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Abstract

We tackle the problem of computing fair periodical premiums of an equity-linked policy with a ma-
turity guarantee and an embedded surrender option. We consider the policy as a Bermudan-style
contingent claim that can be exercised at the premium payment dates. The evaluation framework
is based on a discretization of a bivariate model that considers the joint evolution of the equity
value with stochastic interest rates. To deeply reduce the computational complexity of the pricing
problem we use the singular points framework that allows us to compute accurate upper and lower
estimates of the policy premiums.
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1 Introduction

Nowadays equity-linked policies have gained a wide popularity in insurance market. The main reason
is that they give the opportunity to link the capital invested into the policy to the performance of
a portfolio of equities. In this way, the coverage provided in case of death or survivance of the
insured is coupled with the possibility to obtain higher returns from the capital market than those
guaranteed by traditional policies. The problem is that in the latter case the insured bears the risk
of a negative performance of the equities considered. To mitigate this risk, insurance companies
usually insert into the contract a minimum guarantee that assures the policyholder to receive at
maturity (or before in the case of early termination of the contract) at least a prespecified sum.
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In their seminal papers, Brennan and Schwartz [10] and Boyle and Schwartz [9] applied finan-
cial mathematics techniques, developed in a Black-Scholes framework to compute fair premiums of
equity-linked policies with minimum guarantee. Since then, a huge number of contributions tackled
the fair premium evaluation problem in several directions. Among others we mention Aase and Pers-
son [2] and Delbaen [14] that considered periodical premiums computed via Monte Carlo simulations.
Bacinello and Ortu [7], at first, extend these models to the case in which the minimum guarantee is
endogenous, i.e., it is a function of the premium(s) paid. Then, they derived a closed form formula
for the single premium of an endowment equity-linked policy in a framework where interest rates
are stochastic [8]. Nielsen and Sandmann [19] developed a model with stochastic interest rates to
evaluate periodic premiums computed using numerical procedures.
Often, an equity-linked policy embeds a surrender option that gives the policyholder the chance to
escape out of the contract before maturity. The fair premiums evaluation problem may consider the
decision to surrender the contract as exogenous. In this case, together with death, early withdrawal
is considered as a second exogenous cause of early termination of the contract. Then, given sufficient
statistical observations on early withdrawals, it is possible to estimate the periodical probabilities
that an individual abandons the contract that are used jointly with death probabilities to compute
premiums.
A different approach considers the decision to surrender the policy endogenous within the evaluation
model. In other words a policyholder decides to early abandon the contract if it is financially con-
venient. Hence, the presence of an embedded surrender option makes the policy a Bermudan-style
contingent claim and the premiums may be determined using standard techniques for American
options evaluation. This second approach has been first proposed by Albizzati and Geman [1] to
compute fair single premiums of deferred annuities in a model with stochastic interest rates. Grosen
and Jorgensen [17] considered the problem of computing the fair value of a single premium contract
similar to an equity-linked policy embedding an early exercisable interest rate guarantee. Bacinello
[4] takled the problem of computing fair premiums of equity-linked policies with an embedded surren-
der option by considering the Cox-Ross-Rubinstein [13] (CRR hereafter) binomial model to describe
the evolution of the reference fund value made up of equities linked to the policy benefit. The CRR
model has the advantage of being easy to understand and highly tractable from a mathematical
point of view but a problem arises when periodical premiums are considered. Indeed, the binomial
tree describing the evolution of the reference fund value is not anymore recombining, hence the
evaluation problem becomes computationally unmanageable as the number of time steps increases.
To overcome this problem in [11] it has been proposed a model that, instead of considering all the
reference fund values, associates to each possible equity value a subset of all of the reference fund
values. This trick allows to deeply reduce the computational complexity of the evaluation problem
and as a result, accurate values for periodical premiums are obtained.
In this paper, we propose a tree algorithm for evaluating the fair premium of an equity-linked policy
with a surrender option and a minimum guarantee that takes into account stochastic interest rates.
Indeed, since life insurance policies are usually long term contracts, it is unrealistic to consider in-
terest rates fixed at a certain level during the whole policy lifetime. Hence in order to take into
account the correlation between the equity price and the interest rate we construct a bivariate lattice
that describes their evolution by adapting the approach proposed by Wey [21] to price plain vanilla
options. However, even if the bivariate lattice is recombining, the problem of computing the fair
premium of equity-linked policies with maturity guarantee and an embedded surrender option, can-
not be treated in a feasible way by standard backward induction. In fact, in this case, the problem
is deeply path-dependent leading to a non-recombining tree. For this purpose we propose to use
the framework of the singular points technique presented in [16]. In this way we obtain a procedure
which allows to get the fair premium with a large number of steps in a reasonable time and the
convergence of the discrete approximations to the continuous value in a simple way. In fact, we
can get approximations of the true lattice policy price (i.e., the price obtained considering all the
possible paths) with a prescribed level of error and the convergence of the approximations can be
derived from the convergence of the discrete bivariate model to the continuous one. Furthermore
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our method provides upper and lower estimates of the premium computed by the lattice procedure.
The paper is organized as follows. In Section 2, we describe the bivariate model for the joint

evolution of equity and of the spot interest rate processes in the continuous and discrete settings.
In Section 3, we describe the insurance contracts. In Section 4, we propose our tree algorithm for
evaluating the fair premium based on the singular points technique. Numerical results relative to
the proposed evaluation algorithm are the contents of Section 5. In Section 6, we draw conclusions.

