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Abstract

This paper is devoted to the simulation of the Credit Valuation Adjustment (CVA) using
a pure Monte Carlo technique with Malliavin Calculus (MCM). The procedure presented is
based on a general theoretical framework that includes a large number of models as well as
various contracts, and allows both the computation of CVA and its sensitivity with respect
to the different assets. Moreover, we provide the expression of the backward conditional
density of assets vector that can be simulated off-line in order to reduce the variance of the
CVA estimator. Using the suitability of MCM to parallel architectures and thus to a Graphic
Processing Unit (GPU) implementation, we show that the results obtained are accurate once
sufficient number of trajectories are simulated. Both complexity and accuracy are studied
for MCM and regression methods and compared to the square Monte Carlo benchmark.

1 Introduction

After the 2007 economic crisis, several laws were issued for better financial regulation. Among
the most important measures are those taken at Basel III that include the calculation of the
CVA (Credit Valuation Adjustment) as an important part of the prudential rules. In a
financial transaction between a party A that has to pay another party B some amount V ,
the CVA value is the price of the insurance contract that covers the default of party A to pay
the whole sum V . In other words, in the absence of arbitrage opportunities, the CVA is the
value of liquid products that must be saved to deal with counterparty default (see [13, 14]).

Formally speaking, the CVA is given by the following equality

CVAt,T = (1−R)Et
(
V +
τ 1t<τ≤T

)
, (1)

where R (assumed equal to zero in this paper) is the recovery to make on the portfolio if
the counterparty defaults, Et denotes the conditional expectation knowing all the available
information at t, Vt is the process of the value exposure to the counterparty, τ is the random
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default time of the counterparty, T is the protection time horizon and the positive part
function is denoted either by + or +.

What makes difficult the numerical approximation of (1) is the expression of Vt that
does not only includes assets, but also European contracts and American contracts. Said
differently, once the stochastic model of the assets is fixed, one needs to simulate contracts
before simulating the value of the CVA. The approximation of (1) is performed through three
steps: First, simulating the assets St = (S1

t , ..., S
d
t ) trajectories, then simulating the contracts

trajectories to get Vt trajectories as a sum over the whole exposure:

Vt =
∑
ie

φexpie (St) +
∑
ii

φeuiii (St) +
∑
id

φeudid,t(St) +
∑
ia

φamia,t(St), (2)

where ie, ii, id and ia are the exposure indices and:

φexp is an explicit function that represents pure assets transaction, for example: φexp(Stk) =
S1
tk
− S2

tk
.

φeui is a path-independent European contract. It is a contract involving only the simulation
of the assets St at t = T and whose expression is given thanks to an explicit payoff
function feui by

φeui(Stk) = E(feui(ST )|Stk), with tk ∈ [0, T ], (3)

for example: feui(ST ) = (S1
T − S2

T )+.

φeudt is a path-dependent European contract. It is a contract involving the simulation of the
whole discretized path of St at t ∈ {t0, t1, ..., T} and whose expression is given thanks
to a path-dependent payoff function feudt , at each time tk by

φeudtk
(Stk) = E(feudtk

(Stk+1
)|Stk), (4)

for example: feudtk
(Stk+1

) = ( max
i=0,..,k

S1
ti ∨S

1
tk+1
−S2

tk+1
)+ where ∨ is the maximum opera-

tor. In the previous example, the dependence of the payoff according to the information
available at time tk is illustrated by max

i=0,..,k
S1
ti .

φamt is an American contract. It is a contract that depends on the assets path through an
optimal stopping problem implemented by the dynamic programming algorithm

φamtk (Stk) = f(Stk) ∨ E(φamtk+1
(Stk+1

)|Stk) (5)

with f an explicit payoff that generally does not depend on the asset path.

Without loss of generality, assuming t = 0 and R = 0 in (1), the last step of approximating
CVA0,T is based on a time discretization, to get

CVA0,T ≈
N−1∑
k=0

E
(
V +
tk

1τ∈(tk,tk+1]

)
(6)

and N must be smaller or equal to the number of time steps used to approximate the
trajectories of the assets.
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The last point that has to be specified is the model used for the default time τ and how
it should be related to the Vt dynamics. In this paper, the two main families of modeling
default time are studied: i) The reduced form family, ii) The structural family. For each
family, a specific model involving dependence between the exposure and the default time
(so called WWR/RWR) is considered with its associated expressions of the computation of
CVA0,T and ∂Si

0
CVA0,T , where Si0 is the ith spot price. The latter quantities will be expressed

only as a function of the exposure and its gradient vector.
The common point between the expressions (3), (4) and (5) is the computation of a

conditional expectation that should be simulated before the approximation (6). In this
paper, we reexpress both the conditional expectation involved and its gradient using Malliavin
Calculus. Denoting E(f(Stk+1

)|Stk) = ϕ(Stk), we aim at computing

ϕ(x) = E(f(Stk+1
)|Stk = x) and ∂xiϕ(x) with xi ∈ {x1, ..., xd}. (7)

References [15, 20] were first to propose the use of Malliavin Calculus respectively to express
the conditional expectation in finance and to employ it in American contract simulation.
While [19, 7] were first to study deeply the use of localization technique with Malliavin
Calculus, respectively in one dimension and in the multidimensional case, and its application
for density simulation and optimal portfolio selection. The results presented in this paper are
more related to [2]. In fact, in the latter reference, the results presented go beyond Markov
diffusions setting and it can be applied to a large family of multidimensional stochastic
volatility models. Using Malliavin Calculus, we rewrite (7) as a quotient of expectations that
can be simulated by Monte Carlo. Moreover, we express the backward conditional density
and its gradient as a quotient of expectations that can be simulated by Monte Carlo. When
this density and its gradient are known off-line for some trajectories (after discretization),
the values given in (7) can be efficiently approximated for any path-dependent or path-
independent function f .

One could wonder why it is more advantageous to use Malliavin Calculus with Monte
Carlo simulation (MCM) when compared to the direct use of a square1 Monte Carlo simula-
tion. We will see that MCM is justified by its computational complexity which is smaller than
square Monte Carlo, in particular for the CVA that involves American contracts. Moreover,
in contrast to regression methods used in [14], we will justify that MCM is a nonparametric
method whose accuracy depends only on the number of simulated trajectories. Consequently,
one can increase “indefinitely” the accuracy by simulating more trajectories and using more
computational resources thanks to an efficient parallel implementation. Besides, MCM does
not have the drawback of using different regression basis when different contracts are in-
volved.

The easy adaptability to various models is a key advantage of our procedure, then we
present in Section 2 a brief summary of the different models that can be used. In Section 4,
we provide, on the one hand, the expression of the conditional expectation (7) as well as its
partial derivative and we introduce, on the other hand, the value of the backward conditional
density that can be simulated off-line to speedup the convergence of the CVA estimator. In
Section ??, we compare the computational complexity of MCM with the method that involves
regressions and with the square Monte Carlo method used as a benchmark. In addition to

1This is a two levels Monte Carlo simulation, one for simulating assets trajectories and another one for simulating
contracts trajectories.
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the MCM general framework, its adaptability to parallel architecture and its good accuracy2

studied in Section 5 suffice to justify its use as a real alternative to regression methods.

2 Model families

In this Section, we present the general modelling framework of asset prices and counterparty
default for which MCM could be applied. We also express CVA0,T and ∂Si

0
CVA0,T using Vt

and ∂Si
0
Vt whose values are given by (2) and

∂Si
0
Vt =

∑
ie

∂Si
0
φexpie (St) +

∑
ii

∂Si
0
φeuiii (St) +

∑
id

∂Si
0
φeudid,t(St)

+
∑
ia

∂Si
0
φamia,t(St).

(8)

The value of each φ term in (2) and its derivative in (8) has the general formulation (7) given
by ϕ and its derivative which are both computed thanks to the results presented in Section
4. Without loss of generality, we remind that we assume R = 0 in (1).

Let T be the protection time horizon, (Ω,F , P ) a probability space on which we define
a d-dimensional standard Brownian motion W = (W 1, ...,W d) and F = {Fs}s≤T the P -
completion of the filtration generated by W until T . We denote by St the vector of asset
prices S1

t , ..., S
d
t . which are the solutions of the following stochastic differential equations

dSit
Sit

= ridt+

i∑
j=1

σij(t)dW
j
t , Si0 = zi, i = 1, .., d, (9)

where ri are constants and σ(t) = {σij(t)}1≤i,j≤d is a deterministic triangular matrix ({σij(t)}i<j =
0). We suppose that the matrix σ(t) is invertible, bounded and uniformly elliptic which en-
sures the existence of the inverse matrix ρ(t) = σ−1(t) and its boundedness. Dynamics (9)
is widely used for equity models, HJM interest rate models and variance swap models. One
should note that in the case where the dynamics of S is given by local volatility model, we can
use a discretization scheme to reduce it to an SDE of type (9) on subintervals. The method-
ology developed in Section 4 can be extended to jump diffusion and stochastic volatility
models, Indeed:

i) We can replace (9) by the following SDE

dSit
Sit

= ridt+
i∑

j=1

σij(t)dW
j
t + dJ it , Si0 = zi, i = 1, .., d,

where J = (J1, ..., Jd) is a jump process independent from W . Then the conditional
expectation in (7) is given by

ϕ(x)=E
(
E[f(Stk+1

)|σ ((Ju)0≤u≤t) , Stk = x]|Stk = x
)
, x = (x1, ..., xd). (10)

The computations performed in Section 4 can be implemented to the inner expectation
in (10).

