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1 Preliminaries

A real Lévy process X is characterized by its generating triplet (v, 02, 7). Where
(v,0) € R x RT, and v is a Radon measure satisfying

/ (LA 2?) v(dz) < oo
R
By Lévy-1td decomposition X can be written in this form

X, :’ytJraBtJrX,erliirg)?f (1.1)

With
|AX,|>1

X,f :/ xJx (dx x ds) = Z AX,
|z|>1,s€[0,t]

0<s<t

X - / 2(Jx (dz x ds) — v(dz)dt)
e<|z|<1,5€[0,t]

/ xJx (dz x ds)
e<|z|<1,s€[0,]

e<|AX <1

Z AX, — t/ zv(dz)

0<s<t e<|z|<1

Where J is a Poisson measure on Rx [0, co) with rate v(dx)dt and B is a standard
Brownian motion. In Lévy-Khinchine representation X, we characterize X by
its characteristic function. That means

Ee'Xt = (W) yy e R
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where ¢ is given by

o2u?

o(u) = iyu — + /R(e“”c — 1 —iduzll ), <i)v(dzx) (1.2)

For any € € (0,1) we define the process R® by

Rf = —X{ +lim X} 1.3
t t T leiI,I()l t (1.3)
and X°€ by
X{ =~t+ 0B, + X! + X¢ (1.4)
Then
X =X; +R; (1.5)
We set
M; = sup X
0<s<t
MY = sup X¢
0<s<t
e,X . €
m =k X
Mf = sup (XE+ o WV,)
0<s<t
Where W is a standard Brownian motion independent of X, and o(¢) = f\z\<e z?v(dx).

2 Simulation method

We focus on the simulation of a lookback option with maturity 7', where the
Levy process is infinite activity without Brownian part. Our goal is to simulate
Mrp. In fact we can not simulate My, we will then approximated by M or

(M)%. This introduces a bias. Denote by J the Poisson measure on R x [0, 00)
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of intensity v(dz)dt, then for ¢ > 0, we have
X; = Xy —R;

= 'yt—i—/ xJX(dde8)+/ xJx (dx x ds)
|z|>1,s€[0,t]

e<|2|<1,5€[0,]

= (v- / zv(dzx) t+/ xJx (dx x ds)
e<|z|<1 |x|>e,s€[0,t]

= |v- / zv(dx) t+/ xJx (dx x ds)
e<|z|<1 z>e,s€(0,t]

+/ xJx (dz x ds)
z<—e,s€[0,t]

N} N,
= YN Y
=1 1=1

Where 7§ = v — f6<‘x|<1 zv(dzx), the rv. (Y;*

i )iZl
l/+ X —
U(;(fog), the r.v. (Y; )i21

v and v correspond respectively to v restricted on (0, +0oc0) and on (—o0,0).
The process X ¢ is a compound Poisson process. So to simulate M., it suffices to
simulate the instants of jump of X€¢ and the corresponding jump. The random
variable EM )5 must be approximated by its discrete version in the case of look-
back options. The number of discretization points in this case is greater than in
the case of classic jump-diffusion model. The Probem that arises is because the
numbers of jumps on [0, 7] is relatively large, how to quickly simulate the size
of the jumps. The simulation of the instants of jump is relatively simple, we will

focus on simulation of jumps, including (Yi+)i>1' Simulation of (Y[)Dl will be

are i.i.d. with common law

.. . ~(~d
are i.i.d. with common law Z(Em f)) The measures

identical. Let A = v(e, 00). The cumulative distribution function of Y;* cannot
be determined explicitly, and hence the inverse distribution function either. So
one way to simulate Y1+ is to use a rejection method. This is time consuming,
especially since it will make on average AS 1" simulations. The alternative is to
make a discrete inversion of the cdf, Fy, of Y;©. We have, for all z > €

Fu(z) = i / " (de)

We will define a positive real A in order to have v(A, +00) very small, in order
of 1071 for example (that is what we choose in our simulations). We suppose
then that the r.v. Y;" is in [¢, A]. Set for any k € {0,...,n}

A—e¢

n
g = Fy (te)
Fi(A)

