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The following method computes the credit value adjustment (CVA in the following)

by using marked branching diffusions. It is based on the paper [1].

1 Introduction

This method computes the price of a Credit Value Adjustment in a Markovian model, in
the presence of counterparty-risk or not. In each case, the mark-to-market value satisfies
a non-linear PDE. The method developed to solve these PDEs is based on branching
diffusions describing a marked Galton-Watson random tree.

2 Theoretical framework

We assume the issuer is allowed to dynamically trade one dimensional underlying asset
X. Additionally, to hedge his credit risk on the counterparty name, he can trade a default
risky bond, denoted Pt. The values of the underlyings are not altered by the counterparty
default which is modeled by a Poisson jump process with constant intensity. We consider
a long position in a single derivative denoted u, whose payoff is denoted Ψ. The processes
X and P satisfy under the risk-neutral measure P

dXt = r Xtdt + σ XtdWt, X0 = x

dPt = (r + λ) Ptdt − PtdJt,

where W is a Brownian motion and J is a jump Poisson process with intensity λ and r

is the interest rate. The no arbitrage condition and the completeness of the market give
that e−rtu(t, Xt) is a P-martingale characterized by

∂tu + Lu + λ(ũ − u) − ru = 0,

where L is the Itô generator of X and ũ is the derivative value after the counterparty has
defaulted. At the default event, ũ = RM+ − M− where M is the mark-to-market value
of the derivative to be used in the unwinding of the position upon default and R is the
recovery rate.

• When the mark-to-market value is calculated with provision for counterparty risk,
M = u :

∂tu + Lu − (1 − R)λu+ − ru = 0, u(T, x) = Ψ(x)
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• When the mark-to-market value is calculated without provision for counterparty
risk:

∂tu + Lu + λ(RM+ − M− − u) − ru = 0, u(T, x) = Ψ(x)

∂tM + LM − rM = 0, M(T, x) = Ψ(x).

By discounting and replacing u by −u, the two PDEs can be rewritten :

∂tu + Lu + β(u+ − u) = 0, u(T, x) = Ψ(x) PDE2

∂tu + Lu +
β

1 − R

(

(1 − R)(Et,x(Ψ))+ + REt,x(Ψ) − u
)

= 0, u(T, x) = Ψ(x) PDE1

with β = λ(1 − R).

3 Market Branching diffusion

3.1 Case PDE2

In order to derive an algorithm solving PDE2, we first introduce the following PDE

∂tu + Lu + β(F (u) − u) = 0, u(T, x) = Ψ(x), (1)

where F (u) =
∑M

k=0 akuk =
∑M

k=0
ak

pk
pkuk, where

∑M
k=0 pk = 1 and ∀k, pk ∈ [0, 1].

In order to approximate PDE2 by an equation of type (1), we have to approximate u+

by a polynomial decomposition. Referring to [1, Equation (21)], we approximate u+ by

F (u) := 0.0589 + 0.5u + 0.8164u2 − 0.4043u4. (2)

Galton-Watson tree The probabilistic interpretation of equation (1) is the following.
Let a single particle start at the origin, perform an Itô diffusion with generator L, and
after an exponential time with mean 1

β
(independent of X) die and produce k descendants

with probability pk. Then, independently each descendant performs a Itô diffusion with
generator L, die and produce k descendants with probability pk, and so on until T (If
there are Nt particles at time t, the first time a particle dies follows an exponential law of
parameter Ntβ). We denote by Zt = (z1

t , · · · , zNt

t ) the positions of the Nt particles alive
at time t. From [1], we get that

û(t, x) := Et,x





M
∏

k=0

(

ak

pk

)ωk
NT
∏

i=1

Ψ(zi
T )



 ,

is the unique viscosity solution of(1). ωk denotes, for each Galton-Watson tree, the number
of particles that branch into k descendants with k ∈ {0, · · · , M}. 1 +

∑M
k=0(k − 1)ωk gives

the total number of individuals produced by the branching ω = (ω0, · · · , ωM ). These
descendants are drawn with distribution pk given by

pk :=
|ak|‖Ψ‖k

∞
∑M

i=0 |ai|‖Ψ‖i
∞

.

This choice of probability is optimal for convergence (see [1, page 70]).
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3.2 Case PDE1

We assume that the function (1−R)x++Rx can be well approximated by a polynomial
function F (x). We consider the following PDE, which approximates PDE1

∂tu(t, x) + Lu(t, x) +
β

1 − R
(F (Et,x[Ψ(XT )]) − u(t, x)) = 0, u(T, x) = Ψ(x).

From Feynman Kac formula, we have

u(t, x) = Et,x[1{τ≥T }Ψ(XT )] + Et,x[1{τ<T }F (Eτ (Ψ(XT )))]

where τ is a Poisson default time with intensity β
1−R

. The term Et,x[1{τ<T }F (Eτ (Ψ(XT )))]
can be calculated using the previous algorithm by imposing that the particle can default
only once.

4 Algorithm

The algorithm for solving PDE1 and PDE2 is the following

1. Choose a polynomial approximation of u+ ∼
∑M

k=0 akuk on the domain [−1, 1]

2. For each Monte Carlo simulation

(a) simulate the asset and the first Poisson default time with intensity β (resp.
β

1−R
) for PDE2 (resp. for PDE1)

(b) at each default time, produce k descendants with probability pk. For PDE1,
descendants produced after the first default become immortal

(c) evaluate the quantities

M
∏

k=0

(

ak

pk

)ωk
NT
∏

i=1

Ψ(Zi
T ) for PDE2

(

a1(1 − R) + R

p1

)ω1 M
∏

k 6=1

(

ak(1 − R)

pk

)ωk
NT ∈[0,M ]

∏

i=1

Ψ(Zi
T ) for PDE1

In case of PDE1,
∑M

k=0 ωk = 0 or 1.

5 Implementation and numerical experiments

We test the algorithm with the following parameters :

r x σ R Ψ(x) K β MC

0.05 0.7 0.2 0.4 1 − 21{x>K} 1 0.03 222

MC represents the number of Monte Carlo simulations.
We compute the value of the mark to market value at time t = 0, for different values

of T

T PDE1 PDE2

2 0.7040 0.7031

10 0.1060 0.1131
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