2Demonstrated here at least till dimension d = 3.
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ii) We can replace (9) by the following stochastic volatility model,

dSit
Sit

= ridt+
i∑

j=1

σij(t, W̃t)dW
j
t , Si0 = zi, i = 1, .., d,

where W̃ is a multidimensional Brownian motion correlated to W as it is done in [2].
Then the conditional expectation in (7) is given by

ϕ(x)=E
(
E[f(Stk+1

)|σ
(

(W̃u)0≤u≤t

)
, Stk = x]|Stk = x

)
, x = (x1, ..., xd) (11)

and the inner expectation in (11) and its partial derivative according to each xi can be
computed as explained in Section 4.

In addition to the large number of asset models that can be used, when assuming inde-
pendence between Vu and τ in (1), one has a wide choice of the counterparty default time
distribution Pτ (du). In fact, under the independence assumption, we have

CVA0,T =

∫ T

0
E
(
V +
u |τ

)
Pτ (du) =

∫ T

0
E
(
V +
u

)
Pτ (du),

∂Si
0
CVA =

∫ T

0
E
(
∂Si

0
Vu1{Vu>0}

)
Pτ (du).

The permutation of the differentiation ∂Si
0

and the expectation is possible thanks to Remark

4.1 ii).
In the following, we consider CVA models involving WWR or RWR, this implies that

Vu and τ are no longer assumed to be independent. ISDA (the International Swaps and
Derivatives Association) defines Wrong Way Risk as the risk that occurs when the ”exposure
to a counterparty is adversely correlated with the credit quality of that counterparty”, when
the Right Way Risk (RWR) refers to the opposite correlation. Consequently, the choice of
the counterparty default model will influence the CVA and ∂Si

0
CVA expressions.

Using the literature [6, 5, 12, 13], we distinguish two main ways to model the default time:
i) The structural family (firm value) and ii) The reduced form (intensity) family. However,
as pointed out by the authors of [18], there is no standard way to specify the dependence
between the counterparty default and the exposure. Subsequently, we will only give an
example for each default model with its CVA expressions.

2.1 CVA intensity models including WWR/RWR

In these models, we assimilate the default time as the first jumping time of a Poisson pro-
cess, where we denote by λ its intensity. We point out that λ can be even considered as
deterministic, either constant or time dependent, and even stochastic like in Cox model. If
λ is deterministic, we have P (τ > θ) = e−λθ and more precisely

P (τ ∈ (t, t+ dt]|τ > t) =
P (τ ∈ (t, t+ dt])

P (τ > t)
= λdt.
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The same formula is true when λt is Ft-adapted by conditioning with respect to Ft. Defined
by

Λ(t) =

∫ t

0
λsds,

the function Λ is commonly known as the hazard function or cumulated intensity and λ
represents the intensity or hazard rate.
When Λ is deterministic3, the Poisson process properties imply that Λ(τ) is an exponential
random variable with E(Λ(τ)) = 1. Notice also that Λ(τ) is independent from the default-free
market information F. Thus we obtain,

P (τ > t) = P (Λ(τ) > Λ(t)) = e−Λ(t) = e−
∫ t
0 λsds.

If the hazard function is stochastic, we get

P (τ > t) = E
(
e−

∫ t
0 λsds

)
.

Specific example with its CVA and CVA sensitivity estimation
We present the model proposed in [18], involving WWR or RWR. The intensity model is
assumed to have a stochastic Ft-adapted hazard rate λt. Particularly, we suppose that

λ(t) = f(t, Vt),

where f is some ”known” positive function and Vt represents the exposure at t. In some
cases, one can take

λ(t) = g(t, St),

where St is the Rd process describing the underlying asset prices. In [18], the authors assume
that either

λ(t) = exp (a(t) + bVt) or λ(t) = ln [1 + exp (a(t) + bVt)] ,

where a(t) is a deterministic function that is useful for the calibration and b represents the
dependence (WWR or RWR). In our work, we test a simpler model that takes into account
only WWR and given by

λt = α′′ + α′(Vt)+, with α′ ≥ 0 and α′′ ≥ 0. (12)

Assuming that we are able to estimate the process Vt on a time discretized grid {t0 < t1 <
t2 < .. < tn = T} (see Section 4), the value of the CVA0,T will be given by

CVA0,T = E

(
n−1∑
k=0

V +
tk+1

P
(
τ ∈ (tk, tk+1]|Ftk+1

))
. (13)

3If Λ is Ft-adapted, we obtain the same result by conditioning with respect to Ft.

6



The sensitivity of the CVA0,T according to the ith spot price Si0 is as follows,

∂Si
0
CVA0,T = E

(
n−1∑
k=0

∂Si
0
Vtk+1

1{Vtk+1
>0}P (τ ∈ (tk, tk+1]|Ftk+1

)

)

+E

(
n−1∑
k=0

V +
tk+1

∂Si
0
P (τ ∈ (tk, tk+1]|Ftk+1

)

)
.

The permutation of the operator ∂Si
0

and the expectation is justified in Remark 4.1 ii).

Regarding the derivative ∂Si
0
P (τ ∈ (tk, tk+1]), we have

∂Si
0
P (τ ∈ (tk, tk+1]|Ftk+1

) = ∂Si
0

(
P (τ > tk|Ftk+1

)− P (τ > tk+1|Ftk+1
)
)

= ∂Si
0

(
e−

∫ tk
0 f(s,Vs)ds − e−

∫ tk+1
0 f(s,Vs)ds

)
.

Using the chain rule and the expression of the hazard rate given in (12), this derivative
becomes

∂Si
0
P (τ ∈ (tk, tk+1]|Ftk+1

) = −P (τ > tk|Ftk+1
)

∫ tk

0
∂Vsf(s, Vs)∂Si

0
Vsds

+P (τ > tk+1|Ftk+1
)

∫ tk+1

0
∂Vsf(s, Vs)∂Si

0
Vsds

= −P
(
τ ∈ (tk, tk+1]|Ftk+1

) ∫ tk

0
∂Vsf(s, Vs)∂Si

0
Vsds

+P (τ > tk+1|Ftk+1
)

∫ tk+1

tk

∂Vsf(s, Vs)∂Si
0
Vsds

= −P
(
τ ∈ (tk, tk+1]|Ftk+1

) ∫ tk

0
α′∂Si

0
Vs1{Vs>0}ds

+P (τ > tk+1|Ftk+1
)

∫ tk+1

tk

α′∂Si
0
Vs1{Vs>0}ds.

Both Vt and ∂Si
0
Vt are provided in (2) and (8).

2.2 CVA structural models including WWR/RWR

First introduced by Merton [21], the default time in these models is defined according to the
behavior of the positive firm value process (Xt)t≥0. Merton’s example assumes that default
occurs if, at the final time T , the firm value XT is below a given threshold L which generally
represents a promised terminal payoff.
Inspired by this model, Black and Cox proposed to modelize the default time by

τ = inf{t ≥ 0 | Xt ≤ Lt}

where

Lt =

{
e−γ(T−t)K if t < T

L if t = T
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with γ smaller than the risk neutral interest rate and K ≤ L. In this situation, the ”critical”
threshold Lt must not be crossed by the firm value process. For more details, we refer the
reader to [11]. In the structural model presented in Section 5, we will assume that Lt is
constant.

Specific example with its CVA and CVA sensitivity estimation
The dependence between the default time variable τ and the exposure Vt is modelized
thanks to the correlation between some Brownian motion W 0

t that drives the process Xt

and
(
W 1
t , ..,W

d
t

)
which drive the asset prices St.

Thus, CVA0,T is given by

CVA0,T = E

(
n−1∑
k=0

V +
τ 1{τ∈(tk,tk+1]}

)

≈ E

(
n−1∑
k=0

V +
tk

1{τ∈(tk,tk+1]}

)
.

(14)

The sensitivity of CVA0,T according to the ith spot price Si0 is given by

∂Si
0
CVA0,T =

n−1∑
k=0

∂Si
0
E
(
V +
tk
|τ ∈ (tk, tk+1]

)
P (τ ∈ (tk, tk+1])

+

n−1∑
k=0

E
(
V +
tk
|τ ∈ (tk, tk+1]

)
∂Si

0
P (τ ∈ (tk, tk+1])

=
n−1∑
k=0

E
(
∂Si

0
Vtk1{Vtk>0}1{τ∈(tk,tk+1]}

)
which is ensured by the assumption ∂Si

0
P (τ ∈ (tk, tk+1]) = 0 and Remark 4.1 ii) that allows

the permutation of the operator ∂Si
0

and the expectation.

Both Vt and ∂Si
0
Vt are provided in (2) and (8). Using the same argument presented in

(10) and (11), the dependence according to τ is not an important issue for computations
performed in Section 4. In fact, the conditional expectation (7) is equal to

ϕ(x)=E
(
E[f(Stk+1

)|σ
(
(W 0

u )0≤u≤t
)
, Stk = x]|Stk = x

)
, x = (x1, ..., xd) (15)

and the inner expectation can be computed as if the trajectory of {Xu}0≤u≤t is completely
known. For more details, we refer the reader to Section 5 in which a more specific example
is presented.

3 Computing the value exposure, its sensitivity and

the backward conditional density

Estimating the value exposure to the counterparty Vt is crucial in the CVA computation.
In order to calculate Vt using (2), one has to express the conditional expectation involved
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in each contract. Using Malliavin calculus for American contracts pricing, this conditional
expectation was expressed as a ratio of two expectations (see for example [2, 3]). We aim here
to adapt the previous results to the CVA problem. Moreover, we give an explicit formulation
of the sensitivity with respect to the initial value of the stock price. In Section 4.2, we will be
interested by rather a theoretical result that provides the value of the backward conditional
density of the process (9) and of multidimensional stochastic volatility and jump diffusion
models that extends (9). The backward transition probability does not depend on the payoff,
then it should be computed off-line and stored to be re-used, in the same fashion as it is
done in [4, 22].

