0)′ (34)

and the time iterations take the form

Ãũn+1 = b̃n (35)

where matrix Ã is mainly tri-diagonal with a few additional rows which are also
sparse (see Figure 2 where we take for simplicity ml = mr = 3). The first ml

rows come from the discretized ODEs on λj (31), the next row corresponds to
the boundary condition (30), the central N ×N tri-diagonal part is the matrix
of the θ-scheme (29). The last 1 + mr rows come from a similar treatment of
the right boundary condition.

Note that the number of additional rows is small with respect to N and does
not depend on N . The numerical complexity of the algorithm is the same as
for Dirichlet or Neumann boundary conditions. In the environments supporting



Transparent boundary conditions for the Black-Scholes equation 12

sparse matrices, such as Matlab, it is very easy to implement scheme (35) with
such an extended matrix. However, if only routines for inverting tri-diagonal
matrices are available, it is possible to come back to a tri-diagonal system by
eliminating by hands the auxiliary variables λml

, . . . , λ1, u−1, uN , ρ1, . . . , ρmr

from (35). This is the way we implemented the algorithm in Premia. We give
below the coefficients of the system after elimination.

A time iteration consists in solving the following linear system

Aun+1 = bn (36)

where un+1 = (un+1
0 , . . . , un+1

N−1)′ is the vector of unknowns, A the following
constant tri-diagonal matrix

A =




ad − clal al + au
al ad au

. . .
. . .

. . .

al ad au
al + au ad + crau




(37)

and bn = (bn0 , . . . , b
n
N−1)′ the vector of the right-hand side. Here

cl = 2∆x


ξ0 +

∆t

2

ml∑

j=1

αj

1 + ∆t
2 γj


 ,

cr = 2∆x


η0 +

∆t

2

mr∑

j=1

βj

1 + ∆t
2 δj


 .

The computation of the coefficients bni is described in the algorithm below.

ALGORITHM

• Initialization

u0 = (u0(x0, . . . , u0(xN−1)))′

u0
−1 = u0(x−1)

u0
N = u0(xN )

λ0
j = µ0

j = 0, j = 1, . . . ,ml

ρ0
j = ω0

j = 0, j = 1, . . . ,mr

• Iteration n → n+ 1, n = 0, . . . , Ntime − 1

– Update coefficients depending on the analytically known functions



Transparent boundary conditions for the Black-Scholes equation 13

ψ(x, t) and ϕ(x, t):

µn+1
j =

1

1 + ∆t
2 γj

[
µnj +

∆t

2
(ψn0 − γjµ

n
j + ψn+1

0 )

]
, j = 1, . . . ,ml

Dψn+1 =
ψn+1

1 − ψn+1
−1

2∆x
− ξ0ψ

n+1
0 −

ml∑

j=1

αjµ
n+1
j

ωn+1
j =

1

1 + ∆t
2 δj

[
ωnj +

∆t

2
(ϕnN−1 − δjω

n
j + ϕn+1

N−1)

]
, j = 1, . . . ,mr

Dϕn+1 =
ϕn+1
N − ϕn+1

N−2

2∆x
− η0ϕ

n+1
N−1 −

mr∑

j=1

βjω
n+1
j

– Compute the right-hand side:

bn0 = blu
n
−1 + bdu

n
0 + buu

n
1

+2∆xal



ml∑

j=1

αj

1 + ∆t
2 γj

(λnj +
∆t

2
(un0 − γjλ

n
j )) +Dψn+1




bni = blu
n
i−1 + bdu

n
i + buu

n
i+1, i = 1, . . . , N − 2

bnN−1 = blu
n
N−2 + bdu

n
N−1 + buu

n
N

−2∆xau



mr∑

j=1

βj

1 + ∆t
2 δj

(ρnj +
∆t

2
(unN−1 − δjρ

n
j )) +Dϕn+1




– Solve Aun+1 = bn.

– Update auxiliary unknowns:

λn+1
j =

1

1 + ∆t
2 γj

[
λnj +

∆t

2
(un0 − γjλ

n
j + un+1

0 )

]
, j = 1, . . . ,ml

un+1
−1 = un+1

1 − 2∆x


ξ0u

n+1
0 +

ml∑

j=1

αjλ
n+1
j +Dψn+1




ρn+1
j =

1

1 + ∆t
2 δj

[
ρnj +

∆t

2
(unN−1 − δjρ

n
j + un+1

N−1)

]
, j = 1, . . . ,mr

un+1
N = un+1

N−2 + 2∆x


η0u

n+1
N−1 +

mr∑

j=1

βjρ
n+1
j +Dϕn+1




To treat European and American options in a unified manner, we solve
Aun+1 = bn by the Brennan-Schwartz algorithm where, of course, we don’t
take the maximum between the intermediary solution and the payoff in the
European case. For European options, the Brennan-Schwartz algorithm is just
a variant of the LU-solver for linear systems of algebraic equations.



Transparent boundary conditions for the Black-Scholes equation 14

References


	Introduction
	Black-Scholes equation for European option prices
	Toward advection diffusion equation
	Localization on a bounded computational domain
	Transparent boundary conditions
	Dirichlet-to-Neumann operator

	A local transparent boundary condition
	Approximating the Laplace symbol by a rational function
	Approximate transparent boundary conditions

	Discretization of the approximate transparent boundary conditions

