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Introduction

A classical problem in mathematical finance deals with computing E[G(X)], where X :=
{Xs : s ∈ [0, t]} is a stochastic process modeling the underlying asset and G is a payoff function
which may depend on the historical path of X. This is the typical setting for pricing a wide
class of exotic options in finance such as lookback and barrier options.

Recall that a barrier option is a contract which pays the specified amount G(ST ) at the
terminal date T , provided during the life-time of the contract, the price of the stock does not
cross a specified constant barrier H from above (down-and-out barrier options) or from below
(up-and-out barrier options). When the barrier is crossed, the option expires worthless or the
option owner is entitled to some rebate.

In recent years more and more attention has been given to stochastic models of financial
markets which depart from the traditional Black-Scholes model. Starting with the work of
Madan and Seneta [1], the class of Lévy processes has found prominence and becomes more
and more popular among researchers. For an introduction to applications of these models
applied to finance, we refer to the books [2]-[5]. More recently Lévy processes have also been
extensively used in modern insurance risk theory; see for example Asmussen and Albrecher [6]
and Klüppelberg et al. [7]. In insurance mathematics, it is the Lévy process itself which models
the surplus wealth of an insurance company until its ruin. There are also extensive applications
of Lévy processes in queuing theory, genetics and mathematical biology as well as in stochastic
differential equations (see e.g. [8]-[11]). We concentrate on one-factor non-gaussian exponential
Lévy models. These models provide a better fit to empirical asset price distributions that
typically have fatter tails than Gaussian ones, can reproduce volatility smile phenomena in
option prices, and admit jumps in asset prices.

In both insurance and financial frameworks, a key quantity of generic interest is the joint law
of the current position and the running extremum of a Lévy process at a fixed time. Consider
some examples.

Let T,K,H be the maturity, strike and barrier, and St = eXt the stock price under a chosen
risk-neutral measure. The riskless rate is assumed constant. Set h = lnH. Then the payoff
at maturity is 1(h,+∞)(XT )G(XT ), where G(x) = (K − ex)+, and the no-arbitrage price of the

barrier option at time t = 0 and X0 = x > h is given by the expectation Ex
[
e−rT1XT>h

G(XT )
]
,

where X t = inf0≤s≤tXt is the infimum process. If we define X t = sups≤tXs then the pricing of
‘up-and-in" put is equivalent to evaluating expectations of the form Ex[e−rT1XT>h

G(XT )] for
some barrier h > 0.

Assume that the infimum process starts at x = X0. Then the time-0 price of the European

floating strike lookback option with payoff g(XT , XT ) at maturity is given byEx
[
e−rTg(XT , XT )

]
.

Indeed if g(x, y) = ex− ey, then the latter expectation is related to the value of a floating strike
lookback call.

In credit risk one is predominantly interested in the quantity P̂(X t < x) as a function in

x and t, where P̂ is the law of the dual process −X. The latter probabilities help to find
prices of credit default swaps or convertible contingencies (CoCos). See e.g. the recent book
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of Schoutens and Cariboni [5] as well as Corcuera et al. [12]. One is similarly interested in

P̂(X t ≥ x) in ruin theory, since these probabilities are also equivalent to the finite-time ruin
probabilities; cf. Asmussen and Albrecher [6].

Option valuation under Lévy processes has been dealt with by a host of researchers, therefore,
an exhaustive list is virtually impossible. However, the pricing of path-dependent options in
exponential Lévy models still remains a mathematical and computational challenge (see, e.g.,
[13]-[15] for recent surveys of the state of the art of exotic option pricing in Lévy models).

The Wiener-Hopf factorization method is a standard tool for pricing path-dependent options.
Nguyen-Ngoc and Yor [14] obtained formulas in terms of the Wiener-Hopf factors for the Laplace
transform of continuously monitored barrier and lookback options in general Lévy models. The
probabilistic approach used in the paper allows, in particular, to recover the results for barrier
options derived in [2] using the analytical form of the Wiener-Hopf factorization method. The
drawback of the formulas in [2, 14] is the complexity of numerical calculations required, since,
in general, numerical n-fold integrals (with n = 2, 3) are needed.

In the case of jump diffusions with exponentially distributed Poisson jumps (a double-
exponential jump diffusion process (DEJD) and its generalization: a hyper-exponential jump-
diffusion model (HEJD)), the Laplace transform of the price w.r.t. time has a relatively simple
explicit form. Formulas for DEJD model were obtained by Lipton [16] and Kou [17], and, for
double-barrier options, by Sepp [18]; for HEJD case, see [19]-[21]. Note that papers [16, 22]
consider continuously monitored barrier and lookback options, whereas the other papers cited
above studied barrier options only. They can be represented as functions of the temporal vari-
able t via the Gaver-Stehfest algorithm the Laplace transform is derived from the distribution
of the first passage time; the distribution is calculated by applying the Wiener-Hopf factor-
ization method in the form used in probability theory. The Laplace transform of the price
having being calculated, one uses a suitable numerical Laplace inversion algorithm to recover
the option price. However, the problem of the inversion of the Laplace transform is non-trivial
from the computational point of view. We refer the reader to [23] for a description of a general
framework for related numerical methods.

Calculation of the Laplace transform of the price under a general Lévy process is non-trivial
as well. To simplify calculations, one can approximate the initial process by a DEJD or, more
generally, HEJD, and then use the Laplace transform method (see, e.g., [19]-[21]). However,
this approximation introduces an additional error, which may be quite sizable near the barrier
(see examples in [15]).

Kudryavtsev and Levendorskǐi [24] developed a fast and accurate numerical method labelled
Fast Wiener-Hopf factorization method (FWHF-method) for pricing continuously monitored
barrier options under Lévy processes of a wide class. FWHF-method is based on an efficient
approximation of the Wiener-Hopf factors in the exact formula for the solution and the Fast
Fourier Transform (FFT) algorithm. In contrast to finite difference methods which require a
detailed analysis of the underlying Lévy model, the FWHF-method deals with the characteristic
exponent of the process.

In [25], Kudryavtsev and Levendorskǐi derive a general formula which is applicable to barrier
options, lookbacks, lookbarriers, barrier-lookbacks, and other similar types of options, using
an operator form of the Wiener-Hopf factorization. An efficient numerical realization of the
formula for lookback options in KoBoL(CGMY) and Kou models uses Gaver-Stehfest algorithm
(see [23]) and the Fast Wiener-Hopf factorization method developed in [24].

