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Premia 18

1 Link between CDOs and Copulas

We will thereafter consider a synthetic CDO with some given maturity 7. This is based
upon n CDS with nominals N;,j = 1,...,n and maturity also equal to 7. We denote by 9,
the recovery rate for credit j and by M; = (1 — ;) N; the corresponding loss given default.

For the n names in the collateral pool, we consider the associated default times 7,...,7,
defined on a common probability space (£2,G,[P). In the following, we will consider only
reduced-form models of default times defined by

T = inf{u e RT, /Ou hi(v)dv > — log(Ui)}, (H;)

where the h; are deterministic and continuous positive functions, the U; are some uniform
random variables.

In order to compute (by a semi-analytic approach) the price of one CDO tranche, all we
need is the portfolio loss distribution 7.e. the portfolio aggregate loss on the credit portfolio
at time t:

t) = Mjlg<n

j=1

which is a pure jump process. This distribution depend on the joint distribution of the
default times 7, ..., 7, that we modelling using a classical factor approach and Copula func-
tions.

We denote by F' and S respectively the joint distribution and survival functions such that
for all (t1,...t,) € [0,T]", F(t1,...,tn) =P(11 < t1,...,7n < t,) and S(t1,...,t,) = P(11 >

tiy..oyTn > ty). F1,..., F, represent the marginal distribution functions and Si,..., S, the
corresponding survival functions. By the assumption (H;), we have

Si(t) =P(r; > t) = exp(— /Ot hi(v)dv). (1)

We refer to Appendix for the proof of (1).

We will consider now a latent factor V' such that conditionally on V', the default times are
independent. We will denote by pf;' = P(r; < t|V) and q| =1 — pIV(t) the conditional
default and survival probabilities. It is easy to check that

S(t1,...,t /qu}
F(tl,..., /le\v

So, if we can easily compute the conditional default probabilities and integrate along the
density of the factor V', we are able to compute the joint distribution of the default times.
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Définition 1. A copula C' is a multivariate joint distribution on the m-dimensional unit cube
[0,1]™ such that every marginal distribution is uniform on the interval [0, 1].

C:(Ul,"',Um>€[0,].]mf—>P(U1SU]_,"’,Umgum)

Ui, , Uy is a random vector whose marginals are uniform on [0, 1].

2 (Gaussian Copula

We consider a standard Gaussian random variable V', and we define the Gaussian vector
(Xla s 7X7L) by
Xi=pV +/1-p*V;
where V; are independent (Vi, j, V; L V; and Vi, V; L V) standard Gaussian random variables.
We define the uniform random variable U; = 1—N(X;) where N is the cumulative distribution

function of a standard Gaussian variable. The joint distribution of (Uy,...,U,) is known as
the Gaussian copula. Then, we get

IV — N<N_1(Fi(t)) - pV)‘ @)

with Fj(t) = 1 — exp(— [3 hi(v)dv).
We refer to Appendix for the proof of (2).

3 Clayton Copula

We consider a positive random variable V following a standard Gamma distribution I'(\, &)
with parameters A = 1, = 1/6 where 6 > 0. Its probability density is given by f(z) =
ﬁ exp(—z)z1=9/? for > 0. We define the uniform random variables Uy, - - - , U,

Uj=1- q;(—log‘(/Ui)),

where Uy, ..., U, are independent uniform random variables also independent from V', and
U is the Laplace transform of f. The joint distribution of (Uy, ..., U,) is known as the Clayton
copula.

The conditional default probabilities can be expressed as

p" =exp(V(L=F()™)),
with Fj(t) = 1 — exp(— J3 hi(v)dv).

4 NIG Copula

For more details on the NIG copula, we refer to [1]. The Normal Inverse Gaussian distri-
bution (NIG) is a mixture of normal and inverse Gaussian distributions. A non-negative r.v.
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Y has inverse Gaussian distribution with parameters a > 0 and 5 > 0 if its density function
is of the form:

—3/2 exp (—%) ify >0
0 y <0.

