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Abstract

Under the hybrid model with a Heston-type volatility and stochastic
interest rate, we price the European options with constant dividend by
the Fourier-Cosine method. To price with the Fourier-Cosine method, it
requires the characteristic function (ChF) of the logarithm of the under-
lying asset, but a close form of the ChF of the logarithm of the underlying
is not available. According to [1], if a process is affine, its ChF can be
derived in a close form. Then an approximation of the non-affine terms
for the hybrid model is proposed such that the model is affine, so that
an approximation of the ChF is obtained by the theory in [1]. Applying
the approximation of the ChF to the Fourier-Cosine expansion, we can
efficiently calculated the European option price. This method can be ex-
tended to the four-dimensional hybrid model with a stochastic dividend
followed the Vasicĕk type dynamics. The pricing methods in both models
are implemented in PREMIA.
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1 Introduction

We consider the pricing problem of the European option in a hybrid model with
Heston-type stochastic volatility and stochastic interest rate by Vasicĕk model.
The implementation of this problem is based on the Fourier-Cosine expansion
proposed by Grzelak and Oosterlee [3]. Then the model is extended to the four-
dimensional hybrid model with stochastic dividend following the Vasicĕk model.
The pricing method for the four-dimensional hybrid model is modified from that
of a four-dimensional model in the foreign exchange context in [2], which is also
based on the Fourier-Cosine expansion. To apply the Fourier-Cosine expansion,
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it needs the ChF of the logarithm of the underlying. We will apply the theory in
[1], that a closed form solution of the ChF exists, if a process is a affine diffusion
process(AD), to derive the ChF.

An AD process is defined as a system of SDEs

dXt = µ(Xt)dt+ σ(Xt)dWt (1)

satisfies:

µ(Xt) = a0 + a1Xt, for any(a0, a1) ∈ Rn × Rn×n,

σ(Xt)σ(Xt)
T = (c0)ij + (c1)T

ijXt, for arbitrary(c0, c1) ∈ Rn×n × Rn×n×n,

r(Xt) = r0 + rT
1 Xt, for(r0, r1) ∈ R × Rn,

for any i, j = 1, · · · , n with r(Xt) being an interest rate component, where Xt

is the n-dimensional processes.

According to the theory of affine process in [1], the discounted ChF of the
AD processes (1) is of the following form:

φ(u,Xt, t, T ) = EQ

(
exp

(
−
∫ T

t

rsds+ iuT XT

)
|F(t)

)
= eA(u,τ)+B

T (u,τ)Xt ,

where the expectation is taken under the risk-neutral measure Q. For a time lag,
τ := T − t, the coefficients A(u, τ) and BT (u, τ) have to satisfy the following
complex-valued ordinary differential equation (ODEs):

{
d
dτ

B(u, τ) = −r1 + aT
1 B + 1

2 BT c1B,
d
dτ

A(u, τ) = −r0 + BTa0 + 1
2 BT c0B,

(2)

with ai, ci, ri, i = 0, 1 as in (2).

But the hybrid model is not affine, to apply the theory of [1], we need to
approximate the model such that it becomes affine. In the following, we will
provide the details of approximation and the close form of ChF derived from
the theory of [1], and the main idea of Fourier-Cosine method for pricing.

The Fourier-Cosine method can be used for the hybrid model with Vasicĕk
model, but for ease of presenting, we present here a constant mean of reversion
for the Vasicĕk model in the following. All the result provided here can be used
for the Vasicĕk model by changing the constant mean of reversion of the interest
rate by time-varying mean of reversion.