In this research report we concentrate on Monte Carlo methods for pricing exotic options in
Lévy models. A widely used approach to compute expectations of functions depending on the
historical path of a Lévy process over the finite time horizon, say [0, T ], is to approximate the
trajectory by a random walk with n equidistant time steps,and to perform a Monte Carlo (MC)
simulation. Giles [26, 27] suggested an adaptation of the straightforward MC methodology,
the multilevel Monte Carlo method (MLMC) in the case that X is a pure diffusion process.
Very recently, there has been increasing attention to the MLMC method also in the framework
of Lévy processes, see Giles and Xia [28] for the jump diffusion setting, and Dereich [9] and
Dereich and Heidenreich [29] for more general Lévy processes. Generally speaking all these
methods use a common idea, which consists in constructing an embedded sequence of grids
that are made up of a mixture of deterministic and random points. The random points in these
grids deal with the large jumps of the Lévy process and the deterministic points deal with the
“small movements", that is to say, the diffusive part and/or the small jumps.
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In the current research report we consider an alternative approach based entirely on a random
grid. In particular we shall introduce an adaptation of the FWHF method based on a recently
introduced technique for performing MC simulations that appeals to the so-called Wiener-Hopf
factorization for one-dimensional Lévy processes. This last technique for simulating the joint
law of the position and running maximum at a fixed time of a general Lévy process is called the
Wiener-Hopf Monte Carlo (WHMC) simulation method and it was introduced in Kuznetsov
et al. [30]. The coupling of the multilevel Monte Carlo and the Wiener-Hopf Monte Carlo
methods was developed in [31], we refer on this technique as (MLWH). Our analysis will focus
on the particular setting that X is a one-dimensional Lévy process and the payoff function
depends on the value of X and its past supremum (infimum) at a fixed time t > 0.

The main result in [31] gives the order of the root mean square error in the MLWH method
converges for processes of unbounded variation and bounded variation.

In [32] the Wiener-Hopf Monte Carlo (WHMC) simulation technique for Lévy processes
from Kuznetsov et al. [30] was applied to path functionals, in particular first passage times,
overshoots, undershoots and the last maximum before the passage time. Such functionals have
many applications, for instance in finance (the pricing of exotic options in a Lévy model) and
insurance (ruin time, debt at ruin and related quantities for a Lévy insurance risk process). The
technique works for any Lévy process whose running extremum evaluated at an independent
exponential time allow sampling from. This includes classic examples such as stable processes,
subclasses of spectrally one sided Lévy processes and large new families such as meromorphic
Lévy processes. Ferreiro-Castilla and Schaik (2015) show that the WHMC simulation technique
(provided it is applied) performs much better at approximating first passage times than a ‘plain’
Monte Carlo simulation technique based on sampling increments of the Lévy process.

Notice, however, that an efficient realization of the methods introduced in [30, 31, 32] for
exotic options becomes possible if one is able to sample from the distributions related to the
Wiener-Hopf factors. It is the case of explicit Wiener-Hopf factorization in terms of finite
products (DEJD or HEJD) or infinite products (β-class constructed by Kuznetsov [33] and
hypergeometric family introduced in Kuznetsov et al. [30]). In the report, we expand the
WHMC method to the case of more general Lévy models including (KoBoL) CGMY.

The goal of the present work is developing of efficient numerical realizations of the Wiener-
Hopf Monte Carlo methods with subsequent implementation into the program platform Premia
[34]. The research report relies heavily on the results obtained in [24, 30, 32].

The report is organized as follows. In the first section we will review the general setting for the
Wiener-Hopf factorization of Lévy processes and describe the Fast Wiener-Hopf factorization
method introduced in [24]. Thereafter, in Section 2, we give the overview of Monte Carlo
methods for Lévy models including the WHMC method developed in Kuznetsov et al. [30].
The last Section considers the implementation of the Wiener-Hopf Monte Carlo techniques into
the program platform Premia including an adaptation of the WHMC method in the context of
the FWHF-method.

1. Lévy processes and the Wiener-Hopf factorization

We begin by briefly reviewing the definition of a one-dimensional Lévy process and related
Wiener-Hopf factorization identities. For more details we refer the reader to the monographs of
Bertoin [35], Kyprianou [36] or Sato [37]. Note that the Wiener-Hopf factorization only exists
for one-dimensional Lévy processes.

1.1. General definitions. Recall that a one-dimensional Lévy process with law P, henceforth
denoted by X := {Xt : t ≥ 0}, is a stochastic process issued from the origin which enjoys
the properties of having stationary and independent increments with paths that are almost
surely right-continuous with left limits (for general definitions, see, e.g., [37]). A Lévy process
may have a Gaussian component and/or pure jump component. The latter is characterized by
the density of jumps, which is called the Lévy density. A Lévy process Xt can be completely
specified by its characteristic exponent, ψ, definable from the equality

(1) E[eiξX(t)] = e−tψ(ξ).

The characteristic exponent is given by the Lévy-Khintchine formula:

ψ(ξ) =
σ2

2
ξ2 − iµξ +

∫ +∞

−∞
(1 − eiξy + iξy1[−1;1](y))F (dy),
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where σ2 ≥ 0 is the variance of the Gaussian component, µ ∈ R is the drift, 1A is the indicator
function of the set A, and the Lévy measure F (dy) concentrated on R\{0} satisfies

∫

R\{0}
min{1, y2}F (dy) < +∞.

As a consequence of this definition, the law of every Lévy process is characterized through a
triplet (µ, σ, F ). In financial modeling, the most Lévy measures F (dy) have a Lévy density (we
denote it by π(y)).

Assume that the riskless rate r is constant, and, under a risk-neutral measure chosen by
the market, the underlying evolves as St = S0e

Xt , where Xt is a Lévy process. Then we must
have E[eXt ] < +∞, and, therefore, ψ must admit the analytic continuation into the strip
Im ξ ∈ (−1, 0) and continuous continuation into the closed strip Im ξ ∈ [−1, 0].

Further, if d ≥ 0 is the constant dividend yield on the underlying asset, then the following
condition (the EMM-requirement) must hold: E[eXt ] = e(r−d)t. Equivalently,

(2) r − d+ ψ(−i) = 0,

which can be used to express the drift µ via the other parameters of the Lévy process:

(3) µ = r − d−
σ2

2
+
∫ +∞

−∞
(1 − ey + y1[−1;1](y))F (dy).

In empirical studies of financial markets, the following classes of Lévy processes are popular:
the Merton model [38], double-exponential jump-diffusion model (DEJD) introduced to finance
by Lipton [16] and Kou [39], generalization of DEJD model constructed by Levendorskĭi [40]
and labelled later Hyper-exponential jump-diffusion model (HEJD), Variance Gamma Processes
(VGP) introduced to finance by Madan with coauthors (see, e.g., [41]), Hyperbolic processes
constructed in [42, 43], Normal Inverse Gaussian processes constructed by Barndorff-Nielsen [44]
and generalized in [45], and tempered stable processes or extended Koponen’s family introduced
in [46, 47] and labelled KoBoL model in [2]. Koponen [48] introduced a symmetric version;
Boyarchenko and Levendorskǐi [46, 47] gave a non-symmetric generalization; later, in [49], a
subclass of this model appeared under the name CGMY–model.