In this section we suppose that the stock price S is given by (9). To simplify the notations,
we denote Hx

i (Sis) = H(Sis−xi) := 1Si
s≥xi for the Heaviside function of the difference between

the ith stock and the ith coordinate of the positive vector x. Throughout this article, we
assume that g ∈ Eb(Rd) is a measurable function with polynomial growth

Eb(Rd) =
{
f ∈M(Rd) : ∃C > 0 and m ∈ N; |f(y)| ≤ C(1 + |y|d)m)

}
(16)

where M(Rd) is the set of measurable functions on Rd and | · |d is the euclidean norm. The
elements of the set Eb(Rd) satisfy the finiteness of the expectations computed in this article.
Besides, we usually use Malliavin derivative Dj

u for the differentiation with respect to the jth

Brownian motion.

3.1 The conditional expectation value and its gradient

We have already seen that Vt and ∂Si
0
Vt are given by (2) and (8) where the value of each

contract is expressed using (3), (4) and (5). The only point that remains to be specified
is the conditional expectation and its partial derivative in (7). Theorem 4.1 deals with the
latter issue, but before that we need to introduce some definitions.

Definition 3.1 We define the random variable Γs,t = Γ1
s,t and Γ1

s,t can be computed by the
following induction scheme

Γds,t = πd,ds,t , Γks,t = Γk+1
s,t π

k,d
s,t −

d∑
j=k+1

∫ t

0
Dj
uΓk+1

s,t D
j
uπ

k,d
s,t du, k ∈ {1, ..., d− 1},

where πk,ds,t is given by

πk,ds,t = 1 +

d∑
j=k

∫ t

0
ϕjk(u)dW j

u , ϕjk(u) =
1

s
ρjk(u)1u∈(0,s) −

1

t− s
ρjk(u)1u∈(s,t).

with ρ is the inverse of the volatility matrix σ.

Theorem 3.1 For any s ∈ (0, t), g ∈ Eb(Rd) and x = (x1, ..., xd) with xi > 0,

E
(
g(St)

∣∣∣Ss = x
)

=
Ts,t[g](x)

Ts,t[1](x)
, (17)

9



and its partial derivative

∂xiE
(
g(St)

∣∣∣Ss = x
)

=
Ris,t[g](x)Ts,t[1](x)− Ts,t[g](x)Ris,t[1](x)

Ts,t[1](x)2
, (18)

where Ts,t[f ](x) and Ris,t[f ](x) are defined for every function4 f ∈ Eb(Rd) by

Ts,t[f ](x) = E

(
f(St)Γs,tĤ

x(Ss)

)
, (19)

Ris,t[f ](x) = −E
(
f(St)

Sis
Ĥx(Ss)

(
Γs,t(1+πi,ds,t)−

d∑
j=i

∫ t

0
Dj
uπ

i,d
s,tD

j
uΓs,tdu

))
, (20)

with Ĥx(Ss) =
d∏

k=1

Hx
k (Sks )

Sks
, Γs,t and πk,ds,t are given in Definition 4.1.

Hx
k (Sks ) is the Heaviside function of the difference between the kth stock and the kth

coordinate of the positive vector x, Eb(Rd) is defined in (35).
Using Theorem 4.1, the conditional expectation in (7) and its derivative are given by (36)

and (37). To prove Theorem 4.1, we need the following two lemmas which are proved in [2].

It follows from Lemma 4.1 that the sum

d∑
j=i

ρji(u)Dj
uf(St) does not depend on u.

Lemma 3.1 For any u ∈ (0, t), f ∈ C1(Rd) and S given by the SDE (9), we have

d∑
j=i

ρji(u)Dj
uf(St) = Sit∂xif(St). (21)

The second lemma is based on the duality property of the Malliavin calculus.

Lemma 3.2 For any interval I ⊂ (0, t), h ∈ C∞b (R), F ∈ Dom(D) and S given by the SDE
(9), we have

E

(∫
I

FDi
uh(Sis)

σii(u)
du

)
= E

(
h(Sis)F

d∑
j=i

∫
I
ρji(u)dW j

u

)

− E

(
h(Sis)

d∑
j=i

∫
I
ρji(u)Dj

uFdu

)
. (22)

Proof of Theorem 4.1: The equalities (36) and (38) are proved in [2], the new result of
this theorem is the partial derivative value (37). Regarding this part, it is sufficient to prove
that

∂xiTs,t[f ](x) = Ris,t[f ](x).

4In our case f = g or f = 1
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Let φ ∈ C∞c (R) be a mollifier function with support equal to [−1, 1] and such that
∫
R φ(u)du =

1, then for any u ∈ R we define

hmi(u) = (Hx
i ∗ φm)(u) ∈ C∞b (R), φm(u) = mφ(mu), m ∈ N.

The dependence with respect to xi can be dominated and the differentiation under the
integral sign provides

∂xiE

(
f(St)Γs,t

hmi(S
i
s)

Sis
Ĥ i(Ss)

)
= −E

(
f(St)Γs,t

h′mi(S
i
s)

Sis
Ĥ i(Ss)

)
, (23)

where Ĥ i(Ss) =

d∏
k=1;k 6=i

Hx
k (Sis)

Sis
.

Under our assumptions, the distribution of the vector (S1
s , ..., S

d
s , S

1
t , ..., S

d
t ) admits a

lognormal joint distribution density ps,t with respect to the Lebesgue measure on Rd+ × Rd+.
Similar to the argument presented in proof of Theorem 2.1 in [2], using ps,t one gets the limit
as m −→∞

∂xiE

(
f(St)Γs,t

hmi(S
i
s)

Sis
Ĥ i(Ss)

)
−→ ∂xiTs,t[f ](x),

that provides

∂xiTs,t[f ](x) = − lim
m→+∞

E

(
f(St)Γs,t

h′mi(S
i
s)

Sis
Ĥ i(Ss)

)
. (24)

We introduce the following notations

Π(Ss) =
Ĥ i(Ss)

(Sis)
2
, ĥmi(Ss) =

hmi(S
i
s)

Sis
Ĥ i(Sis).

We have by the chain rule h′mi(S
i
s) = Di

uhmi(S
d
s )

Di
uS

i
s

and Di
uS

i
s = σii(u)Sis for every u ∈ (0, s),

thus

E

(
f(St)Γs,t

h′mi(S
i
s)

Sis
Ĥ i(Ss)

)
= E

(
1

s

∫ s

0
f(St)Γs,tĤ

i(Ss)
Di
uhmi(S

i
s)

SisD
i
uS

i
s

du

)
= E

(
1

s

∫ s

0
f(St)Γs,tĤ

i(Ss)
Di
uhmi(S

i
s)

σii(u)(Sis)
2
du

)
.

Using Lemma 4.2 with

F = f(St)Γs,t
Ĥ i(Ss)

(Sis)
2

= f(St)Γs,tΠ(Ss),

11



we get

E

(
f(St)Γs,t

h′mi(S
i
s)

Sis
Ĥ i(Ss)

)
= E

(
hmi(S

i
s)F

1

s

d∑
j=i

∫ s

0
ρji(u)dW j

u

)

− E

(
hmi(S

i
s)

1

s

d∑
j=i

∫ s

0
ρji(u)

[
Γs,tΠ(Ss)D

j
uf(St) + f(St)Γs,tD

j
uΠ(Ss)

+f(St)Π(Ss)D
j
uΓs,t

]
du

)

= E

(
ĥmi(S

i
s)

Sis
f(St)

1

s

(
Γs,t(

d∑
j=i

∫ s

0
ρji(u)dW j

u + 2s)−
d∑
j=i

∫ s

0
ρji(u)Dj

uΓs,tdu
))

− E

(
ĥmi(S

i
s)

Sis
Γs,t

1

s

( d∑
j=i

∫ s

0
ρji(u)Dj

uf(St)du
))

, (25)

since, using Lemma 4.1, we have

d∑
j=i

ρji(u)Dj
uΠ(Ss) = Sis∂xiΠ(Ss) = −2Π(Ss).

Let us develop the last term in (44), using Lemma 4.1

E

(
ĥmi(S

i
s)

Sis
Γs,t

1

s

( d∑
j=i

∫ s

0
ρji(u)Dj

uf(St)du
))

= E

(
ĥmi(S

i
s)

Sis

1

t− s

( d∑
j=i

Γs,t

∫ t

s
ρji(u)Dj

uf(St)du
))

= E

(
ĥmi(S

i
s)

Sis

1

t− s

d∑
j=i

E
(

Γs,t

∫ t

s
ρji(u)Dj

uf(St)du
∣∣∣Fs))

= E

(
ĥmi(S

i
s)

Sis

1

t− s

d∑
j=i

E
(
f(St)Γs,t

∫ t

s
ρji(u)dW j

u

∣∣∣Fs))

= E

(
ĥmi(S

i
s)

Sis

1

t− s

d∑
j=i

E
(
f(St)(Γs,t

∫ t

s
ρji(u)dW j

u −
∫ t

s
ρji(u)Dj

uΓs,tdu)
∣∣∣Fs)).

Thus, (44) becomes

E

(
f(St)Γs,t

h′mi(S
i
s)

Sis
Ĥ i(Ss)

)
(26)

= E

(
ĥmi(S

i
s)

Sis
f(St)

(
Γs,t(1 + πi,ds,t)−

d∑
j=i

∫ t

0
Dj
uπ

i,d
s,tD

j
uΓs,tdu

))
.

Using a dominated convergence argument, from (43) and (45) we get

∂xiTs,t[f ](x) = −E

(
f(St)

Sis

d∏
k=1

Hx
k (Sks )

Sks

(
Γs,t(1 + πi,ds,t)−

d∑
j=i

∫ t

0
Dj
uπ

i,d
s,tD

j
uΓs,tdu

))
.