2 The bivariate model

This section is devoted to describe the construction of a bivariate lattice corresponding to the joint
evolution of spot interest rates and equity values. We shall be concerned with a geometric Brownian
motion describing the evolution of the equity value with drift driven by a square root process.
Following Wey [21], we transform at first both the processes into two diffusions with unit volatility
and then we introduce an auxiliary process orthogonal to the transformed interest rate process. This
allows us to build up easily a recombining bivariate lattice to guarantee the tractability of the model
from a computational point of view. Finally, we transform back the bivariate lattice into a new one
to obtain the joint discretized evolution of the equity and of the spot interest rate.
We consider, under the risk-neutral probability measure, the following dynamics for the equity value

dS(t)

S(t)
= r(t)dt+ σSdZS(t), S(0) = S0 > 0, (1)

where r(t) is the short interest rate, σS is the constant stock price volatility and ZS(t) is a standard
Brownian motion.
The risk-neutralized process for the short rate is described, as in the Cox- Ingersoll-Ross model [12]
(CIR hereafter), by the following stochastic differential equation

dr(t) = k[θ − r(t)]dt+ σr

√
r(t)dZr(t), r(0) = r0 > 0, (2)

where k is a constant representing the reversion speed, θ is the long term reversion target, σr is
a constant and Zr(t) is a standard Brownian motion whose correlation with ZS(t) is ρ. It is well
known that if r0 > 0 and 2kθ ≥ σ2

r the probability that r(t) will hit zero is zero.
As indicated in [21], the first step to the construction of a recombining bivariate tree is to transform
processes (1) and (2) into two diffusions with unit volatility. This is done by introducing the variables
X = (logS)/σS and R = 2

√
r/σr, respectively. The dynamics of X and R may be easily derived

applying Ito’s Lemma. Hence,

dX(t) = µXdt+ dZS(t), X(0) = (logS0)/σS , (3)

and
dR(t) = µRdt+ dZr(t), R(0) = 2

√
r0/σr, (4)

where

µX = µX(R(t)) =
σ2

rR
2(t)/4 − σ2

S/2

σS
,

and

µR = µR(R(t)) =
k(4θ −R2(t)σ2

r) − σ2
r

2R(t)σ2
r

. (5)

Both the transformed processes X and R have constant volatilities, hence they may be discretized
independently using recombining binomial trees. In order to describe easily the joint probabilities
of the two diffusions, we introduce a new process orthogonal to R(t),

Y (t) =
X(t) − ρR(t)√

1 − ρ2
.
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Standard calculations give that the processes Y (t) and R(t) have zero covariance and that the
dynamics of the diffusion process Y (t) has the form

dY (t) = µY dt+ dZY (t), Y (0) = Y0 =
1√

1 − ρ2
[(logS0)/σS − 2ρ

√
r0/σr], (6)

where ZY (t) is a standard Brownian motion orthogonal to Zr(t) and the drift depends by the process
R(t) in the following way

µY = µY (R(t)) =
µX(R(t)) − ρµR(R(t))√

1 − ρ2
. (7)

Now, the underlying asset S and the spot interest rate r can be obtained from the state variables Y
and R using the relations:

r(t) =

{
R2(t)σ2

r

4 if R(t) > 0
0 otherwise

S(t) = exp[σS(
√

1 − ρ2Y (t) + ρR(t))]. (8)

2.1 The bivariate discrete model

We are in a position now to build up the bivariate tree discretizing the joint evolution of the processes
R and Y and consequently the approximating processes for r and S.

To construct the discrete approximations of the processes R and Y , we divide the time to maturity
T into n intervals of length ∆t = T/n and, since R and Y are both processes with unit variance,
we set the size of each up step equal to

√
∆t and the size of each down step equal to −

√
∆t. As

usual, a binomial tree may be considered to describe the evolution of the discrete approximating
processes. We label (0, 0) the starting node where the R-process has value R(0). After i time steps
(i = 0, . . . , n) R may be located at one of the nodes (i, k) (k = 0, . . . , i) corresponding to the values

Ri,k = R0 + (2k − i)
√

∆t. (9)

Analogously, for the discrete process approximating Y , after i time steps it may be located at
one of the nodes (i, j) (j = 0, . . . , i) corresponding to the values

Yi,j = Y0 + (2j − i)
√

∆t. (10)

Transition probabilities have to be specified to assure the matching of the local drift and of the
local variance between the discrete and continuous model of (Y,R). This will guarantee that the
discretized processes converge in distribution to the corresponding diffusions (4) and (6), respectively
(see [18] for a detailed description in the one-dimensional setting). To do this we have to take into
account that in some regions of the tree it may happen that multiple jumps are needed to satisfy
properly the matching conditions. Hence, starting from Ri,k at time i∆t, the process R may jump
at time (i+ 1)∆t to the value Ri+1,kd

with kd defined as

kd ≡





0 if Ri,k + µR∆t < Ri+1,0,
i if Ri,k + µR∆t > Ri+1,i+1,
the largest integer k∗ ∈ [0, i] : Ri,k + µR∆t ≥ Ri+1,k∗ otherwise,

or it may jump to Ri+1,ku
, with ku defined as

ku ≡ kd + 1.

Clearly, µR =
k(4θ−R2

i,kσ2
r)−σ2

r

2Ri,kσ2
r

is the drift value of the transformed process R at Ri,k. Moreover one

has

k∗ = k + int(
µR

√
∆t+ 1

2
),
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where int(x) is the integer part of x.
Now, the probability that the R-process, located at the node Ri,k, reaches Ri+1,ku

, is well defined
by setting

pi,k ≡





0 if Ri,k + µR∆t < Ri+1,0,
1 if Ri,k + µR∆t > Ri+1,i+1,
µR∆t+Ri,k−Ri+1,kd

Ri+1,ku −Ri+1,kd

otherwise.

Obviously, the probability to reach Ri+1,kd
is 1 − pi,k. It is worth to notice that in some regions

of the tree, particularly near the lower boundary located at zero, the drift of the diffusion, µR,
becomes so large that it cannot be matched by considering the values of the process generated
within the approximating binomial grid. As a consequence, in order to consider legitimate transition
probabilities, we censore the pi,k in order to remain within the interval [0, 1].
Similarly, for the Y -process we define

jd ≡





0 if Yi,j + µY ∆t < Yi+1,0,
i if Yi,j + µY ∆t > Yi+1,i+1,
the largest integer j∗ ∈ [0, i] : Yi,j + µY ∆t ≥ Yi+1,j∗ otherwise,

and
ju ≡ jd + 1.

Here µY stands for the drift value of the transformed process Y computed at Ri,k according to (7),

and j∗ = j + int(µY

√
∆t+1
2 ).

