
Cap and Swaption Approximations in LIBOR

Market Models with Jumps [Glasserman/Merener]

Sönke Blunck

Premia 18

1 Preliminaries and notation

The following is based on [GM]. We fix a discrete tenor structure 0 = T0 < T1 <

. . . < TM+1 with Ti+1 − Ti ≡ δ and set

η(t) := min{i ≥ 0;Ti ≥ t} = ⌈ t
δ
⌉ , hence t ∈ (Tη(t)−1 , Tη(t) ] , t > 0 .

Whenever we talk about piecewise constant functions we mean that they are con-

stant on each interval (Ti, Ti+1].

For i = 0, . . . ,M , the forward LIBOR rates for the period [Ti, Ti+1] are denoted by

(Li
t)t∈[0,Ti] and

Lt = (L
η(t)
t , . . . , LM

t ) .

By P (t, T ) we denote the price at time t of the zero-coupon bond with maturity T .

Observe that we have

P (0, TM+1) =
M∏

j=0

(1 + δLj
0)

−1 .

We will consider LIBOR market models with jumps. The source of the jumps will

be compound Poisson processes; all notations concerning these compound Poisson

processes as well as the used relations to Poisson measures are explained in Section

4.

2 The approximation method

Suppose that, under the spot measure, the LIBOR rates (Li
t) are given by dynamics

of the following type:

(1)
dLi

t

Li

t−

= γi
tdW

p
t + dJ i

t + bi
t dt ,

1



2

where (γi
t) is deterministic and (J i

t ) is a compound Poisson process

J i
t =

Nt∑

j=1

Hi(Xj, τj) .

We assume (Xj, τj) to have a deterministic Poisson measure νp of the type

νp(x, t)dxdt = λp
t f

p(x, t)dxdt .

Furthermore, we suppose all coefficients γi, Hi(x, ·), λp, fp(x, ·) to be piecewise con-

stant. This implies the following dynamics under the Ti+1-forward measure P i+1 :

(2)
dLi

t

Li

t−

= γi
tdW

i+1
t + dJ i

t + ai
t dt .

By standard no-arbitrage arguments, one can identify the drift ai
t to be

(3) ai
t = −

∫

R+

Hi(x, t) ν
i(x, t) dx ,

where νi denotes the Poisson measure of (Xj, τj) under P i+1. By standard change-

of-numeraire techniques, νi can be seen to be

νi(x, t) = φi(t,H(x, t−), Lt−) νp(x, t) ;

here we denote

φi(t,H, L) :=
i∏

j=η(t)

1+δLj

1+δLj(1+Hj)
.

In particular, the corresponding (non-deterministic) jump intensities λi
t and jump

densities f i(x, t) are given by

(4) λi
t =

∫

R+

φi(t,H(x, t−), Lt−) νp(x, t) dx ,

(5) f i(x, t) = (λi
t−)−1 φi(t

−, H(x, t−), Lt−) νp(x, t−) .

Observe that, concerning caplet pricing, only for the caplet with maturity TM it is

reasonable to model (as we do) all the LIBOR rates L0, . . . , LM ; so we consider only

this caplet. In order to compute its current price CM
0 given by

(6) CM
0 = δP (0, TM+1)EM+1((LM

TM
−K)+) = δEp(

M∏

j=0

(1+δLj
Tj

)−1(LM
TM

−K)+) ,

the particular case HM(x, t) = x − 1 is rather pleasant since it admits an (essen-

tially) closed formula. This can be seen from the following result which is [GM,

Proposition 3.1].
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Proposition 2.1. Let the process (Gt) be given by

dGt

G
t−

= γt dWt + dJt + at dt ,

where (γt) , (at) are deterministic and (Jt) is a compound Poisson process

Jt =
Nt∑

j=1

(Xj − 1) .

We assume (Xj, τj) to have a deterministic Poisson measure ν of the type

λt f(x, t)dxdt, where the jump densities f(x, t) are supposed to be lognormal with

parameters µt and σt. Suppose that the coefficients γ , a , λ , µ , σ are piecewise con-

stant: γt = γk for all k = 0, . . . ,M − 1 and t ∈ (Tk, Tk+1], etc. Then

E( (GTM
−K)+ ) = G0 Π1 − KΠ2 ,

where

Π1 = 1
2

+ 1
π

∫ ∞

0
eB1(u) sin

(
B2(u) − u log( K

G0
)
)

du
u
,

Π2 = 1
2

+ 1
π

∫ ∞

0
eB3(u) sin

(
B4(u) − u log( K

G0
)
)

du
u
.

