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mc_floatingasian_standard

Input parameters:

e Time StepNumber M

Generator_Type

Number of iterations N
e Scheme

e Confidence Value «
Output parameters:

e Price P

e FError Price op

e Delta o

Error delta o

Price Confidence Interval: ICp =[Inf Price, Sup Price]
e Delta Confidence Interval: ICs =[Inf Delta, Sup Delta]

Description:
Computation for a Floating Asian Call or Put European Option of its Price
and its Delta with the Standard Monte Carlo or Quasi-Monte Carlo. In the
case of Monte Carlo simulation, the method also provides an estimation for
the integration error and a confidence interval.

For a best understanding of Asian option and a detailed description of the
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Simulation of an Asian option is not obvious because we need to generate
the mean of the underlying asset over a given period. Explanations about
this point are described in the next points. You can read the part on simu-

simulation of Brownian trajectory.

Quasi Monte Carlo simulation is available for this options, but some restric-
tions appear: we need multidimensional low-discrepancy sequences and for
some of them (like Sobol for instance) we are limited in practice with their
dimension. See the implemented part for low-discrepancy sequences.

The underlying asset price evolves according to the Black and Scholes model,
that is:
dS, = Su((r —d)du+ odB,), Sp, =s
then
2

Sy = sexp ((r —d- %)(T - T0)> exp(0 Br_m,)

where St denotes the spot at maturity T, s is the initial spot, Tj is the initial
time.

The Price of an asian option at t is:
P, =" TOE[f(Sr, A(to, T)))]

where f denotes the payoff of the option, K the strike and A(ty,T’) the mean
of the price of the underlying asset over a given period [tq, .
We have

T
S, du

A(to,T) - T — to t
0

The Delta is given by:

5= e—r<T—t>§SE[f<ST, A(to, T))]

The estimators are expressed as:

~ 1 N
P= Ne—“T—t) ; P(i)
~ 1 N 9 1 N
§ = —e (T TP = (T S(i
e ;83 (1) e ; (7)

Values for P(i) and §(i) are detailed for each option.
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e Asian Call Floating : The payoff is (Sr — A(to,T))™".
- Case ty < Ty:
We decompose A(ty, T') over [tg, To] and [Ty, T]. Then we have:

T—to T—Toy

= E[(Sr— K' = ATy, T))"]

with K’ = %A(to,Tg)
and A'(Ty, T) = 72 [z, Sidu with S}, = Z=0.5,, .
K’ is named the pseudo strike and S’ the pseudo spot.

Hence we obtain the following expressions:

P(i) = (Sr(i) = K — A'(To, T)(i))"

0s 0s s

5(i 98r(i) _ 0A(To, 1)) _ Sr(i) _ Al(To,T)(#) if P(Z) >0
(1) = 0 otherwise

- Case T < ty:

e Asian Put Floating : The payoff is (A(ty, T') — Sr)™.
- Case tg < Tj:
With the same decomposition as for a call, we find the following ex-
pressions:
P(i) = (K' + A'(Ty, T)(i) — Sr(i)) "

5(2) = { 0 0s 0s s

otherwise

- Case Ty < ty:

Simulation of the mean Ar
We note

t
Y, :/ S, du
0

We propose 3 different schemes to estimate Y;. The interval [0,¢] is divided
into M steps and we note the step size h = t/M. We define the times
tr = kt/M.

A more detailed description for these schemes is given in [1].
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1. Scheme 1: Rieman sums
The estimation for Y is given by:

M—-1
- h Z Stk
k=0

2. Scheme 2: Trapezoidal method
The approximation for Y; is obtained by considering the conditional
expectation F { I Sudu\Bh] where By, is the o-field generated by the
S, k=0,...,M —1.
The conditional law of (B,\By,, B, ) for w € [ty tip41] is given by:

t —u u—t t —u)(u—t
E(Bu\Btk :l';Bthrl :y) :N( k+1h T+ A ky’ ( ktl h)( k))

Then we have:
B[ s = X s, [ s g,
0

for which we give the following approximation from a Taylor expansion:

M-1 o B - B
yM hZStk<1+( 2d)h+a o tk)

k=0

3. Scheme 3: Brownian bridge method
We express Y; as:

2

Y, = Z /tk+1 exp( r—d—é)(u—tk)—l—a(Bu—Btk)> du

With a Taylor expansion, we obtain:

N M-1 P thin
YM =13 S, <1 e —a- Ty e, + 2 [ Budu>
k=0 2 2 h

For the simulation, we will use that:

tra1 h 3
£ ( th BudU\Btka Btk+1) =N 5(3% + Btk+1); e
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Remarks:
For each scheme, we need to simulate M independent gaussian variables (2M
for the third scheme) to obtain the values of S;, and By, .
- In the case of Monte Carlo simulation, pseudo-random generators generate
successive terms that are independent so there is no particular problem with
this point.
- However, in the case of Quasi-Monte Carlo simulation, successive terms
generated by a low discrepancy sequence are not independent. Thus we can
not consider a one-dimensional simulation. We need to use M (or 2M)-
dimensional sequences. See the implementation part for Quasi-Monte Carlo
to verify maximum allowed dimension for each low discrepancy sequence.