Example 2.1. [Tempered stable Lévy processes] The characteristic exponent of a tem-
pered stable Lévy process is given by

(4) ψ(ξ) = −iµξ + c+Γ(−ν+)[λ+
ν+ − (λ+ + iξ)ν+ ] + c−Γ(−ν+)[(−λ−)ν− − (−λ− − iξ)ν− ],

where ν± ∈ (0, 2), ν± 6= 1, c± > 0, µ ∈ R, and λ− < −1 < 0 < λ+. Formula (4) under the
name “KoBoL model” is derived in Boyarchenko and Levendorskǐi [2] from the Lévy-Khintchine
formula with the Lévy density π(y), given by

(5) π(x) = c+e
λ+x|x|−ν+−11{x<0} + c−e

λ
−
x|x|−ν−

−11{x>0}.

Example 2.2. In a DEJD model (also known as the Kou model), the Lévy density π(y), is of
the form

(6) π(x) = (1 − p)λΛ−e
Λ

−
x1{x<0} + pλΛ+e

−Λ+x1{x>0}.

where Λ− > 0,Λ+ > 1, p > 0, λ.
If we set c+ = (1−p)λΛ−, c− = pλΛ+, λ+ = Λ−, λ− = −Λ+, then the characteristic exponent

of Kou model can be written in the form

ψ(ξ) =
σ2

2
ξ2 − iµξ +

ic+ξ

λ+ + iξ
+

ic−ξ

λ− + iξ
,

where σ > 0, µ ∈ R, c± > 0 and λ− < −1 < 0 < λ+.

Example 2.3. A normal inverse Gaussian process (NIG) can be described by the characteristic
exponent of the form (see Barndorff-Nielsen (1998))

(7) ψ(ξ) = −iµξ + δ[(α2 − (β + iξ)2)1/2 − (α2 − β2)1/2],

where α > |β| > 0, δ > 0 and µ ∈ R.
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Example 2.4. The characteristic exponent of a Variance Gamma process is given by (see Madan
et al. (1998))

(8) ψ(ξ) = −iµξ + c[ln(λ+ + iξ) − lnλ+ + ln(−λ− − iξ) − ln(−λ−)],

where c > 0, µ ∈ R, and λ− < −1 < 0 < λ+.

Example 2.5. The β-class of Lévy processes, introduced in [33], is a 10-parameter Lévy process
which has characteristic exponent

ψ(ξ) = aξ +
1

2
σ2ξ2 +

c1

β1

{
B(α1, 1 − λ1) − B

(
α1 −

iξ

β1

, 1 − λ1

)}

+
c2

β2

{
B(α2, 1 − λ2) − B

(
α2 +

iξ

β2

, 1 − λ2

)}

with parameter range a, σ ∈ R, c1, c2, α1, α2, β1, β2 > 0 and λ1, λ2 ∈ (0, 3) \ {1, 2}. Here
B(x, y) = Γ(x)Γ(y)/Γ(x+ y) is the Beta function. The density of the Lévy measure is given by

π(x) = c1
e−α1β1x

(1 − e−β1x)λ1
1{x>0} + c2

eα2β2x

(1 − eβ2x)λ2
1{x<0}.

Although ψ takes a seemingly complicated form, this particular family of Lévy processes has
a number of very beneficial virtues from the point of view of mathematical finance which are
discussed in [50]. Moreover, the large number of parameters also allows one to choose Lévy
processes within the β-class that have paths that are both of unbounded variation [when at
least one of the conditions σ 6= 0, λ1 ∈ (2, 3) or λ2 ∈ (2, 3) holds] and bounded variation (when
all of the conditions σ = 0, λ1 ∈ (0, 2) and λ2 ∈ (0, 2) hold) as well as having infinite and finite
activity in the jumps component (accordingly as both λ1, λ2 ∈ (1, 3) or not).

1.2. The Wiener-Hopf factorization. A property that is common to all Lévy processes is the
so-called Wiener-Hopf factorization. There are several forms of the Wiener-Hopf factorization.
Suppose that for any q > 0, Tq ∼ Exp q is an exponentially distributed random variable
with mean q−1 independent of X. Recall that X t = sups≤tXs and let X t := infs≤tXs. The

Wiener-Hopf factorization states that the random variables XTq and XTq −XTq are independent.
Thanks to the so-called principle of duality, that is to say the equality in law of the pair
{X(t−s)− − Xt : 0 ≤ s ≤ t} and {−Xs : 0 ≤ s ≤ t}, it follows that XTq − XTq is equal in
distribution to −XTq

. The Wiener-Hopf factorization formula used in probability reads:

(9) E[eiξXTq ] = E[eiξX̄Tq ]E[eiξXTq ], ∀ ξ ∈ R.

Equivalently,

(10) XTq

d
= Sq + Iq,

where Sq and Iq are independent and equal in distribution to XTq and XTq
, respectively. Here

we use the notation
d
= to mean equality in distribution.

Introducing the notation

φ+
q (ξ) = qE

[∫ ∞

0
e−qteiξX̄tdt

]
= E

[
eiξX̄Tq

]
,

φ−
q (ξ) = qE

[∫ ∞

0
e−qteiξXtdt

]
= E

[
eiξXTq

]

we can write (9) as

(11)
q

q + ψ(ξ)
= φ+

q (ξ)φ−
q (ξ).
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1.3. Fast Wiener-Hopf factorization method (the FWHF–method), [24]. We recall a
sufficiently accurate numerical procedure for approximations of the Wiener-Hopf factors con-
structed in [24].

The first ingredient is the reduction of the factorization problems to symbols of order 0, which
stabilize at infinity to 1. The approach in [24] consider the reduction for a wide class of Lévy
processes which consists of Variance Gamma processes and RLPE of order ν ∈ (0; 2]. Loosely
speaking, a Lévy process X is called a Regular Lévy Process of Exponential type (RLPE) if its
Lévy density has a polynomial singularity at the origin and decays exponentially at infinity (see
details in [2]). An almost equivalent definition is: the characteristic exponent is analytic in a
strip Im ξ ∈ (λ−, λ+), continuous up to the boundary of the strip, and admits the representation

(12) ψ(ξ) = −iµξ + φ(ξ),

where φ(ξ) stabilizes to a positively homogeneous function at the infinity:

(13) φ(ξ) ∼ c±|ξ|ν , as Re ξ → ±∞, in the strip Im ξ ∈ (λ−, λ+),

where c± > 0.
Introduce functions

Λ−(ξ) = λ+
ν+(λ+ + iξ)−ν+ ;(14)

Λ+(ξ) = (−λ−)ν−(−λ− − iξ)−ν
− ;(15)

Φ(ξ) = q
(

(q + ψ(ξ))Λ+(ξ)Λ−(ξ)
)−1

.(16)

Choices of ν+ and ν− depend on properties of ψ, hence on order ν (see (12)–(13)) and drift µ.
We have to consider the following cases.1.