Fra(y 0, B) :{ V25’

A r.v. X follows a Normal Inverse Gaussian (NIG) distribution with parameters «, 3, u and
¢ if:

XY =y ~N(u+ By,y)

Y ~ Ig(5’7772) with v := \/042f527

with parameters satisfying the following conditions: 0 < || < « and § > 0. We write
X ~ NZIG(a, B, p,d) and the density function is given by:

fvzs(oia 5. nd) = 2O 5+ = ).

where Ki(w) = 3 [ exp(Ztw(t +¢1))dt is the modified Bessel function of the third kind.
The probability function is given by

Fyzg(x / fnzg(t)dt = /OON<JW> frg(y; 67,7 dy

z — (p— Blog(t)) : 1
—/ ( s )fzg(—log(t)ﬁ%’yz)tdt

The first equality is due to the fact that the NIG distribution stems from a convolution of
the normal and the inverse Gaussian distribution. The second one follows from the change
of variable t = exp(—y).

The main properties of the NIG distribution class are the scaling property

g

X ~NIG(a, B, 11,0) = cX NNIQ(%,E,C,U,,Cé)

and the closure under convolution for independent r.v. X and Y

X NNIQ(Q,B,ML(Sl),Y NNIQ(OZ,B,[JQ,(;Q)
:>X+YNNIQ(O[7167M1 +M2751 +52)

In our implementation, we consider a random variable V following a NIG distribution with
parameters
af

ab
)

where v = \/a? — 32, and we define the vector (X1, -+, X,,)

V ~NIG(a, B, —

Xi=pV +/1-p*Vi,
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where V; are independent (and independent from V') NIG random variables with parameters

VNG VI, =P od TP

p T p Py p

a).

To simplify notations we denote Fjrzg(s)(w) the cumulative distribution of a NIG random

variable with parameters NZG(sa, sf3, —30‘75, sa). Using the scaling property and stability

under convolution of NIG distribution we get X; ~ NZG(1/p). We define the uniform random
variable U; = 1 — Firzga1/p)(Xi). The joint distribution of (Uy,...,U,) is known as the NIG
copula. We get

—1
o Fyzga/p) Filt) — pv).

by FNIQ \/l z/p( m
5 Student Copula

Définition 2. Let G and Y be two independent r.v. s.t. G ~ N(0,1) and Y ~ x?(v). Then,
X = \/gG is a Student r.v. with parameter v. The density of the Student law is given by

I'((v+1)/2) 1
t(t) = teR.
v 2\ (v+1)/2
v (1 +2)
In our implementation, we define for i =1,--- ,n

X; = \/7(,0‘/—1— 1—p v)

where V, Y and Vi,---,V, are independent r.v. s.t. V ~ N(0,1), V; ~ N(0,1) and Y ~
x2(v). X; is a Student r.v. with parameter v. Let us define U; := 1 —T,(X;), where T}, is the
cumulative distribution function of a Student r.v. with parameter v. The joint distribution
of (Uy,...,Uy,) is known as the Student copula. We get

l- T, (Fi(t)y/Y — oV
R G (3)

The proof of (3) is postponed to the Appendix.

6 Double T Copula

Let M be a Student r.v. s.t. M ~ S(v). We define the vector (Xi,---,X,) by

NS e = 9

where (Z;)i=1.., are independent Student variables with parameter v. Let T, 5 denote the
cumulative distribution of X;. The definition of 7, ; can be found by using the law of M and

Zi
P(X; <2) = /Rdw/Rdy (p\/yij +/1- pz\/?y> Loyy<:tu(2)to(y).
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Then, we define U; := 1 — T, 5(X;). The joint distribution of (Uy,...,U,) is known as the
Double-t copula. We get

; T,5(Fi(t) = py) 72 M
p" =T 1ng )- 4)

The proof of (4) is similar to the proof of (3).