Here we denote mk = eµk+σ2
k

/2 − 1, ωk = µk + σ2
k, αk = ak − γ2

k/2 and

B1(u) = δ
M−1∑

k=0

λk

(
eµk+σ2

k
(1−u2)/2 cos(ωku) − 1 −mk

)
− γ2

ku
2/2 ,

B2(u) = δ
M−1∑

k=0

λke
µk+σ2

k
(1−u2)/2 sin(ωku) + (αk + γ2

k)u ,

B3(u) = δ
M−1∑

k=0

λk

(
e−σ2

k
u2/2 cos(µku) − 1

)
− γ2

ku
2/2 ,

B4(u) = δ
M−1∑

k=0

λke
−σ2

k
u2/2 sin(µku) + αku .

Therefore, in order to approximate via Proposition 2.1 the caplet price in (6) under

the dynamics (2) for LM (which are not of the type considered in Proposition 2.1 !),

we proceed as follows: We approximate LM by a process L̂ with dynamics of the

type considered in Proposition 2.1, compute the L̂TM
-caplet price via Proposition

2.1 and take it as an approximation of the desired LM
TM

-caplet price.

For this purpose, we have to approximate the non-deterministic Poisson measure

νM(x, t) = λM
t f

M(x, t) by a deterministic (and piecewise constant) Poisson measure
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ν̂(x, t) = λ̂t f̂(x, t) with lognormal jump densities f̂(x, t). Then we will apply Propo-

sition 2.1 for (γt, at, ν, G0) = (γM
t , ât, ν̂, L

M
0 ), where we make the following choice for

the (piecewise constant) drift ât which is obviously motivated by (3) for i = M :

ât := −
∫

R+

(x− 1) ν̂(x, t) dx .

So our approximating process L̂ will be given by the PM+1-dynamics

dL̂t

L̂
t−

= γM
t dWM+1

t + dĴt + ât dt , L̂0 = LM
0 .

We have to choose jump intensities λ̂t and lognormal jump densities f̂(x, t), both

deterministic and piecewise constant. Firstly we take λ̂t to be the following ’deter-

ministic version’ of λM
t in (4) :

λ̂t :=
∫

R+

φM(t,H(x, t−), L0) ν
p(x, t) dx .

Secondly, we choose the jump densities f̂(x, t) (more precisely, their lognormal pa-

rameters µ̂t and σ̂t) by approximately matching its first two moments with those of

fM(x, t) :

∫

R+

HM(x, t−) fM(x, t−) dx
!≈

∫

R+

(x− 1) f̂(x, t−) dx = m̂t := e µ̂t+
σ̂2

t

2 − 1 ,
∫

R+

HM(x, t−)2 fM(x, t−) dx
!≈

∫

R+

(x− 1)2 f̂(x, t−) dx = eσ̂2
t (1 + m̂t)

2 − 2m̂t − 1 .

Here we use the following fact:

log(X) ∼ N (µ, σ2) =⇒ E(X) = eµ+ σ2

2 and E(X2) = e 2(µ+σ2) .

Observe that, in both ≈-parts, the RHS is deterministic while the LHS is not. So

we have to be more precise on what ≈ is supposed to mean:

∫

R+

HM(x, t−) fM(x, t−) dx

= (λM
t−)−1

∫

R+

HM(x, t−)φM(t−, H(x, t−), Lt−) νp(x, t−) dx [ by (5) ]

≈ (λ̂t−)−1
∫

R+

HM(x, t−)φM(t−, H(x, t−), L0) ν
p(x, t−) dx [ =: It ]

!
=

∫

R+

(x− 1) f̂(x, t−) dx = m̂t .
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For the second moment, we proceed the same way:

∫

R+

HM(x, t−)2 fM(x, t−) dx

= (λM
t−)−1

∫

R+

HM(x, t−)2 φM(t−, H(x, t−), Lt−) νp(x, t−) dx [ by (5) ]

≈ (λ̂t−)−1
∫

R+

HM(x, t−)2 φM(t−, H(x, t−), L0) νp(x, t−) dx [ =: Jt ]

!
=

∫

R+

(x− 1)2 f̂(x, t−) dx = eσ̂2
t (1 + m̂t)

2 − 2m̂t − 1 .

Hence, µ̂t and σ̂t are computed from the two identities

It = m̂t and Jt = eσ̂2
t (1 + m̂t)

2 − 2m̂t − 1 .

This yields the following choice:

σ̂2
t := log

(
Jt+1+2It

(1+It)2

)
and µ̂t := log(1 + It) − σ̂2

t

2
.

By changing from the spot measure not to the numeraire bond price as above but to

the numeraire PVBP, one obtains by straightforward adaptions an approximation

method for the prices of (European) swaptions.

The same holds if the initial dynamics are given under the forward measures (and

not under the spot measure as above). Notice that, in this case, caplet prices are

computed exactly via Proposition 2.1.

3 Numerical results

In all our numerical tests, the jump densities fp(t, ·) are supposed standard lognor-

mal:

fp(x, t) = 1√
2π x

exp(− log(x)2

2
) .

According to the choice of µ̂t and σ̂t , we have

f̂(x, t) = 1√
2π σ̂tx

exp(− (µ̂t−log x)2

2σ̂2
t

) .

