
Pricing of Exotic Options under Infinite Activity Lévy Model

DIA El Hadj Aly ∗

An infinite activity Lévy process can be approximated by a Lévy process with finite activity. The
resulting errors can be controlled. In this note we will see how, once the approximation made, we can
evaluate the prices of lookback and Asian options.
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1 Preliminaries

A real Lévy process X is characterized by its generating triplet (γ, σ2, ν). Where (γ, σ) ∈ R×R
+, and ν

is a Radon measure satisfying

∫

R

(
1 ∧ x2

)
ν(dx) < ∞

By Lévy-Itô decomposition X can be written in this form

Xt = γt + σBt + X l
t + lim

ǫ↓0
X̃ǫ

t (1.1)

With

X l
t =

∫

|x|>1,s∈[0,t]

xJX(dx × ds) ≡

|∆Xs|≥1∑

0≤s≤t

∆Xs

X̃ǫ
t =

∫

ǫ≤|x|≤1,s∈[0,t]

x(JX(dx × ds) − ν(dx)dt)

≡

∫

ǫ≤|x|≤1,s∈[0,t]

xJ̃X(dx × ds)

≡

ǫ≤|∆Xs|<1∑

0≤s≤t

∆Xs − t

∫

ǫ≤|x|≤1

xν(dx)

Where J is a Poisson measure on R× [0, ∞) with rate ν(dx)dt and B is a standard Brownian motion. In
Lévy-Khinchine representation X, we characterize X by its characteristic function. That means

EeiuXt = etϕ(u) ∀u ∈ R

where ϕ is given by

ϕ(u) = iγu −
σ2u2

2
+

∫

R

(eiux − 1 − iux1|x|≤1)ν(dx) (1.2)
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For any ǫ ∈ (0, 1) we define the process Rǫ by

Rǫ
t = −X̃ǫ

t + lim
δ↓0

X̃δ
t (1.3)

and Xǫ by

Xǫ
t = γt + σBt + X l

t + X̃ǫ
t (1.4)

Then

Xt = Xǫ
t + R

ǫ
t (1.5)

We set

Mt = sup
0≤s≤t

Xs

M ǫ,X
t = sup

0≤s≤t

Xǫ
s

mǫ,X
t = inf

0≤s≤t
Xǫ

s

M̂ ǫ
t = sup

0≤s≤t

(Xǫ
s + σǫWs)

Where W is a standard Brownian motion independent of X, and σ(ǫ) =
√∫

|x|<ǫ
x2ν(dx).

2 Simulation method

We focus on the simulation of a lookback option with maturity T , where the Levy process is infinite
activity without Brownian part. Our goal is to simulate MT . In fact we can not simulate MT , we

will then approximated by M ǫ
T or (̂M)ǫ

T . This introduces a bias. Denote by J the Poisson measure on
R × [0, ∞) of intensity ν(dx)dt, then for t ≥ 0, we have

Xǫ
t = Xt − Rǫ

t

= γt +

∫

|x|>1,s∈[0,t]

xJX(dx × ds) +

∫

ǫ≤|x|≤1,s∈[0,t]

xJX(dx × ds)

=

(
γ −

∫

ǫ≤|x|≤1

xν(dx)

)
t +

∫

|x|>ǫ,s∈[0,t]

xJX(dx × ds)

=

(
γ −

∫

ǫ≤|x|≤1

xν(dx)

)
t +

∫

x>ǫ,s∈[0,t]

xJX(dx × ds)

+

∫

x<−ǫ,s∈[0,t]

xJX(dx × ds)

= γǫ
0t +

N+

t∑

i=1

Y +
i −

N−

t∑

i=1

Y −
i

Where

γǫ
0 = γ −

∫

ǫ≤|x|≤1

xν(dx), (2.6)

the r.v.
(
Y +

i

)
i≥1

are i.i.d. with common law
ν+

ǫ (dx)
ν(ǫ,+∞) , the r.v.