T, = k +€
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Where n is the number of the discretization points on [e, A]. Note that yo = 0.
How do we compute (F4(2));<,<,? Notice that for any k € {1,...,n}, we
have o

k
Fy(en) =Y (Fi(ag) — Fi(eo1))
j=1

with

(Fe(e)) = Faay) = [ vido)

tj,1

Depending on the Lévy measure, we will define some approximation method for
the integrale j;t] _v(dx). We define the function G by, for any y € [0, 1]
i

Gily) ==

where x is the unique real satisfying 51((2)) = y. Let y € [0,1], to compute

G4 (y), we use the following method. We have to find first the integer & > 1
satifying yr—1 <y < yr. Then we have

G (y)
yE) =t [ vy
Thk—1

We must approximate the above integrale depending on G4 (y), and express the
latter as a function of y. We will call G, the discrete inverse function of F.
When n and A are going to the infinity, we the inverse function of F'y. For our
simulations, we suppose that Y;" is equal in distribution to G, (U), where U is
a uniform r.v. on [0, 1]. We will use as control variate, eXT. its expected value
is known with an error whoch we can control.

3 Estimation of the inverse cdf of the jumps

We will, for some popular models, estimate the function G,. The models that
we consider in this section are VG, CGMY and NIG. Our method can work for
any other model.

3.1 The Variance-Gamma case

Let G be a gamma process with de parameters (p,x) € Ri x RY (see [5]),

satisfying Go = 0 and for any t > 0 and h > 0, G¢yp — G¢ have a gamma

distribution with parameters (h“??, ﬁ). In fact in financial applications p = 1,
“w

and the process (Wg,),~ is a VG processus VG with parameter (0,0, ). Its

characteristic exponent is given by

S
o(u) =log [ {1 —ifku+ 5 KU
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The process (We, );>¢. can be defined by its Lévy measure v. Indeed

—Mz —G|z|

v(dz) = CS—1yuodz + O 1, coda
x ||
Where
1
c = -
K
1 /2 62 0
M = W/ i+5 -5
o H+02 o2
1 /2 62 0
G = Neitetse
g K g g

This is a particular case of the CGMY process (by taking Y = 0, see [3]). The
pad of Y| is then

—Mz
f+(@) = f;rex’ T >€

Then for any = > €

Hence

C Tk efMy
Fi(ow) ~ Fiolan1) = 1o / —dy
+ Jxr—1

We approximate this integrale by

Eﬁe—M$k71 /Ek @dy _ gﬁe—Ma:kf1 log ( Tl )
)‘+ zr—1 Y /\-‘r Lk-1

Then the function G satisfy

C G+ o—My
Yy (A) = yp—1 + —/
o1 Yy

d
S Y

As previously the above integrale is approximated by

Ee—Mxk,l log G+(y)
)\Sr Tp—1

Hence G4 (y) can be approximated by
Aﬁ
s o0 |G (L (A) i) e (3:6)

In the VG model My is approximated by M. In the table 3.1, we observe the
convergence of our method with respect to e. Note that the errors are relative,
and we mean by “true” price that obtained by [Becker(2008)].
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€ price | Monte Carlo error | total error
10-1 | 7.076 0.05% 24.7%
1072 | 9.347 0.08% 0.50%
1073 ] 9.401 0.08% 0.04%

Table 3.1: Approximation of the continuous call lookback price in VG model.
Les parameters are : Sy = 100, r = 0.0548, § = 0, T" = 0.40504, S, = 100,
0 = —0.2859, k = 0.2505, 0 = 0.1927 and n = 1000000. The “true” call price is
9.39827.