The rest of this file is as follows: we introduce the model with stochastic
volatility and stochastic interest rate but with a constant dividend and derive
its discounted ChF in Section 2. Then in Section 3 we extend to 4-dimensional
hybrid model with the stochastic dividend and provide its ChF as well. In
Section 4, we present the pricing method of Fourier Cosine expansion using
the closed form solution of ChF of the model. The program manual of the
implementation in PREMIA is given in Section 5.
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2 The Hybrid Model with Constant Dividend

2.1 Model Description

We assume under the risk-neutral measure Q, the dynamics system for the
underlying asset S(t), the volatility of the underlying asset ν(t), the stochastic
interest rate r(t) are given as follows:





dS(t)/S(t) = (r(t) − q)dt+
√
ν(t)dWS(t),

dν(t) = κν(θν − ν(t))dt+ σν

√
ν(t)dWν(t)

dr(t) = κr(θr − r(t))dt+ σrdWr(t),

(3)

where the parameters κν , κr is the reversion speed of the volatility and that of
the interest rate, respectively, θν , θr determine the long term mean of the volatil-
ity and that of the interest rate, respectively, and σν , σr is the volatility of the
volatility and that of the interest rate, respectively, q is a constant representing
the dividend, WS(t),Wν(t) and Wr(t) are the Brownian motions under the risk-
neutral measure Q, with their correlations given by dWS(t)dWν(t) = ρSνdt,
dWS(t)dWr(t) = ρSrdt, dWν(t)dWr(t) = ρνrdt. Note that we assume indepen-
dence between the instantaneous short rate, r(t), and the volatility process ν(t),
i.e. ρνr = 0.

2.2 Model Reformulate

In order to obtain a well-defined Heston hybrid model with an indirectly im-
posed correlation to simplify the computation of the pricing, [3] proposed to
reformulate the hybrid model in the following way:





dS(t)
S(t) = (r(t) − q)dt+

√
ν(t)dW̃S(t) + ∆

√
ν(t)S(t)dW̃ν(t) + Ω(t)dW̃r(t),

dν(t) = κν(θν − ν(t))dt+ σν

√
ν(t)dW̃ν(t),

dr(t) = κr(θr − r(t))dt+ σr

√
r(t)dW̃r(t),

(4)

with dW̃S(t)dW̃ν(t) = ρ̂Sνdt, dW̃S(t)dW̃r(t) = 0, dW̃ν(t)dW̃r(t) = 0.

Let x(t) = log(S(t)), then we have

dx(t) =

[
(r(t) − q) − 1

2

(
Ω2

t r(t) + ν(t)(1 + ∆2 + 2ρ̂Sν∆)
)]

dt

+
√
ν(t)dW̃S(t) + ∆

√
ν(t)S(t)dW̃ν(t) + Ωt

√
r(t)S(t)dW̃r(t)

=

[
r(t) − q +

1

2
ν(t)

]
dt

+
√
ν(t)dW̃S(t) + ∆

√
ν(t)S(t)dW̃ν(t) + Ωt

√
r(t)S(t)dW̃r(t).

The pricing method will be derived based on the SDE system X∗(t) :=
[r(t), ν(t), x(t)]T , since the SDE system X∗(t) is coordinated with that of X(t) :=
[S(t), ν(t), r(t)]T in the sense that

Ωt = ρSr

√
ν(t), ρ̂2

Sν = ρ2
Sν + ρ2

Sr, ∆ = ρSν − ρ̂Sν . (5)
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For details about the proof of the coordination of the reformulated model (4)
and the original model (3), please refer to [3].

2.3 Close Form of Characteristic Function

For the hybrid model (4), the system instantaneous covariance matrix in (2) for
the SDE system X∗

t is given by:

Σ := σ(X∗

t)σ(X∗

t)T =



σ2

rr(t) 0 σrΩt

∗ σ2
νν(t) σν ρ̂Sνν(t) + σν∆ν(t)

∗ ∗ Ω2
t + ν(t)(1 + ∆2 + 2ρ̂Sν∆)


 . (6)

From the definition of AD process, we know the model (4) is not affine. To
make the hybrid model (4) affine we need to approximate the non-affine terms√
ν(t) in Σ(1,3) = σrΩt = σrρx,r

√
ν(t) of the instantaneous covariance matrix.

Note that Σ(3,3) does not seems to be of the affine form, but in fact by (5), it
equals Σ(3,3) = ν(t).

[3] proposed two ways to approximate the non-affine terms, one is determin-
istic approximation, which approximates

√
ν(t) its expectations and the other

is a stochastic approximation by a normal distributed random variable. Here
we only apply the deterministic approximations and we provide only the ap-
proximation result, the proof can be refered to [3].