(
Y −

i

)
i≥1

are i.i.d. with common law

ν−

ǫ (−dx)
ν(−∞,ǫ) . The measures ν+

ǫ and ν−
ǫ correspond respectively to ν restricted on (0, +∞) and on (−∞, 0).
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The process Xǫ is a compound Poisson process. So to simulate M ǫ
T , it suffices to simulate the instants

of jump of Xǫ and the corresponding jump. The random variable (̂M)ǫ
T must be approximated by its

discrete version in the case of lookback options. The number of discretization points in this case is
greater than in the case of classic jump-diffusion model. The Probem that arises is because the numbers
of jumps on [0, T ] is relatively large, how to quickly simulate the size of the jumps. The simulation of
the instants of jump is relatively simple. We will focus on the simulation of of the positive jumps. The
simulation of

(
Y −

i

)
i≥1

will be identical. Let λǫ
+ = ν(ǫ, ∞). The cumulative distribution function of Y +

1

cannot be determined explicitly, and so the inverse of the cdf either. So one way to simulate Y +
1 is to

use rejection sampling. This is time consuming, especially since it will make on average λǫ
+T simulations.

The alternative is to make a discrete inversion of the cdf, F+, of Y +
1 . We have, for all x > ǫ

F+(x) =
1

λǫ
+

∫ x

ǫ

ν(dx)

We will define a positive real A in order to have ν(A, +∞) very small, in order of 10−16 for example
(that is what we choose in our simulations). We suppose then that the r.v. Y +

1 is in [ǫ, A]. Set for any
k ∈ {0, . . . , n}

xk = k
A − ǫ

n
+ ǫ

yk =
F+(xk)

F+(A)

Where n is the number of the discretization points on [ǫ, A]. Note that y0 = 0. How do we compute
(F+(xk))1≤k≤n? Notice that for any k ∈ {1, . . . , n}, we have

F+(xk) =

k∑

j=1

(F+(xj) − F+(xj−1))

with

(F+(xj) − F+(xj−1)) =

∫ xj

xj−1

ν(dx)

Depending on the Lévy measure, we will define an approximation method for the integrale
∫ xj

xj−1
ν(dx).

We define the function G+ by, for any y ∈ [0, 1]

G+(y) = x

where x is the unique real satisfying F+(x)
F+(A) = y. Let y ∈ [0, 1], to compute G+(y), we use the following

method. We have to find first the integer k > 1 satifying yk−1 ≤ y < yk. Then we have

yF+(A) = yk−1 +

∫ G+(y)

xk−1

ν(dy)

We must approximate the above integrale depending on G+(y), and express the latter as a function of
y. We will call G+, the discrete inverse function of F+. When n and A go to the infinity, we will get
the inverse function of F+. For our simulations, we suppose that Y +

1 is equal in distribution to G+(U),
where U is a uniform r.v. on [0, 1].

3 Estimates of the inverse cdf of the jumps

We will, for some popular models, estimate the function G+. The models that we consider in this section
are VG, CGMY and NIG. Nonetheless, using the same methodology we can estimate the function G+

for any other model.
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3.1 The Variance-Gamma case

Let G be a gamma process with de parameters (µ, κ) ∈ R
∗
+ × R

∗
+ (see [8]), satisfying G0 = 0 and for

any t ≥ 0 and h > 0, Gt+h − Gt have a gamma distribution with parameters
(

h µ2

κ
, κ

µ

)
. In fact in

financial applications µ = 1, and the process (WGt
)t≥0 is a VG processus VG with parameter (θ, σ, κ).

Its characteristic exponent is given by

ϕ(u) = log

((
1 − iθκu +

σ2

2
κu2

)− 1
κ

)

The process (WGt
)t≥0, can be defined by its Lévy measure ν. Indeed

ν(dx) = C
e−Mx

x
1x>0dx + C

e−G|x|

|x|
1x<0dx

Where

C =
1

κ

M =
1

σ

√
2

κ
+

θ2

σ2
−

θ

σ2

G =
1

σ

√
2

κ
+

θ2

σ2
+

θ

σ2

This is a particular case of the CGMY process (by taking Y = 0, see [4]). The probability density function
of Y +