12
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Remark 3.1 i) Its is important to point out that Γs,t and
d∑
j=i

∫ t

0
Dj
uπ

i,d
s,tD

j
uΓs,tdu can be

simulated efficiently using the trick given in [2] which will be detailed in Remark 4.2.

ii) For every g ∈ Eb(Rd), one can show that the functions Ris,t[g] and Ts,t[g] are continuous
since the Heaviside function is continuous except on the negligible set {Ss = x}. The
latter fact implies that the partial derivative of the conditional expectation (37) is locally
bounded when its payoff is in Eb(Rd).

3.2 Backward conditional density estimation

The authors of [22] proposed a Karhunen-Loeve expansion of Brownian motion and provide
in [26] an optimal choice5 of the couple (space discretization, probability weights) to ap-
proximate the standard Gaussian distribution. Known as quantization, this method of using
preloaded files should be the method of choice for problems involving Brownian motion or
Brownian bridge. Indeed, for this model, the effectiveness of quantization and its good ac-
curacy for dimensions bigger than 3 make it relevant for various problems. Nevertheless, it
is not straightforward to use this method for other multidimensional stochastic volatility or
jump diffusion models.

Developed for various models, our method of computing (7) employing Malliavin Calculus
is more complex than using directly preloaded files as done with the quantization method.
However, one can use also Malliavin Calculus to express the backward conditional density.
Provided that we are employing the same pseudo random number generator, one can first
approximate the backward conditional density off-line for some points of assets trajectories
and store it, then re-use them directly as preloaded files to have the distribution of each
contract which is sufficient to compute the CVA or develop any other risk hedging strategy.
Moreover, when the backward conditional density is already stored, using it to compute (7) is
better, from a variance reduction point of view, than using (36) and (37). In fact, we provide
in (48) and (49) the value of the backward conditional density and of its partial derivative.
First, let us introduce some notations.

Definition 3.2 The random variables Γs,t and Γ̂is,t are the solution Xs,t of the following
induction scheme

Xs,t = X1
s,t, X

k
s,t = Xk+1

s,t π̄k,ds,t −
d∑
j=k

∫ t

0
Dj
uX

k+1
s,t Dj

uπ̄
k,d
s,t du, k ∈ {1, ..., d},

with the terminal values

Γ
d+1
s,t = Γs,t, and Γ̂d+1,i

s,t = Γs,t(1 + πi,ds,t)−
d∑
j=i

∫ t

0
Dj
uπ

i,d
s,tD

j
uΓs,tdu,

where Γs,t, π
i,d
s,t are defined in Defintion 4.1 and π̄k,ds,t is given by

π̄k,ds,t = 1 +
1

t− s

d∑
j=k

∫ t

s
ρjk(u)dW j

u , with ρ is the inverse of the volatility matrixσ.

5In a sense explained in their paper.
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Theorem 3.2 For any s ∈ (0, t), g ∈ Eb(Rd), x = (x1, ..., xd) and y = (y1, ..., yd) with xi > 0
and yi > 0,

Ts,t[f ](x) = E
(
f(St)h̄(x, St)

)
, (27)

Ris,t[f ](x) = E
(
f(St)ĥ(x, St)

)
, (28)

where

h̄(x, y) = E
(

Γs,tĤ
x(Ss)

∣∣∣St = y
)

=
E
(

Γs,tĤ
x(Ss)Ĥ

y(St)
)

E(Γs,tĤy(St))
(29)

ĥ(x, y) = E

(Γs,t(1 + πi,ds,t)−
d∑
j=i

∫ t

0
Dj
uπ

i,d
s,tD

j
uΓs,tdu

)Ĥx(Ss)

Sis

∣∣∣St = y



=

E
( Γ̂s,t
Sis

Ĥx(Ss)Ĥ
y(St)

)
E(Γs,tĤy(St))

,

(30)

with Ĥy(St) =
d∏
j=1

Hy
j (Sjt )

Sjt
, Γs,t, π

i,d
s,t , Γs,t and Γ̂s,t are given in Definition 4.1 and Defini-

tion 4.2.

Proof of Theorem 4.2: In the same fashion as in the beginning of the proof of Theorem
4.1, we regularize the heaviside function Hy

i by hi ∈ C∞b (R). In order to lighten the notations,
we remove in this proof the dependence on m in hmi (m→∞). Then, we need to prove that
for 0 ≤ k ≤ d, we have

E

(
Γs,tĤ

x(Ss)

d∏
i=1

h′i(S
i
t)

)
= E

(
Γ
k+1
s,t Ĥ

x(Ss)

k∏
i=1

h′i(S
k
t )

d∏
i=k+1

hi(S
k
t )

Skt

)
, (31)

with (46) obtained directly from (50) when k = 0. In fact, E

Γs,t

d∏
j=1

Hj(S
j
s)

Sjs

∣∣∣St = y

 can

be viewed heuristically as

E

(
Γs,t

∏d
j=1

Hj(Sj
s)

Sj
s

εy(St)

)
E (εy(St))

where εy is the Dirac distribution at

y and we know that εyi = (Hy
i )′. In order to make the reasoning rigorous, one replace the

expectation of εy(St) by the density of St evaluated at y.
Now let us prove (50) by induction, we introduce the following notations

ĥdk(St) =
d∏
i=k

hi(S
i
t)

Sit
, ĥ′k(St) =

k∏
i=1

h′i(S
i
t).

14



When k = d, we have by the chain rule h′d(S
d
t ) =

Dd
uhd(Sd

t )

Dd
uS

d
t

and Dd
uS

d
t = σdd(u)Sdt for every

u ∈ (s, t), thus

E
(

Γs,tĤ
x(Ss)ĥ′d(St)

)
= E

(
1

t− s

∫ t

s
Γs,tĤ

x(Ss)ĥ′d−1(St)
Dd
uhd(S

d
t )

Dd
uS

d
t

du

)
= E

(
1

t− s

∫ t

s
Γs,tĤ

x(Ss)ĥ′d−1(St)
Dd
uhd(S

d
t )

σdd(u)Sdt
du

)
.

Using Lemma 4.2 with

F =
Γs,t

Sdt
Ĥx(Ss)ĥ′d−1(St)

and the fact that ĥ′d−1(Ss) does not depend on the dth coordinate of the Brownian motion
yields

E
(

Γs,tĤ
x(Ss)ĥ′d(St)

)
= E

(
Fhd(S

d
t )

1

t− s

∫ t

s

dW d
u

σdd(u)

)
− E

(
hd(S

d
t )

1

t− s

∫ t

s
Dd
uF

du

σdd(u)

)
= E

(
hd(S

d
t )Ĥx(Ss)ĥ′d−1(St)

(Γs,t

Sdt
(π̄d,ds,t − 1)− 1

t− s

∫ t

s
Dd
u

Γs,t

Sdt

du

σdd(u)

))
= E

(
hd(S

d
t )

Sdt
Ĥx(Ss)ĥ′d−1(St)

(
Γs,tπ̄

d,d
s,t −

1

t− s

∫ t

s
Dd
uΓs,t

du

σdd(u)

))
(32)

= E

(
Γ
d
s,tĤ

x(Ss)ĥ′d−1(St)
hd(S

d
t )

Sdt

)
where the equality (51) comes from the fact that for u ∈ (s, t)

1

σdd
Dd
u

Γs,t

Sdt
=

1

Sdt σdd
Dd
uΓs,t −

Γs,t

Sdt
.

Now, let us suppose that (50) is satisfied for k and prove it for k − 1. We have by the

chain rule h′k(S
k
s ) = Dk

uhk(Sk
s )

Dk
uS

k
s

and Dk
uS

k
s = σkk(u)Sks , thus

E
(

Γs,tĤ
x(Ss)ĥ′d(St)

)
=E

(
Γ
k+1
s,t Ĥ

x(Ss)ĥ′k(St)ĥ
d
k+1(St)

)
=E

(
1

t− s

∫ t

s
Γ
k+1
s,t Ĥ

x(Ss)ĥ′k−1(St)ĥk+1(St)
Dk
uhk(S

k
t )

σkk(u)Skt
du

)
.

As before, using Lemma 4.2 with in this time

F =
Γ
k+1
s,t

Skt
Ĥx(Ss)ĥ′k−1(St)ĥk+1(St)

15



and the fact that ĥ′k−1(St) and ĥk+1(St) are not depend on the kth coordinate of the Brownian
motion, we obtain

E
(

Γs,tĤ
x(Ss)ĥ′d(St)

)
=

d∑
i=k

E

(
hk(S

k
s )ĥk+1(St)ĥ′k−1(St)

Ĥx(Ss)

t− s

(Γ
k+1
s,t

Skt

∫ t

s
ρik(u)dW i

u −
∫ t

s
ρik(u)Di

u

Γ
k+1
s,t

Skt
du
))

=E

(
Ĥx(Ss)ĥ′k−1(St)ĥk(St)

(
Γ
k+1
s,t π̄

k,d
s,t −

1

t− s

∫ t

s
Di
uΓ

k+1
s,t D

i
uπ̄

k,d
s,t du

))
=E

(
Γ
k
s,tĤ

x(Ss)ĥ′k−1(St)ĥk(St)

)
Similarly, one can prove (47).

�

In Remark 4.2, we use the set of the second order permutations P1,d defined by

P1,d = {p ∈ P1,d; p ◦ p = Id}, (33)

where P1,d is the set of permutations on {1, ..., d} and Id is the identity application.