The transition probability that the Y -process, located at Yi,j , jumps to Yi+1,ju
, is well defined

by setting

p̂i,j,k ≡





0 if Yi,j + µY ∆t < Yi+1,0,
1 if Yi,j + µY ∆t > Yi+1,i+1,
µY ∆t+Yi,j−Yi+1,jd

Yi+1,ju −Yi+1,jd

otherwise.

Note that the dependence on the index k in p̂ is due to the specific form of the drift of the process
(6) (see equation (7)).

We proceed now describing the discrete approximation scheme for the joint evolution of the
processes Y andR considering a bivariate tree. For this purpose we construct a recombining structure
for the tree (see next picture) by merging the two univariate binomial trees for the state variables
R and Y . At each time step i (i = 0, . . . , n), we consider (i + 1)2 nodes that we label (i, j, k)
corresponding to the values Ri,k and Yi,j (k, j = 0, . . . , i).

Starting from the node (i, j, k), in consideration of possible multiple jumps and taking into
account the tree structure, the process may reach one of the four nodes

(i+ 1, ju, ku), with probability puu,

(i+ 1, ju, kd), with probability pud,

(i+ 1, jd, ku), with probability pdu,

(i+ 1, jd, kd), with probability pdd,

where ju, jd, ku, kd are the indexes related to the number of multiple jumps on the tree in the Y
and R directions, and puu, pud, pdu, pdd are the transition probabilities. Such probabilities can be
computed, due to the orthogonality of the two processes, as follows

puu = pi,kp̂i,j,k, pud = pi,k(1 − p̂i,j,k) (11)

pdu = (1 − pi,k)p̂i,j,k, pdd = (1 − pi,k)(1 − p̂i,j,k).

Finally, a bivariate tree for the joint evolution of the processes r and S is derived simply by
applying the transforms (8) to the discrete scheme just defined. Indeed, to each node of the tree
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Figure 1: The projection of the tridimensional bivariate tree on the (Y,R) plane
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(i, j, k) it will correspond the value

ri,k =

{
R2

i,kσ2
r

4 if Ri,k > 0
0 otherwise

and the value
Si,j,k = exp[σS(

√
1 − ρ2Yi,j + ρRi,k)].

The successor values are easily identified with ri+1,ku
, ri+1,kd

and Si+1,ju,ku
, Si+1,ju,kd

, Si+1,jd,ku
,

Si+1,jd,kd
. Concerning the transition probabilities we will keep those defined in (11).

Based on the martingale central limit theorem (see [15] p. 354), it follows that the approximating
bivariate model defined above converges weakly to the corresponding bivariate continuous diffusion.
However, as remarked by Tian [20], the convergence in distribution is guaranteed whenever the
condition 4kθ > σ2

r holds. Empirical estimates for the CIR process rarely violate this condition.

Remark 1. The tree structure requires that the denominator in (5) never vanishes, i.e. R0+j
√
T/n

does not vanish for all j = −n, ..., n. Taking j0 = int[ R0√
T/n

], we have that the minimum (in absolute

value) of the discrete approximation of R in (5) is

γ = min{|R0 − j0

√
T/n|, |R0 − (j0 + 1)

√
T/n|}.

If γ is too small, say γ < 10−6, we increase the number of steps n until γ ≥ 10−6.

3 The equity-linked policies with minimum guarantee and

surrender option

We consider an equity-linked policy whose payoff depends on the performance of a portfolio made up
of equities of the same kind. We analyze the dynamics of the reference fund generated by investing a
fixed contribution, D, to acquire equities at the beginning of each year until maturity T . The equity
value S(t) and the spot rate r(t) dynamics are described by equations (1) and (2), respectively.

At time t0 = 0, with the first contribution D, the insurer buys D
S(0) equities and at each con-

tribution time tm = m, m = 0, ..., T − 1, when the equity value is S(tm), the insurer buys D
S(tm)
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equities. Hence, the cumulative number of equities that the insurer has acquired before the time tm
is

∑m−1
l=0

D
S(tl) . This number depends on the path of the underlying asset value in the time interval

[0, tm−1]. We are interested in describing the evolution of the reference fund at any time t, 0 ≤ t ≤ T .
At t0 = 0 its value is F (0) = D. At time t, 0 < t ≤ T , the reference fund value is given by

F (t) = S(t)

m0∑

m=0

D

S(tm)
, (12)

where m0 is the largest index m such that tm < t. Since tm is an integer, we have: m0 = int(t) if t
is not an integer, m0 = t− 1 otherwise. Remark that the reference fund at time tm (m > 0) doesn’t
take into account the contribution due at the same time.

Our goal is to compute fair periodical premiums of equity-linked policies with a minimum guar-
antee and with a surrender option. The presence of a minimum guarantee protects the policyholder’s
investment against a negative performance of the reference fund. We analyze at first the case of a
policy with periodical premiums P to be paid at the beginning of each year but not at maturity.
A surrender option is embedded into the policy and it allows the policyholder to escape out of the
contract at the beginning of each year, just before the premium payment. We consider the decision
to surrender the policy as endogenous to the evaluation model, i.e., the policyholder decides to
abandon the contract if this is financially convenient. This allows to settle the surrender option as
a Bermudan option embedded into the policy.
For the time being we do not consider mortality.
At the policy maturity, T , if the policyholder has not previously surrendered the contract, the insurer
is forced to pay the maximum between the reference fund value F (T ) and the mimimum guarantee
G(T ). Among the different types of minimum guarantees, we consider the case

G(T ) =

T −1∑

m=0

De(T −m)δ = Deδ e
T δ − 1

eδ − 1

where δ ≥ 0 is the minimum guaranteed interest rate (continuously compounded). This corresponds
to the capitalization at the interest rate δ of the amounts D invested by the insurer at the beginning
of every year.
The payoff function is therefore

φ(F (T ), G(T )) = max{F (T ), G(T )}.