1 is then

f+(x) =
C

λǫ
+

e−Mx

x
, x > ǫ

Then for any x > ǫ

F+(x) =
C

λǫ
+

∫ x

ǫ

e−My

y
dy

Hence

F+(xk) − F+(xk−1) =
C

λǫ
+

∫ xk

xk−1

e−My

y
dy

We approximate this integrale by

C

λǫ
+

e−Mxk−1

∫ xk

xk−1

dy

y
dy =

C

λǫ
+

e−Mxk−1 log

(
xk

xk−1

)

The function G+ satisfy

yF+(A) = yk−1 +
C

λǫ
+

∫ G+(y)

xk−1

e−My

y
dy

As previously the above integrale is approximated by

C

λǫ
+

e−Mxk−1 log

(
G+(y)

xk−1

)

Hence G+(y) can be approximated by

xk−1 exp

[
λǫ

+

C
(yF+(A) − yk−1) e−Mxk−1

]
(3.7)
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3.2 The CGMY case

It is a pure jump Lévy process (see [8]), with Lévy measure

ν(dx) = C
e−Mx

x1+Y
1x>0dx + C

e−G|x|

|x|1+Y
1x<0dx

Where C, G and M are positive, and Y ∈ (0, 2). When Y = 0, we get the Variance-Gamma model. Its
characteristic exponent is given by

ϕ(u) =





C

(
(M − iu) log

(
1 −

iu

M

)
+ (G + iu) log

(
1 +

iu

G

))
, if Y = 1

CΓ(−Y )

[
M

Y

((
1 −

iu

M

)Y

− 1 +
iuY

M

)
+ G

Y

((
1 +

iu

G

)Y

− 1 −
iuY

G

)]
, if Y 6= 1

In the CGMY model, the probability density function of Y +
1 is

f+(x) =
C

λǫ
+

e−Mx

x1+x
, x > ǫ

Then its cdf is

F+(x) =
C

λǫ
+

∫ x

ǫ

e−My

y1+Y
dy

Hence

F+(xk) − F+(xk−1) =
C

λǫ
+

∫ xk

xk−1

e−My

y1+Y
dy

Then we approximate F+(xk) − F+(xk−1) by

C

λǫ
+

e−Mxk−1

∫ xk

xk−1

dy

y1+Y
=

C

λǫ
+Y

e−Mxk−1

(
1

xY
k−1

−
1

xY
k

)

So G+ is solution of the equation

yF+(A) = yk−1 +
C

λǫ
+

∫ G+(y)

xk−1

e−My

y1+Y
dy

We approximate the above integrale by

C

λǫ
+Y

e−Mxk−1

(
1

xY
k−1

−
1

(G+(y))Y

)

Hence G+(y) can be approximated by

[
1

xY
k−1

−
λǫ

+Y

C
eMxk−1 (yF+(A) − yk−1)

]− 1
Y

(3.8)
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3.3 The NIG case

Like the VG model, the NIG (Normal Inverse Gaussian) model (see [2]) is a particular case of the

hyperbolic models. It is charterized by four parameters : α, β, δ̂ and µ. Where 0 ≤ |β| ≤ α, δ̂ > 0 and
µ ∈ R. Its generating triplet are (γ, 0, ν), where

γ = µ + 2
αδ̂

π

∫ 1

0

sinh(βx)K1(αx)

ν(dx) =
αδ̂

π|x|
K1(α|x|)eβxdx

with

Kλ (z) =
1

2

∫

R+

yλ−1 exp

(
−

1

2
z

(
y +

1

y

))
dy

In financial applications we set µ = 0. Then the NIG is represented by three parameters : (α, β, δ̂). The
cdf of Y +

1 is

f+(x) =
αδ̂

πx
K1(αx)eβx, x > ǫ

And then its cdf is given by

F+(x) =
αδ̂

π

∫ x

ǫ

K1(αy)

y
eβydy

Therefore

F+(xk) − F+(xk−1) =
αδ̂

π

∫ xk

xk−1

K1(αy)

y
eβydy

To approximate the above integrale, we need to study the asymptotic behaviour of K1. We have (see [1],
Formula 9.7.2 and Formula 9.8.7)