Algorithm:

& /* Function SimulStockAndAverage */
Computation of Sp(i) and the average A(tg, T')(i) according to the selected
scheme for each step of the Monte Carlo simulation.
/*Initialisation™/
- /* Average and Stock Computation */
For the 3 schemes, we need values of B;, for each of the M times ) defined
on [Ty, T).
We compute By, . (i) = By, (i) + Vhgk(i), where gx(i) are independant stan-
dard gaussian variables.
We have Sy, (i) = sexp ((7‘ —d— %)(tk - To)) exp(o By, (1))
And then we use the specific formula for each scheme to estimate the average
A(to, T) (7).
/* Scheme 1 : Rieman sums */
/* Scheme 2 : Trapezoidal method */
/* Simulation of M gaussian variables according to the generator type, that
is Monte Carlo or Quasi Monte Carlo. */
For the two first schemes, we need to generate M independent gaussian vari-
ables. We keep them in a table.
Call to the appropriate function to generate independent standard gaussian
variables. See the part about simulation of random variables for explanations
on this point. We just recall that for a MC simulation, we use the Gauss-
Abramovitz algorithm, and for a QMC simulation we use an inverse method
and a M-dimensional low-discrepancy sequence.
/* Gaussian value from the table Gaussians */
At each step, we take the next gaussian value in the table.

/* Scheme 3 : Brownian Bridge method */
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/* Simulation of 2M gaussian variables according to the generator type, that
is Monte Carlo or Quasi Monte Carlo. */

Call to the appropriate function to generate independent standard gaussian
variables. See the part about simulation of random variables for explanations
on this point. We just recall that for a MC simulation, we use the Gauss-
Abramovitz algorithm, and for a QMC simulation we use an inverse method
and a 2M-dimensional low-discrepancy sequence.

/* Gaussian value from the table Gaussians */

For the third scheme, we need to generate 2M independent gaussian vari-
ables.

In fact at each step, a second standard gaussian variable g; (i) is required to

simulate (% ftt:“ Budu\Btk,BtkH) as (Bt’“JFQBt’““ + ﬂg@(z))

- [*Stock*/
Final value Sr(7).
- /*Average*/
Final value A(to,7")(7).

& /* Function FloatingAsianStandardMC */
Main function to realize the Standard Monte Carlo simulation for an Asian
option.
/* Value to construct the confidence interval */
For example if the confidence value is equal to 95% then the value z, used
to construct the confidence interval is 1.96. This parameter is taken into
account only for MC simulation and not for QMC simulation.
/*Initialisation™/
/* Size of the random vector we need in the simulation */
For each of the three schemes, we need a vector of size M (or 2M for the
third scheme) of independent gaussian variables to simulate the Brownian
trajectory. In case of QMC simulation, it involves that we need a M or
2M-dimensional low-discrepancy sequence.

e /*MC sampling™/
/* Test after initialization for the generator */
Test if the dimension of the simulation is compatible with the selected gener-
ator. In this case, we need a vector of size M or 2M. Some low discrepancy
sequences are not necessary adapted to a so large dimension.
/* Begin N iterations */

- /*Price*/
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At the iteration i, we obtain Sr(i) and the average A(to,T")(:) from the
function 'SimulStockAndAverage’. And we compute:

P(i) = Payoff(Sr (i), A'(to, T)(i) + K')

- /*Delta*/
Calculation of Delta §; with formula for a Call: if P(i) > 0
_ Sr() - A(To, T)(2)
5 5

o(2)

/*Sum*/
Computation of the sums Y P; and Y 9; for the mean price and the mean
delta.

/*Sum of squares*/
Computation of the sums 3 P? and Y 67 necessary for the variance price and
the variance delta estimations. (finally only used for MC estimation)

/* End N iterations */

e /*Price*/
The price estimator is:

P=_—¢ T Z P(37)
i=1
The error estimator is op with :
0,2 — # iefQT(Tft) iV:PO)Q . P2
PON-T\N P

e /* Price Confidence Interval */
The confidence interval is given as:

ICp =[P — zo0p; P+ 2,0p]

with z, computed from the confidence value.

e /*Delta*/
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The error estimator is o5 with:

e /* Delta Confidence Interval */
The confidence interval is given as:

ICs = [0 — 2406;0 + 2405
with z, computed from the confidence value.

Confidence intervals are always computed, but for a QMC simulation they
don’t work, thus they don’t appear in the results.
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