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Abstract

In a Heston hybrid model with stochastic interest rate, we implement
European option pricing by Fourier Cosine method. Baced on [3], we apply
two different approximations of the hybrid model to obtain a closed form
solution of the characteristic function for Fourier cosine method.

Premia 18

1 Introduction

We consider the pricing problem of European option in hybrid model and stochastic
interest rate. The implementation of this problem is based on the Fourier Cosine
expansion approach given by Grzelak and Oosterlee (2010).

The rest of this file is as follows: we introduce the model in Section 2, then in
section 3 we present the pricing method of Fourier Cosine expansion incoperated
with a closed form solution of characteristic function of the model, the program
manual of the implementation in PREMIA is given in Section 4.

2 Model description

The model we considered is a Heston model assciated with Cox-Ingersoll-Ross stochas-
tic interest rate process, it is given as follows:
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dSt = rtStdt+
√
σtStdW

x
t , S0 > 0,

dσt = k(σ − σt)dt+ γ
√
σtdW

σ
t , σ0 > 0, (2.1)

drt = λ(θt − rt)dt+ η
√
rtdW

r
t , r0 > 0,

where k > 0 determines the speed of adjustment of the volatility towards its theoret-
ical mean, σ > 0, γ > 0 is the second-order volatility, i.e. the variance of the volatil-
ity, λ > 0 determines the speed of mean reversion for the interest rate process, θt is
the interest rate term-structure and η controls thevolatility of the interest rate, the
correlations are given by dW x

t dW
σ
t = ρx,σdt, dW

x
t dW

r
t = ρx,rdt, dW

σ
t dW

r
t = ρσ,rdt.

Note that we assume independence between the instantaneous short rate, rt, and
the volatility process σt, i.e. ρσ,r = 0.

To compute the price of an European option in such a model, [3] proposed to
reformulat the HCIR model in the following way:















dSt = rtStdt+
√
σtStdW

x
t + Ωt

√
rtStdW

r
t + ∆

√
σtStdW

σ
t , S0 > 0,

dσt = k(σ − σt)dt+ γ
√
σtdW

σ
t , σ0 > 0,

drt = λ(θt − rt)dt+ η
√
rtdW

r
t , r0 > 0,

(2.2)

with dW x
t dW

σ
t = ρ̂x,σdt, dW

x
t dW

r
t = 0, dW σ

t dW
r
t = 0.

Let xt = log(St) we have

dxt =
[

rt − 1

2

(

Ω2
t r

2p
t + σt(1 + ∆2 + 2ρ̂x,σ∆)

)

]

dt+ Ωt

√
rtStdW

r
t + ∆

√
σtStdW

σ
t

=
(

rt − 1

2
σt

)

+ Ωt

√
rtStdW

r
t + ∆

√
σtStdW

σ
t .

The pricing method is derived based on the SDE system X∗

t , in fact the SDE
system X∗

t := [rt, σt, xt]
T is coodinated with that of Xt := [St, σt, rt]

T in the sense
that

Ωt = ρx,rr
−1/2
t

√
σt, ρ̂

2
x,σ = ρ2

x,σ + ρ2
x,r,∆ = ρx,σ − ρ̂x,σ. (2.3)

3 Sketch of the Pricing Method

The idea of the pricing method proposed by [3] is by fitting the model into a class of
affine diffusion processes to have a closed form solution of the characteristic function
of the discount logarithm of equity process and then use Fourier-Cosine expansion
to derive the option price.
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3.1 Closed form Solutions of Discount Characteristic Func-

tion by two approximations

From [1], if a process is a affine diffusion process(AD), a closed form solution of the
characteristic function exists. The AD processes is given by a system of SDEs

dXt = µ(Xt)dt+ σ(Xt)dWt (3.1)

satisfies:

µ(Xt) = a0 + a1Xt, for any(a0, a1) ∈ Rn × Rn×n, (3.2)

σ(Xt)σ(Xt)
T = (c0)ij + (c1)

T
ijXt, for abitrary(c0, c1) ∈ Rn×n × Rn×n×n,

r(Xt) = r0 + rT
1 Xt, for(r0, r1) ∈ R × Rn,

for any i, j = 1, · · · , n with r(Xt) being an interest rate component.

Then, by [1], the discounted characteristic function (ChF) of (3.2) is of the fol-
lowing form:

φ(u,Xt, t, T ) = EQ

(

exp

(

−
∫ T

t
rsds+ iuT XT

)

|F + t

)

= eA(u,τ)+BT (u,τ)Xt ,

where the expectation is taken under the risk-neutral measure, Q. For a time lag,
τ := T − t, the coefficients A(u, τ) and BT (u, τ) have to satisfy the following
complex-valued ordinary differential equation (ODEs):







d
dτ

B(u, τ) = −r1 + aT
1 B + 1

2
BT c1B,

d
dτ

A(u, τ) = −r0 + BTa0 + 1
2
BT c0B,

(3.3)

with ai, ci, ri, i = 0, 1 as in (3.2).
For the HCIR model, the sysmetric instantaneous covariance matrix in (3.2) for

the SDE system X∗

t is given by:

Σ := σ(X∗

t
)σ(X∗

t
)T =







η2rt 0 ηΩtrt

∗ γ2σt γρ̂x,σσt + γ∆σt

∗ ∗ σt + Ω2
t rt + ∆2σt + 2ρ̂x,σ∆σt





 . (3.4)

To make the HCIR model affine we need to approximate the non-affine terms
√
σt

√
rt

in Σ(1,3) = ηΩtrt = ηρx,r
√
σt

√
rt of the instantaneous covariance matrix. Σ(3,3) does

not seems to be of the affine form, but in fact by (2.3), it equals Σ(3,3) = σt.

