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Abstract

In this work, we propose a smart idea to couple importance sampling and Multilevel
Monte Carlo. We advocate a per level approach with as many importance sampling
parameters as the number of levels, which enables us to compute the different levels inde-
pendently. The search for parameters is carried out using sample average approximation,
which basically consists in applying deterministic optimisation techniques to Monte Carlo
approximation rather than resorting to stochastic approximation. Our innovative estima-
tor leads to a robust and efficient procedure reducing both the bias and the variance for
a given computational effort. In the setting of discretized diffusions, we prove that our
estimator satisfies a strong law of large numbers and a central limit theorem with optimal
limiting variance. Finally, we illustrate the efficiency of our method on several numerical
challenges coming from quantitative finance.
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1 Introduction

Many probabilistic problems boil down to the computation of expected values involving a
stochastic process, which are often computed by Monte Carlo methods. For instance, com-
puting an hedging portfolio in finance uses these tools. Generally, the asset price follows a
diffusion process (Xt)0≤t≤T ∈ R

d with a non explicit solution, the simulation of which requires
a discretization scheme (Xn

t )0≤t≤T with n ∈ N
∗ time steps such as the Euler scheme, the Mil-

stein scheme or some other well known higher order schemes (see Kloeden and Platen [28] for
an extensive discussion). The error induced by such schemes is called the discretization error
or the bias. Then, the valuation of a financial derivative using a Monte Carlo method in-
volves the simulation of N independent samples of Xn

T . These methods are known to converge
slowly. In particular, for a given discretization error of order 1/nα, for α > 0, the optimal
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choice for the number of samples is given by N = n2α. This leads to an overall complexity for
the Monte Carlo method of order n3α. Nevertheless, a lot of techniques have been developed
in the recent years to speed up the method. Kebaier [27] proposed the Statistical Romberg
method to generate discretization schemes on two different time grids, using a coarser grid
to simulate a crude approximation and a finer one to tune the bias. More recently, Giles [16]
generalized the statistical Romberg method of [27] and proposed the multilevel Monte Carlo
algorithm in a similar approach to Heinrich’s multilevel method for parametric integration
[22]. It turns out that for the Euler scheme with a given discretization error of order 1/nα,
α > 0, and for a Lipschitz continuous payoff function, the optimal complexity of the Statisti-
cal Romberg and the multilevel Monte Carlo methods are respectively of order n2α+1/2 and
n2α(logn)2, which are clearly better than a crude Monte Carlo method. We refer the reader
to the extensive literature linked to Multilevel Monte Carlo for more details, see Ben Alaya
and Kebaier [6], Collier, Haji-Ali, Nobile, von Schwerin and Tempone [12], Creutzig, Dereich,
Muller-Gronbach and Ritter [13], Dereich [14], Giles [17], Giles, Higham and Mao [19], Giles
and Szpruch [18], Heinrich [21], Heinrich and Sindambiwe [23], and Lemaire and Pagès [32].

The use of multilevel techniques clearly reduces the bias, but in many situations the high
variance also brings in a significant inaccuracy, which naturally leads to trying to couple
multilevel Monte Carlo with variance reduction techniques. In this work, we focus on im-
portance sampling following the ideas of Arouna [3], who considered a parametric family
of stochastic processes (Xt(θ))0≤t≤T , with θ ∈ R

q, driven by a drifted Brownian motion to
build an adaptive importance sampling Monte Carlo method. His algorithm was based on
the Robbins-Monro procedure to search for the drift parameter optimally reducing the main
term in the variance

V (θ) = E

(
f2(XT (θ))e−θ·WT − 1

2
|θ|2T

)
,

where f denotes the payoff function and (Wt)0≤t≤T is the q-dimensional standard Brownian
motion driving the process X (see the next section for more details). In this Gaussian frame-
work, the standard Robbins-Monro algorithm suffers from numerical instability and may even
blow up . To fix this problem, a constrained version of the Robbins-Monro algorithm was pro-
posed by Chen [10, 11] and later investigated by several authors (see, e.g. Andrieu, Moulines
and Priouret [2], Lapeyre and Lelong [29] and Lelong [30]). This constrained Robbins-Monro
algorithm uses random truncations on an increasing sequence of compact sets to ensure con-
vergence. As tuning such random truncations is not easy, Lemaire and Pagès [31] proposed
an alternative modification to circumvent this difficulty. The stability of these stochastic
algorithms eventually depends on the choice of the gain sequence, which proves to be highly
sensitive in practice. To overcome this difficulty, Jourdain and Lelong [26] proposed to apply
deterministic optimization techniques to sample average estimators to search for the optimal
parameter. They approximate the unique minimum of V by the unique minimum of

Vn,N (θ) =
1

N

N∑

k=1

f2(Xn
T,k(θ))e

−θ·WT,k− 1
2

|θ|2T .

where (Xn
T,k(θ))1≤k≤N are i.i.d. samples of Xn

T (θ). Doing so, their approach provides a robust
and fully automatic variance reduction methodology. Despite the efficiency of the sample
average approximation, all attempts to couple several discretization schemes with importance
sampling have relied on stochastic approximation to search for the optimal parameter. Ben
Alaya, Hajji and Kebaier [8] studied a combination of the statistical Romberg method with
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both constrained and unconstrained versions of the Robbins-Monro algorithm. Hajji [20]
investigated the coupling of multilevel Monte Carlo with the constrained Robbins-Monro
algorithm.

In this work, we study how to couple importance sampling and Multilevel Monte Carlo
in the framework developed in [26]. Our approach inherits its robustness from the sample
average approximation to efficiently reduce the variance and at the same time the multilevel
Monte Carlo feature reduces the computational time. The parameter θ is commonly optimized
to minimize the asymptotic variance of the estimator, which can be implemented in many
ways in the multilevel framework. We have chosen to allow for as many importance sampling
parameters as the number of levels L. Hence, we minimize the variance of each level using a
sample average approximation given by

Vℓ,mℓ,Nℓ
(θ) =

1

Nℓ

Nℓ∑

k=1

mℓ

(m− 1)T

∣∣∣f(Xmℓ

T,ℓ,k) − f(Xmℓ−1

T,ℓ,k )
∣∣∣
2
e−θ·WT,ℓ,k+ 1

2
|θ|2T , m ∈ N \ {0, 1}

where (Xmℓ

T,ℓ,k)1≤k≤Nℓ
, (Xmℓ−1

T,ℓ,k )1≤k≤Nℓ
and (WT,ℓ,k)1≤k≤N denote the independent copies of

respectively the Euler schemes Xmℓ

T and Xmℓ−1

T and the Brownian motion WT,ℓ used in the
ℓ−th level of the method (see Section 5 for more details). This approach has many advantages.
First, the computations within the different levels remain independent. Second, we actually
minimize the real variance of the estimator and not its asymptotic value and more importantly
it can be implemented without knowing ∇f , which however appears in the central limit
theorem for multilevel Monte Carlo. Yet, our approach attains the optimal limiting variance.

In Section 2, we present our general framework and some preliminary results. In section
3, we study the convergence of the optimal parameter minimizing the map θ 7→ Vn,N (θ) when
the number of time steps n of the Euler scheme and the sample size N of the Monte Carlo
method both tend to infinity. Section 4 addresses the asymptotic properties of the adaptive
Monte Carlo method using the estimators developed in Section 3. Theorems 4.1 and 4.2
represent a kind of refinements of the results of [26] as we let both parameters n and N tend
to infinity. In section 5, we introduce our multilevel sample average approximation method.
First, we study the asymptotic behavior of the optimal parameter minimizing the function
θ 7→ Vℓ,mℓ,Nℓ

(θ) (see Theorem 5.1). Then, we prove a strong large of law numbers and a
central limit theorem for our adaptive multilevel algorithm (see Theorem 5.3 and Theorem
5.4). The main difficulty in proving these results is the uniform control of the triangular
arrays involved in the adaptive multilevel estimator. To overcome this issue, we prove in
Section 6 new limit theorems for doubly indexed sequences of random variables in a general
setting (see Propositions 6.1 and 6.3). In section 7, we illustrate the efficiency of our approach
on challenging problems coming from quantitative finance.

2 General framework

Let (Xt)0≤t≤T be the solution of

dXt = b(Xt)dt+
q∑

j=1

σj(Xt)dW
j
t , X0 = x ∈ R

d (2.1)

where W = (W 1, . . . ,W q) is a q-dimensional Brownian motion on some given probability
space (Ω, (Ft)0≤t≤T ,P) with finite time horizon T > 0. We assume that (Ft)0≤t≤T is the
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augmented natural filtration ofW . The functions b : Rd −→ R
d and σj : Rd −→ R

d, 1 ≤ j ≤ q,
satisfy the following condition

∀x, y ∈ R
d |b(x) − b(y)| +

q∑

j=1

|σj(x) − σj(y)| ≤ Cb,σ|x− y|, with Cb,σ > 0, (Hb,σ)

where | · | denotes the Euclidean norm. This property ensures the strong existence and
uniqueness of a solution to (2.1). In many applications, in particular for the pricing of
financial securities, we are interested in the effective computation by Monte Carlo methods
of the quantity E[ψ(XT )] for a given function ψ. From a practical point of view, we have to
discretize the process X. Let us consider the continuous time Euler approximation Xn with
time step δ = T/n given by

dXn
t = b(Xn

ηn(t))dt+
q∑

j=1

σj(X
n
ηn(t))dWt, ηn(t) = ⌊t/δ⌋δ. (2.2)

It is well known that, under Condition (Hb,σ), Xn converges to X (see e.g. Bouleau and
Lépingle [9])

∀p ≥ 1, X,Xn ∈ Lp and E

[
sup

0≤t≤T
|Xt −Xn

t |p
]

≤ Kp(T )

np/2
, with Kp(T ) > 0. (P)

The weak error was first studied by Talay and Tubaro [36] and it is now well known that if
ψ, b and (σj)1≤j≤q are in C 4

P — they are four times differentiable and together with their
derivatives and have at most polynomial growth — then we have (see Theorem 14.5.1 by
Kloeden and Platen in [28])

εn
∆
= E[ψ(Xn

T )] − E[ψ(XT )] = O(1/n).

The same result was later extended by Bally and Talay [5] for a measurable function ψ but
with a non degeneracy condition of Hörmander’s type on the diffusion. In the context of
possibly degenerate diffusions, when ψ satisfies |ψ(x) − ψ(y)| ≤ C(1 + |x|p + |y|p)|x − y| for
C > 0, p ≥ 0, the estimate |E[ψ(Xn

T )] − E[ψ(XT )]| ≤ c√
n

follows easily from (P). Moreover,

Kebaier [27] proved that if in addition b and (σj)1≤j≤q are C 1 and ψ satisfies the following
condition

P(XT /∈ Dψ) = 0, where Dψ = {x ∈ R
d | ψ is differentiable at x}

then, limn→∞
√
n εn = 0. Conversely, under the same assumptions, he showed that the rate

of convergence can be 1/nγ , for any γ ∈ [1/2, 1]. So, it is worth introducing the following
assumption

for γ ∈ [1/2, 1] nγ(Eψ(Xn
T ) − Eψ(XT )) → Cψ(T, γ), Cψ(T, γ) ∈ R. (2.3)

In order to use importance sampling based on the Girsanov Theorem, we define the family
(Pθ)θ∈Rq of equivalent probability measures such that for all t > 0

Lθt =
dPθ
dP |Ft

= exp

(
θ ·Wt − 1

2
|θ|2t

)
.
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Hence, (Bθ
t

∆
= Wt − θt)t≤T is a Brownian motion under Pθ, which yields

E[ψ(XT )] = EPθ

[
ψ(XT )e−θ·Bθ

T
− 1

2
|θ|2T

]
.