Remark 3.2 In order to make easier the implementation of (38), it was shown in [2] that
Γs,t given in Definition 4.1 can be computed as a determinant of a given matrix A

Γs,t =
∑
p∈P1,d

ε(p)
d∏
i=1

Ai,p(i), (34)

with ε(p) as the signature of the permutation p ∈ P1,d, and

A =


π1,d
s,t C1,2 C1,3 · · · C1,d

1 π2,d
s,t C2,3 · · · C2,d

...
. . .

. . .
. . .

...

1 · · · 1 πd−1,d
s,t Cd−1,d

1 1 · · · 1 πd,ds,t

 ,

where

Ck,l = Cov(πk,ds,t , π
l,d
s,t) =

d∑
j=k∨l

(
1

s2

∫ s

0
ρjk(u)ρjl(u)du+

1

(t− s)2

∫ t

s
ρjk(u)ρjl(u)du

)
.

Using the same idea, we can deduce a generating method for the computation of Γs,t and

Γ̂s,t. In fact, the solution Xs,t of the induction scheme in Definition 4.2 can be expressed in
a similar way as follow

Xs,t =
∑

p∈P1,d+1

ε(p)

d+1∏
i=1

Āi,p(i),
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with ε(p) is the signature of the permutation p ∈ P1,d+1 and

Ā =


π̄1,d
s,t C̄1,2 C̄1,3 · · · C̄1,d+1

1 π̄2,d
s,t C̄2,3 · · · C̄2,d+1

...
. . .

. . .
. . .

...

1 · · · 1 π̄d,ds,t C̄d,d+1

1 1 · · · 1 Xd+1,d
s,t

 ,

where C̄k,d+1 =
〈
π̄k,ds,. , X

d+1,d
s,.

〉
t

and

C̄k,l = Cov(π̄k,ds,t , π̄
l,d
s,t) =

d∑
j=k∨l

1

(t− s)2

∫ t

s
ρjk(u)ρjl(u)du, k, l ∈ {1, .., d}.

Let denote Γ−ks,t the second order permutation determinant of the matrix A−k that comes
from A by suppressing both line and column ”k”

Γ−ks,t =
∑
p∈Pk

1,d

ε(p)

d∏
i=1;i 6=k

Ai,p(i),

where Pk1,d = {p ∈ P1,d, p(k) = k}. The following lemma gives a generating way to

implement the term ”
∑d

j=i

∫ t
0 D

j
uπ

i,d
s,tD

j
uΓs,tdu” which appear in both Theorem 4.1 and The-

orem 4.2.

Lemma 3.3 Let i ∈ {1, ..., d} and s ∈ (0, t). We have

d∑
j=i

∫ t

0
Dj
uπ

i,d
s,tD

j
uΓs,tdu =

d∑
l=1

Γ−ls,tCl,i.

Proof of Lemma 4.3: First, using (53), we have for every u ∈ (0, t)

Dj
uΓs,t =

∑
p∈P1,d

ε(p)Dj
u

(
d∏
i=1

Ai,p(i)

)

=
∑
p∈P1,d

ε(p)
d∑
l=1

 d∏
i=1;i 6=l

Ai,p(i)

Dj
uAl,p(l)

=

d∑
l=1

∑
p∈Pl

1,d

ε(p)

 d∏
i=1;i 6=l

Ai,p(i)

Dj
uπ

l,d
s,t,

where the last equality is due to the fact that Al,p(l) is deterministic except for

p(l) = l for which Al,l = πl,ds,t. Now, since πl,ds,t does not depend on the Brownien motion W j

17



when l > j, using Fubini theorem we get

d∑
j=i

∫ t

0
Dj
uπ

i,d
s,tD

j
uΓs,tdu =

d∑
j=i

j∑
l=1

∑
p∈Pl

1,d

ε(p)

d∏
i=1;i 6=l

Ai,p(i)

∫ t

0
Dj
uπ

i,d
s,tD

j
uπ

l,d
s,tdu

=

d∑
l=1

d∑
j=l∨i

∑
p∈Pl

1,d

ε(p)

d∏
i=1;i 6=l

Ai,p(i)

∫ t

0
Dj
uπ

i,d
s,tD

j
uπ

l,d
s,tdu

=
d∑
l=1

Γ−ls,tCl,i.

�

4 Computing the value exposure, its sensitivity and

the backward conditional density

Estimating the value exposure to the counterparty Vt is crucial in the CVA computation.
In order to calculate Vt using (2), one has to express the conditional expectation involved
in each contract. Using Malliavin calculus for American contracts pricing, this conditional
expectation was expressed as a ratio of two expectations (see for example [2, 3]). We aim here
to adapt the previous results to the CVA problem. Moreover, we give an explicit formulation
of the sensitivity with respect to the initial value of the stock price. In Section 4.2, we will be
interested by rather a theoretical result that provides the value of the backward conditional
density of the process (9) and of multidimensional stochastic volatility and jump diffusion
models that extends (9). The backward transition probability does not depend on the payoff,
then it should be computed off-line and stored to be re-used, in the same fashion as it is
done in [4, 22].

In this section we suppose that the stock price S is given by (9). To simplify the notations,
we denote Hx

i (Sis) = H(Sis−xi) := 1Si
s≥xi for the Heaviside function of the difference between

the ith stock and the ith coordinate of the positive vector x. Throughout this article, we
assume that g ∈ Eb(Rd) is a measurable function with polynomial growth

Eb(Rd) =
{
f ∈M(Rd) : ∃C > 0 and m ∈ N; |f(y)| ≤ C(1 + |y|d)m)

}
(35)

where M(Rd) is the set of measurable functions on Rd and | · |d is the euclidean norm. The
elements of the set Eb(Rd) satisfy the finiteness of the expectations computed in this article.
Besides, we usually use Malliavin derivative Dj

u for the differentiation with respect to the jth

Brownian motion.

4.1 The conditional expectation value and its gradient

We have already seen that Vt and ∂Si
0
Vt are given by (2) and (8) where the value of each

contract is expressed using (3), (4) and (5). The only point that remains to be specified
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is the conditional expectation and its partial derivative in (7). Theorem 4.1 deals with the
latter issue, but before that we need to introduce some definitions.

Definition 4.1 We define the random variable Γs,t = Γ1
s,t and Γ1

s,t can be computed by the
following induction scheme

Γds,t = πd,ds,t , Γks,t = Γk+1
s,t π

k,d
s,t −

d∑
j=k+1

∫ t

0
Dj
uΓk+1

s,t D
j
uπ

k,d
s,t du, k ∈ {1, ..., d− 1},

where πk,ds,t is given by

πk,ds,t = 1 +

d∑
j=k

∫ t

0
ϕjk(u)dW j

u , ϕjk(u) =
1

s
ρjk(u)1u∈(0,s) −

1

t− s
ρjk(u)1u∈(s,t).

with ρ is the inverse of the volatility matrix σ.

Theorem 4.1 For any s ∈ (0, t), g ∈ Eb(Rd) and x = (x1, ..., xd) with xi > 0,

E
(
g(St)

∣∣∣Ss = x
)

=
Ts,t[g](x)

Ts,t[1](x)
, (36)

and its partial derivative

∂xiE
(
g(St)

∣∣∣Ss = x
)

=
Ris,t[g](x)Ts,t[1](x)− Ts,t[g](x)Ris,t[1](x)

Ts,t[1](x)2
, (37)

where Ts,t[f ](x) and Ris,t[f ](x) are defined for every function6 f ∈ Eb(Rd) by

Ts,t[f ](x) = E

(
f(St)Γs,tĤ

x(Ss)

)
, (38)

Ris,t[f ](x) = −E
(
f(St)

Sis
Ĥx(Ss)

(
Γs,t(1+πi,ds,t)−

d∑
j=i

∫ t

0
Dj
uπ

i,d
s,tD

j
uΓs,tdu

))
, (39)

with Ĥx(Ss) =
d∏

k=1

Hx
k (Sks )

Sks
, Γs,t and πk,ds,t are given in Definition 4.1.

Hx
k (Sks ) is the Heaviside function of the difference between the kth stock and the kth

coordinate of the positive vector x, Eb(Rd) is defined in (35).
Using Theorem 4.1, the conditional expectation in (7) and its derivative are given by (36)

and (37). To prove Theorem 4.1, we need the following two lemmas which are proved in [2].

It follows from Lemma 4.1 that the sum

d∑
j=i

ρji(u)Dj
uf(St) does not depend on u.

6In our case f = g or f = 1
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Lemma 4.1 For any u ∈ (0, t), f ∈ C1(Rd) and S given by the SDE (9), we have

d∑
j=i

ρji(u)Dj
uf(St) = Sit∂xif(St). (40)

The second lemma is based on the duality property of the Malliavin calculus.

Lemma 4.2 For any interval I ⊂ (0, t), h ∈ C∞b (R), F ∈ Dom(D) and S given by the SDE
(9), we have

E

(∫
I

FDi
uh(Sis)

σii(u)
du

)
= E

(
h(Sis)F

d∑
j=i

∫
I
ρji(u)dW j

u

)

− E

(
h(Sis)

d∑
j=i

∫
I
ρji(u)Dj

uFdu

)
. (41)

Proof of Theorem 4.1: The equalities (36) and (38) are proved in [2], the new result of
this theorem is the partial derivative value (37). Regarding this part, it is sufficient to prove
that

∂xiTs,t[f ](x) = Ris,t[f ](x).

Let φ ∈ C∞c (R) be a mollifier function with support equal to [−1, 1] and such that
∫
R φ(u)du =

1, then for any u ∈ R we define

hmi(u) = (Hx
i ∗ φm)(u) ∈ C∞b (R), φm(u) = mφ(mu), m ∈ N.