3.1 Simulation

We will compute the caplet price not only by our approximation method presented

in Section 2 but also by Monte Carlo simulation of the LIBOR dynamics (1) under

the spot measure, i.e.

dLi
t

Li

t−

= γi
tdW

p
t + dJ i

t + bi
t dt , where J i

t =
Nt∑

j=1

Hi(Xj, τj) .
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Analogously to the forward measure case above, one can identify by standard no-

arbitrage arguments the drift bi
t to be

bi
t = ψi(t, Lt−) + ai

t , where ψi(t, L) := δ γi
t

i∑

j=η(t)

γj
t Lj

1+δLj

and ai
t is as in (3). Let (ξl) be a sequence of independent exponential random

variables and set

Ξn :=
n∑

l=1

ξl and Λ(t) :=
∫ t

0
λp

s ds .

We use the fact that if (Ñt) is a standard Poisson process (with intensity 1) then

we have Nt
L
= ÑΛ(t) .

The simulation employs a uniform time grid with step size h = 0.01 . The following

algorithm is used to pass from Lt and ΞNt
(the latter denoted by Ξ = capital ξ) to

Lt+h and ΞNt+h
. Here we denote by G( ) and U( ) independent samples of standard

Gaussian and uniform random variables.

∆W =
√
hG( );

∆J = (0, . . . , 0);

while Ξ ≤ Λ(t+ h) :

X = eG( );

for i = η(t+ h), . . . ,M : ∆J i = ∆J i +Hi(X, t);

Ξ = Ξ − log(U());

for i = M, . . . , η(t+ h) :

a = − ∫
Hi(x, t)φi(t,H(x, t−), Lt)λt f(x, t)dx;

b = ψi(t, Lt) + a;

Li
t = Li

t + Li
t(γ

i
t ∆W + ∆J i + bh);

The advantage of counting downwards in the second i-loop is that Lt+h can be stored

in Lt since the functions φi and ψi do not use the Li+1, . . . , LM .

In order to reduce the computational cost of the integral in the drift a, we will

recompute it not at every time step but only at time steps with jumps and after a

certain number of time steps without jumps.

3.2 Parameter values

We consider functions Hi of the following type:

Hi(x, t) = xσi(t) − 1 .
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Since we suppose all coefficients to be piecewise constant, we write similarly as in

Proposition 2.1 :

σi(t) = σi,k , λ
p
t = λk , λ̂t = λ̂k , ât = âk , etc. for all t ∈ (Tk, Tk+1] .

In other words, we have for all t > 0

σi(t) = σi,η(t)−1 , λ
p
t = λη(t)−1 , λ̂t = λ̂η(t)−1 , ât = âη(t)−1 , etc.

In this notation, we have the following formula for our function Λ :

Λ(t) :=
∫ t

0
λp

s ds = δ
η(t)−2∑

k=0

λk + (t− Tη(t)−1)λη(t)−1 .

As in the parameter set A in [GM, § 5.5], we consider the following values for the

parameters determining the dynamics under the spot measure:

δ = 0.5 , Li
0 = 0.06 , γi

k = 0.1 , λk = 5∗0.99k , σi,k = 0.1∗1.01k.

Our results for the caplet prices are presented in the following table.

Maturity TM Strike K MC (95% conf. interval) Approximation

2 ITM 0.05 58.4357 (0.469) 58.4846

2 ATM 0.06 35.4471 (0.393) 35.523

2 OTM 0.07 20.662 (0.316) 20.7832

3 ITM 0.05 61.5082 (0.533) 61.3927

3 ATM 0.06 41.2349 (0.464) 41.1833

3 OTM 0.07 27.3235 (0.278) 27.2172

5 ITM 0.05 63.9986 (0.420) 63.7998

5 ATM 0.06 47.6215 (0.381) 47.467

5 OTM 0.07 35.4599 (0.341) 35.322

4 Some facts on compound Poisson processes and

Poisson measures

Let (τj) be a sequence of jump times, i.e., a strictly increasing sequence of strictly

positive random variables. Let (Xj) is a sequence of iiv random variables. Set

Nt := max{ j ; τj ≤ t } .

Each process (Jt) of the type

Jt =
Nt∑

j=1

H(Xj, τj) , where H : R × R+ → R is a bounded function
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is called a compound Poisson process. We always suppose that (Xj, τj) admits an

intensity process. This is a (in general non-deterministic) finite Poisson measure of

the type ν(dx, t)dt such that the law of Xj conditional on τj = t is f(dx, t), where

f(dx, t) := λ−1
t−
ν(dx, t−) and λ(t) :=

∫

R

ν(dx, t) .

In other words:

E(H(Xτj
, τj) | τj = t ) =

∫

R

H(x, t−) f(dx, t−)

for all bounded H. The λt are called jump intensities.
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