[3] proposed two ways to approximate the non-affine terms, one is determinis-
tic approximation, which approximates

√
σt and

√
rt by their expectations and the

other is a stochastic approximation by a normal distributed random variable. Here
we just provide the approximations of the two methods, for the detail of derivation,
we refers the reader to [3].
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Lemma 3.1. The expectation, E(
√
σt), with stochastic process given by equation

(2.1) can be approximated by

E(σt) ≈ a+ be−ct, (3.5)

where

a =

√

σ − γ2

8k
, b =

√
σ0 − a, c = − log(b−1(Λ(1) − a)),

with

Λ(t) :=

√

√

√

√c(t)(λ(t) − t) + c(t)d+
c(t)d

2(d+ λ(t))
,

c(t) =
1

4k
γ2(1 − e−kt), d =

4kσ

γ2
, λ(t) =

4kσ0e
−kt

γ2(1 − e−kt)
,

k, σ, γ and σ0 are the parameters given in (2.1).

Remarks 3.2. Note that the interest rate process rt is given by an equation with the
similar structure of σt, then the expectation of its square root can be approximated
by the same way.

By the approximation given above, the HCIR model can be fitted into the AD
class, thus we have a closed form solution of the discount ChF.

Theorem 3.3. The discount ChF of X∗

t is given by

φ(u,Xt, τ) = exp(A(u, τ) +Bx(u, τ)xt +Bσ(u, τ)σt +Br(u, τ)rt), (3.6)

where

Bx(u, τ) = iu,

Br(u, τ) =
1 − e−D1τ

η2(1 −G1e−D1τ )
(λ−D1),

Bσ(u, τ) =
1 − e−D2τ

γ2(1 −G2e−D2τ )
(k − γζiu−D2),

and

A(u, τ) =
∫ τ

0
(kσBσ(u, s) + λθBr(u, s) + ρx,rηiuE(

√
σT −s)E(

√
rT −s)Br(u, s))ds,

with ζ = ρ̂x,σ+∆, D1 =
√

λ2 + 2η2(1 − iu), D2 =
√

(γζiu− k)2 − (iu− 1)iuγ2, D1 =
λ−D1

λ+D1

, and G2 = k−γζiu−D2

k−γζiu+D2

.

For the stochastic approximation we consider the SDE system ofXt := [xt, σtmrt, vt, Rt, zt]
T

with Rt =
√

(rt), vt =
√
σt, zt = vtRt. Then for Xt the discount ChF is given by the

following theorem.
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Theorem 3.4. The discount ChF of Xt is given by

φ(u,Xt, τ) = exp(A(u, τ)+Bx(u, τ)xt+Bσ(u, τ)σt)+Br(u, τ)rt+Bv(u, τ)vt+BR(u, τ)Rt+Bz(u, τ)zt,
(3.7)

where Bx(u, τ) := Bx, Bσ(u, τ) := Bσ, Br(u, τ) := Br, Bv(u, τ) := Bv, BR(u, τ) :=
BR, Bz(u, τ) := Bz can be solved from the following ODEs:

dBx

dτ
= 0,

dBr

dτ
= −1 +Bx − λBr +

1

2
η2B2

r +
1

2
(ψv

t )2B2
z ,

dBR

dτ
= µv

tBz + ψR
t ηBrBR + (ψv

t )2BvBz,

dBz

dτ
= ηρx,rBxBr + ζψv

tBxBz + γψv
tBσBz + ηψR

t BrBz,

dA

dτ
= kσBσ + λθBr + µv

tBv + µR
t BR +

1

2
(ψv

t )2B2
v +

1

2
(ψR

t )2B2
R,

dBv

τ
= µR

t Bz + ψv
t ζBxBv + γψv

tBσBv + ρx,rψ
R
t BxBR + (ψR

t )2BrBz,

and

dBσ

dτ
=

1

2
Bx(Bx − 1) − kBσ + γζBxBσ +

1

2
γ2B2

σ + ρx,rψ
R
t BxBz +

1

2
(ψR

t )2B2
x, (3.8)

with the boundaray conditions: Bx(u, 0) = iu, Br(u, 0) = 0, BR(u, 0) = 0, Bz(u, 0) =
0, Bσ(u, 0) = 0, Bv(u, 0) = 0, and A(u, 0) = 0, where µv

t , µ
R
t , ψ

v
t , ψ

R
t are specified in ,

and ζ = ρ̂x,σ + ∆.