Lemma 2.1. The expectation, E(
√
ν(t)), with stochastic process given by equa-

tion (3) can be approximated by

√
ν(t) ≈ E

[√
ν(t)

]
≈ β1 + β2e−β3t := ϕ(t), (7)

where β1 =
√
θν − σ2

ν/8κν , β2 =
√
ν(0) − β1, β3 = − log[β−1

2 (Λ(1) − β1)], and

Λ(t) =

√
c(t) − [λ(t) − 1] + c(t)d+

c(t)d

2[d+ λ(t)]
,

c(t) =
1

4κν

σ2
ν(1 − e−κν t), d =

4κνθν

σ2
ν

, λ(t) =
4κνν(0)e−κν t

σ2
ν(1 − e−κν t)

.

By the approximation given above, the hybrid model (4) can be fitted
into the AD class, thus we have a closed form solution of the discount ChF
φ(u,Xt, t, T ) which is defined as

φ(u,Xt, t, T ) = EQ

(
exp

(
−
∫ T

t

r(s)ds+ iux(T )

)
|F(t)

)
.

For τ := T − t, we denote φ(u,Xt, t, T ) by φ(u,Xt, τ).

Theorem 2.2. The discount ChF of X∗

t is given by

φ(u,Xt, τ) = exp(A(u, τ) +Bx(u, τ)x(t) +Bν(u, τ)ν(t) +Br(u, τ)r(t)), (8)
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where

Bx(u, τ) = iu, (9)

Br(u, τ) = (iu− 1)κ−1
r

(
1 − e−κrτ

)
, (10)

Bν(u, τ) =
1 − e−Dτ

σ2
ν(1 −Ge−Dτ )

(κν − σνζiu−D), (11)

and

A(u, τ) = κrθrI1(τ) + κνθνI2(τ) +
1

2
σ2

rI3(τ) + σrρSrI4(τ),

with ζ = ρ̂Sν + ∆,D =
√

(σνζiu− κν)2 − (iu− 1)iuσ2
ν , and G = κν −σν ζiu−D

κν −σν ζiu+D

The Integrals I1(τ), I2(τ) and I3(τ) admit analytic solution and I4(τ) a semi-
analytic solution:

I1(τ) =
1

κr

(iu− 1)

[
τ +

1

κr

(
e−κrτ − 1

)]
,

I2(τ) =
τ

σ2
ν

(κν − σνζiu−D) − 2

σ2
ν

log

(
1 −Ge−Dτ

1 −G

)
,

I3(τ) =
1

2κ3
r

(i+ u)3
(
3 + e−2κrτ − 4e−κrτ − 2κrτ

)
,

I4(τ) = iu

∫ τ

0

E(
√
ν(T − s))Br(u, s)ds

= − 1

κr

(iu+ u2)

∫ τ

0

E(
√
ν(T − s))

(
1 − e−κrs

)
ds.

The proof can be found in Appendix B of[3].

3 Four-Dimensional Hybrid Model with Stochas-

tic Dividend

3.1 Model Description

The four-dimensional hybrid model with the underlying asset S(t), the stochas-
tic volatility ν(t), the stochastic interest rate r(t) and the stochastic dividend
q(t) is given as follows:





dS(t)/S(t) = (r(t) − q(t))dt+
√
ν(t)dWS(t),

dν(t) = κν(θν − ν(t))dt+ σν

√
ν(t)dWν(t)

dr(t) = κr(θr − r(t))dt+ σrdWr(t)

dq(t) = κq(θq − q(t))dt+ σqdWq(t),

(12)

where WS(t),Wν(t),Wr(t) and Wq(t) are the Brownian motions under the risk-
neutral measure Q, the parameters κ(·) is the reversion speed, θ(·) determine
the long term mean and σ(·) is the volatility, the subscription of the parameters
ν, r, q corresponding to the parameters for the volatility, the interest rate and
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the dividend, respectively.

