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1. Standard European Option

1.1. Localization and Discretization. Let us consider a stock S described by
the following stochastic equation:

(1.1)







S0 = y

dSt

S
t−

= µdt+ σdBt + d(
∑Nt

j=1 Uj),

where y is the price spot at time 0, (Bt)t≥0 is a Brownian motion, (Nt)t≥0 is
a Poisson process with deterministic jump intensity λ, (Ut)j≥1 is a sequence of
positive, independent stochastic variables with, at most, time-dependent density
ξ(., t) and µ and σ are two constants, such that σ > 0. Then, we have

(1.2) St = S0

(

Nt
∏

j=1

(Uj + 1)
)

e(µ− σ2

2 )t+σBt .

We suppose that r is a deterministic risk-free interest rate such that

(1.3) µ = r − λEU1.

We recall that the price of an European option in the Merton’s model can be for-
mulated in terms of the solution to a Partial Integro-Differential Equation (PIDE).
After logarithmic transformation Xt = log(St), the price at time t of the option is
Vt = u(t,Xt) where u solves the integro-parabolic equation

(1.4)







∂u
∂t + Au+ Bu = 0 [0, T ) × R

u(T, x) = ψ(x) x ∈ R,

where

(1.5) Au =
b2

2

∂2u

∂x2
+ a

∂u

∂x
− ru,

(1.6) a = (r − δ − λEU1 − σ2

2 ), b = σ,

and

(1.7) Bu = λ

∫

R

(u(t, x+ z) − u(t, x))ν(dz).

The notations are

• x is the logarithm of the stock price
• σ is the volatility
• r is the interest rate
• δ is the instantaneous rate of dividend
• ψ is the pay-off
• T is the maturity
• R is the real line (−∞,+∞)

We start by limiting the domain in space: the problem will be solved in the finite
interval Ωl := [x− l, x+ l]. One chooses l so that

(1.8) P (∃s ∈ [0, T ], |Xx
s | ≥ l) ≤ ǫ.
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Once Ωl is chosen, we solve the following local problem:

(1.9)























∂u
∂t + Au+ Blu = 0 (t, x) ∈ [0, T ] × Ωl

u(t, x) = ϕ(t, x) (t, x) ∈ [0, T ] × Ωc
l

u(T, x) = ϕ(T, x) = ψ(x) x ∈ R,

where the differential operator A is defined in (1.5) and Bl is such that

(1.10)

Blu = λ
∫

Ωl,x
(u(t, x+ z) − u(t, x))ν(dz)+

+λ
∫

Ωc
l,x

(ϕ(t, x+ z) − u(t, x))ν(dz),

with

Ωl,x = {z ∈ R : x+ z ∈ Ωl}.

We suppose now that the jump variable U1 is log-normal distributed. Then the
density function ν(dz) = ξ(z)dz is of the following form:

(1.11) ξ(z) =
1

√

2πγ2
e

−
(z−µ)2

2γ2 .

In this case, we can select the finite interval [zmin, zmax] such that

(1.12) ∀ z ∈ [zmin, zmax]c, | ξ(z) |≤ ǫ ǫ ≪ 1.

More in general, we can take [zmin, zmax], such that
∫ zmax

zmin

ξ(z)dz ≈
∫ ∞

−∞

ξ(z)dz − ǫ = 1 − ǫ, ǫ ≪ 1.

From (1.12), we get

(1.13)















zmin = µ−
√

2γ2 ln 1

ǫ
√

2πγ2

zmax = µ+
√

2γ2 ln 1

ǫ
√

2πγ2
,

Then, we can solve the numerical problem (1.9), in the following interval:

[xmin, xmax] = [x̄− l + min(0, zmin), x̄+ l + max(0, zmax)],

where x̄ is an input stock value, x̄ = ln s̄.
We define,

h =
xmax − xmin

N
, xj = xmin + jh j = 0, ..., N

We write u(tn, xj) = un
j and we set

Ωh = {xj ∈ R | xj ∈ Ωl},

jl =
[ | min(0, zmin) |

h

]

,

ju = N −
[ | max(0, zmax) |

h

]

.
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1.2. Bl approximation. We set ν(dz) = ξ(t, z)dz then the Bl operator is

Blu =
[

λ

∫

Ωl,x

u(t, x+ z)ξ(t, z)dz − λu(t, x)
]

+

+
[

λ

∫

Ωc
l,x

ϕ(t, x+ z)ξ(t, z)dz
]

= B̄lu(t, x) + φ(t, x).