3.2 The CGMY case
It is a pure jump Lévy process (see [5]), with Lévy measure

—Mz e—Gkﬂ

]lz>0df1}' -+ CW ]l:,;<0dx

v(dz) = C<

.131+Y

Where C, G et M are positive, and Y € (0,2). When Y = 0, we get the
Variance-Gamma model. Its characteristic exponent is given by

C((M—iu)log(l—E)—F(G—&-iu)log(l—i—g)), siY =1

Y (1o Y—1+@ v (14 Y—1—%
M M G G

In the CGMY model, the pdf of Y;* is

p(u) =
CT(~Y)

C e—ﬂlw
fi(z) = EW7 T>€

Then its cdf is

C [*e My
Fi(z) = )‘i/ Wdl/

Hence

C [T My
Polo) = Fr(on) = 5 [ Sy
+ Jrr—1

Then we approximate Fy (zy) — Fy(xg—1) by

C _u /Ik 1+Y C _u 1 1
e € ot Y dy = ¢ o Y
A% - ALY xf_l xz

k—1

So G4 is solution of the equation

C G (y) e~ My
yF(A) = yp—1 + )\T/ ﬁdy
+ Yy

Tk—1
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€ prix erreur statistique | erreur totale
1071 | 14.212 0.07% 2.54%
1072 | 13.903 0.07% 0.30%
1073 | 13.868 0.07% 0.07%

Table 3.2: Approximation of the discrete put lookback price (where the number
of discretization points is N = 252) in CGMY model. The parameters are :
So =100, » = 0.05, § = 0.02, T =1, Sy =100, C =4, G = 50, M = 60,
Y = 0.7 and n = 1000000. The “true” price is 13.8600.

We approximate the above integrale by

C e, L1
ALY o (Ge)Y

Hence G4 (y) can be approximated by

L
Y

1 ALY aray a
Tr—1 A — .
lx{_l c ° (yF+(A) — ye-1) (3.7)

The r.v. My is approximated by M; In the table 3.2, we observe the conver-
gence of our method with respect to €. The errors are relative, and we mean by
“true” price that obtained by [Feng-Linetsky(2009)].

3.3 The NIG case

Like the VG model, the NIG (Normal Inverse Gaussian) model (see [7]) is a
particular case of the hyperbolic models. It is charterized by four parameters :
a, B, 0 and p. Where 0 < |8] < a, § > 0 and p € R. Its generating triplet are
(7,0,v), where

1
vo= ,u—|—2a—5/ sinh(8z) K1 (ax)
T Jo
ad
= _ B
v(dx) 7T|x‘K1(a|x|)e dx

with

1 - 1 1
Ky (2) = §/R+ y* exp (—22 <y+y>>dy

In financial applications we set g = 0. Then the NIG is represented by three
parameters : («,3,6). The cdf of Y;T) is

- K B
fi(x) — 1(ax)e’®, ©>¢
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And then its cdf is given by
o (" K
Fy(z) = O‘i/ Meﬂydy
T Je Y
Therefore

ad [*F Ki(«
N

To approximate the above integrale, we need to study the asymptotic behaviour
of K;. We have (see [1], formulas 9.7.2 et 9.8.7)

Kq(x) % g, for a given C>0
T €T

Ky(x) —e "

x—::-oo 2x
Hence the following approximation
ad o d ad 1 1
— g1 Ky (ompq)eP / % = —ap_1 Ky (awp_q)e’™ ( - )
T w1 Y m Tp-1 Tk

In NIG case G4 satisfy

as [G+®) Ki(ay)

Yyl (A) = yp1 + — Py

Tr—1
So we approximate G (y) by

~1
< 1 ™ yF(A) — yp—1 e_gwkl) (3.8)
Tp—1  ad xp_ 1 Ki(axg_q)

The Y| case is treated is the same way, we only need to substitute 8 by —p.
In this model My is approximated by Mf. In the table 3.3, we observe the
convergence of our method with respect to e. The errors are relative, and we

€ prix | erreur statistique | erreur totale
1071 | 13.48 0.0% 10.33%
1072 [ 12.43 0.08% 1.74%
1073 | 12.25 0.08% 0.31%

Table 3.3: Approximation of the discrete put lookback price (where the number
of discretization points is N = 252) in NIG model. The parameters are : Sy =
100, r = 0.05, § = 0.02, T =1, S, = 100, o« = 15, B = —5,0 = 0.5 and
n = 1000000. The “true” price is 12.2224.

mean by “true” price that obtained by [Feng-Linetsky(2009)].
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