In the implementation of the option pricing, we use Lunge-Kutta algorithm to
solve the coefficient functions Bx, Bσ, Br, Bv, BR, Bz.

3.2 Pricing Option by Fourier-Cosine expansion

With the closed form of characteristic function provided above, the European price
can be derived by Fourier-Cosine expansion. Denote by v(x, t0) the present value of
option price at time t0 with initial option value x, it can be expressed as risk neutral
valuation formula:

v(x, t0) = EQ[v(y, T )|x] =
∫

R
v(y, T )f(y|x)dy,

where EQ[·] is the expectation operator under risk-neutral measure Q, x and y are
states variables at time t0 and T , respectively, f(y|x) is the probability density of y
given x, and r is the risk-neutral interest rate.

Firstly, we truncate the infinite integration range without loosing significant
accuracy to [amb] ∈ R, and we obtain approximation v1 :

v1(x, t0) =
∫ b

a
v(y, T )f(y|x)dy, (3.9)
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where

[a, b] :=
[

c1 − L
√

c2 +
√
c4, c1 + L

√

c2 +
√
c4

]

, (3.10)

with L = 10 and cn denotes the n-th cumulant of ln(ST/K).

Secondly, we replace teh density by its cosine expansion in y,

f(y|x) =
+∞
∑

k=0

Ak(x)cos
(

kπ
y − a

b− a

)

, (3.11)

where the summation Σ here with the first term is weightedd by one-half and so
thus for the following summation and

Ak(x) :=
2

b− a

∫ b

a
f(y|x) cos

(

kπ
y − a

b− a

)

≡ 2

b− a
Re

{

φ

(

kπ

b− a

)

exp

(

−i kaπ
b− a

)}

,

(3.12)
where the second equation is obtained by comparing the cosine coefficient Ak of
f(y|x) with the definition of discount characteristic function of the state variables.

So that

v1(x, t0) =
1

2
(b− a)

N−1
∑

k=0

Ak(x)Vk, (3.13)

where

Vk :=
2

b− a

∫ b

a
v(y, T )

+∞
∑

k=0

Ak(x) cos(kπ
y − a

b− a
)dy. (3.14)

Interchange the summation and integration, we have

v1(x, t0) =
1

2
(b− a)

+∞
∑

k=0

Ak(x)Vk ≈ 1

2
(b− a)

′N−1
∑

k=0

Ak(x)Vk, (3.15)

with Vk := 2
b−a

∫ b
a v(y, T ) cos(kπ y−a

b−a
)dy.

Then replacing (3.12) of Ak in (3.15), we have

v(x, t0) ≈
N−1
∑

k=0

Re

{

φ

(

kπ

b− a
;x

)

e−ikπ a

b−aVk

}

, (3.16)

which is the COS formula for general underlying processes.

At last, we just need to determine Vk in the above COS formula, for a call option,
Vk is given by

Vk =
2

b− a
K(ξl(0, b) − φk(0, b)), (3.17)
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where

ξk(c, d) :=
1

1 +
(

kπ
b−a

)

2
[

cos

(

kπ
d− a

b− a

)

ed − cos
(

kπ
c− a

b− a

)

ec

+
kπ

b− a
sin

(

kπ
d− a

b− a

)

ed − kπ

b− a
sin

(

kπ
c− a

b− a

)

ec

]

φk(c, d) :=







[

sin
(

kπ d−a
b−a

)

− sin
(

kπ c−a
b−a

)]

b−a
kπ
, k 6= 0,

(d− c), k = 0.
.

We refers to [2] for more details.

4 Program Manual

We implement the European option pricing by Fourier Cosine expansion by using
two types of approximation to derive the closed form solution of characteristic func-
tions. The program HAS TO work with the pnl library.

Included files:

The program directory contains the files:
this documentation file “docu.pdf"
“HESTON_COSINE.c"
“HESTON_COSINE"
“Makefile"

Compile and run program:

By excute “make" under Linux, the file “HESTON_COSINE.c" is compiled and an
excutable file “HESTON_COSINE" will be regenerated.
Model Parameters:

kv: k in model (2.1)
vbar: σ in model (2.1)
sigmav: γ in model (2.1)
sigma0: the initial value of σt

kr: λ in model (2.1)
rbar: θ in model (2.1)
sigmar: η in model (2.1)
r0: the initial value of interest rate rt

rho12: ρx,σ in model (2.1)
rho13: ρx,r in model (2.1)
rho23: ρσ,r in model (2.1), note that our method works well only when ρ23 = 0.

Parameters of the product:

S0: stock price at the initial time
K: strike of the American option
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T: maturity of the American option, the expansion asymptotic works well for small
maturity.

Flags to choose products and approximation methods :

approximation_flag: approximation method flag with 0 for deterministic approxi-
mation, 1 for stochastic approximation
callput_flag:callput flag: 0 for call, 1 for put

Parameters for COSINE method:

N: discrect steps in the integration range N in (3.16)
L: parameter in the truncate bound of [a, b] as given in (3.10).
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