From now on, we assume that

P(ψ(XT ) 6= 0) > 0 and ∀θ ∈ R
q, E[ψ(XT )2e−θ·WT ] < +∞. (2.4)

For α > 0, we introduce the set of functions

Hα =
{
ψ : Rd → R s.t. ∃c > 0, β ≥ 1, ∀x ∈ R

d, |ψ(x)| ≤ c(1 + |x|β)

and ∀x, y ∈ R
d, |ψ(x) − ψ(y)| ≤ c(1 + (|x|β ∧ |y|β))|x− y|α

}
(2.5)

Remark 2.1. By Hölder’s inequality, for any function ψ ∈ Hα Equation (2.4) implies that
supn E[ψ(Xn

T )2e−θ·WT ] < +∞.

Let us introduce the process X(θ) solution to

dXt(θ) =


b(Xt(θ)) +

q∑

j=1

θjσj(Xt(θ))


 dt+

q∑

j=1

σj(Xt(θ))dW
j
t , (2.6)

so that the pair of processes (Bθ
t , Xt)0≤t≤T has the same distribution under Pθ as the pair

(Wt, Xt(θ))0≤t≤T under P. Henceforth, we get

E[ψ(XT )] = E

[
ψ(XT (θ))e−θ·WT − 1

2
|θ|2T

]
, ∀θ ∈ R

q. (2.7)

We also introduce the continuous time Euler approximation Xn(θ) of the process X(θ)

dXn
t (θ) =


b(Xn

ηn(t)(θ)) +
q∑

j=1

θjσj(X
n
ηn(t)(θ))


 dt+

q∑

j=1

σj(X
n
ηn(t)(θ))dW

j
t .

It is natural to choose the value of θ minimizing Var
(
ψ(XT (θ))e−θ·WT − 1

2
|θ|2T

)
, we set

θ∗ ∆
= argmin

θ∈Rq

v(θ) with v(θ)
∆
= E

[
ψ(XT )2e−θ·WT + 1

2
|θ|2T

]
(2.8)

From a practical point of view, the quantity v(θ) is not explicit so we use the Euler scheme
to discretize X(θ) and approximate θ∗ by

θn
∆
= argmin

θ∈Rq

vn(θ) with vn(θ)
∆
= E

[
ψ(Xn

T )2e−θ·WT + 1
2

|θ|2T
]

(2.9)

Since the expectation is usually not tractable, we aim at using a sample average approximation
procedure to approximate θn

θn,N
∆
= argmin

θ∈Rq

vn,N (θ) with vn,N (θ)
∆
=

1

N

N∑

i=1

(
ψ(Xn

T,i)
2e−θ·WT,i+

1
2

|θ|2T
)
, (2.10)

where (Xn
T,i,WT,i)1≤i≤N are i.i.d. samples according to the law of (Xn

T ,WT ). The existence
and uniqueness of θ∗, θn and θn,N are ensured by the following Lemma.
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Lemma 2.2. Under Condition (2.4), the functions v, vn and vn,N are infinitely continuously
differentiable for all n,N ≥ 1 and for all multi-index r ∈ N

q, we have

∂rθv(θ) = E

[
∂rθ

(
ψ(XT )2e−θ·WT + 1

2
|θ|2T

)]
,

∂rθvn(θ) = E

[
∂rθ

(
ψ(Xn

T )2e−θ·WT + 1
2

|θ|2T
)]
.

Moreover, under Condition (2.4), the functions v, vn and vn,N are strongly convex for any n
and N large enough.

The proof of this Lemma can be easily adapted from [26, Lemma 1.1].

3 Convergence of the optimal importance sampling parameter

Theorem 3.1. Suppose σ and b satisfy (Hb,σ). Let ψ satisfy Condition (2.4) and belongs to
Hα for some α > 0. Then,

θn −−−−−→
n→+∞

θ∗.

Using remark 2.1, the proof of this result ensues from [8, Theorem 2.2].

In the following, we let N depend on n so that N
∆
= Nn tends to infinity with n.

Proposition 3.2. Assume that Assumption (Hb,σ) holds and that ψ ∈ Hα for some α > 0.
Then, for all K > 0

sup
|θ|≤K

|vn,Nn(θ) − v(θ)| −−−−−→
n→+∞

0 a.s.

sup
|θ|≤K

|∇vn,Nn(θ) − ∇(θ)| −−−−−→
n→+∞

0 a.s.

Proof. The proof of the two results are very similar, we dare omit the second one and con-
centrate on the uniform convergence for vn,Nn . To do so, we will apply Proposition 6.3. Now,
we check Assumptions ln2-fm](H2), ln2-u](H3), ln2-sup-u](H4). At first, note that under
Assumption (Hb,σ), we have the almost sure convergence of Xn

T towards XT . As ψ ∈ Hα, it

follows from Property (P) that for all a > 1, supn∈N E

[∣∣∣ψ(Xn
T )2e−θ·WT + 1

2
|θ|2T

∣∣∣
a]
< ∞. Note

that for every fixed n, the sequence
(
ψ(Xn

T,i)
2e−θ·WT,i+

1
2

|θ|2T
)
i

is i.i.d. Then, we deduce that

for all m ∈ N
∗

lim
n→∞E [vn,m(θ)] = E

[
ψ(XT )2e−θ·WT + 1

2
|θ|2T

]
.

This yields ln2-fm](H2). Let K > 0. As ψ ∈ Hα we obtain using the Cauchy Schwarz
inequality and Property (P) that

sup
n

sup
m
mVar

(
sup

|θ|≤K
vn,m(θ)

)
≤ sup

n
E

1/2
[
ψ(Xn

T )8
]
E

1/2

[
sup

|θ|≤K
e−4θ·WT +2|θ|2T

]
< ∞.

Using the same arguments, we also get

sup
n

sup
m

Var

(
ψ(Xn

T,m)2 sup
|θ|≤K

e−θ·WT,m+ 1
2

|θ|2T
)
< ∞.
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This yields ln2-u](H3). Concerning the last assumption, if we fix δ > 0, θ ∈ R
d and set B(θ, δ)

— the open ball with center θ and radius δ — then we have by Cauchy Schwarz inequality

sup
n

E

[
ψ(Xn

T )2 sup
θ′∈B(θ,δ)

∣∣∣e−θ′·WT + 1
2

|θ′|2T − e−θ·WT + 1
2

|θ|2T
∣∣∣
]2

≤

sup
n

E

[
ψ(Xn

T )4
]
E

[
sup

θ′∈B(θ,δ)

∣∣∣e−θ′·WT + 1
2

|θ′|2T − e−θ·WT + 1
2

|θ|2T
∣∣∣
2
]
.

Using the elementary algebric inequality |ex − ey| ≤ |x− y| (ex + ey), we easily deduce that

the quantity E

[
supθ′∈B(θ,δ)

∣∣∣e−θ′·WT + 1
2

|θ′|2T − e−θ·WT + 1
2

|θ|2T
∣∣∣
2
]

can be made arbitrarily small.

Finally, Assumption ln2-sup-u](H4) is satisfied using Remark 6.4.

Theorem 3.3. Assume that Assumption (Hb,σ) holds and that ψ ∈ Hα for some α > 0.

Then, θn,Nn

a.s.−−−−−→
n→+∞

θ∗ and
√
Nn(θn,Nn − θ∗) =====⇒

n→+∞
N(0,Γ) where

Γ = [∇2v(θ∗)]−1Var
[
(Tθ∗ −Wt)ψ(XT )2e−θ∗·WT + 1

2
|θ∗|2T

]
[∇2v(θ∗)]−1.

Proof. We already know from Proposition 3.2 that a.s. vn,Nn converges locally uniformly to

v. Let ε > 0. By the strict convexity of v, δ
∆
= inf |θ−θ∗|≥ε v(θ) − v(θ∗) > 0.

The local uniform convergence of vn,Nn to v ensures that

∃nδ > 0,∀n ≥ nδ,∀θ ∈ R
q s.t. |θ − θ∗| ≤ ε, |vn,Nn(θ) − v(θ)| ≤ δ

3
. (3.1)

For n ≥ nδ and θ such that |θ − θ∗| ≥ ε, we can deduce from the convexity of vn,Nn that

vn,Nn(θ) − vn,Nn(θ∗) ≥ |θ − θ∗|
ε

[
vn,Nn

(
θ∗ + ε

θ − θ∗

|θ − θ∗|

)
− vn,Nn(θ∗)

]

≥ |θ − θ∗|
ε

[
v

(
θ∗ + ε

θ − θ∗

|θ − θ∗|

)
− v(θ∗) − 2δ

3

]
≥ δ

3

where the last two inequalities come from (3.1). If we apply this inequality for θ = θn,Nn ,
we obtain a contradiction since vn,Nn(θn,Nn) − vn,Nn(θ∗) ≤ 0. Hence, we deduce that for all
n ≥ nδ, |θn,Nn − θ∗| < ε. Therefore, θn,Nn converges a.s. to θ∗. If we combine this result
with the local uniform convergence of vn,Nn to the continuous function v, we deduce that
vn,Nn(θn,Nn) converges a.s. to v(θ∗).

Moreover, we get by Equation (5.9) that for all K > 0

sup
|θ|≤K

∣∣∣∂θ(j)ψ(XT )2e−θ·WT + 1
2

|θ|2T
∣∣∣

≤ eK
2T/2ψ(XT )2

(
K + (eKW

(j)
t + e−KW (j)

t )

) q∏

i=1

(eKW
(i)
t + e−KW (i)

t ).

The r.h.s is integrable by Condition (2.4). Hence, E
[
sup|θ|≤K

∣∣∣∇θψ(XT )2e−θ·WT + 1
2

|θ|2T
∣∣∣
]
<

+∞. Similarly, one can prove that E

[
sup|θ|≤K

∣∣∣∇2
θψ(XT )2e−θ·WT + 1

2
|θ|2T

∣∣∣
]
< +∞. Then,

to prove the central limit theorem governing the convergence of θn,Nn to θ∗, we reproduce
the proof of [35, Theorem A2, pp. 74], which is mainly based on the a.s. locally uniform
convergence of ∇vn,Nn and on its asymptotic normality ensuing from Theorem A.1.
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4 A second stage Monte Carlo approach

In this section, we aim at building adaptive Monte Carlo estimators in the setting of discretized
diffusion processes following the spirit of [26]. Our setting differs mainly because we want
to let both the number of time steps and the number of samples go to infinity. Asymptotic
results rely on a uniform controls of the triangular arrays involved in the adaptive importance
sampling Monte Carlo estimator. The technical results from Section 6 will be tremendously
useful to provide such controls.

Using the estimators of θ∗ studied in the previous section, we define a Monte Carlo esti-
mator of E[ψ(XT )] based on Equation (2.7). We introduce the σ-algebra G generated by the
samples (Wi)i≥1 used to compute θn and θn,Nn .