K1(x) ∼
x↓0

C

x
, for a given C>0

K1(x) ∼
x→+∞

√
π

2x
e−x

Hence the following approximation

αδ̂

π
xk−1K1(αxk−1)eβxk−1

∫ xk

xk−1

dy

y2
=

αδ̂

π
xk−1K1(αxk−1)eβxk−1

(
1

xk−1
−

1

xk

)

In NIG case G+ satisfy

yF+(A) = yk−1 +
αδ̂

π

∫ G+(y)

xk−1

K1(αy)

y
eβydy

So we approximate G+(y) by

(
1

xk−1
−

π

αδ̂

yF+(A) − yk−1

xk−1K1(αxk−1)
e−βxk−1

)−1

(3.9)

The Y −
1 case is treated in the same way, we only need to substitute β by −β.
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4 Asian option valuation

We will focus on the fixed strike Asian put option. The call case can be easily deduced. Floating Asian
options, can be valuated using fixed strike options and symmetry. Consider the following payoff:

(
K −

1

T

∫ T

0

S0eXsds

)+

, fixed strike Asian put option

We set

Va = e−rT
E

(
K −

1

T

∫ T

0

S0eXsds

)+

The generating triplet of X is (γ, 0, ν). In fact we will estimate the quantities V ǫ
a and V̂ ǫ

a obtained by
replacing X by Xǫ or X̂ǫ. Let

(
T ǫ

j

)
j≥1

be arrival times of Xǫ. Note

T ǫ
0 = 0

T ǫ
j = T ǫ

j ∧ T

We have

V ǫ
a = e−rT

E

(
K −

1

T

∫ T

0

S0eXǫ
s ds

)+

= e−rT
E


K −

S0

T

Nǫ
T +1∑

j=1

∫ T̂ ǫ
j

T̂ ǫ
j−1

eXǫ
s ds




+

= e−rT
E


K −

S0

T

Nǫ
T +1∑

j=1

∫ T̂ ǫ
j

T̂ ǫ
j−1

eγǫ
0s+
∑

j−1

i=1
Y ǫ

i ds




+

, see (2.6).

So

V ǫ
a = e−rT

E


K −

S0

T

Nǫ
T +1∑

j=1

e
∑

j−1

i=1
Y ǫ

i

∫ T̂ ǫ
j

T̂ ǫ
j−1

eγǫ
0sds




+

= e−rT
E


K −

S0

T

Nǫ
T +1∑

j=1

e
∑

j−1

i=1
Y ǫ

i
eγǫ

0T̂ ǫ
j − eγǫ

0T̂ ǫ
j−1

γǫ
0




+

= e−rT
E


K −

S0

T

Nǫ
T +1∑

j=1

eγǫ
0T̂ ǫ

j +
∑

j−1

i=1
Y ǫ

i − eγǫ
0T̂ ǫ

j−1+
∑

j−1

i=1
Y ǫ

i

γǫ
0




+

.

Hence

V ǫ
a = e−rT

E


K −

S0

T

Nǫ
T +1∑

j=1

e
Xǫ

T̂
ǫ−

j − e
Xǫ

T̂ ǫ
j−1

γǫ
0




+

. (4.10)

When we replace Xǫ by X̂ǫ), we get
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Proposition 4.1. Let X be an infinite activity Lévy process with generating triplet (γ, 0, ν) and f be a
Lipschitz function. We assume that EeMT < ∞. Then

Ef

(
1

T

∫ T

0

S0eX̂ǫ
s ds

)
= Ef


S0

T

Nǫ
T +1∑

j=1

e
X̂ǫ

T̂ ǫ
j−1

(
eγǫ

0(T̂ ǫ
j −T̂ ǫ

j−1) − 1

γǫ
0

+ σ(ǫ)gǫ
j

)
+ O

(
σ(ǫ)2

)
,

with

gǫ
j =

∫ T̂ ǫ
j

T̂ ǫ
j−1

eγǫ
0(s−T̂ ǫ

j−1)
(

Ws − WT̂ ǫ
j−1

)
ds

Knowing N ǫ
T and

(
T̂ ǫ

j

)