Under the risk-neutral measure Q, we assume a full matrix of correlations
between the Brownian motions WS(t),Wν(t),Wd(t),Wf (t), i.e. ρi,j := dWi(t) ·
dWj(t)/dt 6= 0, when i 6= j and i, j ∈ {S, ν, r, q}.

3.2 Change of Measure

Direct pricing the European options under the risk-neutral measure Q will result
in solving a four-dimensional PDE, which is imfeasible and unstable. To reduce
the complexity of the pricing problem, we move from the risk-neutral measure
Q to the forward measure.

The time t price of an option is given as the expectation under the risk-
neutral measure Q, denote it by V (t,X(t)), whereX(t) := [S(t), ν(t), r(t), q(t)]T :

V (t,X(t)) = EQ

[
e

−

∫
T

t
r(s)ds

max(S(T ) −K, 0)|F(t)

]

= EQ

[
Mr(t)

Mr(T )
max(S(T ) −K, 0)|F(t)

]

with

Mr(t) = exp

(∫ t

0

r(s)ds

)
.

Note that given the information at time t, Mr(t) is deterministic, then

V (t,X(t)) = Mr(t)EQ

(
max(S(T ) −K, 0)

Mr(T )
|F(t)

)
,

denote by Π(t) the forward price

Π(t) = EQ

(
max(S(T ) −K, 0)

Mr(T )
|F(t)

)
=
V (t,X(t))

Mr(t)
. (13)

To reduce the complexity of computing the forward price Π(t), we move from
the risk-neutral measure Q to the forward measure QT where the numéraire is
the zero-coupon bond

Pr(t, T ) := EQ[e
−

∫
T

t
r(s)ds

].

The forward measure QT is defined by Radon-Nikodym derivative

ΛT
Q :=

dQT

dQ
=

Pr(t, T )

Pr(0, T )Mr(t)
. (14)

Under the filtration up to time t,

ΛT
Q(t) :=

dQT

dQ
|F(t) =

Mr(t)

Mr(T )Pr(t, T )
. (15)
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By switching from the risk-neutral measure Q to the T -forward measure QT ,
the discounting will be decoupled from taking the expectation, i.e.

Π(t) = Pr(t, T )ET
[
max(FXT (T ) −K, 0)|F(t).

]
(16)

where FXT (t) is the forward underlying asset under the T -forward measure is
given by

FXT (t) =
S(t)Pq(t, T )

Pr(t, T )
, Pq(t, T ) := EQ[e

−

∫
T

t
q(s)ds

].

By Itô’s formula, the dynamics of FXT (t) under measure Q is

dFXT (t) =
Pq(t, T )

Pr(t, T )
dS(t) +

S(t)

Pr(t, T )
dPq(t, T ) − S(t)

Pq(t, T )

P 2
r (t, T )

dPr(t, T )

+S(t)
Pq(t, T )

P 3
r (t, T )

(dPr(t, T ))2 − Pq(t, T )

P 2
r (t, T )

(dPr(t, T )dS(t)) (17)

− S(t)

P 2
r (t, T )

(dPr(t, T )dPq(t, T )) +
1

Pr(t, T )
(dPq(t, T )dS(t)).

The dynamics of the zero-coupon bond under the risk-neutral measure Q is

dPr(t, T )/Pr(t, T ) = r(t)dt+ σrBr(t, T )dWQ
r (t), (18)

where

Br(t, T ) =
1

κr

[
e−κr(T −t) − 1

]
.

And the dynamics of the Pq(t, T ) under the risk-neutral measure Q is

dPq(t, T )/Pq(t, T ) = q(t)dt+ σqBq(t, T )dWQ
q (t), (19)

where

Bq(t, T ) =
1

κq

[
e−κq(T −t) − 1

]
.