(1) If Xt – RLPE of order ν ∈ (1, 2), we set ν+ = ν− = ν/2.
(2) If Xt – RLPE of order ν ∈ (0, 1] and drift µ = 0, we set ν+ = ν− = ν/2.
(3) If Xt – RLPE of order ν ∈ (0, 1) and drift µ > 0, we set ν+ = 0, ν− = 1.
(4) If Xt – RLPE of order ν ∈ (0, 1) and drift µ < 0, we set ν+ = 1, ν− = 0.
(5) If Xt – VGP and drift µ > 0, we set ν+ = 0, ν− = 1.
(6) If Xt – VGP and drift µ < 0, we set ν+ = 1, ν− = 0.

Functions Λ±(ξ) are analytic and do not vanish in the half-plane ± Im ξ > 0, continuous
up to the boundary. In addition, Λ±(ξ) and its reciprocal grow not faster than a polynomial.
Therefore, it remains to factorize

(17) Φ(ξ) = Φ+(ξ)Φ−(ξ),

and then set

(18) φ±
q (ξ) = Λ±(ξ)Φ±(ξ).

Next, we consider an approximation of symbols Φ±(ξ). We, first, approximate Φ by a periodic
function Φd with a large period 2π/d, which is the length of the truncated region in ξ-state, then
approximate the latter by a partial sum of the Fourier series, and, finally, use the factorization
of the latter instead of the exact one.

We can apply this realization both after the reduction to symbols of order 0 has been made,
and without this reduction. In the latter case, we obtain a Poisson type approximation.

It is well-known (see e.g. [51]) that the limit of a sequence of the Poisson type characteristic
functions is infinitely divisible characteristic function. The converse is also true. Every infinitely
divisible characteristic function can be written as the limit of a sequence of finite products of
Poisson type characteristic functions. Since ψ(ξ) is the characteristic exponent of Lévy process,
then the function q/(q + ψ(ξ)) is infinitely divisible characteristic function.

The second step is straightforward. We impose an additional condition

(19) |Φ′(ξ)| ≤ C(1 + |ξ|)−ρ,

where ρ > 0; this condition is satisfied by all RLPEs and VGPs (and can be relaxed), which
makes the following lemma applicable.

1We can reduce the case ν ∈ (0, 1] and µ 6= 0 to (2) after the elimination of the drift. For driftless VGPs we
reduce to the cases (5) or (6) by suitable change of numeraire
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Consider a function fd ∈ C1[−π/d, π/d] depending on a small parameter d, and, for m > 0,
construct the partial sum

Sm(fd) =
d

2π

∑

|k|≤m

f̂d,ke
idkx

of the Fourier series for fd.

Lemma 1.1. Let fd(−π/d) = fd(π/d), and let there exists C > 0 such that for all x ∈
[−π/d, π/d] and all d ∈ (0, 1], |∂xfd(x)| ≤ C.

Then there exists a function d 7→ m0(d) such that ∀ m ≥ m0(d), x ∈ [−π/d, π/d] and
d ∈ (0, 1],

(20) |fd(x) − Sm(fd)(x)| ≤ ǫ.

For the first and third steps, we fix a small positive d and large even M (on the strength of
Lemma 1.1, M should be much larger than 1/d), set

bdk =
d

2π

∫ π/d

−π/d
ln Φ(ξ)e−iξkddξ, k 6= 0,(21)

bd,M(ξ) =
M/2∑

k=−M/2+1

bdk(exp(iξkd) − 1),(22)

b+
d,M(ξ) =

M/2∑

k=1

bdk(exp(iξkd) − 1),(23)

b−
d,M(ξ) =

−1∑

k=−M/2+1

bdk(exp(iξkd) − 1);(24)

Φd,M(ξ) = exp(bd,M(ξ)),(25)

Φ±
d,M(ξ) = exp(b±

d,M(ξ)).(26)

Now consider an approximation of φ±
q (ξ) using the Fast Fourier Transform. Let d be the step

in x-space, ζ–the step in ξ-space, and M = 2m the number of the points on the grid. Consider
the algorithm (the discrete Fourier transform (DFT)) defined by

(27) Gl = DFT [g](l) =
M−1∑

k=0

gke
2πikl/M , l = 0, ...,M − 1.

(It differs in sign in front of i from the algorithm fft in MATLAB). The DFT maps m complex
numbers (the gk’s) into m complex numbers (the Gl’s). The formula for the inverse DFT which
recovers the set of gk’s exactly from Gl’s is:

(28) gk = iDFT [G](k) =
1

M

M−1∑

l=0

Gle
−2πikl/M , k = 0, ...,M − 1.

In our case, the data consist of a real-valued array {gk}
M
k=0. The resulting transform satisfies

GM−l = Ḡl. Since this complex-valued array has real values G0 and GM/2, and M/2 − 1 other
independent complex values G1, ..., GM/2−1, then it has the same “degrees of freedom” as the
original real data set. In this case, it is inefficient to use full complex FFT algorithm. The main
idea of FFT of real functions is to pack the real input array cleverly, without extra zeros, into
a complex array of half of length. Then a complex FFT can be applied to this shorter length;
the trick is then to get the required values from this result (see Press, W. et al (1992) [34] for
technical details). To distinguish DFT of real functions we will use notation RDFT.

Depending on the type of the option under consideration, we choose real ω, and apply
the Fourier transform Fx→ξ and the inverse Fourier transform F−1

ξ→x with x living in R and ξ
living in R + iω. Thus, a grid for ξ is the grid ξj = ηj + iω on the line Im ξ = ω. Then
ψ1(η) = ψ(η + iω) − ψ(iω) be also characteristic exponent of infintely divisible distribution.
Set q1 = q + ψ(iω), and we will apply FWH-method for factorization of q1/(q1 + ψ1(η)) with
q1 and ψ1(η) instead q and ψ(η), respectively. In the case of down-and-out options, for typical
parameters values, we will choose ω = −2; for up-and-out options, ω = 1 is a good choice.
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Fix the space step d > 0 and number of the space points M = 2m. Define the partitions
of normalized log-price domain [−Md

2
; Md

2
) by points xk = −Md

2
+ kd, k = 0, ...,m − 1, and

frequency domain [−π
d

+ iω; π
d

+ iω] by points ξl = 2πl
dM

+ iω, l = −M/2, ...,M/2.
To approximate the characteristic functions φ±

q (ξ), we find an approximation of function ln Φ

by the Fourier series using the formula (22). The coefficients bdk in (22) are defined by (21) and
can be efficiently computed by using iRDFT. We have:

bdk =
d

2π

∫ π/d

−π/d
ln Φ(ξ)e−iξkddξ ≈ iRDFT [ln Φ](k).(29)

Next, we calculate b±
d,M in (23)–(24), and then, calculate the approximations to the Wiener-Hopf

factors

(30) φ±
q (ξl) ≈ Λ±

−ν/2(ξl) exp(b±
d,M(ξl)), l = −M/2, ..., 0.

