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Abstract

In this paper we show the implementation of the exact simulation
methods presented in the paper of Galsserman and al. [2] and Joshi and
Chan [3] . We derive two methods, the first one is based on the truncation
series simulation, and the second one deals with inversion techniques of
both the Laplace transform and the cumulative function.

Premia 18

1 Introduction

We consider the following Heston model, given by the following stochastic
differential equation

dSt

St
= µdt +

√

Vt(ρdW 1
t +

√

1 − ρ2dW 2
t )

dVt = κ(θ − Vt)dt + σ
√

VtdW 1
t ,

where (W 1
t , W 2

t ) is a standard two dimensional Browian motion. The variable St

describes the level of an underlying asset and Vt the variance of its instantaneous
returns. The parameters κ, θ, σ (and typically also µ) are positive, and ρ takes
values in [−1, 1]. We take the initial conditions S0 and V0 to be strictly positive.

It is well know [1], that the CIR process Vt is given by

Vt ∼ σ2(1 − e−κt)

4κ
χ2

δ

(

4κe−κt

σ2(1 − e−κt)
V0

)

, t > 0, δ =
4κθ

σ2
,

where χ2
delta(λ) denotes non central chi-square variable with δ degrees freedom

and non central parameter λ.
Broadie and Kaya [4] rewrite the exact simulation of the couple (St, Vt) as

follows

log(
St

S0
) ∼ N

(

(µ − ρκθ

σ
)t + (

κρ

σ
− 1

2
)

∫ t

0

Vsds +
ρ

σ
(Vt − V0), (1 − ρ2)

∫ t

0

Vsds

)

,
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where N (m, var) is an independent Gaussian randon variable with mean m and

variance var. It is then sufficient to know the joint distribution of (Vt,
∫ t

0
Vsds)

to sample exactly the couple (St, Vt). The problem of the exact simulation can
be reduced to sample exactly just

(
∫ t

0

Vsds|V0, Vt

)

. (1) Cond_dist

The main result of the paper is given by the following theorem

Theorem 1. The distribution of 1 admits the following representation

(
∫ t

0

Vsds|V0, Vt

)

∼ X1 + X2 + X3 ≡ X1 + X2+ ∼η
j=1 Zj ,

in which X1, X2, µ, Z1, Z2 . . . are mutually independent, the Zj are independent
copies of a random variable Z, and η is a Bessel random variable with parameter

ν = δ
2 − 1, and z = 2κ/σ2

sinh(κt/2)

√
VtV0.

Moreover, X1, X2, and Z have the following representations:

X1 ∼
∞

∑

n=1

1

γn

Nn
∑

j=1

Expj(1), X2 ∼
∞

∑

n=1

1

γn
Γ(δ/2, 1), Z ∼

∞
∑

n=1

1

γn
Γ(2, 1), (2)

where

λn =
16πn2

σ2t(κ2t2 + 4π2n2)
, γn =

κ2t2 + 4π2n2

2σ2t2
. (3)

The Nn are independent Poisson random variable with parameter λn(V0 +
Vt), the Expj(1) are independent, unit mean exponential random variable, and
the Γ(α, β) denote the independent gamma random variable with shape of pa-
rameter α and scale one β.

This implementation concerns the method named mcGlassermanKim1. The
idea is to go back to the thoerem and replace the infinite series by a finite one.
The rest of each truncation is approximated by a non Gaussian random variable.
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Technical details are given in [2] and [3].

Algorithm 1: The function X1Sample
Algo1

Input: ordertr, θ, κ, σ, t, Vt and V0

Output: The value of the random variable X1

Truncation method
X1 ∼ ∑ordertr

n=1
1

γn

∑Nn

j=1 Expj(1) + Chi-square random variable

Algorithm 2: The function X2Sample
Algo1

Input: ordertr, θ, κ, σ, and t.
Output: The value of the random variable X2

Truncation method ∼ ∑ordertr
n=1

1
γn

Γ(δ/2, 1) + Chi-square random variable

Algorithm 3: The function X3Sample
Algo1

Input: ordertr, θ, κ, σ, and t.
Output: The value of the random variable Z
Truncation method Z

∑ordertr
n=1

1
γn

Γ(2, 1) + Chi-square random variable

Algorithm 4: The function SampleC
Algo1

Input: θ, κ, σ, t, Vt

Output: The value of the random variable (Vt,
∫ t

0
V sds)

Using the representation of Theorem ?? taking a default value
ordertr = 20

In order to take into consideration all variables, one has to make sur that
all Gaussian variables are good egnough to make this kind of situation with all
other variables, in order to make sure that the constant is good enough to build
a goo estimator. One can wonder if an only if all other variables can be taken
into account to make sure the following result. In other hand, one had to derive
some properties to make understant tghat you need this kind of situation but
in the case a bullish market all correaltion value takesz a hige value, but stabke.
The idea is to make understant that the correlation is negtivaly correlated but
one has to underestimate the skew of the market that derives from the option
pricing market research. du you hear me ima talking to acroos the rives, baby
im trying, i feel i keep in my mind luckuy to my best friend, all market are
available in order to take into consideration all variables to make sure that all
variables are gaussian but if we consider that are ckideux, one has to consider
that the variable are positive, then we have some kind of biaised mean to take
into consideration for this kind of consideration that can be sure in the world
of the Laplace derivative. We are able to make that all kind of situation are
avalaible to make sure that the
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