Let (W̃i) be i.i.d. samples according to the law of (W ) but independent of G. Conditionally
on G, we introduce i.i.d. samples (X̃i(θn,Nn))i following the law of X(θn,Nn) such that for
each i, X̃i(θn,Nn) is the solution of the SDE driven by W̃i. We introduce (G̃k)k>0 the filtration

defined by G̃k = σ(W̃i, 1 ≤ i ≤ k) and G♯k = G ∨G̃k. For each i > 0, we also consider X̃n
i (θn,Nn)

defined as the Euler discretization of X̃i(θn,Nn). Based on these new sets of samples, we define

Mn,Nn =
1

Nn

Nn∑

i=1

g(θn,Nn , X̃
n
T,i(θn,Nn), W̃T,i),

where the function g : Rq × R
d × R

q → R is defined by

g(θ, x, y)
∆
= ψ(x)e−θ·y− 1

2
|θ|2T . (4.1)

For the clearness of the coming proofs, it is convenient to introduce the following notation

Mn,Nn(θ) =
1

Nn

Nn∑

i=1

g(θ, X̃n
T,i(θ), W̃T,i).

Note that Mn,Nn = Mn,Nn(θn,Nn).

Theorem 4.1. Assume that Assumption (Hb,σ) holds and that ψ ∈ Hα for some α > 0.
Then, Mn,Nn −→ E[f(XT )] a.s. when n → +∞.

Proof. Using the conditional independence of the samples (X̃n
i (θn,Nn), W̃i)i, we have

E[g(θn,Nn , X̃
n
T,i(θn,Nn), W̃T,i)|G] = E[ψ(Xn

T )]
∆
= en for all i > 0.

Let V ⊂ R
q be a compact neighbourhood of θ∗. We define the sequence

Yi,n =
(
g(θn,Nn , X̃

n
T,i(θn,Nn), W̃T,i) − en

)
1{θn,Nn ∈V}

and its empirical average Y m,n = 1
m

∑m
i=1 Yi,n for all m > 0. It is obvious that E[Yi,n] = 0

and using the conditional independence E[
∣∣∣Y m,n

∣∣∣
2
] = 1

mE[|Y1,n|2].

E[|Y1,n|2] ≤ E

[
E

[
|g(θn,Nn , X̃

n
T,i(θn,Nn), W̃T,i) − en|2

∣∣∣G
]

1{θn,Nn ∈V}
]

≤ E

[
vn(θn,Nn)1{θn,Nn ∈V}

]
≤ sup

θ∈V
vn(θ).
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We know that vn is convex and converges point-wise to v, which is also convex and contin-
uous. Hence, vn converges locally uniformly to v, which implies that for all compact sets
K ⊂ R

q, limn→+∞ supθ∈K vn(θ) = supθ∈K v(θ). Hence, supn supθ∈V vn(θ) < +∞. Applying
Proposition 6.1 proves that Y Nn,n

a.s.−−−−−→
n→+∞

0. As θn,Nn converges a.s. to θ∗ ∈ K, this also

implies that limn→+∞Mn,Nn = E[ψ(XT )] a.s.

Theorem 4.2. Under the assumptions of Theorem 4.1 and if Condition (2.3) holds, we have
√
Nn(Mn,Nn − E[f(XT )]) =⇒ N (Cψ(T, α), σ2) when n → +∞.

where σ2 = E

[
ψ(XT )2e−θ∗·WT + 1

2
|θ∗|2T

]
− [Eψ(XT )]2.

Remark 4.3. Assume the number of time steps used in the Euler scheme is fixed to n = 1
and consider the estimator M1,N (θ1,N ). Then, we know from [4, Theorem 3.4] that

M1,N (θ1,N ) −−−−−→
N→+∞

E[g(θ1, X
1
T (θ1),WT )] a.s.

√
N(M1,N (θ1,N ) − E[g(θ1, X

1
T (θ1),WT )]) =====⇒

N→+∞
N (0, σ2

1)

with σ2
1 = E

[
ψ(X1

T )2e−θ1·WT + 1
2

|θ1|2T
]

− [Eψ(X1
T )]2.

Proof. We can write the left hand side of the convergence result by introducing Mn,Nn(θ∗)
√
Nn(Mn,Nn − E[f(XT )]) =

√
Nn(Mn,Nn(θn,Nn) −Mn(θ∗)) +

√
Nn(Mn,Nn(θ∗) − E[f(XT )])

The convergence of the last term on the r.h.s
√
Nn(Mn,Nn(θ∗) −E[f(XT )]) is governed by the

central limit theorem for Euler Monte Carlo, which yields the announced limit (see [15]). It
remains to prove that

√
Nn(Mn,Nn(θn,Nn) −Mn,Nn(θ∗)) converges to zero in probability.

Let ε > 0 and α < 1
2 ,

P

(√
Nn|Mn,Nn(θn,Nn) −Mn,Nn(θ∗)| > ε

)

= P

(√
Nn|Mn,Nn(θn,Nn) −Mn,Nn(θ∗)| > ε ; Nα

n |θn,Nn − θ∗| > 1
)

+ P

(√
Nn|Mn,Nn(θn,Nn) −Mn,Nn(θ∗)| > ε ; Nα

n |θn,Nn − θ∗| ≤ 1
)

= P ( Nα
n |θn,Nn − θ∗| > 1)

+ P

(√
Nn|Mn,Nn(θn,Nn) −Mn,Nn(θ∗)|1{Nα

n |θn,Nn −θ∗|≤1} > ε
)
.

By Theorem 3.3, P ( Nα
n |θn,Nn − θ∗| > 1) tends to zero when n goes to infinity. Let K > 0

s.t. for all n large enough {θ ∈ R
q : |θ − θ∗| ≤ N−α

n } ⊂ B(0,K). We can bound the second
term on the r.h.s. by using Markov’s inequality

P

(√
Nn|Mn,Nn(θn,Nn) −Mn,Nn(θ∗)|1{Nα

n |θn,Nn −θ∗|≤1} > ε
)

≤ Nn

ε2
E

[
|Mn,Nn(θn,Nn) −Mn,Nn(θ∗)|21{θn,Nn ∈B(0,K)}

]

≤ 1

ε2
E

[
|g(θn,Nn , X̃

n
T (θn,Nn), W̃T ) − g(θ∗, X̃n

T (θ∗), W̃T )|21{θn,Nn ∈B(0,K)}
]

≤ 1

ε2
E

[
|g(θn,Nn , X̃

n
T (θn,Nn), W̃T ) − g(θn,Nn , X̃T (θn,Nn), W̃T )|21{θn,Nn ∈B(0,K)}

]

+
1

ε2
E

[
|g(θn,Nn , X̃T (θn,Nn)W̃T ) − g(θ∗, X̃n

T (θ∗), W̃T )|21{θn,Nn ∈B(0,K)}
]
.
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We treat each of the two terms separately.
◮ First term

From the independence between θn,Nn and W̃ , we can write

E

[
|g(θn,Nn , X̃

n
T (θn,Nn), W̃T ) − g(θn,Nn , X̃T (θn,Nn), W̃T )|21{θn,Nn ∈B(0,K)}

]

= E

[
|ψ(Xn

T ) − ψ(XT )|2 exp(−θn,Nn · W̃T +
1

2
|θn,Nn |2T )1{θn,Nn ∈B(0,K)}

]

≤ E

[
|ψ(Xn

T ) − ψ(XT )|2(1+η)
] 1

1+η e
1+2η

2η
K2T

, for some η > 0.

Relying on the uniform integrability ensured by property (P) and since ψ ∈ Hα, we can let
n go to infinity inside the expectation to obtain that

lim
n→+∞

E

[
|g(θn,Nn , X̃

n
T (θn,Nn), W̃T ) − g(θn,Nn , X̃T (θn,Nn), W̃T )|21{θn,Nn ∈B(0,K)}

]
= 0.

◮ Second term

Since the function g is continuous w.r.t its first two parameters and Xθ
T is continuous w.r.t

the parameter θ, limn→+∞ g(θn,Nn , X̃T (θn,Nn), W̃T ) − g(θ∗, X̃n
T (θ∗), W̃T ) = 0 a.s. To conclude

the proof, we need to show that the family of r.v.
(
|g(θn,Nn , X̃T (θn,Nn), W̃T ) − g(θ∗, X̃n

T (θ∗), W̃T )|21{θn,Nn ∈B(0,K)}
)
n

is uniformly integrable.
First, for any θ ∈ R

q and 2(1 + η) > a > 2

E

[
|g(θ, X̃T (θ), W̃T )|a

]
= E

[
|ψ(X̃T )|ae−(a−1)θ·W̃T +

(a−1)|θ|2T

2

]

≤ E

[
|ψ(X̃T )|2(1+η)

] 2(1+η)
a eC|θ|2 (4.2)

where C is a constant only depending on a and T . This yields that for some δ > 0 and some
constant C > 0 independent of θ

E

[
|g(θ, X̃T (θ), W̃T )|2+δ

]
< CeC|θ|2 .

Then, we get

sup
n

E

[
|g(θn,Nn , X̃T (θn,Nn), W̃T )|2+δ1{θn,Nn ∈B(0,K)}

]

= sup
n

E

[
E

[
|g(θn,Nn , X̃T (θn,Nn), W̃T )|2+δ|θn,Nn

]
1{θn,Nn ∈B(0,K)}

]

≤ sup
n
CE

[
eC|θn,Nn |21{θn,Nn ∈B(0,K)}

]
≤ CeCK .

We can similarly prove that

sup
n

E

[
|g(θ∗, X̃n

T (θ∗), W̃T )|2+δ
]

≤ sup
n

E

[
|ψ(Xn

T )|2(1+η)
] 2(1+η)

2+δ eC|θ∗|2 .

This prove that the family of r.v.
(
|g(θn,Nn , X̃T (θn,Nn), W̃T ) − g(θ∗, X̃n

T (θ∗), W̃T )|21{θn,Nn ∈B(0,K)}
)
n

is uniformly integrable, which ends the proof.
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5 Multilevel Importance sampling Monte Carlo

5.1 The sample average approximation setting

We aim at approximating the quantity E[ψ(XT )] by a multilevel approach combined with
some importance sampling, while allowing for one importance sampling parameter per level.
Let m ∈ N such that m ≥ 2. For L ∈ N

∗, our estimator is defined by

QL(λ0, . . . , λL) =
1

N0

N0∑

k=1

ψ(X̃m0

T,0,k(λ0))E−(W̃0,k, λ0)

+
L∑

ℓ=1

1

Nℓ

Nℓ∑

k=1

(
ψ(X̃mℓ

T,ℓ,k(λℓ)) − ψ(X̃mℓ−1

T,ℓ,k (λℓ))
)

E−(W̃ℓ,k, λℓ)

for any ΛL = (λ0, . . . , λL) ∈ (Rq)L with

E−(W̃ℓ,k, λ)
∆
= e−λ·W̃T,ℓ,k− 1

2
|λ|2T .

For any fixed ℓ ∈ {1, · · · , L}, the random variables (W̃ℓ,k)1≤k≤Nℓ
are independent and are

distributed according to the Brownian law. We assume that for ℓ, ℓ′ ∈ {1, · · · , L}, with ℓ 6= ℓ′,
the blocks (W̃ℓ,k)1≤k≤Nℓ

and (W̃ℓ′,k)1≤k≤Nℓ′ are independent. For any fixed ℓ ∈ {1, · · · , L} and

k ∈ {1, . . . , Nℓ}, the variables X̃mℓ

T,ℓ,k(λℓ) (resp. X̃mℓ−1

T,ℓ,k (λℓ)) are the terminal values of the Euler

schemes of X(λℓ) with mℓ (resp. mℓ−1) time steps built using the same Brownian path W̃ℓ,k.