2. Wiener-Hopf Monte Carlo methods

2.1. The overview of Monte Carlo methods. Due to the independent increments of Lévy
processes, the most common approaches to the Monte Carlo simulation of expectations involving
the joint law of (Xt, X t) work with the correspondent random walk whose increments have the
same law as X∆t for some small ∆t > 0. A ‘plain’ Monte Carlo method simulate paths of
X by discretizing time and generating the target process forward in time. However, there are
only few examples of Lévy processes X for which the law of X∆t is known. This requires one
either to be able to simulate the increments of the Lévy process exactly for a fixed time step or
to be able to suitably approximate the Lévy process, typically by a jump diffusion process or
a numerical Fourier inversion. This introduces numerical inaccuracy and an extra potentially
expensive computation step.

It is well known that the convergence of Monte Carlo estimators of quantities involving first
passage is rather slow. Hence, a large number of paths is needed to obtain a good convergence.
Another drawback is the well known problem that the empirical first passage time distribution
suffers from a very significant bias which vanishes only very slowly as ∆t vanishes, due to the
fact that the random walk approach misses excursions over the barrier within a short time
period.

A typical run for the standard Monte Carlo method would require evaluating thousands of
time steps per process path. In addition, tens of thousands of Monte Carlo runs (generated
paths) are needed to obtain an accurate density estimation. For many applications there are
thousands of processes, and it is required to compute the first passage time density for each
process (e.g. a loan portfolio with many corporate debt instruments, or a many nodes in a
computer network).

There are three main approaches to simulate the trajectory of a Lévy process. The first
method relies on the ability to sample from the increments of the Lévy process exactly for
a fixed time step and therefore construct a random walk as described at the beginning of
the current Subsection. This approach requires knowledge of the probability distribution of
the Lévy process at a deterministic time, either through an explicit analytical formula, or via
numerical inversion of the characteristic function. General results on the simulation of infinite
divisible distributions can be found in Bondesson [52]. As mention earlier, approximating a
Lévy process by an embedded random walk may cause significant errors on path functionals of
X such as the running extremum (cf. Broadie and Glasserman [53]).

The second approach uses a time-dependent infinite series expansion to approximate the value
of the Lévy process at each fixed time. For a general result when an explicit expression for the
Lévy measure is known we refer the reader to Rosiński [54]. The indicated series representation
converges uniformly and almost surely in any compact set of time. This lends itself better to
sampling path functionals of the process than, perhaps the random walk approximation but it
might make the numerical analysis difficult.

Finally, the third and most common method is to approximate X via a sum of a linear
Brownian motion and an independent compound Poisson process. The approximation can
be done using an appropriate linear and/or Gaussian component instead small jumps. The
truncation of small jumps ensures that the remaining jumps conform to a compound Poisson
structure The method of truncating small jumps, originally due to Asmussen and Rosiński [55],
is an obvious approach (cf. Cont and Tankov [3, Sect. 6.3] and the references therein), but may
change the regularity properties of the solution to the problem (cf. [24]).
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Recently introduced by Kuznetsov et al. [30], the so-called Wiener-Hopf Monte Carlo method
is related to the simulation of increments. This technique combines ideas from both Carr [56]
and Doney [57]. On the one hand, the method requires the underlying time grid to be random
with independent and exponentially distributed spacings (so-called “Carr’s randomization”).
This idea allows to simulate the trajectories of a variety of Lévy model from the law of Xτ

and its extremum where τ is a random time whose distribution can be concentrated arbitrarily
close around t depending on a parameter chosen in the algorithm that controls the resolution
of the random grid and thus the amount of work. On the other hand, the approximation uses
a simple trick of embedding a random walk into the path of a Lévy process with two types of
step distribution determined by the Wiener–Hopf factorization which was used in a different
context by Doney [57] in bounding the path of a Lévy process from above and below by a
random walk.

According to [31], we formulate the main differences between these three methods and the
WHMC simulation scheme are three–fold. Firstly, whilst the the WHMC scheme is restricted
to Lévy processes that allow sampling from the distributions of the variables XTq and XTq

, it is
otherwise indifferent to the jump structure of the underlying Lévy process. The approximation
of a Lévy process by a compound Poisson process decomposes the process with respect to
the endogenous jump structure. In contrast, the Wiener-Hopf factorization is related to the
decomposition of the path of a Lévy process according to the distribution of its extremums.
Secondly, the WHMC method uses a exponentially distributed time grid. Note for comparison
that the approach in [29, 9] requires a fixed time grid interlaced by a random grid capturing
the large jumps. Thirdly, the WHMC works on the principle of sampling the Lévy process over
the “wrong” time horizon (but in a way which can be made arbitrarily close to the desired
time horizon) purely in order to be able to sample from the exact maximum. Note that a
similar idea of randomizing the time horizon in a computation involving the expectation of
a functional of the path of a linear Brownian motion that appears in the context of pricing
American options is described in Carr [56]. Later this approach was applied to pricing options
under Lévy processes, see e.g. [2]. The rate of convergence of the WHMC and of the MLWH
method can be expressed directly in terms of the rate of convergence of the randomized time
horizon to the fixed time t.

In the next subsection we describe the WHMC method in more detail.

2.2. The overview of Wiener-Hopf Monte Carlo methods, [30, 31, 32]. Let us suppose
that e1(1), e2(1), · · · are a sequence of i.i.d. exponentially distributed random variables with
unit mean. The basis of the WHMC algorithm is the following simple observation, which follows
directly from the Strong Law of Large Numbers. For all t > 0,

(31)
n∑

i=1

t

n
ei(1) → t as n ↑ ∞

almost surely. Note that the random variable on the left hand side of (31) can also be written
as the sum of n independent random variables with an exponential distribution having mean
t/n and therefore is equal in law to a Gamma random variable with parameters n and n/t,
henceforth written as g(n, n/t). For sufficiently large n, Kuznetsov et al. [30] argue that a
suitable approximation to P(Xt ∈ dx, X t ∈ dy) is P(Xg(n,n/t) ∈ dx, Xg(n,n/t) ∈ dy). Indeed, it
is a triviality to note that, thanks to (31) and the independence of g(n, n/t) from X, the pair
(Xg(n,n/t), Xg(n,n/t)) converges almost surely to (X t, Xt) as n ↑ ∞. The rates of convergence
computed in [32].

The following theorem is straightforward to prove using (10) together with the stationary
and independent increments of the underlying Lévy process.