At every premium payment date tm > 0, m = 1, ..., T − 1, the policyholder has two alternatives:

• to continue the contract and in this case pays the premium P ,

• to surrender the contract receiving the maximum between the accrued reference fund and the
contributions paid until t invested at rate δ:

φ(F (tm), G(tm)) = max{F (tm), G(tm)} (13)

where

G(t) =

m0∑

l=0

De(t−tl)δ. (14)

We will consider also the case of an endowment equity-linked policy with a minimum guarantee
and an embedded surrender option, i.e. we introduce mortality risk, by assuming that the benefit
is paid before maturity, in case of death, and that the periodical premiums are due only in case of
survival. As before, the policyholder pays a constant premium at the beginning of each year if he is
alive at that date and has not previously surrendered the contract. The insured has the right to early
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terminate the contract and this option may be exercised at the beginning of each year, just before the
payment of the premium. Moreover, if the insured dies at time t ∈ (0, T ] the insurer pays at time t
the amount φ(F (t), G(t)), closing the contract. Clearly, even more complicated functions specifying
the death benefit may be considered and easily adapted to the evaluation framework. We assume
the stochastic independence between the lifetime of the insured and the financial state variables.
Furthermore we assume that the insurance company is risk-neutral with respect to mortality.

The evaluation of the previous contracts requires the pricing of a Bermudan path-dependent
contingent claim in the continuous bivariate model with the interest rate that follows the CIR
model. The numerical resolution of this problem is troublesome.
In the next section we propose, based on the framework described in Section 2, a lattice algorithm
in order to evaluate the fair premium for the equity-linked policy with a minimum guarantee and a
surrender option.

4 A tree method for evaluating the fair premium

We shall make use of the bivariate tree described in Section 2.1 to evaluate the fair premium for
equity-linked policies described in the previous section. However a direct application of such tree
is not feasible since the presence of periodical deemed contributions causes a huge increment in the
number of possible values of the reference fund. Indeed, the dynamics of the reference fund value is
represented by a non recombining tree with a number of nodes that grows exponentially when the
number of time steps in the lattice increases (if the number of steps doubles, passing from n to 2n,
then the number of join paths is multiplied by 4n). This is a problem from a computational point
of view since it causes a huge increment of the variables to be considered in the evaluation model.

To reduce the computational complexity we settle the problem in the framework of the singular
points introduced in [16]. Let us remark first that every piecewise linear function f of a real
variable, is determined by the values (xi, f(xi)) where changes the slope of the function. Such
points (xi, f(xi)) are called the singular points of f (see Appendix). The singular points approach
consists in a backward procedure which permits to obtain a continuous representation of the policy
value at every node of the bivariate tree, as a piecewise linear continuous function of the reference
fund F . Such value functions are completely characterized by their singular points, hence the pricing
procedure depends exclusively by the knowledge of the singular points at every node of the tree.

It is important to note that this procedure provides exactly the true lattice value of the policy in
the bivariate discrete model described in Section 2.1 but its straightforward application is unfeasible
from a computational point of view even for a small number of tree steps. Then, in the paper, we
propose a method that permits to obtain an important improvement since it allows to approximate
easily the true lattice value in a efficient way, giving, in the same time, a control of the error.

4.1 The dynamics of reference fund value in the discrete setting

Let T be the maturity of an equity-linked policy with periodical premium P paid at every time
tm = m, m = 0, ..., T − 1. We consider a bivariate tree with n time steps, where n is a multiple of
T , hence we take n/T steps during every year of the life of the contract.
Keeping the notation of Section 2.1, let (i, j, k), i = 0, ..., n, j, k = 0, ..., i denote the node of the tree
corresponding at time i∆t, to the value Yi,j of Y and to the value Ri,k of R (see (10) and (9)).

We still denote by ri,k and Si,j,k the interest rate and the underlying asset price at the node
(i, j, k), respectively:

ri,k =

{
R2

i,kσ2
r

4 if Ri,k > 0
0 otherwise

Si,j,k = exp[σS(
√

1 − ρ2Yi,j + ρRi,k].

At time t0 = 0 the reference fund value F is equal to the deemed contribution D.
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At any other time i∆t, a reference fund value F at node (i, j, k) has four possible successors at
time (i+ 1)∆t with transition probabilities defined by (11) of Section 2. The possible values are

Fuu = Fmuu, Fud = Fmud, Fdu = Fmdu, Fdd = Fmdd, (15)

if either i = 0 or i∆t is not a premium payment date,

and

Fuu = (F +D)muu, Fud = (F +D)mud, Fdu = (F +D)mdu, Fdd = (F +D)mdd, (16)

if i > 0 and i∆t is a premium payment date,

where

muu =
Si+1,ju,ku

Si,j,k
, mud =

Si+1,ju,kd

Si,j,k
,

mdu =
Si+1,jd,ku

Si,j,k
, mdd =

Si+1,jd,kd

Si,j,k
.

Our algorithm is based on the knowledge of lower and upper bounds of the reference fund value
with respect to all possible paths of the underlying asset reaching the node (i, j, k). Such bounds,
denoted by Fmin

i,j,k , Fmax
i,j,k , respectively, can be evaluated inductively on the tree. To do this, let Smin

i

and Smax
i be the minimum and the maximum value of the underlying asset at time step i, i.e.

Smin
i =

{
Si,0,0 if ρ ≥ 0

Si,0,i if ρ < 0
Smax

i =

{
Si,i,i if ρ ≥ 0

Si,i,0 if ρ < 0
.

Denote by Nmin
i and Nmax

i the minimum and the maximum number of equities that can be bought
by the insurer until time step i (included). That is,

Nmin
0 = D/S0, Nmin

i =

{
Nmin

i−1 if i∆t is not a premium payment date

Nmin
i−1 +D/Smax

i if i∆t is a premium payment date
(17)

Nmax
0 = D/S0, Nmax

i =

{
Nmax

i−1 if i∆t is not a premium payment date

Nmax
i−1 +D/Smin

i if i∆t is a premium payment date.
(18)

Then
Fmin

0,0,0 = Fmax
0,0,0 = D, Fmin

i,j,k = Nmin
i−1 Si,j,k Fmax

i,j,k = Nmax
i−1 Si,j,k if i > 0. (19)

Now we are able to construct the lattice procedure for the evaluation of the equity-linked policies.

4.2 The lattice algorithm

We proceed now to the description of the policy value function vi,j,k(F ), i = 0, ..., n and j, k = 0, ..., i,
in terms of the reference fund value F , at every node (i, j, k) of the tree structure. In the first case
we do not consider mortality.

