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We consider the following model :
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1 Characteristic function

Let Xt = ln(e−(r−δ)tSt), then we want to compute the following expression
(when finite) for any k ∈ C :
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[
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]
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On one hand, thanks to [DFS03], we know that the model is affine, and that
the characteristic function has the following form :
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0 , V
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0 ) = eik1x+A(k;t)+B1(k;t)V 1

0 +B2(k;t)V 2
0 (3)

where A(k; 0) = B1(k; 0) = B2(k; 0) = 0.
On the other hand, we know by Ito’s formula that ∂tψ = Lψ where L is the

operator associated to the three-dimensionnal affine process (X,V 1, V 2) and
that ψ(k, 0, x, V 1

0 , V
2

0 ) = eikx.
Proceeding by identification with respect to x, V 1

0 , V
2

0 , we obtain Ricatti
equations on B1, B2 and a trivial ODE on A. Fortunately, these equations are
solvable. By introducing for j = 1, 2 :
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we get :
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where all the complex functions are to be understood as their principal branch.

I.e if for some a, b ∈ R, z = ea+ib then
√
z = e

a+ib

2 and if moreover b ∈] − π, π],
then ln(z) = a+ ib.

2 Fourier pricing

Following [GP10] and [CM99] and [R. 04], for any K̃ ∈ R⋆
+ we compute the

Fourier transform of the following both integrable and square integrable function
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x ∈ R 7→ ((ex − K̃)+ − ex)e−

x
2 ∈ R. We obtain :
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Since we have :
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Using Fubini’s theorem, we get the following pricing formula :
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Endly, we use the Gauss Kronrod procedure implemented in the Premia Nu-
merical Library to compute the integral involving in this formula.
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