1≤j≤Nǫ
T

, the r.v.
(
gǫ

j

)
1≤j≤Nǫ

T
+1

are independent and gaussian, and

var
(
gǫ

j

)
=

1

2 (γǫ
0)

3

((
2γǫ

0

(
T̂ ǫ

j − T̂ ǫ
j−1

)
− 3
)

e2γǫ
0(T̂ ǫ

j −T̂ ǫ
j−1) + 4eγǫ

0(T̂ ǫ
j −T̂ ǫ

j−1) − 1
)

(4.11)

Furthermore we have

cov
(

gǫ
j , WT̂ ǫ

j

− WT̂ ǫ
j−1

)
=

T̂ ǫ
j − T̂ ǫ

j−1

γǫ
0

eγǫ
0(T̂ ǫ

j −T̂ ǫ
j−1) −

eγǫ
0(T̂ ǫ

j −T̂ ǫ
j−1) − 1

(γǫ
0)

2 (4.12)

5 Numerical examples

In the VG model MT is approximated by M ǫ
T . In the table 5, we observe the convergence of our

method with respect to ǫ. Note that the errors are relative, and the benchmark price is that obtained by

ǫ price Monte Carlo error total error
10−1 7.076 0.05% 24.7%
10−2 9.347 0.08% 0.50%
10−3 9.401 0.08% 0.04%

Table 5.1: Approximation of the continuous call lookback price in VG model. Les parameters are :
S0 = 100, r = 0.0548, δ = 0, T = 0.40504, S+ = 100, θ = −0.2859, κ = 0.2505, σ = 0.1927 and
n = 1000000. The benchmark call price is 9.39827.

[Becker(2008)].
In CGMY model, MT is approximated by M̂ ǫ

T . In the table 5, we observe the convergence of our
method with respect to ǫ. The errors are relative, and the benchmark price is that obtained by [Feng-

ǫ price Monte-Carlo error total error
10−1 14.12 0.07% 1.88%
10−2 13.869 0.07% 0.06%
10−3 13.860 0.07% 0.00%

Table 5.2: Approximation of the discrete put lookback price (where the number of discretization points
is N = 252) in CGMY model. The parameters are : S0 = 100, r = 0.05, δ = 0.02, T = 1, S+ = 100,
C = 4, G = 50, M = 60, Y = 0.7 and n = 1000000. The benchmark price is 13.8600.

Linetsky(2009)].
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ǫ price Monte-Carlo error total error
10−1 12.89 0.0% 5.46%
10−2 12.24 0.08% 0.15%
10−3 12.21 0.08% 0.01%

Table 5.3: Approximation of the discrete put lookback price (where the number of discretization points
is N = 252) in NIG model. The parameters are : S0 = 100, r = 0.05, δ = 0.02, T = 1, S+ = 100, α = 15,

β = −5,δ̂ = 0.5 and n = 1000000. The benchmark price is 12.2224.

In NIG model, MT is approximated by M̂ ǫ
T . In the table 5, we observe the convergence of our

method with respect to ǫ. The errors are relative, and the benchmark price is that obtained by [Feng-
Linetsky(2009)].

In table 5.4 we have Asian options prices in NIG and CGMY models. Parameters for NIG model are:
α = 6.1882, β = −3.8941, δ̂ = 0.1622 and r = 0.0387. Parameters for CGMY model are: C = 0.2703,
G = 17.56, M = 54.82, Y = 0.8 and r = 0.04. Others parametres are given in the table 5.4. These results

ǫ/Model NIG CGMY
10−1 12.624 11.624
10−2 12.673 11.642
10−3 12.675 11.642

Table 5.4: Approximation of a fixed strike Asian call option. Parameters are: S0 = 100, δ = 0, T = 1
and n = 1000000. Monte-Carlo error is 0.03%.

can be compared with Fusai-Meucci’s results(for NIG) and Cerny-Kyriakou (for CGMY).
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