At maturity, the policy value v, as function of the reference fund F , is continuously defined by

vn,j,k(F ) = φ(F,G(T )) = max{F,G(T )},

where φ is the payoff function. Clearly, vn,j,k is a piecewise linear convex function characterized by
the three singular points (F l

n, E
l
n), l = 1, 2, 3 (F l

n is the reference fund value, El
n is the corresponding

equity-linked policy value) given by:

F 1
n = Fmin

n,j,k, E1
n = G(T );

F 2
n = G(T ), E2

n = G(T );
F 3

n = Fmax
n,j,k, E3

n = Fmax
n,j,k.

(20)
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If G(T ) 6∈ (Fmin
n,j,k, F

max
n,j,k) the singular points reduce to two.

Let us consider now the step i = n−1. A value F of the reference fund at node (i, j, k) generates
four reference funds at step i+ 1: Fuu, Fud, Fdu, Fdd described in (15), (16). Therefore we define the
policy value at the node (i, j, k) to be

vi,j,k(F ) = e−ri,k∆t[puuvi+1,ju,ku
(Fuu)+pudvi+1,ju,kd

(Fud)+pduvi+1,jd,ku
(Fdu)+pddvi+1,jd,kd

(Fdd)].
(21)

Clearly, observe that vn−1,j,k(F ) is piecewise linear and convex as well. The singular val-

ues of vn−1,j,k are Fmin
n−1,j,k,, F

max
n−1,j,k (the extrema) and G(T )

muu
, G(T )

mud
, G(T )

mdu
, G(T )

mdd
if they belong to

(Fmin
n−1,j,k, F

max
n−1,j,k). If (n − 1)∆t is a premium payment date, also these four values should be de-

creased of the deemed contribution D. In order to compute the corresponding policy values we have
to apply equation (21) using the linearity property.

We then proceed iteratively in the same way for i = n− 2, ..., 0. More precisely we compute the
singular values of vi,j,k(F ) starting from the singular values of the four nodes:

(i+ 1, ju, ku), (i+ 1, ju, kd), (i+ 1, jd, ku), (i+ 1, jd, kd).

Let F̂ be a singular value of the node (i+ 1, ju, ku). This value F̂ is divided by the factor muu. In

the case i∆t is a premium payment date, we subtract from F̂
muu

the deemed contribution D.
The same procedure has to be applied to all the singular values of the nodes (i + 1, ju, kd),

(i + 1, jd, ku), (i + 1, jd, kd). All the values so obtained become singular values of vi,j,k(F ) if they
belong to the domain (Fmin

i,j,k , F
max
i,j,k ). The computation of the corresponding policy values is obtained

again by equation (21) and by linearity.

At the premium payment date the previous procedure needs an additional treatment. Let tm be
a premium payment date and let (F 1

i,j,k, E
1
i,j,k),...,(FL

i,j,k, E
L
i,j,k) be the singular points associated to

this date and evaluated by the previous procedure. Note that these points are referred to an instant
after the payment of the premium P, and hence the policy value includes this premium. Clearly the
payment of P has increased this value of the same amount. Therefore, if we go back to an instant
before the premium payment, the new set of singular points becomes

(F 1
i,j,k, E

1
i,j,k − P ), ..., (FL

i,j,k, E
L
i,j,k − P ).

If a surrender option is embedded into the equity-linked policy, we have to check at time tm > 0
the convenience of the early exercise. The policy value function vi,j,k becomes

vi,j,k(F ) = max{φ(F,G(tm)), vc
i,j,k(F ) − P}, (22)

where vc
i,j,k(F ) is the continuation value computed as in the R.H.S. of (21). At every node (i, j, k),

vi,j,k(F ) is still piecewise linear and convex.
The same argument can be applied at every step i = n − 1, ..., 0. This allows to compute

v0,0,0(D) = E1
0,0,0 − P which provides the true lattice equity-linked policy value in the case of a

periodic premium payment P , with a minimum guarantee and a surrender option, associated to the
tree with n steps.

This algorithm provides the (net) value at time 0 of the contract depending on the premium P ,
ψ(P ) = v0,0,0(D) evaluated by n time steps. Since the policy has to be fair, we must evaluate the
premium P ∗ so that ψ(P ∗) = 0, i.e. P ∗ = E1

0,0,0. The equation is non linear and has to be solved
numerically; its unique solution (see Section 4.4) represents the fair periodical premium required by
the insurer to write the contract.

In the case of an endowment equity-linked policy with a minimum guarantee and an embedded
surrender option we have to consider the possibility that the insured dies during the interval of
time (i∆t, (i+ 1)∆t). We use now the assumption of stochastic independence between financial and
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demographic risk and the risk-neutrality of the insurer with respect to mortality.
We assume that if the insured dies in this time interval the insurer pays at time (i+1)∆t the amount

φ(F,G((i+ 1)∆t)).

As usual, we label tpx the probability that an individual of age x survives the next t years while

tqx = 1 −t px represents the death probability.
If i∆t is not a premium payment date, the policy value function in the endowment case, vE

i,j,k,
has to be modified as follows:

vE
i,j,k(F ) =∆t px+i∆tvi,j,k(F ) + ∆tqx+i∆tv

d
i,j,k(F ) (23)

where
vd

i,j,k(F ) = e−ri,k∆t[puuφ(Fuu, G((i+ 1)∆t)) + pudφ(Fud, G((i+ 1)∆t))+

pduφ(Fdu, G((i+ 1)∆t)) + pddφ(Fdd, G((i+ 1)∆t))]

and vi,j,k(F ) is computed as in the R.H.S. of (21) but with v replaced by vE .
At a premium payment date tm, vE

i,j,k becomes

vE
i,j,k(F ) = max{φ(F,G(tm)), vc

i,j,k(F ) − P}, (24)

where vc
i,j,k(F ) is computed as in the R.H.S. (23).

4.3 Approximations of the lattice policy values

The technique previously presented is inefficient from a computational point of view because of the
high number of singular points generated by the procedure. Moreover the presence of the premium
at payment date increases furthermore such number (the tree becomes not recombining). However
simple modifications allow to reduce drastically the number of singular points providing an upper
and a lower bound of the true lattice value.