7 Numerical values for the Copula parameters

Type Parameters (example value)
Gaussian Correlation p (0.03)
Clayton 6 (0.2)
NIG Correlation p (0.06), « (1.2), 5 (—0.2)
Student Correlation p (0.02), Degree of freedom t1 (5)
Double t | Correlation p (0.03), Degree of freedom t1 (5), Degree of freedom t2 (7)

8 Appendix
8.1 Proof of (1)
We have
7 = inf{fu € RT : — /Ou hi(v)dv > —log(U;)},
= inf{u € R" : exp(— /Ou hi(v)dv) < U;}.
Since u — exp(— [ hi(v)dv) is adecreasing function (denoted f) with values in [0, 1], we get

P(r; > t) = P(inf{u € R : f(u) < U;} > t) =P(f(t) > U;) = f(t) = exp(— /Ot hi(v)dv).

8.2 Proof of (2)

U; is a uniform r.v.: 1 — U; = ®(X;) and ® is the cumulative density function of X;, then
O(X;) ~UO0,1]. (P(U; < k) =P(®(X;) < k) =P(X; < &1 (k)) = &(2 (k) = k).
From the definition of 7;, we get 7, = inf{t : S;(¢t) < U;} = inf{t : 1 — F;(t) < U;} = inf{t :
Fi(t) > 1—U;} = inf{t : F;(t) > ®(X;)} = inf{t : X; < &1 (F;(¢))}. Then

P(r; < t|V) = P(inf{u € R" : X; < &Y (Fj(u))} < t|V)
(@L(F;(t)) > X;|V) since u — ®~1(F;(u)) is increasing

Il
= 5
As)
<
_l_
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|
S
()
=
A
i
=
=
3
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8.3 Clayton Copula

The Laplace transform of f is U(s) = W Indeed,

1 * _er —w Ao
\I’(S) = le)/() (& o ldﬂf

1 o0 1
_ —(s+1)z,.5—1
D /0 e xo dx

@

= — t dt————.
1“(91)/0 R P

Since ['(601) = [ etto1dt, we get the result The inverse function is Ul(s) =50 —1.
The r.v. U; are uniform:

PU; < k) =P(1—U; <k) =P <\I,(_10g(Ui)) - k) b ( log(Ty) (k)>

<j

P(—log(U;) > V (k™ — 1)) = P(U;
E[E[1 U, Sexp(V(l—k*g))H/H = E{P(Ui
E

[exp(V/(1 - k_e))] = — /OOO exp(v(1l — k_e))e_%é—ldv

1
1 00 k=0 14 1 ) e 1 1 1 71
:W/O e L dU:F(G—l)/o e fxe dl‘p <k—9) =k.

Let us prove that the conditional default probability is pilv = exp(V(l - Fi(t)*g)). To
do so, we write ; = inf{t : S;(t) < U;} = inf{t : 1 - Fi(t) < U;} = inf{t : F(t) >
L= Ui} = inf{t : Fi(t) > O(=5F)} = inf{t : Uy < exp(~VE 1 (Fy(1)))}. Then, since
u +— exp(—V W L(F;(u))) is an increasing function, we get

P(r; < t|V) =P(inf{u € R" : U; < exp(=V U L(F;(u)))} < V)
= P(U; < exp(~VI (F(1)|V) = exp(V(1 - F()™)).

8.4 Proof of (3)

From the definition of 7;, we get 7, = inf{t : S;(t) < U;} = inf{t : 1 — F;(t) < U;} = inf{t :
Fi(t) >1-U;} =inf{t : F;(t) > T,(X;)} = inf{t : X; < T, ' (Fi(t))}. Then
P(r; < t|V) = P(inf{u € R" : X; < T, Y (Fy(u))} < t|V)
= P(T, L (Fi(t)) > X;|V) since u — T, ' (F;(u)) is increasing

=P (pV+ 1—p2V; < \/nyl(Fi(t))‘V)
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