Theorem 2.1 (Kuznetsov et al. [30, Thm. 1]). Let {Sjn/t : j ≥ 1} and {Ijn/t : j ≥ 1} be i.i.d.

sequences of random variables with common distribution equal to that of XT(n/t)
and XT(n/t)

,

respectively, where Tq ∼ Exp q is independent of X. Then, for all n ∈ N,

(Xg(n,n/t), Xg(n,n/t))
d
= (V (n, n/t), J(n, n/t)),
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where, for any k ∈ N, and setting V (0, n/t) := 0 and J(0, n/t) := 0 we define

V (k, n/t) = V (k − 1, n/t) +
(
Skn/t + Ikn/t

)
,(32)

J(k, n/t) = max
{
J(k − 1, n/t), V (j − 1, n/t) + Sjn/t

}
.(33)

Theorem 2.1 suggests that as soon as we are able to simulate i.i.d. copies of the distributions
of Sn/t and In/t, then by the simple functional transformations given in (35) and (36), we may

produce an exact draw from the distribution of (Xg(n,n/t), Xg(n,n/t)). Moreover, for a suitably
nice function F , using standard Monte Carlo methods based on the Strong Law of Large
Numbers, one may estimate E(G(Xg(n,n/t), Xg(n,n/t))) by

(34) F n,M
MC :=

1

M

M∑

i=1

F n,(i),

where F n,(i) is the i-th sample of

F n := G (V (n, n/t), J(n, n/t)) .

Indeed, we have limM↑∞ F n,M
MC = E

(
G(Xg(n,n/t), Xg(n,n/t))

)
almost surely, which in turn con-

verges to E(G(Xt, X t)) as n ↑ ∞.
It follows from the Theorem 2.1 that a similar result for the pair (X t, Xt) is also valid.

Theorem 2.2. Let {Sjn/t : j ≥ 1} and {Ijn/t : j ≥ 1} be i.i.d. sequences of random variables

with common distribution equal to that of XT(n/t)
and XT(n/t)

, respectively, where Tq ∼ Exp q is
independent of X. Then, for all n ∈ N,

(Xg(n,n/t), Xg(n,n/t))
d
= (V (n, n/t), J(n, n/t)),

where, for any k ∈ N, and setting V (0, n/t) := 0 and J(0, n/t) := 0 we define

V (k, n/t) = V (k − 1, n/t) +
(
Skn/t + Ikn/t

)
,(35)

J(k, n/t) = min
{
J(k − 1, n/t), V (j − 1, n/t) + Ijn/t

}
.(36)

It should be mentioned that the WHMC method is numerically feasible only if samples from
the distributions of Sn/t and In/t are available. However popular examples of Lévy processes
used in finance do not allow to apply this method directly. For example, Merton’s jump-diffusion
model (see Merton [38]) where the driving Lévy process X is a drifted Brownian motion plus
a compound Poisson process with normally distributed jumps. As the Wiener-Hopf factors are
not explicitly known in this case, the WHMC cannot be applied while plain Monte Carlo does.
The same applies to the popular Variance Gamma (see Madan et al [41]), CGMY (see Carr et
al [49]) and NIG (see Barndorff-Nielsen [44]) models.

Until recently, this would have proved to be a significant stumbling block on account of there
being few examples for which the aforesaid distributions are known in explicit form. However,
on the one side, developments in Wiener-Hopf theory for Lévy processes in the last couple of
years (see for example Kuznetsov [33] or Kuznetsov et al. [30]) have provided a rich enough
variety of examples for which the necessary distributional sampling can be performed. This
family of processes are named meromorphic Lévy processes in Kuznetsov et al. [30]. One large
subfamily of such processes is the β-class of Lévy processes, which also conveniently offers all
the desirable properties of better known Lévy processes that are used in mathematical finance,
such as CGMY processes, VG processes or Meixner processes; see for example the discussions
in Ferreiro-Castilla and Schoutens [58] and Schoutens and van Damme [59].

The starting point for the Wiener–Hopf Monte Carlo algorithm is the distribution of Xq and
Xq. However, Kuztetsov et al. [30] presented another alternative for extending the application
of the Wiener–Hopf Monte Carlo method to a much larger class of Lévy processes than those
for which explicit formulas of the Wiener–Hopf factors are known. The importance of Theorem
2.3 is that one may simulate desired paths of any Lévy processes whose Lévy measure can be
written as a sum of a Lévy measure from the β-family or hypergeometric family and any other
measure with finite mass. It should be noted that many Lévy processes necessarily take this
form. However, there are some obvious exclusions from this class, for example, cases of Lévy
processes with bounded jumps.
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Theorem 2.3 (Kuznetsov et al. [30, Thm. 4]). Let Y = {Yt : t ≥ 0} be a sum of a Lévy process
X and a compound Poisson process such that for all t ≥ 0,

Yt = Xt +
Nt∑

i=1

ξi,

where N = {Nt : t ≥ 0} is a Poisson process with intensity λ, independent of the i.i.d. sequence
of random variables, {ξi : i ≥ 1}, and X. Define iteratively for n ≥ 1

V (n, λ) = V (n− 1, λ) + S
(n)
n/t+λ + I

(n)
n/t+λ + ξn(1 − βn),

J(n, n/t) = max
(
V (n, n/t), J(n− 1, n/t), V (n− 1, n/t) + S

(n)
n/t+λ

)
,

where V (0, n/t) = J(0, n/t) = 0, sequences {S(j)
n/t+λ : n ≥ 1} and {I(n)

n/t+λ : n ≥ 1} are defined

in Theorem 2.1, and {βn : n ≥ 1} are an i.i.d. sequence of Bernoulli random variables such

that P(βn = 1) = (n/t)
(n/t)+λ

. Then

(37)
(
Yg(n,n/t), Y g(n,n/t)

)
d
= (V (Tn, n/t), J(Tn, n/t)),

where Tn = min{j ≥ 1 :
∑j
i=1 βi = n}.

An important example where the use of the above theorem may be efficient is a sum of a
linear Brownian motion and an independent compound Poisson process. This would include
the following popular jump diffusion processes: the Kou model and the Merton model. In the
case that X is a linear Brownian motion, the quantities XTq and −XTq

are both exponentially
distributed with easily computed intensities.

On the other side, due to the unavailability of the exact law of XTq (XTq
), one can use

approximate formulas not for the actual driving Lévy process, but for the Wiener-Hopf factors
directly. For a wide class of Lévy models, it becomes possible by using Fast Wiener-Hopf
factorization method developed in [24]. A modification of the WHMC method based on a
numerical Wiener-Hopf factorization will be suggested in the Subsection 3.

For such cases a separate study would be helpful to decide whether or not the advantages the
WHMC simulation method has over plain Monte Carlo as described in the previous paragraph
outweighs the disadvantage that the WHMC method only applies to an approximation of the
actual driving Lévy process or to approximates for the Wiener-Hopf factors.

The Wiener-Hopf Monte Carlo (WHMC) simulating technique introduced in Kuznetsov et
al. [30] allows to sample from a law that is a good approximation of the law of (XT , XT ),
provided that samples can be produced from XTq and XTq

. This method was extended to a
multilevel version and a theoretical analysis was given in Ferreiro-Castilla et al. [32].

In [32] the main idea behind the WHMC simulating technique was used to generate samples
from (an approximation of)

(38) (τh, Xτh
− h, h−Xτh−, h−Xτh−),

where τh is the first passage time of X over a level h > 0, i.e.