In order to get an upper bound of the true lattice value we just remove some singular points at
every node of the tree. This procedure (detailed in Lemma 1 part a) in the Appendix) ensures that
the value obtained in such way is an upper estimate of the true lattice value. The criteria to remove
the singular points is the same as presented in [16].

More precisely, consider the set of singular points C = {(F 1
i,j,k, E

1
i,j,k), ..., (FL

i,j,k, E
L
i,j,k)} at node

(i, j, k), and the corresponding value function vi,j,k(F ) (vE
i,j,k(F ) in the endowment case). Let

v′
i,j,k(F ) be the value function obtained by removing a point (F l

i,j,k, E
l
i,j,k) from C. We have (see

also Figure 2 in the Appendix)

|vi,j,k(F ) − v′
i,j,k(F )| ≤ ǫl, ∀F ∈ [Fmin

i,j,k , F
max
i,j,k ] (25)

where
ǫl = v′

i,j,k(F l
i,j,k) − vi,j,k(F l

i,j,k). (26)

Therefore, given a real number h > 0, we choose to remove the point (F l
i,j,k, E

l
i,j,k) if ǫl < h. We

repeat sequentially this procedure for all the singular points associated to every node of the tree,
avoiding the elimination of two consecutive singular points. In this way the upper estimate of the
policy value function so obtained differs from the true one at most for h at every node. Proceeding
with the backward algorithm along the tree of n time steps, we can conclude that the obtained upper
estimate differs from the true lattice value of the discrete bivariate model at most for nh.

The algorithm for the computation of the lower bound is similar and follows from Lemma 1 part
b) in the Appendix.
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Remark 2. (Convergence of the method for the equity-linked policy values) The possibility of obtain-
ing estimates of the lattice price for the bivariate discrete model with a control of the error, allows to
prove easily the convergence of our technique to the value in the continuous model. In fact, by apply-
ing a convergence result stated in [3] (see also [20]), it follows that the true lattice price with n steps,
converges to the price in the continuous model as n → ∞, whenever the condition 4kθ > σ2

r holds.
Choosing h depending of n and such that nh(n) → 0 (for example we can choose h(n) = O( 1

n
√

n
)),

we have immediately that the corresponding sequences of upper and lower estimates converge to the
price in the continuous model.

Remark 3. (Black-Scholes model) The methodology introduced for pricing equity-linked policies for
the bivariate continuous model can be easily adapted to the case that the underlying equity asset is
governed by a univariate log-normal model (Black-Scholes). In this case we can use the Cox-Ross-
Rubinstein tree (see [13]). The singular points technique, previously described, becomes simpler and
more efficient because the tree is univariate. In fact there are no multiple jumps, every reference
fund value produces only two reference funds values at the successive step instead of four and the
transition probabilities are constant along all the tree. In the numerical results we will compare such
new approach with the ones presented in [11].

4.4 Computing the fair premium

In this section we describe how to compute upper and lower estimates of the fair premium of
an equity-linked policy. We first deal with the computation of the fair premium using the true
lattice algorithm described in section 4.2. This leads to an unfeasible procedure because of the
computational complexity of the true lattice algorithm. Then we adapt such procedure to the
case where the true lattice value is replaced by the approximated lattice values (upper and lower)
described in Section 4.3.

4.4.1 Fair premium for the true lattice algorithm

Take again the value function vi,j,k (vE
i,j,k in the endowment case) with a fixed number of time steps

n and consider its dependence not only on the reference fund F but also on the premium P , that
is vi,j,k(F, P ). At every node of the tree such function is convex as function of the two variables.
This follows from the convexity of backward induction relation (21) and since the maximum between
convex functions is convex again. As ψ(P ) = v0,0,0(D,P ) one has that ψ(P ) is continuous, convex
and strictly decreasing (this follows by the backward induction as well) and, for P large enough,
ψ(P ) = β − P where β is constant.

On the other hand ψ(D) > 0, so that we can conclude that the solution P ∗ of the equation
ψ(P ) = 0 exists and is unique. Clearly P ∗ is the fair premium evaluated using the true lattice policy
value with n time steps.

In order to solve numerically the nonlinear equation ψ(P ) = 0, we propose to use a secant
algorithm with a suitable choice of two initial points P1, Q1, P1 < Q1, such that

ψ(P1) > 0 and ψ(Q1) < 0.

To this end we consider the function ψEur(P ) representing the policy value at inception without the
surrender option, i.e. the function obtained by using only the backward induction given by equation
(21). In the case of the endowment ψEur(P ) is obtained by using only equation (23). The resulting
fair premium P ∗

Eur is less than P ∗, so we set P1 = P ∗
Eur. In this "European" case the premium P ∗

Eur

is easily computable, in fact the function ψEur(P ) is linear, i.e. ψEur(P ) = ψEur(D) − α(P − D).
The slope α of ψEur(P ) can be computed as follows

• if we do not consider mortality, α is the value of an annuity-certain that pays 1 at every time
tm, m = 0, ..., T − 1;
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• in the case of an endowment policy, α is the value of a corresponding life annuity that pays 1
only if the insured is still alive at tm.

Let us remark that the time of computation for the evaluation of α is negligible with respect to the
time needed for the computation of ψEur(D).

Then we take Q1 = P1 + ψ(P1). By the convexity of the function ψ(P ) and since ψ(P ) = β − P
for P large enough, one has ψ(P ) − ψ(P1) ≤ P1 − P for all P > P1. This implies ψ(Q1) ≤
ψ(P1) + P1 −Q1 = 0.

The procedure in order to evaluate P ∗ is then the following: we consider the secant method
starting from the two points P1 and Q1. In this way we obtain a point Q2 such that ψ(Q2) < 0 (by
convexity), hence Q2 > P ∗. We repeat this step starting from the points P1 and Q2 and so on. In
this way we obtain a decreasing sequence of points Qn, n ≥ 1, such that Qn > P ∗. We stop the
procedure when the distance between two consecutive points is less than a fixed level of error ǫ > 0.
We get in this way an upper estimate Qn of P ∗. Now Pn = Qn + ψ(Qn) is a lower estimate of P ∗,
obtaining finally an upper and a lower estimate (Qn and Pn) of the premium evaluated by using the
true lattice policy values with n steps.