• Standard approximation

For j = 0, ..., N ,

B̄lu(., xj) ≈ B̄hu(., xj) = λh

ju−j
∑

i=jl−j

u(., xj+i)ξ(., xi) − λu(., xj),

φ(., xj) ≈ φh(., xj) = λh
∑

i+j<jl

i+j>ju

ϕ(., xj+i)ξ(., xi).

• FT approximation

The discrete correlation of two functions gi, hi, each periodic with period
N , is defined by

Corr(g, h)j =
N−1
∑

i=0

gj+ihi.

The discrete correlation theorem says that the discrete Fourier transform
of the discrete correlation of two real function g and h is such that

(1.14) < Corr(g, h)j >=< gi >< h∗
i >

where < . > is the discrete Fourier transforms operator, and the asterisk
denotes complex conjugation. Then, we can compute correlation using the
FFT as follows: FFT the two data sets, multiply one resulting transform
by the complex conjugate of the other and inverse transform the product.
The result will formally be a complex vector of length N . However, it will
turn out to have all its imaginary parts zero since the original data sets
were both real.
We can apply this procedure to the B̄h and φh operator.

1.3. Finite Differences. For the differential operator A, we write:

Ahu(., xj) = [
b2

2
δ2

xx + aδx − r]u(., xj),

where

δ2
xxu(., xj) =

u(.,xj+1)−2u(.,xj)+u(.,xj−1)
h2 ,

δxu(., xj) =
u(.,xj)−u(.,xj−1)

h + α
u(.,xj+1)−2u(.,xj)+u(.,xj−1)

h ,

where α is chosen such that:






ha ≤ b2

2 α = 1
2

ha > b2

2

{

α = 0 a > 0
α = 1 a < 0
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1.4. The "θ-scheme". We define the time grid size k > 0 such that

Tk = {tn | tn = kn, n = 0, ...,M − 1}.
Then we consider the following discrete operator,

(1.15)

un+1
j

−un
j

k + Ah[θAu
n
j + (1 − θA)un+1

j ]+

+θB [B̄hu
n
j + φn

h,j ] + (1 − θB)[B̄hu
n+1
j + φn+1

h,j ],

where θA, θB ∈ [0, 1]. We set the two following choices:

1.5. Explicit scheme. θA = θB = 0, computationally feasible but potentially un-
stable and suffer from the drawback that their convergence in the time domain are
only of O(k).
For every n = M − 1, ..., 0 we solve,
(1.16)






un
j = ϕn

j , j = 0, ..., jl − 1 and j = ju + 1, ..., N

un
j = p1u

n+1
j−1 + p2u

n+1
j + p3u

n+1
j+1 + kλ(h

∑iu

i=il
ξiu

n+1
j+i − un+1

j ), j = jl, ..., ju,

where

p1 = k
( b2

2h2
+
a

h
(1 − α)

)

, p2 = 1 − k
( b2

h2
+
a

h
(1 − 2α) + r

)

, p3 = k
( b2

2h2
− a

h
α

)

.

1.6. “Asymmetric” scheme. θA = 1/2, θB = 0, stable and efficient but accuracy is
lost due to the asymmetric treatment of the continuous and jump part.
We have to solve, for n = M − 1, ..., 0, the following linear system

(1.17) Aun = Bn+1,

where un = (un
0 , ..., u

n
jl
, ..., un

ju
, ..., un

N )T ,

(1.18) A =





Il 0
Ã

0 Iu



 ,

Il and Iu are two identity matrix, (jl −1)×(jl −1) and (N−(ju +1))×(N−(ju +1))
respectively, and Ã is a (ju − jl) × (ju − jl) tridiagonal matrix such that

Ã =

















a1 a2 0 · · 0
a0 a1 a2 0 · 0
0 a0 a1 a2 0 ·
· 0 0
· · 0 a0 a1 a2

0 · · 0 a0 a1

















a0 = − k
2

(

b2

2h2 + a
h (1 − α)