τu := inf{t > 0 |Xt > h} ,

Xτh
− h is referred to as the overshoot, h − Xτh− the undershoot and finally h − Xτh− the

last maximum before first passage. Here and throughout we employ the usual notation X t :=
sups≤tXs and X t := infs≤tXs for all t ≥ 0. Such extension of the WHMC-method allows to
calculate quantities of the form

(39) E

[
f(τh, Xτh

− h, h−Xτh−, h−Xτh−)
]
.

In fact, not only (38) but any functional of the pair (X,X) could be handled by the method.
Once this observation has been established it is simply a matter of applying the usual setup:
generate a large number of such samples, apply the function G to each of them and compute
the resulting average to obtain an approximation of (39).

Following [32], we will refer to (38) as the 4-tuple. Below we list the main results and ideas
of [32] for producing samples from the 4-tuple as well.
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Recall that Tq denotes an exponentially distributed random variable with mean 1/q inde-
pendent of X. For any n ≥ 1, enlarge the probability space on which X lives with an i.i.d.
sequence {T in/t}i≥1 and define a set of grid points as

(40) g(0, n/t) := 0, g(k, n/t) :=
k∑

i=1

T in/t for k ≥ 1.

For any n the set of random points {0 = g(0, n/t) < g(1, n/t) < ...} forms a grid on the time
axis, the distance between the grid points forming a sequence of i.i.d. exponentially distributed
random variables; equivalently the grid points can be seen as the arrival times of a Poisson
process with rate n/t. The idea is quite straightforward: the ’stochastic grid’ as defined in
(40) does not only satisfy g(n, n/t)

a.s.
→ t as n → ∞, but for any sequence k(n) such that

k(n) ∈ {0, . . . , n} and k(n)t/n
a.s.
→ s ∈ [0, t] as n → ∞, we have again by the law of large

numbers g(k(n), n/t)
a.s.
→ s.

Consequently, as above, for large n the law of (V (k(n), (n/t), J(k(n), (n/t)) provides an
approximation of the law of (Xs, Xs). In this sense the ’stochastic grid’ becomes dense in the
interval [0, t]. Furthermore, as is obvious from Theorem 2.1, due to the iterative nature of
the definitions of V and J , obtaining a sample from the pair (V (n, (n/t)), J(n, (n/t)) requires
producing a sample from the vector ((V (0, (n/t)), J(0, (n/t)), . . . , (V (n, (n/t)), J(n, (n/t)))).
Hence constructing the approximative law of (Xt, X t) automatically yields an approximative
law of the vector ((X0, X0), (X1/n, X1/n), . . . , (Xt, X t)) — see Proposition 2.4 below — and it
is therefore at least intuitively clear that we should also be able to approximate a quantity like
(39). This is made rigorous in Theorem 2.5. The difficulty to be overcome is that convergence
on the ’stochastic grid’ is less obvious than on a traditional deterministic grid.

Proposition 2.4 (Ferreiro-Castilla et al. [32, Pr. 2.2]). Let X be a Lévy process, λ > 0 and
recall V and J as defined in Theorem 2.1 and the definition of the stochastic grid in (40). Then

(41)
(
(Xg(0,λ), Xg(0,λ)), . . . , (Xg(k,λ), Xg(k,λ))

)
d
= ((V (0, λ), J(0, λ)), . . . , (V (k, λ), J(k, λ))) .

Notice that the random walk produced in Proposition 2.4 should be particularly useful when
used to approximate pathwise quantities of X. Consider how the setup introduced in [30]
can be used to generate an approximate distribution of the 4-tuple as well. The idea is to
approximate τh by finding points on our ’stochastic grid’ (40) enclosing it, i.e. k(n) ∈ N such
that g(k(n) − 1, n/t) ≤ τh ≤ g(k(n), n/t) for all n ∈ N, and evaluate the functionals involving
overshoots and undershoots using these grid points.

Theorem 2.5 (Ferreiro-Castilla et al. [32, Thm. 3.1]). Let X be any Lévy process. Fix some
t > 0 and h > 0. Recall V and J as defined in Theorem 2.1. Set for all n ∈ N

κ
(n)
h := inf{k ∈ {0, . . . , n} | J(k, (n/t)) > h}

(where as usual we understand inf ∅ = ∞). Then we have as n → ∞
(
t

n
(κ

(n)
h ∧ n), V (κ

(n)
h ∧ n, (n/t)) − h, h− V ((κ

(n)
h − 1) ∧ n, (n/t)), h− J((κ

(n)
h − 1) ∧ n, (n/t))

)

d
−→

(
τh ∧ t,Xτh∧t − h, h−X(τh∧t)−, h−X(τh∧t)−

)
.(42)

All quantities involved in (39) ultimately depend on the first passage time. Now we indicate
the results of [32] on a convergence rate for the approximation of the first passage time. n order
to define such auxiliary random vector let us first introduce the following quantities:

Notice that κ
(n)
h

d
= k

(n)
X where k

(n)
X lives on the same probability space as X and has the form:

k
(n)
X := inf{k ∈ {0, . . . , n} |Xg(k,n/t) > u}

Theorem 2.6 (Ferreiro-Castilla et al. [32, Thm. 4.1]). Using the same notation as in Theorem
2.5, we have

E

[(
t

n
(k

(n)
X ∧ n) − τ ∧ t

)2
]

≤
2t2

n
.
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3. Implementation of the WHMC methods into the program platform
PREMIA

The aim of this section is to provide an example of the application of the WHMC methods
to pricing options in chosen Lévy models.

3.1. General settings. We consider options, whose payoff at maturity date T depends on
(XT , XT ).This implies that the barrier H = eh may play a role only when it is reached or
crossed from above. The definitions and results below admit the straightforward reformulation
for the case of options with payoffs depending on (XT , X̄T ). In this case, the barrier H = eh

would take effect only when it is reached or crossed from below. When the barrier is crossed
the option’s owner would be entitled to a constant rebate.

Consider

(43) F (T, x) = E
x
[
e−rTg(XT , XT )1{τ−

h
>T}

]
+ E

x
[
Re−rτ−

h 1{τ−

h
≤T}

]
,

where time 0 is the beginning of a period under consideration (so that X0 = X0 = x), T is the
final date, h is the absorbing barrier, τ−

h denotes the first entrance time into (−∞, h], R is the
rebate and g(XT , XT ) is the payoff at time T .

We choose n, the parameter of the MCWH method. Set V and J as defined in Theorem 2.2
(or in Theorem 2.3). Denote for all n ∈ N

κ
(n)
h := inf{k ∈ {0, . . . , n} | J(k, (n/T )) < h}

(where we understand inf ∅ as ∞). Then according to Theorem 2.2 and Theorem 2.5, we have
as n → ∞

(44)
(
T

n
(κ

(n)
h ∧ n), V (n, (n/T )), J(n, (n/T ))

)
d

−→ (τh ∧ T,XT , XT ) .