The key of the multilevel approach is to use the same Brownian path to compute X̃mℓ

T,ℓ,k(λℓ)

and X̃mℓ−1

T,ℓ,k (λℓ). The blocks of random variables used in two different levels are independent.
From these assumptions, one can compute the variance of the multilevel estimator given by

Var[QL] = N−1
0 Var[ψ(Xm0

T (λ0))E−
0 (λ0)] +

L∑

ℓ=1

N−1
ℓ

(m− 1)T

mℓ
σ2
ℓ (λℓ)

where

σ2
ℓ (λ)

∆
=

mℓ

(m− 1)T
Var

[{
ψ(Xmℓ

T (λ)) − ψ(Xmℓ−1

T (λ))
}

E−(W,λ)
]
.

The variance can be rewritten as σ2
ℓ (λ) = vℓ(λ) − Ξ2

ℓ with

vℓ(λ)
∆
=

mℓ

(m− 1)T
E

[∣∣∣ψ(Xmℓ

T ) − ψ(Xmℓ−1

T )
∣∣∣
2

E+(W,λ)

]
, (5.1)

Ξℓ
∆
=

√
mℓ

(m− 1)T
E

[
ψ(Xmℓ

T ) − ψ(Xmℓ−1

T )
]

(5.2)

and
E+(Wℓ,k, λ)

∆
= e−λ·WT,ℓ,k+ 1

2
|λ|2T .

Thus, we can rewrite the global variance as

Var[QL] = N−1
0 Var[ψ(Xm0

T )E+(W,λ0)] +
L∑

ℓ=1

N−1
ℓ

(m− 1)T

mℓ

(
vℓ(λℓ) − Ξ2

ℓ

)
.
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We also define the Monte Carlo approximations of Ξℓ and vℓ

Ξℓ,N ′
ℓ

∆
=

1

N ′
ℓ

N ′
ℓ∑

k=1

√
mℓ

(m− 1)T
(ψ(Xmℓ

T,ℓ,k) − ψ(Xmℓ−1

T,ℓ,k )) (5.3)

vℓ,N ′
ℓ
(λ)

∆
=

1

N ′
ℓ

N ′
ℓ∑

k=1

mℓ

(m− 1)T

∣∣∣ψ(Xmℓ

T,ℓ,k) − ψ(Xmℓ−1

T,ℓ,k )
∣∣∣
2

E+(Wℓ,k, λ) (5.4)

where the variables Wk are i.i.d. according to the Brownian law on [0, T ] and are independent

of the W̃k. Based on these new Brownian paths, we introduce the random variables Xmℓ

T,k,
defined in the same way as the tilde quantities but independent of them. Hence, the estimators
vℓ,N ′

ℓ
for ℓ = 1, . . . , L are independent of QL(λ0, . . . , λL). Note that the number N ′

ℓ of samples
used to build a Monte Carlo approximation of vℓ may differ from the number Nℓ of samples
used in the computation of the level ℓ of QL. This point will be discussed in details in the
numerical section (see the end of Section 7.1). For the moment, we just require that N ′

ℓ goes
to infinity with ℓ.

By applying Lemma 2.2, it is clear that the functions vℓ and vℓ,N ′
ℓ

are strongly convex and
infinitely differentiable. Hence, we can define

λ̂ℓ = arg min
λ∈Rq

vℓ,N ′
ℓ
(λ).

To study the convergence of λ̂ℓ, we need to introduce the process U defined by

dUt = ḃ(Xt)Utdt+
q∑

j=1

σ̇j(Xt)UtdW
j
t − 1√

2

q∑

ij,=1

σ̇j(Xt)σi(Xt)dW̌
i,j
t (5.5)

where W̌ is a q2−dimensional standard Brownian motion independent of W .

Theorem 5.1. Assume b and σ are C 1 with bounded derivatives, ψ ∈ Hα for some α ≥ 1,
ψ is C1 and ∇ψ has polynomial growth. Then, the sequence of random functions (vℓ,N ′

ℓ
: λ ∈

R
q → vℓ,N ′

ℓ
(λ))ℓ converges a.s. locally uniformly to the strongly convex function v : Rq → R

defined by

v(λ)
∆
= E

[
(∇ψ(XT ) · UT )2 E+(W,λ)

]
. (5.6)

Moreover, λ̂ℓ converges a.s. to λ∗ ∆
= arg minλ v(λ), when ℓ → +∞.

The proofs of this result and many subsequent ones heavily rely on the following Lp control
of the difference between two levels

Proposition 5.2. Let ψ : Rd → R be a C1 function such that ψ ∈ Hα, for some α ≥ 1 and
∇ψ has at most polynomial growth. For any real valued random variable Y defined on (Ω,F)
such that E[|Y |1+η], for some η > 0, we have, for any δ > 0

E



(

mℓ

(m− 1)T

)δ/2 (
ψ(Xmℓ

T ) − ψ(Xmℓ−1

T )
)δ
Y


 −−−−→

ℓ→+∞
E

[
(∇ψ(XT ) · UT )δ Y

]
.
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Proof of Theorem 5.1. Let us define the doubly indexed sequence

Yk,ℓ(λ) =
mℓ

(m− 1)T

∣∣∣ψ(Xmℓ

T,k) − ψ(Xmℓ−1

T,k )
∣∣∣
2

E+(Wk, λ).

For any fixed ℓ, the sequence (Yk,ℓ(λ))k is i.i.d. so that for any k, E[Yk,ℓ(λ)] = yℓ(λ) with

yℓ(λ) =E

[
mℓ

(m− 1)T

∣∣∣ψ(Xmℓ

T ) − ψ(Xmℓ−1

T )
∣∣∣
2

E+(W,λ)

]
.

We deduce from Proposition 5.2 that the sequence (yℓ)ℓ converges pointwise to the continuous

function E

[
(∇ψ(XT ) · UT )2 E+(W,λ)

]
, thus satisfying Assumption m-pointwise](H2)-i. The

i.i.d. property of the sequence (Yk,ℓ(λ))k also implies that

E


 sup

|λ|≤K

1

N

(
N∑

k=1

Yk,ℓ(λ)

)2

 ≤ E

[
1

N

N∑

k=1

sup
|λ|≤K

Yk,ℓ(λ)2

]
≤ 1

N
E

[
sup

|λ|≤K
Y1,ℓ(λ)2

]
. (5.7)

E

[
sup

|λ|≤K
Y1,ℓ(λ)2

]2

≤ E



(

mℓ

(m− 1)T

∣∣∣ψ(Xmℓ

T ) − ψ(Xmℓ−1

T )
∣∣∣
2
)4

E

[
sup

|λ|≤K
E+(W,λ)4

]
. (5.8)

Using the following upper bound

sup
|λ|≤K

e−λ·WT + 1
2

|λ|2T ≤ e
1
2
K2T

q∏

l=1

(eKW
(l)
T + e−KW (l)

T ), (5.9)

E

[
sup|λ|≤K E+(W,λ)4

]
< +∞. Let us have a closer look at the first term in (5.8). From

Condition (2.5), we can write

E

[(
mℓ
∣∣∣ψ(Xmℓ

T ) − ψ(Xmℓ−1

T )
∣∣∣
2
)4
]

≤ CE

[
m4ℓ

∣∣∣Xmℓ

T −Xmℓ−1

T

∣∣∣
8α
(

1 +
∣∣∣Xmℓ

T

∣∣∣
8β

+
∣∣∣Xmℓ−1

T

∣∣∣
8β
)]

.

By using the strong rate of convergence of the Euler scheme, we notice that for any p > 1,

E

[
m4ℓp

∣∣∣Xmℓ

T −Xmℓ−1

T

∣∣∣
8αp
]

≤ m4ℓpC
(
m−4αpℓ +m−4αp(ℓ−1)

)
≤ Cm4αp−4ℓp(α−1).

Hence, since α ≥ 1, by using the Cauchy Schwartz inequality we easily check that

sup
ℓ

E



(

mℓ

(m− 1)T

∣∣∣ψ(Xmℓ

T ) − ψ(Xmℓ−1

T )
∣∣∣
2
)4

 < +∞.

By combining all these results into (5.8), we obtain that supℓ E
[
sup|λ|≤K Y

2
1,ℓ(λ)

]
< +∞.

Then, we deduce along with (5.7) that the sequence (Yk,ℓ)k,ℓ satisfies Assumption ln2-u](H3)
of Proposition 6.3.
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Let δ > 0 and λ ∈ R
d.

E

[
sup

|µ−λ|≤δ
|Y1,ℓ(λ) − Y1,ℓ(µ)|

]2

≤

E



(

mℓ

(m− 1)T

∣∣∣ψ(Xmℓ

T ) − ψ(Xmℓ−1

T )
∣∣∣
2
)2

E

[
sup

|µ−λ|≤δ

∣∣∣E+(W,λ) − E+(W,µ)
∣∣∣
2
]
.

We have just proved that the first expectation on the r.h.s is bounded uniformly in ℓ. Since
the exponential weights are a.s. continuous with respect to λ, it is clear that
limδ→0 sup|µ−λ|≤δ

∣∣E+(W,λ) − E+(W,µ)
∣∣2 = 0 a.s. Moreover, we can apply Lebesgue’s theo-

rem with the upper–bound given by (5.9) to deduce that

lim
δ→0

sup
ℓ

E

[
sup

|µ−λ|≤δ
|Y1,ℓ(λ) − Yk,ℓ(µ)|

]
= 0.

Thus, Assumption ln2-sup-u](H4) of Proposition 6.3 is satisfied. Finally, we can apply Propo-

sition 6.3 to prove that the sequence 1
N ′

ℓ

∑N ′
ℓ

k=1 Yk,ℓ converges a.s locally uniformly to 0.

The convergence of λ̂ℓ to λ∗ can be deduced by closely mimicking the proof of Theorem 3.3.

Proof of Proposition 5.2. The Taylor-Young expansion applied to the real valued function ψ
yields

ψ(Xmℓ

T ) − ψ(Xmℓ−1

T ) =∇ψ(XT ) · (Xmℓ

T −Xmℓ−1

T )

+ (Xmℓ

T −XT ) · ε(Xmℓ

T −XT ) − (Xmℓ−1

T −XT ) · ε(Xmℓ−1

T −XT )

with ε : Rd → R
d satisfying lim|x|→0 ε(x) = 0. From Property (P), we easily get

√
mℓ

(m− 1)T

(
(Xmℓ

T −XT ) · ε(Xmℓ

T −XT ) − (Xmℓ−1

T −XT ) · ε(Xmℓ−1

T −XT )
)

P−−−→
ℓ→∞

0.

So, we conclude from Lemma A.2 and Theorem A.3 that

√
mℓ

(m− 1)T

(
ψ(Xmℓ

T ) − ψ(Xmℓ−1

T )
)

⇒stably ∇ψ(XT ).UT , as ℓ → ∞.