)

a1 = 1 + k
2

(

b2

h2 + a
h (1 − 2α) + r

)

a2 = − k
2

(

b2

2h2 − a
hα

)

and

(1.19) Bn+1 = (ϕn+1
0 , ..., ϕn+1

jl−1, f
n+1
jl

, ..., fn+1
j , ..., fn+1

ju
, ϕn+1

ju+1, ..., ϕ
n+1
N )T ,

where, for j = jl, ..., ju,

fn+1
j = −a0u

n+1
j−1 + (2 − a1)un+1

j − a2u
n+1
j+1 + kλ

(

h

iu
∑

i=il

ξiu
n+1
j+i − un+1

j

)

.
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1.7. The ADI-FFT scheme (Andersen and Andreasen). In the article [1],
Andersen and Andreasen propose an FFT-ADI (Fast Fourier Transform - Alternat-
ing Implicit Direction) scheme to avoid instability problem of the explicit methods.
The FFT technique is applied to the correlation term and coupled with an ADI
method, where each time step is split into two half-steps.

step 1) tn+1 −→ tn+1/2

We set in (1.15) θA = 1 and θB = 0, which gives us

(1.20) [
2

k
− Ah]un+ 1

2 = [
2

k
− λ+ λCorr(ξ, .)]un+1,

that can be solved by first computing the correlation Corr(ξ, un+1) in the
discrete Fourier space, where by (1.14),

< Corr(ξ, un+1) >=< ξ >< un+1 > .

If we observe that < ξ > only needs to be compute once, the computational
cost associated with the correlation part is one FFT and one inverse FFT,
i.e. O(N log2 N). Second, by solving the tridiagonal system.

step 2) tn+1/2 −→ tn
We set in (1.15) θA = 0 and θB = 1, whereby

(1.21) [
2

k
+ λ− λCorr(ξ, .)]un = [

2

k
+ Ah]un+ 1

2 .

If we let

y = [
2

k
+ Ah]un+ 1

2

we can write the Fourier transform of (1.21) to arrive at

(
2

k
+ λ) < un > −λ < ξ >< un >=< y > ⇒

⇒ < un >=
< y >

( 2
k + λ− λ < ξ >)

.

We can now transform the equation back to obtain un. All in all this
requires one tridiagonal matrix multiplication, one FFT and one inverse
FFT, i.e. a procedure with a computational burden of O(N log2 N).

1.8. Boundary conditions for the PIDE arising in the jump-diffusion
models. The question is: how to choose the function ϕ(t, x) in the PIDE equation
(1.9)?
A good choice is, of course, to get ϕ(t, x) as the payoff function ψ(x). More in
general (see [1]), we could assume ϕ(t, x) to be linear in ex and we could write

ϕ(t, x) ≈ [gl(t)e
x + hl(t)]1{x<x̄−l} + [gu(t)ex + hu(t)]1{x>x̄+l}

where gl, hl, gu, hu are deterministic functions. Those technique is only directly
possible when we explicitly know the asymptotic behavior of u, i.e. the coefficients
gl, hl, gu, hu. However, if we assume asymptotic linearity of u in ex, we have that

| u(t, x) − f(t, x) |−→ 0 when | x |→ ∞,

where f solves the Balck-Scholes PDE

(1.22)
∂f

∂t
+ (a+ λEU1)

∂f

∂x
+
b2

2
− rf = 0,

subject to the same boundary as (1.9). Hence we can make the approximation

(1.23) ϕ ≈ f1{x∈[x̄−l,x̄+l]c}.

Using this we can solve (1.22) on a wide and possibly coarse Crank-Nicolson grid
on some interval [x1, x2] ⊃ [x̄− l, x̄+ l] = [x∗

1, x
∗
2] to obtain the discrete solutions for
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f , and then use these solutions to find the coefficients gl, hl, gu, hu as the solutions
to

f(t, x1) = gl(t)e
x1 + hl(t); f(t, x2) = gl(t)e

x2 + hl(t)

f(t, x∗
1) = gl(t)e

x∗

1 + hl(t); f(t, x∗
2) = gl(t)e

x∗

2 + hl(t).
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