4.4.2 Fair premium for the approximated lattice algorithm

The procedure just described uses the true lattice value v0,0,0. However, in order to have a feasible
procedure for the computation of the premium we need to use approximations of the true lattice
value. The use of approximations instead of the true lattice values requires modifications of the
procedure. These will be described in the sequel.

Let us denote by ψ(P ), ψ(P ), respectively, the upper and the lower estimates of ψ(P ) obtained
by the procedure presented in Section 4.3 and with a fixed level of error h > 0.

First we evaluate ψ
Eur

(D). The zero of the linear function ψ
Eur

(D) − α(P −D) (the slope α
is the same as before) is less than P ∗, hence we choose as initial point P1 of the secant algorithm
such zero. Then we consider Q1= ψ(P1) + P1. As before Q1 > P ∗.

As ψ(P1) > ψ(P1) and ψ(Q1) > ψ(Q1), the straight line s joining the points (P1, ψ(P1)),
(Q1, ψ(Q1)) lies over the graph of the convex function ψ(P ) in all the interval [P1, Q1].
If ψ(Q1) ≥ 0 then we stop the procedure, and P̂1 = Q1 +ψ(Q1) and Q1 are the lower and the upper

estimates of P ∗. If ψ(Q1) < 0 then we evaluate the intersection Q2 of the straight line s with the
x-axis. We have P ∗ < Q2 < Q1. We compute ψ(Q2) and we proceed iteratively as before. The
procedure will continue until Qn−1 − Qn < ǫ or ψ(Qn) ≥ 0. In both cases one has P ∗ < Qn. Now
P̂n = Qn +ψ(Qn) and Qn are the lower and the upper estimates of the premium P ∗ evaluated with
the true lattice with n steps.

5 Numerical results

In this section we will test the lattice algorithm presented in Section 4 for computing the fair
periodical premiums of equity-linked endowment policies with a surrender option and a minimum
guarantee.

It seems that there are no previous papers where this insurance problem was treated using
a bivariate model with stochastic interest rate. Hence we propose first to assess the numerical
robustness of our algorithm in a case where σr is close to zero, so that the equity dynamics mimics
the geometric Brownian motion (Black-Scholes model). In this case we can compare our results with
the ones obtained in [11] with a complete different technique. As observed in Remark 3, our approach
provides also a new univariate lattice method for the Black-Scholes model. The data obtained with
this method can be considered a further comparison test for measuring the validity of the technique
introduced in this paper.

The parameters of the contract are the following: the fixed deemed contribution is D = 100, the
minimum guaranteed interest rate varies: δ = 0, 0.02, 0.04. The maturities T are 5 and 10 years
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and the individual initial age is x = 50. We model mortality by considering Italian Statistics for
Male mortality in 2002. These statistics quoted the annual probabilities of death. Since we need
to compute death probabilities on time periods smaller than one year, we assume uniformity of the
deaths, in the sense that in any fraction of width ∆t of one year it is expected the same fraction ∆t
of the deaths related to that age. Hence, the death probability on a fraction ∆t of one year, ∆tqx,
is equal to 1qx∆t.
The parameters of our bivariate model defined in equations (1), (2) are: the initial equity value S0,
the volatility of the underlying asset σS , the initial interest rate r0, the long term mean of the interest
rate θ, the speed of mean reversion k, the volatility of the interest rate σr, while the correlation
between the two Brownian motions Zr and ZS is ρ.

We will consider 3 different choices of the parameters of the model. Case 1 and Case 2 are chosen
to assess the reliability of the lattice algorithm comparing it with the Black-Scholes model. In Case
3 we consider the same parameters modifying only σr. This provides an example of the effect of the
change on the premium obtained by using the bivariate model.

In Cases 2 and 3 we apply the singular points algorithm presented in Section 4 for evaluating
an upper and a lower estimate of the fair periodical premium of the equity-linked policy. We chose
h = 0.001 (the maximal error for the upper and lower estimates at each node) and ǫ = 0.001 (the
control error in the secant method). In Case 1, for benchmark purposes, we choose h = 0.0001,
which permits to obtain very tiny estimates of the premium.

• Case 1. Black-Scholes model. We use the univariate tree discussed in Remark 3.

S0 = 100, σS = 0.1358, r = 0.04.

• Case 2. Bivariate model which mimics Black-Scholes.

S0 = 100, σS = 0.1358, r0 = 0.04, θ = 0.04, k = 1, σr = 10−6, ρ = 0.

• Case 3. Bivariate model.

S0 = 100, σS = 0.1358, r0 = 0.04, θ = 0.04, k = 1, σr = 0.2, ρ = 0.

In Table 1, we report the fair annual premiums for equity-linked endowment policies with an
embedded surrender option and a minimum guarantee computed for different values of time steps
n = 50, 100, 200, 500, 1000. In Case 1 (univariate case) we can use easily 500 or more steps, in
Cases 2 and 3 the computation for n = 500, 1000 is not available because of memory and time
requirements. In Cases 1 and 2 we compare our algorithm with the one presented in [11] computed
with a univariate tree of 500 steps (CMR 500).

To further illustrate the reliability of the proposed bivariate approximation technique, in Table
2 and Table 3 we present some examples of interest rate and asset parameters corresponding to two
different values of σr and ρ. In both tables we take

• S0 = 100, σS = 0.25, r0 = 0.08, θ = 0.05, k = 0.5, σr = 0.08, 0.16, ρ = −0.25, 0.25.

In Table 2 the minimum guaranteed interest rate is δ = 0, in Table 3 we take δ = 0.04.
The previous data have been performed in double precision on a PC with processor Centrino 2

at 2.4 Ghz with 4 Gb of RAM. The time of computation for the bivariate tree, in the case T = 5, is
approximately 15 seconds for n = 50, 120 seconds for n = 100, 400 seconds for n = 150 and 1300
seconds for n = 200. In the case T = 10 the times of computation double. In the univariate case our
technique is clearly much more efficient and the computation of the fair periodical premium requires
few seconds (3 seconds for n = 200 and 26 seconds for n = 500).