Then substitute the SDEs of S(t), Pr(t, T ) and Pq(t, T ) as given by (12),
(18) and (19) into (17), we have

dFXT (t)

FXT (t)
= σrBr(t, T )

[
σrBr(t, T ) − ρS,r

√
ν(t) − ρr,qσqB(t, T )

]
dt (20)

+σqBq(t, T )
√
ν(t)ρS,qdt

+
√
ν(t)dWS(t) − σrBr(t, T )dWr(t) + σqB(t, T )dWq(t)

By change of measure, we have the dynamics of FXT (t) under the forward
measure QT :

dFXT (t)

FXT (t)
= σqBq(t, T )

√
ν(t)ρS,qdt

+
√
ν(t)dWT

S (t) − σrBr(t, T )dWT
r (t) + σqB(t, T )dWT

q (t).
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Define the log-transform of the forward price FXT (t) by xT (t), i.e. xT (t) :=
logFXT (t), its dynamics is

dxT (t) =

[
ζ(t,

√
ν(t)) − 1

2
ν(t) + σqBq

√
ν(t)ρS,q

]
dt

+
√
ν(t)dWT

S (t) − σrBrdWT
d (t) + σqBqdWT

f (t),

where Br := Br(t, T ) and Bq = Bq(t, T ),

ζ(t,
√
ν(t)) = [ρS,rσrBr − ρS,qσqBq]

√
ν(t)+ρr,qσrσqBrBq − 1

2

(
σ2

rB
2
r + σ2

qB
2
q

)
.

From the definition of Radon-Nikodym derivative (14), we can redefine the
driven Brownian motions for ν(t), r(t, T ) and q(t, T ), then we have the dynamics
of xT (t), ν(t), r(t, T ) and q(t, T ), under the T -forward measure QT , the system
under forward measure QT is as follows:





dxT (t) =
[
ζ(t,

√
ν(t)) − 1

2ν(t) + σqBq

√
ν(t)ρS,q

]
dt

+
√
ν(t)dWT

S (t) − σrBrdWT
d (t) + σqBqdWT

f (t),

dν(t) =
[
κν(θν − ν(t)) + σνρν,rσrBr(t, T )

√
ν(t)

]
dt+ σν

√
ν(t)dWT

ν (t),

dr(t) =
[
κr(θr(t) − r(t)) + σ2

rBr(t, T )
]

dt+ σrdWT
r (t),

dq(t) = [κq(θq(t) − q(t)) + σrσqρr,qBr(t, T )] dt+ σqdWT
q (t).

Details on the above change of measure can be found on the Appendix of [2].

3.3 Approximation of the ChF

Denote the ChF of the logarithm of the forward price xT (t) as

φT := φT (u, (xT (t), v(t)), t, T ) = ET
[
eiuxT (T )|F(t)

]
.

Applying the Feynman-Kac formula, we obtain the PDE for φT

−∂φT

∂t
=

[
ζ(t,

√
ν(t)) − 1

2
ν(t) + σqBq

√
ν(t)ρS,q

]
∂φT

∂x

+
[
κν(θν − ν(t)) + ρν,rσνσr

√
ν(t)Br

] ∂φT

∂ν

+
[
ρS,νσνν(t) − ρν,rσνσr

√
νtBr + ρν,qσνσq

√
νtBq

] ∂2φT

∂x∂v

+

[
1

2
ν(t) − ζ(t,

√
ν(t))

]
∂2φT

∂x2
+

1

2
σ2

νν(t)
∂2φT

∂v2
.

Since the above PDE is not affine, it is not easy to find the solution, but we
can use the approximation of the non-affine term in the PDE is proposed in (7).
With the approximation of the non-affine term, the ChF φT is derived.

Theorem 3.1. The discount ChF of xT (t) is of the following form:

φT (u, (xT (t), v(t)), t, T ) = exp[A(u, τ) +B(u, τ)xT (t) + C(u, τ)ν(t)], (21)
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where τ = T−t, the functions A(τ) := A(u, τ), B(τ) := B(u, τ), C(τ) := C(u, τ)
are subject to Ordinary Differential Equations (ODE) of A(u, τ), B(u, τ) and
C(u, τ) as follows:

B′(τ) = 0,

C ′(τ) = −κνC(τ) + [B2(τ) −B(τ)]/2 + ρS,νσνB(τ)C(τ) + σ2
νC

2(τ)/2,

A′(τ) = κνθνC(τ) + ρν,rσνσrϕ(τ)Br(τ)C(τ) − ζ(τ, ϕ(τ))[B2(τ) −B(τ)]

+[−ρν,rσrσνϕ(τ)Br(τ) + ρν,qσνσqϕ(τ)Bq(τ)]B(τ)C(τ)

+ρS,qσqBq(τ)ϕ(τ)B(τ), (22)

with Bi(τ) = κ−1
i [e−κiτ − 1] for i = {r, q} and the initial conditions B(0) =

iu, C(0) = 0, A(0) = 0.