Let η > κ > 0. From the assumptions on ψ together with Property (P), we get

sup
ℓ≥0

E




∣∣∣∣∣∣

(
mℓ

(m− 1)T

)δ/2 (
ψ(Xmℓ

T ) − ψ(Xmℓ−1

T )
)δ
Y

∣∣∣∣∣∣

1+κ

 < ∞,

which yields the uniform integrability of the family

((
mℓ

(m−1)T

)δ/2 (
ψ(Xmℓ

T ) − ψ(Xmℓ−1

T )
)δ
Y

)

ℓ
.

The conclusion easily follows.
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5.2 Strong law of large numbers and central limit theorem

Let us introduce a sequence (aℓ)ℓ∈N of positive real numbers such that limL→∞
∑L
ℓ=1 aℓ = ∞.

We assume that the sample size Nℓ has the following form

Nρ
ℓ,L =

ρ(L)

mℓaℓ

L∑

k=1

ak, ℓ ∈ {0, · · · , L} (5.10)

for some increasing function ρ : N → R.
We choose this form for Nℓ because it is a generic form allowing us a straightforward

use of the Toeplitz Lemma, which is a key tool to prove the central limit theorem. Since
limL→∞

∑L
ℓ=1 aℓ = ∞, for any sequence (xℓ)ℓ≥1 converging to some limit x ∈ R,

lim
L→+∞

∑L
ℓ=1 aℓxℓ∑L
ℓ=1 aℓ

= x.

We define the σ-algebra G generated by the samples (Wℓ,k)ℓ,k≥1 used to compute λ̂L. In
the above framework, the variables (W̃ℓ,k)ℓ,k are independent of G. We also introduce the

filtration (G̃ℓ)ℓ>0 generated by (W̃ℓ,k, k ≥ 1)ℓ and the filtration (G♯ℓ)ℓ>0 defined as G♯l = G ∨G̃ℓ.

Theorem 5.3. Assume that supL supℓ
L2aℓ

ρ(L)
∑L

k=1
ak

< +∞. Then, under the assumptions of

Theorem 5.1, QL(λ̂0, . . . , λ̂L) −→ E[ψ(XT )] a.s. when L → +∞.

For the choice aℓ = 1 for all ℓ, the condition on ρ reduces to supL
L
ρ(L) < +∞.

Proof. As E[ψ(XL
T )] converges to E[ψ(XT )] as L goes to infinity, it is enough to show that

QL(λ̂0, . . . , λ̂L) − E[ψ(XL
T )] tends to 0.

QL(λ̂0, . . . , λ̂L) − E[ψ(XL
T )] =

1

Nρ
0,L

Nρ
0,L∑

k=1

ψ(X̃m0

T,0,k(λ̂0))E−(W̃0,k, λ̂0) − E[ψ(Xm0

T,0)]

+
L∑

ℓ=1

1

Nρ
ℓ,L

(Nρ
ℓ,L∑

k=1

(
ψ(X̃mℓ

T,ℓ,k(λ̂ℓ)) − ψ(X̃mℓ−1

T,ℓ,k (λ̂ℓ))
)

E−(W̃ℓ,k, λ̂ℓ)

− E

[
ψ(X̃mℓ

T,ℓ) − ψ(X̃mℓ−1

T,ℓ )
])

. (5.11)

From Theorem 4.1 and Remark 4.3, we know that

1

Nρ
0,L

Nρ
0,L∑

k=1

ψ(X̃m0

T,0,k(λ̂0))E−(W̃0,k, λ̂0) − E[ψ(Xm0

T,0)]
a.s.−−−−−→

L→+∞
0.

Then, it suffices to prove that the remaining terms in (5.11) tend to 0 with L. Let V be a
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compact neighbourhood of λ∗.

L∑

ℓ=1

1

Nρ
ℓ,L

(Nρ
ℓ,L∑

k=1

(
ψ(X̃mℓ

T,ℓ,k(λ̂ℓ)) − ψ(X̃mℓ−1

T,ℓ,k (λ̂ℓ))
)

E−(W̃ℓ,k, λ̂ℓ) − E

[
ψ(X̃mℓ

T,ℓ) − ψ(X̃mℓ−1

T,ℓ )
])

=

L∑

ℓ=1

1

Nρ
ℓ,L

(Nρ
ℓ,L∑

k=1

(
ψ(X̃mℓ

T,ℓ,k(λ̂ℓ)) − ψ(X̃mℓ−1

T,ℓ,k (λ̂ℓ))
)

E−(W̃ℓ,k, λ̂ℓ) − E

[
ψ(X̃mℓ

T,ℓ) − ψ(X̃mℓ−1

T,ℓ )
])

1{
λ̂ℓ∈V

}

+
L∑

ℓ=1

1

Nρ
ℓ,L

(Nρ
ℓ,L∑

k=1

(
ψ(X̃mℓ

T,ℓ,k(λ̂ℓ)) − ψ(X̃mℓ−1

T,ℓ,k (λ̂ℓ))
)

E−(W̃ℓ,k, λ̂ℓ) − E

[
ψ(X̃mℓ

T,ℓ − ψ(X̃mℓ−1

T,ℓ )
])

1{
λ̂ℓ /∈V

}

For ℓ large enough (although random), 1{
λ̂ℓ /∈V

} = 0. Hence, the second term in the above

equation tends to 0 a.s. when L goes to infinity. It remains to prove that the first term also
converges to zero. To do so, we will apply Proposition 6.1 to the sequence

Yℓ,q =q
1

Nρ
ℓ,q

(Nρ
ℓ,q∑

k=1

(
ψ(X̃mℓ

T,ℓ,k(λ̂ℓ)) − ψ(X̃mℓ−1

T,ℓ,k (λ̂ℓ))
)

E−(W̃ℓ,k, λ̂ℓ)

− E

[(
ψ(X̃mℓ

T,ℓ) − ψ(X̃mℓ−1

T,ℓ )
)])

1{
λ̂ℓ∈V

}

and Y L,q = 1
L

∑L
ℓ=1 Yℓ,q. Note that E[Yℓ,q] = 0 for all ℓ and q. Since the samples used in the

different levels are independent and the λ̂ℓ’s are independent of the filtration G̃, we can write

E

[∣∣∣Y L,q

∣∣∣
2
]

=
1

L2
E


E



∣∣∣∣∣
L∑

ℓ=1

Yℓ,q

∣∣∣∣∣

2 ∣∣∣G



 =

1

L2

L∑

ℓ=1

E

[
|Yℓ,q|2

]
. (5.12)

Using the same kind of arguments, we obtain

E

[
|Yℓ,q|2

]
≤ q2 1

Nρ
ℓ,q

E

[(
ψ(X̃mℓ

T,ℓ) − ψ(X̃mℓ−1

T,ℓ )
)2

E+(W̃ℓ, λ̂ℓ)1{λ̂ℓ∈V
}
]

≤ q2aℓ
ρ(q)

∑q
k=1 ak

{
mℓ

E

[(
ψ(X̃mℓ

T,ℓ) − ψ(X̃mℓ−1

T,ℓ )
)2

E+(W̃ℓ, λ̂ℓ)1{λ̂ℓ∈V
}
]}

From Proposition 5.2, the term into braces converges when ℓ goes to infinity. Hence, using
the assumptions on the function ρ, we get

sup
q

sup
ℓ

E

[
|Yℓ,q|2

]
< +∞. (5.13)

By combining Equations (5.12) and (5.13), we get that supL supq LE

[∣∣∣Y L,q

∣∣∣
2
]
< +∞. Hence,

Proposition 6.1 yields that Y L,L vanishes when L goes to infinity and this ends the proof.

Theorem 5.4. Suppose that the assumptions of Theorem 5.1 hold and that Condition (2.3)
is satisfied. Then, for Nρ

ℓ,L given by (5.10) with ρ(L) = m2γL(m− 1)T and the sequence (aℓ)ℓ
satisfying

lim
L→∞

1
(∑L

ℓ=1 aℓ
)p/2

L∑

ℓ=1

a
p/2
ℓ = 0, for p > 2, (5.14)

16



we have
mγL(QL(λ̂0, . . . , λ̂L) − E[ψ(XT )]) =====⇒

L→+∞
N (Cψ(T, γ), v(λ∗))

where the function v is defined by (5.6).

The convergence rate does not depend on the number of samples N ′
ℓ provided that they

tend to infinity with ℓ.

Proof. By assumption (2.3), we have that limL→+∞mγL(E[ψ(XmL

T ) − ψ(XT )] = Cψ(T, γ).
The convergence of the first empirical mean is governed by Theorem 4.2 (see Remark 4.3)
which yields




1√
Nρ

0,L

Nρ
0,L∑

k=1

ψ(X̃m0

T,0,k(λ̂0))E−(W̃0,k, λ̂0) − E[ψ(Xm0

T )]


 =====⇒

L→+∞
N (0, σ2

0).

with σ2
0 = E

[
ψ(Xm0

T )2E+(W,λ∗
0)
]

− (E[ψ(Xm0

T )])2. Then, we deduce from the choice of the

function ρ that

mγL




1

Nρ
0,L

Nρ
0,L∑

k=1

ψ(X̃m0

T,0,k(λ̂0))E−(W̃0,k, λ̂0) − E[ψ(Xm0

T )]


 P−−−−−→

L→+∞
0.

Since all the blocks are independent, it is sufficient to prove that

mγL




L∑

ℓ=1

1

Nρ
ℓ,L

Nρ
ℓ,L∑

k=1

(
ψ(X̃mℓ

T,ℓ,k(λ̂ℓ)) − ψ(X̃mℓ−1

T,ℓ,k (λ̂ℓ))
)

E−(W̃ℓ,k, λ̂ℓ) − E[ψ(Xn
T )]


 =====⇒

L→+∞
N (0, v(λ∗)).

To do so, we introduce the (G♯l )l≥1-martingale array (Y n
l )l≥1 defined by

Y n
l

∆
=

l∑

ℓ=1

mγL

Nρ
ℓ,L

Nρ
ℓ,L∑

i=1

[(
ψ(X̃mℓ

T,ℓ,i(λ̂ℓ)) − ψ(X̃mℓ−1

T,ℓ,i (λ̂ℓ))
)

E−(W̃ℓ,i, λ̂ℓ) − E

[
ψ(X̃mℓ

T ) − ψ(X̃mℓ−1

T )
]]
,

so E[Y n
l ] = 0 for all l, n. According to Theorem A.1, we need to study the asymptotic

behaviors of the two quantities

〈Y n〉L =
L∑

ℓ=1

E

[
|Y n
ℓ − Y n

ℓ−1|2
∣∣∣G♯ℓ−1

]
and

L∑

ℓ=1

E

[
|Y n
ℓ − Y n

ℓ−1|p
∣∣G♯ℓ−1

]
, for p > 2 as n → ∞.