The dependence with respect to xi can be dominated and the differentiation under the
integral sign provides

∂xiE

(
f(St)Γs,t

hmi(S
i
s)

Sis
Ĥ i(Ss)

)
= −E

(
f(St)Γs,t

h′mi(S
i
s)

Sis
Ĥ i(Ss)

)
, (42)

where Ĥ i(Ss) =

d∏
k=1;k 6=i

Hx
k (Sis)

Sis
.

Under our assumptions, the distribution of the vector (S1
s , ..., S

d
s , S

1
t , ..., S

d
t ) admits a

lognormal joint distribution density ps,t with respect to the Lebesgue measure on Rd+ × Rd+.
Similar to the argument presented in proof of Theorem 2.1 in [2], using ps,t one gets the limit
as m −→∞

∂xiE

(
f(St)Γs,t

hmi(S
i
s)

Sis
Ĥ i(Ss)

)
−→ ∂xiTs,t[f ](x),

that provides

∂xiTs,t[f ](x) = − lim
m→+∞

E

(
f(St)Γs,t

h′mi(S
i
s)

Sis
Ĥ i(Ss)

)
. (43)

We introduce the following notations

Π(Ss) =
Ĥ i(Ss)

(Sis)
2
, ĥmi(Ss) =

hmi(S
i
s)

Sis
Ĥ i(Sis).
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We have by the chain rule h′mi(S
i
s) = Di

uhmi(S
d
s )

Di
uS

i
s

and Di
uS

i
s = σii(u)Sis for every u ∈ (0, s),

thus

E

(
f(St)Γs,t

h′mi(S
i
s)

Sis
Ĥ i(Ss)

)
= E

(
1

s

∫ s

0
f(St)Γs,tĤ

i(Ss)
Di
uhmi(S

i
s)

SisD
i
uS

i
s

du

)
= E

(
1

s

∫ s

0
f(St)Γs,tĤ

i(Ss)
Di
uhmi(S

i
s)

σii(u)(Sis)
2
du

)
.

Using Lemma 4.2 with

F = f(St)Γs,t
Ĥ i(Ss)

(Sis)
2

= f(St)Γs,tΠ(Ss),

we get

E

(
f(St)Γs,t

h′mi(S
i
s)

Sis
Ĥ i(Ss)

)
= E

(
hmi(S

i
s)F

1

s

d∑
j=i

∫ s

0
ρji(u)dW j

u

)

− E

(
hmi(S

i
s)

1

s

d∑
j=i

∫ s

0
ρji(u)

[
Γs,tΠ(Ss)D

j
uf(St) + f(St)Γs,tD

j
uΠ(Ss)

+f(St)Π(Ss)D
j
uΓs,t

]
du

)

= E

(
ĥmi(S

i
s)

Sis
f(St)

1

s

(
Γs,t(

d∑
j=i

∫ s

0
ρji(u)dW j

u + 2s)−
d∑
j=i

∫ s

0
ρji(u)Dj

uΓs,tdu
))

− E

(
ĥmi(S

i
s)

Sis
Γs,t

1

s

( d∑
j=i

∫ s

0
ρji(u)Dj

uf(St)du
))

, (44)

since, using Lemma 4.1, we have

d∑
j=i

ρji(u)Dj
uΠ(Ss) = Sis∂xiΠ(Ss) = −2Π(Ss).

Let us develop the last term in (44), using Lemma 4.1

E

(
ĥmi(S

i
s)

Sis
Γs,t

1

s

( d∑
j=i

∫ s

0
ρji(u)Dj

uf(St)du
))

= E

(
ĥmi(S

i
s)

Sis

1

t− s

( d∑
j=i

Γs,t

∫ t

s
ρji(u)Dj

uf(St)du
))

= E

(
ĥmi(S

i
s)

Sis

1

t− s

d∑
j=i

E
(

Γs,t

∫ t

s
ρji(u)Dj

uf(St)du
∣∣∣Fs))

= E

(
ĥmi(S

i
s)

Sis

1

t− s

d∑
j=i

E
(
f(St)Γs,t

∫ t

s
ρji(u)dW j

u

∣∣∣Fs))

= E

(
ĥmi(S

i
s)

Sis

1

t− s

d∑
j=i

E
(
f(St)(Γs,t

∫ t

s
ρji(u)dW j

u −
∫ t

s
ρji(u)Dj

uΓs,tdu)
∣∣∣Fs)).
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Thus, (44) becomes

E

(
f(St)Γs,t

h′mi(S
i
s)

Sis
Ĥ i(Ss)

)
(45)

= E

(
ĥmi(S

i
s)

Sis
f(St)

(
Γs,t(1 + πi,ds,t)−

d∑
j=i

∫ t

0
Dj
uπ

i,d
s,tD

j
uΓs,tdu

))
.

Using a dominated convergence argument, from (43) and (45) we get

∂xiTs,t[f ](x) = −E

(
f(St)

Sis

d∏
k=1

Hx
k (Sks )

Sks

(
Γs,t(1 + πi,ds,t)−

d∑
j=i

∫ t

0
Dj
uπ

i,d
s,tD

j
uΓs,tdu

))
.

�

Remark 4.1 i) Its is important to point out that Γs,t and
d∑
j=i

∫ t

0
Dj
uπ

i,d
s,tD

j
uΓs,tdu can be

simulated efficiently using the trick given in [2] which will be detailed in Remark 4.2.

ii) For every g ∈ Eb(Rd), one can show that the functions Ris,t[g] and Ts,t[g] are continuous
since the Heaviside function is continuous except on the negligible set {Ss = x}. The
latter fact implies that the partial derivative of the conditional expectation (37) is locally
bounded when its payoff is in Eb(Rd).

4.2 Backward conditional density estimation

The authors of [22] proposed a Karhunen-Loeve expansion of Brownian motion and provide
in [26] an optimal choice7 of the couple (space discretization, probability weights) to ap-
proximate the standard Gaussian distribution. Known as quantization, this method of using
preloaded files should be the method of choice for problems involving Brownian motion or
Brownian bridge. Indeed, for this model, the effectiveness of quantization and its good ac-
curacy for dimensions bigger than 3 make it relevant for various problems. Nevertheless, it
is not straightforward to use this method for other multidimensional stochastic volatility or
jump diffusion models.

Developed for various models, our method of computing (7) employing Malliavin Calculus
is more complex than using directly preloaded files as done with the quantization method.
However, one can use also Malliavin Calculus to express the backward conditional density.
Provided that we are employing the same pseudo random number generator, one can first
approximate the backward conditional density off-line for some points of assets trajectories
and store it, then re-use them directly as preloaded files to have the distribution of each
contract which is sufficient to compute the CVA or develop any other risk hedging strategy.
Moreover, when the backward conditional density is already stored, using it to compute (7) is
better, from a variance reduction point of view, than using (36) and (37). In fact, we provide
in (48) and (49) the value of the backward conditional density and of its partial derivative.
First, let us introduce some notations.

7In a sense explained in their paper.
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Definition 4.2 The random variables Γs,t and Γ̂is,t are the solution Xs,t of the following
induction scheme

Xs,t = X1
s,t, X

k
s,t = Xk+1

s,t π̄k,ds,t −
d∑
j=k

∫ t

0
Dj
uX

k+1
s,t Dj

uπ̄
k,d
s,t du, k ∈ {1, ..., d},

with the terminal values

Γ
d+1
s,t = Γs,t, and Γ̂d+1,i

s,t = Γs,t(1 + πi,ds,t)−
d∑
j=i

∫ t

0
Dj
uπ

i,d
s,tD

j
uΓs,tdu,

where Γs,t, π
i,d
s,t are defined in Defintion 4.1 and π̄k,ds,t is given by

π̄k,ds,t = 1 +
1

t− s

d∑
j=k

∫ t

s
ρjk(u)dW j

u , with ρ is the inverse of the volatility matrixσ.

Theorem 4.2 For any s ∈ (0, t), g ∈ Eb(Rd), x = (x1, ..., xd) and y = (y1, ..., yd) with xi > 0
and yi > 0,

Ts,t[f ](x) = E
(
f(St)h̄(x, St)

)
, (46)

Ris,t[f ](x) = E
(
f(St)ĥ(x, St)

)
, (47)

where

h̄(x, y) = E
(

Γs,tĤ
x(Ss)

∣∣∣St = y
)

=
E
(

Γs,tĤ
x(Ss)Ĥ

y(St)
)

E(Γs,tĤy(St))
(48)

ĥ(x, y) = E

(Γs,t(1 + πi,ds,t)−
d∑
j=i

∫ t

0
Dj
uπ

i,d
s,tD

j
uΓs,tdu

)Ĥx(Ss)

Sis

∣∣∣St = y



=

E
( Γ̂s,t
Sis

Ĥx(Ss)Ĥ
y(St)

)
E(Γs,tĤy(St))

,

(49)

with Ĥy(St) =

d∏
j=1

Hy
j (Sjt )

Sjt
, Γs,t, π

i,d
s,t , Γs,t and Γ̂s,t are given in Definition 4.1 and Defini-

tion 4.2.

Proof of Theorem 4.2: In the same fashion as in the beginning of the proof of Theorem
4.1, we regularize the heaviside function Hy

i by hi ∈ C∞b (R). In order to lighten the notations,
we remove in this proof the dependence on m in hmi (m→∞). Then, we need to prove that
for 0 ≤ k ≤ d, we have

E

(
Γs,tĤ

x(Ss)

d∏
i=1

h′i(S
i
t)

)
= E

(
Γ
k+1
s,t Ĥ

x(Ss)
k∏
i=1

h′i(S
k
t )

d∏
i=k+1

hi(S
k
t )

Skt

)
, (50)
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with (46) obtained directly from (50) when k = 0. In fact, E

Γs,t

d∏
j=1

Hj(S
j
s)

Sjs

∣∣∣St = y

 can

be viewed heuristically as

E

(
Γs,t

∏d
j=1

Hj(Sj
s)

Sj
s

εy(St)

)
E (εy(St))

where εy is the Dirac distribution at

y and we know that εyi = (Hy
i )′. In order to make the reasoning rigorous, one replace the

expectation of εy(St) by the density of St evaluated at y.
Now let us prove (50) by induction, we introduce the following notations

ĥdk(St) =

d∏
i=k

hi(S
i
t)

Sit
, ĥ′k(St) =

k∏
i=1

h′i(S
i
t).