The ODE system (22) can be solved as

B(τ) = iu, (23)

C(τ) =
1 − e−dτ

σ2
ν(1 − ge−dτ )

(κν − ρS,νσνiu− d) ,

A(τ) =

∫ τ

0

[κνθν + ρr,νσνσrϕ(s)Br(s) − ρν,rσrσνϕ(s)Br(s)iu

+ρν,qσνσqϕ(s)Bq(s)iu]C(s)ds+ (u2 + iu)

∫ τ

0

ζ(s, ϕ(s))ds

+iuρS,qσq

∫ τ

0

Bq(s)ϕ(s)ds.

with d =
√

(ρS,νσνiu− κν)2 − σ2
νiu(iu− 1), g =

κν −σν ρS,ν iu−d

κν −σν ρS,ν iu+d
.

Integration of function A(τ) will be calculated numerically by the Simpson
method.

Substitute the solution of A(u, τ), B(u, τ), C(u, τ) into (21), we have a closed
form of ChF of the forward underlying asset, then by Fourier-Cosine method,
we can calculate the forward price of the option (16) and then the option price
(13) efficiently.

4 Pricing Option by Fourier-Cosine Expansion

With the closed form of ChF provided for both model, the European option
price can be derived by Fourier-Cosine expansion. We present a sketch of the
method here, for the details about the calculation of option prices by Fourier-
Cosine method, please refer to [4].

The key problem in the pricing of the European options in both model (3)
and (12) can be described as the calculation of the expectation of function of
the underlying:

v(x, t) := E [v(y, T )|F(t)] =

∫

R

v(y, T )f(y|x)dy, (24)
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For the European option price of model (3), which is defined as

EQ

[
e

∫
T

t
r(s)ds

max(S(T ) −K, 0)|F(t)

]
, (25)

the functionv(y, T ) is

v(y, T ) := K max(ey − 1, 0), y := x(T ) = log(S(T )/K),

the density function f(y|x) is the discounted density function of x(t) under the
risk-neutral measure Q with the initial state value x = log(S(t)/K).

To price the European option in model (12), the Fourier-Cosine method is
applied to calculate the expectation part of the forward price Π(t) as given in
(16),

ET [max(FXT (T ) −K, 0)|F(t)] = ET [v(y, T )|x] =

∫

R

v(y, T )f(y|x)dy, (26)

where
v(y, T ) := K max(ey − 1, 0),

and y := log(FXT (T )/K) are states variables of the discounted forward price
of the underlying asset at time T , f(y|x) is the conditional probability density
of log(FXT (T )/K) given log(FXT (t)/K) = x under the forward measure QT .

To calculate (24) and (26), we truncate the infinite integration range in (24)
and (26), without loosing significant accuracy to [a, b] ∈ R, and we obtain its
approximation v1 :

v1(x, t) =

∫ b

a

v(y, T )f(y|x)dy, (27)

where

[a, b] :=

[
c1 − L

√
c2 +

√
c4, c1 + L

√
c2 +

√
c4

]
, (28)

with L = 10 and cn denotes the n-th cumulant of log(S(t)/K) for (24) and that
of log(FXT (T )/K) for (26), respectively.

Secondly, we replace the density by its cosine expansion in y,

f(y|x) =

+∞∑

k=0

Ak(x) cos

(
kπ
y − a

b− a

)
, (29)

where the summation Σ here with the first term weighted by one-half and

Ak(x) :=
2

b− a

∫ b

a

f(y|x) cos

(
kπ
y − a

b− a

)
dy

=
2

b− a
Re

{
φ

(
kπ

b− a
;x

)
exp

(
−i kaπ
b− a

)}
, (30)

where φ
(

kπ
b−a

;x
)

is the discounted ChF of log(S(T )/K) for the model (3) and

the conditional ChF of log(FXT (T )/K) for model (12) given log(FXT (t)/K) =
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x, the second equation in (30) is obtained by comparing the cosine coefficient

Ak of f(y|x) with the definition of conditional ChF φ
(

kπ
b−a

;x
)

.