Note that λ̂ℓ is G♯ℓ−1–measurable and for any λ ∈ R
q the variables (X̃mℓ

T,ℓ,i(λ), X̃mℓ−1

T,ℓ,i (λ))1≤i≤Nl

are independent of G♯ℓ−1, then using (5.10) with ρ(L) = m2γL(m − 1)T , we rewrite the first
quantity as follows

〈Y n〉L =
1

∑L
ℓ=1 aℓ

L∑

ℓ=1

aℓ
[
vℓ(λ̂ℓ) − Ξ2

ℓ

]

17



with vℓ defined by (5.1) and Ξℓ defined by (5.2). Let V be a compact neighbourhood of λ∗.
We can write

〈Y n〉L =
1

∑L
ℓ=1 aℓ

L∑

ℓ=1

aℓ
[
vℓ(λ̂ℓ) − Ξ2

ℓ

]
1{

λ̂ℓ∈V
} +

1
∑L
ℓ=1 aℓ

L∑

ℓ=1

aℓ
[
vℓ(λ̂ℓ) − Ξ2

ℓ

]
1{

λ̂ℓ /∈V
} (5.15)

From Proposition 5.2, we know that Ξℓ −−−→
ℓ→∞

E[∇ψ(XT ).UT ] = 0, where the last equality

is a straightforward consequence of [27, Proposition 2.1]. From Proposition 5.2, we know that
the sequence of fucntions vℓ converges pointwise to v defined by (5.6). Moreover, we can easily
prove that this convergence is locally uniform. Hence, by the convergence of λ̂ℓ to λ∗ (see
Theorem 5.1), we deduce that vℓ(λ̂ℓ)1{λ̂ℓ∈V

} converges to v(λ∗) when ℓ → +∞. Moreover,

for ℓ large enough (although random), 1{
λ̂ℓ /∈V

} = 0.

Thus, we deduce from the Toeplitz lemma that 〈Y n〉L −−−−→
L→∞

v(λ∗) a.s. Using Burkholder’s

inequality and Jensen’s inequalty together with the assumptions on ψ and Property (P), we
obtain that for any p > 2, there exists Cp > 0 such that

L∑

ℓ=1

E

[
|Y n
ℓ − Y n

ℓ−1|p
∣∣G♯ℓ−1

]
≤ Cp(∑L

ℓ=1 aℓ
)p/2

L∑

ℓ=1

a
p/2
ℓ −−−−→

L→∞
0

where the convergence to zero is ensured by (5.14). Consequently, we can apply Theorem A.1
to achieve the proof.

Remark 5.5. As usual, one can rescale mγL(QL(λ̂0, . . . , λ̂L) − E[ψ(XT )]) by an estimator
of v(λ∗) to obtain a central limit theorem with variance 1. Thanks to Theorem 5.1, we know
that vℓ,Nℓ

(λ̂ℓ) is a convergent estimator of v(λ∗) and we can easily deduce from the proof of
Theorem 5.4 that under its assumptions

m2γL





1

Nρ
0,L




1

Nρ
0,L

Nρ
0,L∑

k=1

(ψ(X̃m0

T )E+(W̃0,k, λ0))2 −




1

Nρ
0,L

Nρ
0,L∑

k=1

ψ(X̃m0

T )E+(W̃0,k, λ0)




2


+
L∑

ℓ=1

N−1
ℓ

(m− 1)T

mℓ

(
ṽℓ,Nℓ

(λℓ) − Ξ̃2
ℓ,Nℓ

)




−−−−−→
L→+∞

v(λ∗).

Note the quantities vℓ,Nl
and ΞNℓ

are defined as in Equations (5.3) and (5.4) but using the
tilde sample paths (X̃ℓ,k) and (W̃ℓ,k). The term into braces, which can be computed online
during the multilevel Monte Carlo procedure, can be used to build confidence intervals. Any
convergent estimator of v(λ∗) could of course be used, but this one has the advantage to
correspond to the true variance of the multilevel Monte Carlo estimator for any finite number
of levels L and not only asymptotically.

6 Strong law of large numbers for doubly indexed sequences

In this section, we prove two corner stone results used in the convergence of the multilevel ap-
proach. We tackle the convergence of empirical averages of doubly indexed random sequences
when both indices tend to infinity together.
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Proposition 6.1. Let (Xn,m)n,m be a doubly indexed sequence of vector valued random
variables such that for all n, E[Xn,m] = xm with limm→+∞ xm = x . We define Xn,m =
1
n

∑n
i=1Xi,m. Assume that the two following assumptions are satisfied

(H1) i. supn supm nVar
(
Xn,m

)
< +∞.

ii. supn supm Var (Xn,m) < +∞.

Then, for all increasing functions ρ : N → N, Xn,ρ(n) −−−−−→
n→+∞

x a.s. and in L
2.

From this proposition, one can easily deduce the following corollary by extracting a be-
spoke subsequence

Corollary 6.2. Assume that (Xi,m)i,m be a doubly indexed sequence of vector valued random
variables satisfying the assumptions of Proposition 6.1. Then, for any strictly increasing
function ξ : N → N, Xξ(n),n −−−−−→

n→+∞
x a.s. and in L

2.

Proof of Proposition 6.1. The proof of this result closely mimics the one of [34, Theorem
IV.1.1]. We introduce the sequence (Yi,m)i,m defined by Yi,m = Xi,m − xm, which satisfies
E[Yi,m] = 0. As limm→∞ xm = x, it is sufficient to prove that Y n,ρ(n) −−−−−→

n→+∞
0 a.s.

Condition rbar](H1)-i implies the L2 convergence to 0. We introduce the sequence (Zn,m)n

defined by Zn,m = sup{
∣∣∣Ȳk,m

∣∣∣ : n2 ≤ k < (n + 1)2}. Let k be such that n2 ≤ k < (n + 1)2,

then

∣∣∣Ȳk,m
∣∣∣ ≤ n−2


n2

∣∣∣Ȳn2,m

∣∣∣+
k∑

i=n2+1

|Yi,m|

 ,

Zn,m ≤
∣∣∣Ȳn2,m

∣∣∣+ 1

n2

(n+1)2∑

i=n2+1

|Yi,m| .

Then,

E[Z2
n,m] ≤ E[Ȳ 2

n2,m] +

(n+1)2∑

i=n2+1


E[|Yi,m|2]

n4
+ 2

E[
∣∣∣Ȳn2,m

∣∣∣ |Yi,m|]
n2


+ 2

(n+1)2∑

i,j=n2+1;i6=j

E[|Yj,m| |Yi,m|]
n4

.

Let κ > 0 denote the maximum of the upper bounds involved in Assumption ln2](H1). Using
the Cauchy Schwartz inequality, we get

E[Z2
n,m] ≤ κ

n2
+
κ((n+ 1)2 − n2)

n4
+ 2

κ2((n+ 1)2 − n2)

n3
+ 2

κ2((n+ 1)2 − n2)2

n4

≤ κ

n2
+
κ(2n+ 1)

n4
+ 2

κ2(2n+ 1)

n3
+ 2

κ2(2n+ 1)2

n4

Hence, for any function ρ : N → N, E[Z2
n,ρ(n)] ≤ Cn−2 where C > 0 is a constant independent

of ρ. Therefore, we have P(Zn,ρ(n) ≥ n
−1/4) ≤ Cn−3/2. This inequality implies using the

Borel Cantelli Lemma that, for n large enough Zn,ρ(n) ≤ n−1/4 a.s. which yields the a.s.
convergence to 0.
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Proposition 6.3. Let (Fn,m)n,m be a doubly indexed sequence of random variables with values
in the set of continuous functions, ie. for all n,m, Fn,m : Ω −→ C0(Rd,Rp) and for all n.
Moreover, we assume that there exists a sequence of functions fm satisfying E[Fn,m] = fm
for all m. We define Fn,m = 1

n

∑n
i=1 Fi,m. Assume that the two following assumptions are

satisfied

(H2) One of the following criteria holds

i. The sequence (fm)m converges pointwise to some continuous function f .

ii. The sequence (fm)m converges locally uniformly to some function f .

(H3) For any compact set W ⊂ R
d,

i. supn supm nVar
(
supx∈W

∣∣∣Fn,m(x)
∣∣∣
)
< +∞.

ii. supn supm Var (supx∈W |Fn,m(x)|) < +∞.

(H4) For all y ∈ R
d, limδ→0 supn supm E

[
sup|x−y|≤δ |Fn,m(x) − Fn,m(y)|

]
= 0.

Then, for all functions ρ : N → N, the sequence of random functions Fn,ρ(n) converges a.s.
locally uniformly to the locally continuous function f .

Remark 6.4. • When for every fixed m, the sequence (Fn,m)m is independent and iden-
tically distributed, Assumption ln2-sup-u](H4) is ensured by

∀ y ∈ R
d, lim

δ→0
lim sup

m
E

[
sup

|x−y|≤δ
|F1,m(x) − F1,m(y)|

]
= 0

and Assumption r-u](H3)-ii implies rbar-u](H3)-i.

• As in Corollary 6.2, for any strictly increasing function ξ : N → N, the sequence F ξ(n),n

converges a.s. locally uniformly to the locally continuous function f .

Proof. We can apply Proposition 6.1, to deduce that a.s. Fn,ρ(n) converges pointwise to the
function f . If we do not already know that f is continuous, then thanks to r-u](H3)-ii,
we can apply Lebesgue’s theorem to deduce that the functions fm are continuous. The
uniform convergence of the sequence fm to f (see m-unif](H2)-ii) proves that the function f
is continuous.

Let W be a compact set of Rd, we can cover W with a finite number K of open balls Wk

with centers (xk)k and radiuses (rk)k, i.e. Wk = B(xk, rk) and W = ∪Kk=1Wk. We want to
prove that

sup
x∈W

∣∣∣Fn,ρ(n)(x) − f(x)
∣∣∣ a.s.−−−−−→
n→+∞

0.

We write

sup
x∈W

∣∣∣Fn,ρ(n)(x) − f(x)
∣∣∣ =

K∑

k=1

sup
x∈Wk

∣∣∣Fn,ρ(n)(x) − f(x)
∣∣∣ . (6.1)
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We split each term

sup
x∈Wk

∣∣∣Fn,ρ(n)(x) − f(x)
∣∣∣ = sup

x∈Wk

∣∣∣Fn,ρ(n)(x) − Fn,ρ(n)(xk)
∣∣∣+ sup

x∈Wk

|f(x) − f(xk)|

+
∣∣∣Fn,ρ(n)(xk) − f(xk)

∣∣∣ (6.2)

Let ε > 0. The idea is to choose the radiuses rk small enough to ensure that each term is
controlled by a function of ε. Now, we make the idea precise. For all k = 1, . . . ,K, the
last term term can be made smaller that ε/K for n larger that some Nk using the pointwise
convergence. For all n ≥ maxk≤K Nk, and all 1 ≤ k ≤ K,

∣∣∣Fn,ρ(n)(xk) − f(xk)
∣∣∣ ≤ ε/K.

The function f being continuous, it is uniformly continuous on every Wk. If we choose the
Wk such that their radiuses are small enough (we may need to increase K), we can ensure
that for all 1 ≤ k ≤ K

sup
x∈Wk

|f(x) − f(xk)| ≤ ε/K.