When k = d, we have by the chain rule h′d(S
d
t ) =

Dd
uhd(Sd

t )

Dd
uS

d
t

and Dd
uS

d
t = σdd(u)Sdt for every

u ∈ (s, t), thus

E
(

Γs,tĤ
x(Ss)ĥ′d(St)

)
= E

(
1

t− s

∫ t

s
Γs,tĤ

x(Ss)ĥ′d−1(St)
Dd
uhd(S

d
t )

Dd
uS

d
t

du

)
= E

(
1

t− s

∫ t

s
Γs,tĤ

x(Ss)ĥ′d−1(St)
Dd
uhd(S

d
t )

σdd(u)Sdt
du

)
.

Using Lemma 4.2 with

F =
Γs,t

Sdt
Ĥx(Ss)ĥ′d−1(St)

and the fact that ĥ′d−1(Ss) does not depend on the dth coordinate of the Brownian motion
yields

E
(

Γs,tĤ
x(Ss)ĥ′d(St)

)
= E

(
Fhd(S

d
t )

1

t− s

∫ t

s

dW d
u

σdd(u)

)
− E

(
hd(S

d
t )

1

t− s

∫ t

s
Dd
uF

du

σdd(u)

)
= E

(
hd(S

d
t )Ĥx(Ss)ĥ′d−1(St)

(Γs,t

Sdt
(π̄d,ds,t − 1)− 1

t− s

∫ t

s
Dd
u

Γs,t

Sdt

du

σdd(u)

))
= E

(
hd(S

d
t )

Sdt
Ĥx(Ss)ĥ′d−1(St)

(
Γs,tπ̄

d,d
s,t −

1

t− s

∫ t

s
Dd
uΓs,t

du

σdd(u)

))
(51)

= E

(
Γ
d
s,tĤ

x(Ss)ĥ′d−1(St)
hd(S

d
t )

Sdt

)
where the equality (51) comes from the fact that for u ∈ (s, t)

1

σdd
Dd
u

Γs,t

Sdt
=

1

Sdt σdd
Dd
uΓs,t −

Γs,t

Sdt
.
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Now, let us suppose that (50) is satisfied for k and prove it for k − 1. We have by the

chain rule h′k(S
k
s ) = Dk

uhk(Sk
s )

Dk
uS

k
s

and Dk
uS

k
s = σkk(u)Sks , thus

E
(

Γs,tĤ
x(Ss)ĥ′d(St)

)
=E

(
Γ
k+1
s,t Ĥ

x(Ss)ĥ′k(St)ĥ
d
k+1(St)

)
=E

(
1

t− s

∫ t

s
Γ
k+1
s,t Ĥ

x(Ss)ĥ′k−1(St)ĥk+1(St)
Dk
uhk(S

k
t )

σkk(u)Skt
du

)
.

As before, using Lemma 4.2 with in this time

F =
Γ
k+1
s,t

Skt
Ĥx(Ss)ĥ′k−1(St)ĥk+1(St)

and the fact that ĥ′k−1(St) and ĥk+1(St) are not depend on the kth coordinate of the Brownian
motion, we obtain

E
(

Γs,tĤ
x(Ss)ĥ′d(St)

)
=

d∑
i=k

E

(
hk(S

k
s )ĥk+1(St)ĥ′k−1(St)

Ĥx(Ss)

t− s

(Γ
k+1
s,t

Skt

∫ t

s
ρik(u)dW i

u −
∫ t

s
ρik(u)Di

u

Γ
k+1
s,t

Skt
du
))

=E

(
Ĥx(Ss)ĥ′k−1(St)ĥk(St)

(
Γ
k+1
s,t π̄

k,d
s,t −

1

t− s

∫ t

s
Di
uΓ

k+1
s,t D

i
uπ̄

k,d
s,t du

))
=E

(
Γ
k
s,tĤ

x(Ss)ĥ′k−1(St)ĥk(St)

)
Similarly, one can prove (47).

�

In Remark 4.2, we use the set of the second order permutations P1,d defined by

P1,d = {p ∈ P1,d; p ◦ p = Id}, (52)

where P1,d is the set of permutations on {1, ..., d} and Id is the identity application.

Remark 4.2 In order to make easier the implementation of (38), it was shown in [2] that
Γs,t given in Definition 4.1 can be computed as a determinant of a given matrix A

Γs,t =
∑
p∈P1,d

ε(p)
d∏
i=1

Ai,p(i), (53)

with ε(p) as the signature of the permutation p ∈ P1,d, and

A =


π1,d
s,t C1,2 C1,3 · · · C1,d

1 π2,d
s,t C2,3 · · · C2,d

...
. . .

. . .
. . .

...

1 · · · 1 πd−1,d
s,t Cd−1,d

1 1 · · · 1 πd,ds,t

 ,
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where

Ck,l = Cov(πk,ds,t , π
l,d
s,t) =

d∑
j=k∨l

(
1

s2

∫ s

0
ρjk(u)ρjl(u)du+

1

(t− s)2

∫ t

s
ρjk(u)ρjl(u)du

)
.

Using the same idea, we can deduce a generating method for the computation of Γs,t and

Γ̂s,t. In fact, the solution Xs,t of the induction scheme in Definition 4.2 can be expressed in
a similar way as follow

Xs,t =
∑

p∈P1,d+1

ε(p)

d+1∏
i=1

Āi,p(i),

with ε(p) is the signature of the permutation p ∈ P1,d+1 and

Ā =


π̄1,d
s,t C̄1,2 C̄1,3 · · · C̄1,d+1

1 π̄2,d
s,t C̄2,3 · · · C̄2,d+1

...
. . .

. . .
. . .

...

1 · · · 1 π̄d,ds,t C̄d,d+1

1 1 · · · 1 Xd+1,d
s,t

 ,

where C̄k,d+1 =
〈
π̄k,ds,. , X

d+1,d
s,.

〉
t

and

C̄k,l = Cov(π̄k,ds,t , π̄
l,d
s,t) =

d∑
j=k∨l

1

(t− s)2

∫ t

s
ρjk(u)ρjl(u)du, k, l ∈ {1, .., d}.

Let denote Γ−ks,t the second order permutation determinant of the matrix A−k that comes
from A by suppressing both line and column ”k”

Γ−ks,t =
∑
p∈Pk

1,d

ε(p)

d∏
i=1;i 6=k

Ai,p(i),

where Pk1,d = {p ∈ P1,d, p(k) = k}. The following lemma gives a generating way to

implement the term ”
∑d

j=i

∫ t
0 D

j
uπ

i,d
s,tD

j
uΓs,tdu” which appear in both Theorem 4.1 and The-

orem 4.2.

Lemma 4.3 Let i ∈ {1, ..., d} and s ∈ (0, t). We have

d∑
j=i

∫ t

0
Dj
uπ

i,d
s,tD

j
uΓs,tdu =

d∑
l=1

Γ−ls,tCl,i.
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Proof of Lemma 4.3: First, using (53), we have for every u ∈ (0, t)

Dj
uΓs,t =

∑
p∈P1,d

ε(p)Dj
u

(
d∏
i=1

Ai,p(i)

)

=
∑
p∈P1,d

ε(p)
d∑
l=1

 d∏
i=1;i 6=l

Ai,p(i)

Dj
uAl,p(l)

=

d∑
l=1

∑
p∈Pl

1,d

ε(p)

 d∏
i=1;i 6=l

Ai,p(i)

Dj
uπ

l,d
s,t,

where the last equality is due to the fact that Al,p(l) is deterministic except for

p(l) = l for which Al,l = πl,ds,t. Now, since πl,ds,t does not depend on the Brownien motion W j

when l > j, using Fubini theorem we get

d∑
j=i

∫ t

0
Dj
uπ

i,d
s,tD

j
uΓs,tdu =

d∑
j=i

j∑
l=1

∑
p∈Pl

1,d

ε(p)
d∏

i=1;i 6=l
Ai,p(i)

∫ t

0
Dj
uπ

i,d
s,tD

j
uπ

l,d
s,tdu

=

d∑
l=1

d∑
j=l∨i

∑
p∈Pl

1,d

ε(p)
d∏

i=1;i 6=l
Ai,p(i)

∫ t

0
Dj
uπ

i,d
s,tD

j
uπ

l,d
s,tdu

=

d∑
l=1

Γ−ls,tCl,i.

�

5 Numerical tests using parallel implementation

In the previous sections, we presented the theoretical framework of CVA estimation using
MCM and studied its computational complexity. To finalize this work one has to give some
theoretical approximations of the error of the estimation. However, this part is delayed to
future work which can be based on works dedicated to American options like [8]. Nevertheless,
we demonstrate here the accuracy of MCM by comparing it to square Monte Carlo and to a
regression method. When using large number of trajectories, square Monte Carlo provides
benchmark values for both path-independent and path-dependent European contracts that
will be considered as the real values. Consequently, we study the accuracy of MCM for
CVA that involves only European contracts. In order to have an idea of how MCM behaves
when dealing with American contracts, we refer the reader to [2, 9]. Before summarizing the
results of the different simulations, we start by presenting the considered models and how
simulating European path-dependent contracts could be performed.