Substitute (29) into (27), we have

v1(x, t0) =
1

2
(b− a)

∫ b

a

2

b− a
v(y, T )

+∞∑

k=0

Ak(x) cos(kπ
y − a

b− a
)dy. (31)

Then interchange the summation and integration, we have

v1(x, t0) =
1

2
(b− a)

+∞∑

k=0

Ak(x)Vk ≈ 1

2
(b− a)

′N−1∑

k=0

Ak(x)Vk, (32)

with

Vk :=
2

b− a

∫ b

a

v(y, T ) cos(kπ
y − a

b− a
)dy. (33)

Then replacing (30) of Ak in (32), we have

v(x, T ) ≈
N−1∑

k=0

Re

{
φ

(
kπ

b− a
;x

)
e−ikπ a

b−aVk

}
, (34)

which is the cosine expansion formula for the price of the European option un-
der model (3) and model (12).

At last, we just need to determine Vk in the above COS formula which can
be calculate analytically. For a put option with payoff function as v(y, T ) :=
K max(1 − ey, 0) and by (33), the definition of Vk, we have

Vk =
2

b− a
K[ψk(a, 0) − χk(a, 0)], (35)

where

χk(c, d) :=
1

1 +
(

kπ
b−a

)2

[
cos

(
kπ
d− a

b− a

)
ed − cos

(
kπ
c− a

b− a

)
ec

+
kπ

b− a
sin

(
kπ
d− a

b− a

)
ed − kπ

b− a
sin

(
kπ
c− a

b− a

)
ec

]

ψk(c, d) :=

{[
sin
(
kπ d−a

b−a

)
− sin

(
kπ c−a

b−a

)]
b−a
kπ
, k 6= 0,

(d− c), k = 0.
.

We refers to [4] for more details. The price of the call option can be calculated
by the put-call parity and the price of the put option.

5 Program Manual

The program HAS TO work with the pnl library.
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Program files:

“euro_hhw.c" for hybrid model with stochastic volatility, stochastic interest rate
and constant dividend.
“hhw4d.c" for four-dimensional hybrid model with stochastic volatility, stochas-
tic interest rate and stochastic dividend.

Model Parameters for “euro_hhw.c"

kappav: κν in model (3)
thetav: θν in model (3)
sigmav: σν in model (3)
v0: the initial value of volatility ν(t)
kappar: κr in model (3)
thetar: θr in model (3)
sigmar: σr in model (3)
r0: the initial value of interest rate rt

divident: q in model(3)
rho12: ρSν in model (3)
rho13: ρSr in model (3)
rho23: ρνr in model (3),
Note that the method assume ρνr = 0.

Model Parameters for “hhw4d.c"

kappav: κν in model (12)
thetav: θν in model (12)
sigmav: σν in model (12)
v0: the initial value of volatility ν(t)
kappar: κr in model (12)
thetar: θr in model (12)
sigmar: σr in model (12)
r0: the initial value of interest rate rt

kappaq: κq in model (12)
thetaq: θq in model (12)
sigmaq: σq in model (12)
q0: the initial value of interest rate rt

rhoSv: ρSν in model (12)
rhoSr: ρSr in model (12)
rhoSq: ρSq in model (12),
rhovr: ρνr in model (12)
rhovq: ρνq in model (12)
rhorq: ρrq in model (12),

Parameters of the product:

S0: stock price at the initial time
K: strike of the American option
T: maturity of the American option, the expansion asymptotic works well for
small maturity.

Flags to choose products:

callput_flag:callput flag: 0 for call, 1 for put



?? pages 13

Parameters for COSINE method:

N: discrete steps in the integration range N in (34)
L: parameter in the truncate bound of [a, b] as given in (28).
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