The first term on the r.h.s of (6.2) deserves more attention

sup
x∈Wk

∣∣∣Fn,ρ(n)(x) − Fn,ρ(n)(xk)
∣∣∣ ≤ 1

n

n∑

i=1

sup
x∈Wk

∣∣∣Fi,ρ(n)(x) − Fi,ρ(n)(xk)
∣∣∣ . (6.3)

Now, for every 1 ≤ k ≤ K, we want to apply Proposition 6.1 to the sequence of random

variables
(
supx∈Wk

|Fn,m(x) − Fn,m(xk)|
)
n,m

. Assumption ln2](H1) is clearly satisfied using

Minkowski’s inequality.
Let us define the sequence (Yn,m)n,m by

Yn,m = sup
x∈Wk

|Fn,m(x) − Fn,m(xk)| − E

[
sup
x∈Wk

|Fn,m(x) − Fn,m(xk)|
]
,

satisfying E[Yn,m] = 0 and the assumptions of Proposition 6.1. Hence, it yields that

lim
n→+∞

1

n

n∑

i=1

sup
x∈Wk

∣∣∣Fi,ρ(n)(x) − Fi,ρ(n)(xk)
∣∣∣− E

[
sup
x∈Wk

∣∣∣Fn,ρ(n)(x) − Fn,ρ(n)(xk)
∣∣∣
]

= 0. (6.4)

From ln2-sup-u](H4), we know that if the Wk are chosen small enough,

sup
n

E

[
sup
x∈Wk

∣∣∣Fn,ρ(n)(x) − Fn,ρ(n)(xk)
∣∣∣
]

≤ ε/K. (6.5)

Then, Combining with (6.3), (6.4) and (6.5) yields that

sup
x∈Wk

∣∣∣Fn,ρ(n)(x) − Fn,ρ(n)(xk)
∣∣∣ ≤ ε/K.

Going back to Equations (6.1) and (6.2), we deduce that for n large enough

sup
x∈W

∣∣∣F̄n,ρ(n)(x) − f(x)
∣∣∣ ≤ 3ε,

which achieves the proof.
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7 Numerical experiments

7.1 Practical implementation

Our approach cleverly mixes the famous multilevel Monte Carlo technique with importance
sampling to reduce the variance. A classical approach would have been to consider the

multilevel approximation of E
[
ψ(XT (θ))e−θ·WT − 1

2
|θ|2T

]
while choosing the value of θ which

minimizes the variance of the central limit theorem for multilevel Monte Carlo (see [7]). This
asymptotic variances involves both ∇ψ and the process U given in (5.5). Hence, a classical
approach to importance sampling for multilevel Monte Carlo would require extra knowledge
than the function ψ and the underlying process X, thus precluding any kind of automation.

We have chosen a completely different approach allowing for one importance sampling
parameter per level, which enables us to treat each level independently of the others. In each
level, we use a sample average approximation as in [26] to compute the optimal importance
sampling parameter defined as the one minimizing the variance of the current level. From
Theorem 5.4, we know that this approach is optimal in the sense that our multilevel estimator
QL(λ̂0, . . . , λ̂L) satisfies a central limit theorem with a limiting variance given by inf v where v
defined by (5.6) is the variance of the standard multilevel Monte Carlo estimator. We managed
to provide an algorithm reaching the optimal limiting variance without computing ∇ψ nor
the process U , hence our approach can be made fully automatic. Our overall algorithm is
described in Algorithm 1.

The minimization step (items 2 and 4 in Algorithm 1) is performed using a Newton al-
gorithm. Unlike what happens in a classical Monte Carlo method in which a new sample is
drawn at each iteration, here all the samples must be stored since the same random variables
are used in all the iterations of the Newton procedure. This feature is specific to the optimi-
sation step and may make the algorithm highly memory demanding as soon as the numbers
N ′
ℓ become large. As the parameter λ is not involved in the function ψ, all the quantities

ψ(Xmℓ

T,ℓ,k) −ψ(Xmℓ−1

T,ℓ,k ) for k = 1, . . . , Nℓ can be precomputed before starting the minimization
algorithm, which enables us to save a lot of computational time. The efficiency of Newton’s
algorithm very much depends on the convexity of the vℓ,Nℓ

functions. As already pointed out
in [26], the smallest eigenvalue of the Hessian matrix ∇2vℓ,N ′

ℓ
is basically

T
N ′

ℓ

∑N ′
ℓ

k=1
mℓ

(m−1)T

∣∣∣ψ(Xmℓ

T,k) − ψ(Xmℓ−1

T,k )
∣∣∣
2

E+(Wk, λ), which can become extremely small and

then conflicts with the will to have the strongest possible convexity in order to speed up
Newton’s algorithm. This difficulty is circumvented by noticing that λ̂ℓ can be interpreted as
the root of

∇uℓ,N ′
ℓ
(λ) = λT −

1
N ′

ℓ

∑N ′
ℓ

k=1
mℓ

(m−1)TWk,ℓ,T

∣∣∣ψ(Xmℓ

T,k) − ψ(Xmℓ−1

T,k )
∣∣∣
2

e−λ·Wk,ℓ,T

1
N ′

ℓ

∑N ′
ℓ

k=1
mℓ

(m−1)T

∣∣∣ψ(Xmℓ

T,k) − ψ(Xmℓ−1

T,k )
∣∣∣
2

e−λ·Wk,ℓ,T

(7.1)

with

uℓ,N ′
ℓ
(λ) =

|λ|2 T
2

+ log


 1

N ′
ℓ

N ′
ℓ∑

k=1

mℓ

(m− 1)T

∣∣∣ψ(Xmℓ

T,k) − ψ(Xmℓ−1

T,k )
∣∣∣
2

e−λ·Wk,ℓ,T


 .
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Algorithm 1 Multilevel Importance Sampling (MLIS)

1. Generate Xm0

T,0,1, . . . , X
m0

T,0,N ′
0

i.i.d. samples following the law of Xm0

T independently of

the other blocks.
2. Compute the minimizer λ̂0 of u0,N ′

0
by solving ∇u0,N ′

0
(λ̂0) = 0.

for ℓ = 1 : L do

3. Generate (Xmℓ

T,ℓ,1, X
mℓ−1

T,ℓ,1 ), . . . , (Xmℓ

T,ℓ,N ′
ℓ
, Xmℓ−1

T,ℓ,N ′
ℓ
) i.i.d. samples following the law of

(Xmℓ

T , Xmℓ−1

T ) independently of the other blocks.
4. Compute the minimizer λ̂ℓ of of uℓ,N ′

ℓ
by solving ∇uℓ,N ′

ℓ
(λ̂ℓ) = 0.

end for

5. Conditionally on λ̂0, generate X̃m0

T,0,1(λ̂0), . . . , X̃m0

T,0,N0
(λ̂0) i.i.d. samples following the

law of Xm0

T (λ̂0) independently of the other blocks. The tilde and non tilde quantities are
conditionally independent.
for ℓ = 1 : L do

6. Conditionally on λ̂ℓ, generate (X̃mℓ

T,ℓ,1(λ̂ℓ), X̃
mℓ−1

T,ℓ,1 (λ̂ℓ)), . . . , (X̃
mℓ

T,ℓ,Nℓ
(λ̂ℓ), X̃

mℓ−1

T,ℓ,Nℓ
(λ̂ℓ))

i.i.d. samples following the law of (Xmℓ

T (λ̂ℓ), X
mℓ−1

T (λ̂ℓ)) independently of the other
blocks. The tilde and non tilde quantities are conditionally independent.

end for

7. Compute the multilevel importance sampling estimator

QL(λ̂0, . . . , λ̂L) =
1

N0

N0∑

k=1

ψ(X̃m0

T,0,k(λ̂0))E−(W̃0,k, λ̂0)

+
L∑

ℓ=1

1

Nℓ

Nℓ∑

k=1

(
ψ(X̃mℓ

T,ℓ,k(λ̂ℓ)) − ψ(X̃mℓ−1

T,ℓ,k (λ̂ℓ))
)

E−(W̃ℓ,k, λ̂ℓ).
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The Hessian matrix of uℓ,N ′
ℓ

is given by

∇2uℓ,N ′
ℓ
(λ) =TI +

1
N ′

ℓ

∑N ′
ℓ

k=1
mℓ

(m−1)TWk,ℓ,T (Wk,ℓ,T )∗
∣∣∣ψ(Xmℓ

T,k) − ψ(Xmℓ−1

T,k )
∣∣∣
2

e−λ·Wk,ℓ,T

1
N ′

ℓ

∑N ′
ℓ

k=1
mℓ

(m−1)T

∣∣∣ψ(Xmℓ

T,k) − ψ(Xmℓ−1

T,k )
∣∣∣
2

e−λ·Wk,ℓ,T

−

(
1
N ′

ℓ

∑N ′
ℓ

k=1
mℓ

(m−1)TWk,ℓ,T

∣∣∣ψ(Xmℓ

T,k) − ψ(Xmℓ−1

T,k )
∣∣∣
2

e−λ·Wk,ℓ,T

)

1
N ′

ℓ

∑N ′
ℓ

k=1
mℓ

(m−1)T

∣∣∣ψ(Xmℓ

T,k) − ψ(Xmℓ−1

T,k )
∣∣∣
2

e−λ·Wk,ℓ,T

(
1
N ′

ℓ

∑N ′
ℓ

k=1
mℓ

(m−1)TWk,ℓ,T

∣∣∣ψ(Xmℓ

T,k) − ψ(Xmℓ−1

T,k )
∣∣∣
2

e−λ·Wk,ℓ,T

)∗

1
N ′

ℓ

∑N ′
ℓ

k=1
mℓ

(m−1)T

∣∣∣ψ(Xmℓ

T,k) − ψ(Xmℓ−1

T,k )
∣∣∣
2

e−λ·Wk,ℓ,T

. (7.2)

From the Cauchy Schwartz inequality, it is clear that ∇2uℓ,N ′
ℓ
(λ) is lower bounded by TI,

where the inequality is to be understood in the sense of the order on symmetric matrices.

Complexity analysis. In this paragraph, we focus on the impact of the number of levels L
on the overall computational time of our algorithm. The computational cost of the standard
multilevel estimator is proportional to

CML =
L∑

ℓ=0

Nℓm
ℓ = m2L+1L2.

The global cost of our algorithm writes as the sum of the cost of the computation of the (λ̂ℓ)ℓ
and of the standard multilevel estimator

CMLIS =
L∑

ℓ=0

N ′
ℓ(m

ℓ + 3Kℓ) +
L∑

ℓ=0

Nℓm
ℓ

where Kℓ is the number of iterations of Newton’s algorithm to approximate λ̂ℓ and the factor
3 corresponds to the fact that building ∇uℓ,N ′

ℓ
and ∇2uℓ,N ′

ℓ
basically boils down to three

Monte Carlo summations. In practice, Kℓ ≤ 5 as the problem is strongly convex. Because
the same random variables are used at each iteration of the optimisation step, they must be
stored, which makes the memory footprint of our algorithm proportional to N ′

ℓ.

So, if we choose N ′
ℓ = Nℓm

ℓ

mℓ+15
, the total cost of our MLIS algorithm should be roughly twice

the cost of the standard multilevel estimator. This choice of N ′
ℓ reduces the number of samples

used to approximate the variance of the first levels compared to using directly Nℓ. However,
when L increases, N ′

ℓ can become extremely large for small values of ℓ which leads to an even
larger memory footprint (see Section 7.1). Not to break the scalability of the algorithm, the
values of N ′

ℓ have to be kept reasonable depending on the amount of memory available on
the computer. For an instance, enforcing N ′

ℓ ≤ 500000 is reasonable on a computer with 8Gb
of RAM. Anyway, it is crystal clear that a fairly good approximation of the variance vℓ is
enough and running for an ultimately accurate estimator would lead to a tremendous waste of
computational time. Monitoring the convergence of vℓ,N ′

ℓ
would really help choosing sensible

values for N ′
ℓ.
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7.2 Experiment settings

We compare four methods in terms of their root mean squared error (RMSE): the crude
Monte Carlo method (MC), the adaptive Monte Carlo method proposed in [26] (MC+IS), the
Multilevel Monte Carlo method (ML) and our Importance Sampling Multilevel Monte Carlo

estimator (ML+IS). We recall that the RMSE is defined by RMSE =
√

Bias2 + Variance. In
the computation of the bias, the true value is replaced by its multilevel Monte Carlo estimator
with L = 9 levels, which yields a very accurate approximation. Not to mention, the CPU
times showed on the graphs take into account both the time to the search for the optimal
parameter and the time for the second stage Monte Carlo, be it multilevel or not.