6 Conclusions

This paper considers the problem of computing, in a bivariate continuous model, the fair periodical
premium of equity-linked policies embedding a surrender option and a minimum guarantee. The
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Table 1: Upper and lower estimates of the fair annual premium in the case δ = 0.02

n Case 1 Case 2 Case 3
T = 5 50 106.753 - 106.753 106.743 - 106.743 107.105 - 107.108

100 106.745 - 106.745 106.738 - 106.741 107.100 - 107.108
150 106.742 - 106.742 106.734 - 106.740 107.100 - 107.112
200 106.747 - 106.747 106.741 - 106.747 107.096 - 107.113
500 106.741 - 106.742
1000 106.741 - 106.743

CMR 500 106.716 106.716
T = 10 50 108.132 - 108.132 108.094 - 108.098 108.549 - 108.555

100 108.131 - 108.131 108.107 - 108.115 108.631 - 108.641
150 108.131 - 108.132 108.109 - 108.122 108.636 - 108.652
200 108.131 - 108.132 108.115 - 108.123 108.632 - 108.664
500 108.131 - 108.133
1000 108.130 - 108.133

CMR 500 108.078 108.078

Table 2: Upper and lower estimates of the fair annual premium in the case δ = 0
σr = 0.08 σr = 0.16

n ρ = −0.25 ρ = 0.25 ρ = −0.25 ρ = 0.25
T = 5 50 109.866 - 109.871 110.005 - 110.010 110.171 - 110.176 110.544 - 110.549

100 109.865 - 109.875 110.080 - 110.090 110.154 - 110.164 110.588 - 110.598
150 109.855 - 109.870 110.088 - 110.103 110.146 - 110.161 110.599 - 110.615
200 109.849 - 109.868 110.082 - 110.100 110.142 - 110.160 110.598 - 110.618

T = 10 50 111.686 - 111.693 111.840 - 111.847 112.187 - 112.193 112.579 - 112.586
100 111.704 - 111.717 111.948 - 111.961 112.205 - 112.217 112.711 - 112.724
150 111.704 - 111.721 111.976 - 111.994 112.203 - 112.220 112.749 - 112.767
200 111.702 - 111.724 112.002 - 112.021 112.199 - 112.218 112.768 - 112.792

policy pay-off depends on the value of a reference fund made up of equities accrued by investing fixed
contributions at every premium payment date. The surrender option is modeled endogenously in the
evaluation framework as a Bermudan option that is exercised by the insured only if it is financially
convenient. Since insurance policies are usually long term contracts, we propose to describe the
equity dynamics by means of a bivariate model which takes into account stochastic interest rates.
We construct a bivariate tree which approximates the joint evolution of the equity price and of the
interest rate associating to each node of the tree a set of reference fund values. The presence of
periodical premiums causes a huge number of possible reference fund values and, as a consequence,
the fair premium evaluation becomes computationally burdensome even when a small number of
steps is used. In order to overcome this obstacle, we use the singular points framework which
permits to treat efficiently this deeply path-dependent problem. With this methodology we obtain
accurate upper and lower estimates of the fair premium evaluated with the lattice structure. The
numerical results confirm the reliability of this approach showing the robustness in dependence of
the model parameters.

7 Appendix: Singular points

We recall the definitions of the singular points approach introduced in [16].
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Table 3: Upper and lower estimates of the fair annual premium in the case δ = 0.04
σr = 0.08 σr = 0.16

n ρ = −0.25 ρ = 0.25 ρ = −0.25 ρ = 0.25
T = 5 50 114.075 - 114.081 114.237 - 114.243 114.594 - 114.600 115.008 - 115.015

100 114.066 - 114.080 114.282 - 114.296 114.574 - 114.586 115.041 - 115.054
150 114.058 - 114.078 114.293 - 114.313 114.565 - 114.584 115.048 - 115.067
200 114.054 - 114.078 114.299 - 114.323 114.560 - 114.585 115.048 - 115.073

T = 10 50 118.850 - 118.860 119.022 - 119.032 119.825 - 119.835 120.304 - 120.315
100 118.871 - 118.890 119.152 - 119.172 119.854 - 119.872 120.460 - 120.479
150 118.877 - 118.904 119.193 - 119.220 119.851 - 119.877 120.507 - 120.534
200 118.877 - 118.910 119.226 - 119.244 119.863 - 119.883 120.538 - 120.562

Definition 1. Let us consider a set of points: (x1, y1), ..., (xn, yn), such that

a = x1 < x2 < ... < xn = b,

and the piecewise linear function f(x), x ∈ [a, b], obtained by interpolating linearly the given points.
The points (x1, y1), ..., (xn, yn) (which characterize completely f), will be called the singular points
of f , while x1, ..., xn will be called the singular values of f .

Let us remark that f is convex if and only if the slopes

αi =
yi+1 − yi

xi+1 − xi
,

are increasing, i.e. αi ≤ αi+1 for all i = 1, ..., n− 2.
The approach of singular points allows to construct upper and lower bounds of the value of an

equity-linked policy with a minimum guarantee and a surrender option in a simple way, as pointed
out in the next lemma (see also the geometrical interpretation in Figure 2 and 3).

Lemma 1. Let f be a piecewise linear and convex function defined on [a, b], and let C = {(x1, y1), ...,
(xn, yn)} be the set of its singular points.Then:

a) Removing a point (xi, yi), 2 ≤ i ≤ n − 1, from the set C, the resulting piecewise linear function

f̃ , whose set of singular points is C \ {(xi, yi)}, is again convex in [a, b] and we have:

f(x) ≤ f̃(x), ∀x ∈ [a, b].

b) Let 2 ≤ i ≤ n−2, and denote by (x, y) the intersection between the straight line joining (xi−1, yi−1),
(xi, yi) and the one joining (xi+1, yi+1), (xi+2, yi+2). If we consider the new set of n − 1 singular
points

{(x1, y1), ..., (xi−1, yi−1), (x, y), (xi+2, yi+2), ..., (xn, yn)},
the associated piecewise linear function f̃ is again convex on [a, b] and we have:

f(x) ≥ f̃(x), ∀x ∈ [a, b].
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