27



5.1 Benchmarking setup

Based on Section 2, we implement one example from the intensity family and one example
from the structural family. Each model will be completely specified by the assets dynamics
and either the dependence between the assets St and the default time τ or between the value
exposure Vt and τ .

Regarding the intensity model, we take the constant volatility version of (9):
dSit
Sit

= rdt+ σi

i∑
j=1

%ijdW
j
t , Si0 = zi, i = 1, .., d,

λt = α′′ + α′(Vt)+, with α′ ≥ 0 and α′′ ≥ 0

(54)

with T = 1, the risk neutral interest rate r = ln(1.1), the time discretization is defined using
the time steps that is given as a parameter in each simulation, Si0 = 100 and σij = σi%ij with
σi = 0.2 where % = {%ij}1≤i,j≤d comes from the Cholesky decomposition of the correlation
matrix δi−j + α(1− δi−j) such that α ∈ [0, 1) and δ is the Kronecker symbol.

Regarding the structural model, we take the constant volatility version of (9) and we
correlate it with the Brownian motion W 0

t that drives the firm value process Xt:
dXt

Xt
= rdt+ σ0dW

0
t , X0 = z0,

dSit
Sit

= rdt+ σi

i∑
j=0

%ijdW
j
t , Si0 = zi, i = 1, .., d,

(55)

with T = 1, the risk neutral interest rate r = ln(1.1), the time discretization is defined using
the time steps that is given as a parameter in each simulation, Si0 = 100 and σij = σi%ij with
σi = 0.2 where % = {%ij}0≤i,j≤d comes from the Cholesky decomposition of the correlation
matrix δi−j + α(1 − δi−j) such that α ∈ [0, 1) and δ is the Kronecker symbol. With this
specific example, one understands better the sense of (15) and how the Malliavin Calculus
can be implemented on W = (W 1, ...,W d) without considering the dependence with respect
to W 0.

Using MCM, simulating CVA that involves only European path-independent contracts
(3) is quite simple when compared to adding European path-dependent contracts (4). Then,
some details should be provided for the implementation of (4). To simplify the explanations,
we assume that N involved in (6) is equal to the number of time steps used to approximate
the trajectories of the assets. Let us consider the problem of approximating the conditional
expectation

E

(
( max
i=0,..,N

S1
ti − S

2
tN

)+|Ftk
)
.

Using Markov property and notation S
1
tk

= max
i=0,..,k

S1
ti , this conditional expectation can be

rewritten as

E

(
( max
i=0,..,N

S1
ti− S

2
tN

)+|Ftk
)

=E

(
(S

1
tk
∨ max
i=k+1,..,N

S1
ti− S

2
tN

)+

∣∣∣S1
tk
, S1

tk
, S2

tk

)
= ΘS1

tk
,S2

tk
(S

1
tk

)

(56)
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with:

ΘS1
tk
,S2

tk
(y) = E

(
(y ∨ max

i=k+1,..,N
S1
ti − S

2
tN

)+

∣∣∣S1
tk
, S2

tk

)
(57)

and for each asset trajectory, we have a specific value y and once it is fixed as a payoff
parameter, we can compute the conditional expectation using the result of Theorem 4.1 or
Theorem 4.2.

The previous idea for implementing European path-dependent contract can be applied
for lookback as well as barrier and Asian contract. In order to have a better approximation
of some SDEs and path-dependent contracts, one can also take the number of time steps
bigger than N8. Indeed, considering the previous path-dependent example, it is possible
to increase the accuracy of the approximation of sup0≤s≤tk Ss and suptk<s≤tN Ss if we have
more than k points and N − k points in the intervals [0, tk] and [tk, tN ] respectively.

We should also discuss the parameters Cd and nd introduced in Section ??. Previously, we
pointed out that the induction (??) provides important values when d is big. However, not
all contracts require the d-dimensional information, fact that can be seen with our previous
example given in (57). Actually, assuming d = 10, to evaluate (56) we need only two
Brownian motions if we are using intensity model (54) and three Brownian motions9 when
using structural model (55).

We finish the benchmarking setup by presenting two numerical tricks: The first one
should improve the Monte Carlo estimator of (38) and (39) and the second one removes the
contributions that are “Wrong”.

Localization with truncation

In order to approximate numerically (38) and (39), we remind that we are using the same set
of trajectories which makes MCM less complex than a square Monte Carlo. However, some
trajectories must not be added 10 to the Monte Carlo estimator of Ts,t[f ](x) and Ris,t[f ](x)
because they are far from the point x. This technique is known by localization and some
papers, as [3, 7], propose some ”optimal” choice of localizing functions. We use here a simpler
idea based on truncation. Without loss of generality, ignoring the dependence on the default
time and introducing a subset Υ ∈ Rd, we replace

Vtk = E
(
Vtk+1

|Stk
)

= E
(
Vtk+1

1Stk+1
∈Υ|Stk

)
+ E

(
Vtk+1

1Stk+1
∈Υc |Stk

)
in E ((Vtk)+) to get the inequality

E ((Vtk)+) ≤ E

([
E
(
Vtk+1

1Stk+1
∈Υc |Stk

)]
+

+
[
E
(
Vtk+1

1Stk+1
∈Υ|Stk

)]
+

)
≤ E

([
Vtk+1

]
+

1Stk+1
∈Υc

)
+

([
E
(
Vtk+1

1Stk+1
∈Υ|Stk

)]
+

)
.

(58)

8We remind the reader that N is associated to the discretization of the time integral.
9Because of W 0.

10Or added with a much smaller weight.
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The error value E
([
Vtk+1

]
+

1Stk+1
∈Υc

)
can be estimated, and if it has the order of the errors

induced by the Central Limit Theorem (95% confidence interval) it can be neglected and we
consider:

E ((Vtk)+) ≈
([
E
(
Vtk+1

1Stk+1
∈Υ|Stk

)]
+

)
.

From an implementation point of view, we choose Υ such that we include the most likely
asset trajectories, with probability between [85%, 95%] depending on the dimension of the
problem. For example, for d = 1 or 2, we include only the 95% probability trajectories.
Formally speaking, for a fixed Sis = xi, we take into account only the trajectories associated
to Sit that could occur with probability 95%.

Removing “Wrong” values of the conditional expectation

For a fixed set of simulated trajectories M and fixed trajectory l ∈ {1, ...,M}, this idea
is based on the fact that we want the conditional expectation E

(
Vtk+1

|Sltk
)

to be included

in

[
min

j∈{1,...,M}
V j
tk+1

, max
j∈{1,...,M}

V j
tk+1

]
. If this condition is not fulfilled, we consider that our

estimator gives us a wrong value and we stop taking into account the conditional expectations
generated by the trajectory of index l.

5.2 MCM accuracy for CVA and CVA sensitivities

First, we need to point out that we were able to perform our accuracy study thanks to a
parallel GPU 11 implementation on an Nvidia 480 GTX card. Indeed, one of the advantageous
of MCM algorithm is its suitability to parallel architecture. The goal of this section is to prove
the good accuracy of even a basic implementation of MCM without reducing the variance
using the backward conditional density introduced in section 4.2. More advanced numerical
study of the backward conditional density will be performed in the future.

We present two parts of the accuracy study: The first one compares MCM to the linear
regression method to compute (6) when 1τ∈(tk,tk+1] is assumed to be equal to 1 and Vtk is
the price of each contract associated to each payoff specified in Table 1. Thus, in this part
we do not take into account the dependence according to the default time simply because
we do not know a standard way to do it for the regression method. In the second part, we
study the MCM accuracy for both computing the CVA and its sensitivity for the intensity
model (54) and the structural model (55). In tables 1 and 2, the errors associated to the
confidence interval of 95% are smaller than 5% of the showed CVA values. As for Table 3,
the confidence interval of 95% is specified thanks to the ± sign.

When considering the values given by the square Monte Carlo (MC2) as the real values,
according to Table 1, the values obtained by MCM are almost always better than regression
method (Reg). In cases when MCM is less accurate, it is sufficient to increase the number
of simulated trajectories. This fact is not true for regression methods because they require
the increase of the cardinal of the regression family. Also unlike regression methods, the
accurate results obtained by MCM allows to compute ∆ sensitivity either by using the finite
difference (FD) of two MCM prices or by simulating Ris,t[f ](x) introduced in (39).

11Graphic Processing Unit
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Table 1: Examples of simulated CVA: MCM (216 trajectories), regression Reg (216 trajectories),
square Monte Carlo MC2 (214 trajectories), N = 10.

Payoff d = 2
α = 0 α = 0.5

MCM Reg MC2 MCM Reg MC2
Call on average 11.4 12.9 11.6 11.9 14.5 12.6

Call on max 20.9 23.7 22.1 18.3 21.4 19.5

(S
2

T − S1
T )+ 14.5 17.8 15.7 12.4 14.8 13.4

Payoff d = 3
α = 0 α = 0.5

MCM Reg MC2 MCM Reg MC2
Call on average 10.0 10.9 10.0 12.1 13.1 11.6

Call on max 30.3 29.2 28.0 25.6 25.4 23.3

(S
3

T −
S1
T +S2

T

2
)+ 15.6 15.5 13.8 13.5 12.3 13.4

Once more, according Table 2, when the number of simulated trajectories is sufficient,
we obtain accurate values of the CVA and its sensitivity for both intensity and structural
modelling framework. Table 3 shows sufficiently accurate results for d = 3 for intensity and
structural models even when only 214 trajectories are simulated. For d = 3, the results of
the sensitivity using (39) and using FD do not coincides as good as in Table 2 except when
we compute the sensitivity according to an asset that is highly involved in the CVA.

Based on what is discussed before, we summarize the comparison of the three methods
in the following table

In Table 4, very limited in dimension means limited and not standard in the sense of
choosing the vector basis.
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