7.3 Multidimensional Dupire’s framework

We consider a d−dimensional local volatility model, in which the dynamics, under the risk
neutral measure, of each asset Si is supposed to be given by

dSit = Sit(r dt+ σ(t, Sit)dW
i
t ), S0 = (S1

0 , . . . , S
d
0)

where W = (W 1, . . . ,W d), each component W i being a standard Brownian motion with
values in R. For the numerical experiments, the covariance structure of W will be assumed
to be given by 〈W i,W j〉t = ρt1{i6=j} + t1{i=j}. We suppose that ρ ∈ (− 1

d−1 , 1), which ensures
that the matrix C = (ρ1{i6=j} + 1{i=j})1≤i,j≤d is positive definite. Let L denote the lower
triangular matrix involved in the Cholesky decomposition C = LL∗. To simulate W on the
time-grid 0 < t1 < t2 < . . . < tN , we need d×N independent standard normal variables and
set 



Wt1

Wt2
...

WtN−1

WtN




=




√
t1L 0 0 . . . 0√
t1L

√
t2 − t1L 0 . . . 0

...
. . .

. . .
. . .

...
...

. . .
. . .

√
tN−1 − tN−2L 0√

t1L
√
t2 − t1L . . .

√
tN−1 − tN−2L

√
tN − tN−1L



G,

where G is a normal random vector in R
d×N . The maturity time and the interest rate are

respectively denoted by T > 0 and r > 0. The local volatility function σ we have chosen is of
the form

σ(t, x) = 0.6(1.2 − e−0.1te−0.001(xert−s)2
)e−0.05

√
t, (7.3)

with s > 0. We know that there exists a duality between the variables (t, x) and (T,K) in
Dupire’s framework. Hence for formula (7.3) to make sense, one should choose s equal to the
spot price of the underlying asset so that the bottom of the smile is located at the forward
money. We refer to Figure 1 to have an overview of the smile.

Basket option We consider options with payoffs of the form (
∑d
i=1 ω

iSiT − K)+ where
(ω1, . . . , ωd) is a vector of algebraic weights. The strike value K can be taken negative to deal
with Put like options. With no surprise, we can see on Figure 2 that multilevel estimators
always outperform their classical Monte Carlo counterpart. The comparison for very little
accurate estimators may be meaningless as it is pretty difficult to reliably measure short
execution times and the empirical variance of the estimator is in this case even less accurate
than the estimator itself. Note that the points on the extreme right hand side are obtained for
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Figure 1: Local volatility function

multilevel estimators with L = 2, respectively for Monte Carlo estimators with 256 samples.
For RMSE between 0.1 and 0.005, our MLIS estimator is 10 times faster than the standard
ML estimator. When a very high accuracy is required, namely when RMSE is smaller than
0.001, the MLIS estimator remains between 3 and 4 times faster than the standard multilevel
estimator, which is already a great achievement since for this level of accuracy, the ML
estimator may need several dozens of minutes to yield its result.

7.4 Multidimensional Heston model

The multidimensional Heston model can be easily written by specifying on the one hand
that each asset follows a 1-D Heston model and on the other hand the correlation structure
between the involved Brownian motions. The asset price process S = (S1, . . . , Sd) and the
volatility process σ = (σ1, . . . , σd) solve

dSit = rSitdt+
√
σitS

i
tdB

i
t

dσit = κi(ai − σit)dt+ νit

√
σit(γ

idBi
t +

√
1 − (γi)2dB̃i

t)

where all the components of B = (B1, . . . , Bd) and B̃ = (B̃1, . . . , B̃d) are real valued Brownian
motions. The vectors κ = (κ1, . . . , κd) and a = (a1, . . . , ad) denote respectively the reversion
rate and the mean level of each volatility process, while the vector ν is the volatility of the
volatility process. The vector γ̄ = (γ1, . . . , γd) embodies the correlations between an asset
and its volatility process, with γi ∈] − 1, 1[ for all 1 ≤ i ≤ d. The vector valued processes B
and B̃ are independent and satisfy

d〈B〉t = ΓS dt and d〈B̃〉t = Id dt

where we assume for our experiments that the covariance matrix ΓS has the structure

ΓS =




1 ρ . . . ρ

ρ 1
. . .

...
...

. . .
. . . ρ

ρ . . . ρ 1




(7.4)

26



Figure 2:
√
MSE vs. CPU time for a basket option in the local volatility model with I = 5,

r = 0.05, T = 1, S0 = 100, K = 100, m = 4.

with ρ ∈
]

−1
I−1 , 1

[
, such that the matrix ΓS is positive definite. The processes B and B̃ are

Wiener processes with covariance matrices given by ΓS and Id respectively.
For the sake of simplicity, we decided not to add any extra correlation between the com-

ponents of B̃, hence the choice d〈B̃〉 = Id dt and we assume in the following that for all the
γi’s are equal for 1 ≤ i ≤ d, γi = γ. The correlations between the volatilities are entirely
specified by the correlations between the assets. Even though we do not aim at discussing
the correlation structure of the multidimensional Heston model, we believe it is important to
make precise the underlying correlation structure in the multidimensional model so that the
experiments are easily reproducible.

The model can be equivalently written

dSit = rSitdt+
√
σitS

i
tdB

i
t

dσit = κi(ai − σit)dt+ νit

√
σitdW

i
t
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where the processes W and B are Wiener processes satisfying

d〈B〉t = ΓS dt

d〈B,W 〉t = γΓS dt

d〈W 〉t = (γ2ΓS + (1 − γ2)Id) dt.

The process (B,W ) with values in R
2d is a Wiener process with covariance matrix

Γ =

(
ΓS γΓS
γΓS γ2ΓS + (1 − γ2)Id

)
.

Hence, the pair of processes (B,W ) can be easily simulated by applying the Cholesky factor-
ization of Γ to a standard Brownian motion with values in R

2d.

Basket Option We consider a basket option as in the local volatility model. Figure 3 looks
very much the same as in the case of the local volatility model (see Figure 2). The MLIS
estimator always outperforms all the ML estimator by a factor of 3 to 4. Note that for small
RMSE, the computational time can go beyond several hours, hence cutting it down by two
or three times represents a real improvement.

Best of option We consider options with payoffs of the form (max1≤i≤d SiT − K)+. The
payoff of this option does obviously not satisfy the assumptions of Theorem 4.1 as the payoff
of the “best of” options is not Hölder with α ≥ 1. Nonetheless, the multilevel approach beats
the standard Monte Carlo technology by far (see Figure 4). Moreover, coupling importance
sampling with the multilevel approach improves the accuracy. For a fixed RMSE, we can
expect MLIS to be 3 faster that ML. This example shows the robustness of the method,
which performs well whereas the theoretical assumptions are not satisfied.

8 Conclusion

We have presented a new estimator making the most of the recent works on multilevel Monte
Carlo and on adaptive importance sampling. As expected, this new estimator outperforms
the standard multilevel Monte Carlo estimator by a great deal. For a fixed accuracy measured
in terms the mean squared error, the MLIS estimator is between 3 and 10 times faster that
the standard multilevel Monte Carlo estimator. This efficiency of our MLIS approach could
still be improved by monitoring the number of samples N ′

ℓ to be used to approximate the
variance vℓ,N ′

ℓ
in each level. Actually, we believe that there is no need to compute a too

accurate approximation of this variance as a slight decrease in the accuracy of λ̂ℓ would not
lead to a serious deterioration of the accuracy of the MLIS estimator but it could help to save
a lot of computational time.
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Figure 3:
√
MSE vs. CPU time for a best of option in the multidimensional Heston model

with I = 10, r = 0.03, T = 1, S0 = 100, K = 100, ν = 0.01, κ = 2, a = 0.04, γ = −0.2,
ρ = 0.3 and m = 4.
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Figure 4:
√
MSE vs. CPU time for a best of option in the multidimensional Heston model

with I = 5, r = 0.03, T = 1, S0 = 100, K = 140, ν = 0.25, κ = 2, a = 0.04, γ = 0.2, ρ = 0.5
and m = 4.

30



A Auxiliary lemmas

A.1 Central limit theorems for martingale arrays

Theorem A.1 (Central limit theorem for triangular array). Suppose that (Ω,F,P) is a prob-
ability space and that for each n, we have a filtration Fn = (Fn

k )k≥0, a sequence kn −→
∞ as n −→ ∞ and a real vector martingale Y n = (Y n

k )k≥0 adapted to Fn. We make the
following two assumptions.

(H5) i. There exists a deterministic symmetric positive semi-definite matrix Γ , such that

〈Y n〉kn =
kn∑

k=1

E

[
|Y n
k − Y n

k−1|2|Fn
k−1

]
P−→

n→∞ Γ.

ii. There exists a real number a > 1, such that

kn∑

k=1

E

[
|Y n
k − Y n

k−1|2a|Fn
k−1

]
P−→

n→∞
0.

Then
Y n
kn

L−→ N (0, Γ ) as n → ∞.

A.2 Asymptotic behavior of the process
(
X
mℓ − X

mℓ−1
)
ℓ≥0

In the following we recall some results around the stable convergence. Let Zn be a sequence
of random variables with values in a Polish space E, all defined on the same probability space
(Ω,F ,P). Let (Ω̃, F̃ , P̃) be an extension of (Ω,F ,P), and let Z be an E-valued random variable
on the extension. We say that (Zn) converges in law to Z stably and write Zn ⇒stably Z, if

E(Uh(Zn)) → Ẽ(Uh(Z))

for all h : E → R bounded continuous and all bounded random variable U on (Ω,F) . This
convergence, introduced by Rényi [33] and studied by Aldous and Eagelson [1], is obviously
stronger than convergence in law that we will denote here by “⇒”. According to Section 2 of
Jacod [24] and Lemma 2.1 of Jacod and Protter [25], we have the following result

Lemma A.2. Let Vn and V be defined on (Ω,F) with values in another metric space.

If Vn
P→ V, Zn ⇒stably Z then (Vn, Zn) ⇒stably (V,X).

The following result proved by Ben Alaya and Kebaier [7, Theorem 3] is an improvement
of Theorem 3.2 of Jacod and Protter [25], for the setting of Multilevel Euler scheme. More

precisely, if (Xmℓ

t )t≥0 denotes the Euler scheme with time step mℓ, with m, ℓ ∈ N \ {0, 1}
solution to (2.2), then we have the following weak convergence in the Skorohod topology.

Theorem A.3. Assume that b and σ are C1 with linear growth then the following result holds.

For all m ∈ N \ {0, 1},
√

mℓ

(m− 1)T
(Xmℓ −Xmℓ−1

) ⇒stably U, as ℓ → ∞,

with (Ut)0≤t≤T the d-dimensional diffusion process solution to (5.5)
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