Recall Skq and Ikq as defined in Theorem 2.2. Following the algorithm in Theorem 2.2, we

need to simulate Skn/T and Ikn/T , k = 1, . . . , n, by using samples from the laws XTn/t
and XTn/t

,

respectively. If the probability distributions of XTn/T
and XTn/t

are known explicitly (e.g. in the

case of Black-Scholes model, Kou model or when Xt belongs to the β-class of Lévy processes,
introduced in [33]), then we may sample directly from the laws. In general case, we have to
approximate characteristic functions of Wiener-Hopf factors using the FWHF-method described
in Subsection 1.3. Then we numerically calculate the correspondent cumulative distribution
functions and using their inverses simulate Skn/T and Ikn/T . Let us describe the latter case in
details.

Let X be the random infinitely divisible variable, and FX(x) = P(X < x), pX = d
dx
FX(x),

φ(ξ) = E[eiξX ] stand for the cumulative distribution function (cdf), the probability distribution
function (pdf), and the characteristic function (chf) of X, respectively. If FX(x) is continuous,
then

(45) FX(x) =
∫ x

−∞
pX(y)dy.

If the variable X is continuous, then the cumulative distribution function FX has an inverse
F−1
X : (0, 1) → R. If the cdf FX is known then one may simulate X by using samples from
F−1
X (U), where U is a uniform distribution on (0, 1). To approximate F−1

X (U) with the pdf
supported at a half-line, we choose a uniformly spaced grid x0, . . . , xM ∈ R subject to the
condition FX(x0) < ǫ (if pX is supported at a subset of (−∞, 0]) or FX(xn) > 1 − ǫ (if pX is
supported at a subset of [0,+∞)), where ǫ is a desired accuracy. Then for arbitrary u ∈ (0, 1),
we define F−1

X (u) as follows:

F−1
X (u) =





x0, u < F (x0),

xk + d · u−F (xk)
F (xk+1)−F (xk)

, F (xk) ≤ u < F (xk+1), 0 ≤ k < M,

xn, u ≥ F (xM).

Notice the formula from above means that we estimate X with the distribution which has
atoms in x0 and xM . When the cdf is calculated numerically by using Fast Fourier Transform
the number of points n should be a power of 2. It follows that for M = 2m the operation to
find xk satisfying F (xk) ≤ u < F (xk+1) requires m or less iterations.
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If the probability density pX is known, one can apply a quadrature rule to (45) for computing
numerically the cdf FX . However, in the case of infinitely divisible distributions as a rule explicit
analytical formulas for pdf are not available. In order to recover the pdf pX one can use the
characteristic function φX which is typically known in the closed form. In the general case, pX
can be expressed in terms of the characteristic function φX(ξ), by using the Fourier transform

(46) pX(x) = (2π)−1
∫ +∞

−∞
e−ixξφX(ξ)dξ,

where the chf φX(ξ) can be written via the characteristic exponent, see (1). The formula 46
can be efficiently realized by means of the Fast Fourier Transform algorithm.

One can also substitute the formula (46) into (45) and express the cumulative distribution
function FX in terms of the Fourier integral (see [60].

(47) FX(x) =
exρ

π
Re

∫ ∞

0
e−ixξφX(ξ + iρ)

ρ− iξ
dξ, x ∈ R,

where ρ > 0. The difference between results obtained by these two approaches is insignificant.
However, the method which uses quadrature rule and (46) is more simpe for a numerical
implementation. Thus we have chosen to implement the first approach.

Consider the algorithm for computing the pdf of an infinitely divisible distribution by using
Fast Fourier Transform. Let d be the step in x-space, ζ–the step in ξ-space, and M = 2m the
number of the points on the grid. An approximation for the pdf can be efficiently computed by
using the Fast Fourier Transform (FFT). Direct and inverse discrete Fourier transform (DFT)
defined by (27) and (28), respectively.

In our case, the data (pdf) consist of a real-valued array {gk}
M
k=0. The resulting transform

satisfies GM−l = Ḡl. As in the FWHF-method, it is more efficient to use the real Fast Fourier
Transform.

Fix the space step d > 0 and number of the space points M = 2m. Define the partitions
of normalized log-price domain [−Md

2
; Md

2
) by points xk = −Md

2
+ kd, k = 0, ...,M − 1, and

frequency domain [−π
d
; π
d
] by points ξl = 2πl

dM
, l = −M/2, ...,M/2.

Using the formula 46 we can approximate the pdf pX as follows.

pX(xk) =
1

2π

∫ +∞

−∞
eixkξφX(ξ)dξ

≈
1

2π

∫ π/d

−π/d
eixkξφX(ξ)dξ ≈

1

2π

M/2∑

l=−M/2+1

eixkξlφX(ξl)
2π

dM

≈
(

2

Md
Re

M/2−1∑

l=1

e2πikl/Mp(ξl)(−1)l +
1

Md
(1 + ReφX(ξM/2))

)
.

Finally,

(48) pX(xk)(xk) ≈
1

d
iRDFT [φ̃X ](k), k = 0, ...,M − 1,

where (φ̃X)l = φX(ξl) · (−1)l. Note that real-FFT is two times faster than FFT.
The described adaptation of the WHMC method in the context of the FWHF-method we

will call the “Fast Wiener-Hopf Factorization Monte Carlo method” (in short – the FWHFMC-
method).

3.2. Implementation of the WHMC-method [30, 32] into the program platform Pre-
mia. We have implemented the WHMC of Kuznetsov et al [30] into program platform Premia
for the case of barrier knocked-and-out options with rebate in Kou model on C++ program-
ming language. The algorithm is based on Theorem 4 of Kuznetsov et al and the results of
[32], see Theorem 2.3 and Theorem 2.5 of the current technical report. The implementation
required a sampling from double exponential, exponential and Bernoilli distributions. This in-
strument is provided by the PNL (a numerical library for C and C++ programmers, available at
http://pnl.gforge.inria.fr ). The Premia software currently uses this library. The correspondent
procedure has the name Kou_Mc_Out_WHMC and depend on 19 parameters including

• Kou model parameters (see Example 2.2):
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– r – the interest rate r;
– divid – the divident rate d;
– sigma – the diffusion coeffcient σ;
– lambda – λ, the intensity of Poisson process;
– lambdap – Λ+, the intensity of positive jumps;
– lambdam – Λ−, the intensity of negative jumps;
– p – the probability of positive jumps.

• Option parameters:
– K – the strike price;
– S0 – the spot price;
– Bar – the barrier;
– ifCall – a flag parameter for the option type (“1” for “Call” and “0” for “Put”);
– b_type – a flag parameter for the barrier type (“1” for “Up-and-Out” and “0” for

“Down-and-Out”);
– rebate – the rebate.

• The Wiener Hopf Monte Carlo method parameters:
– n_points – the number of randomized time steps;
– n_paths – the number of trajectories;
– generator – a random number generator.

• The output parameters:
– *ptPrice – the option price;
– *priceError – the Monte Carlo error.

3.3. Implementation of the FWHFMC method into program platform Premia. We
have implemented the ‘Fast Wiener-Hopf Factorization Monte Carlo method” into program
platform Premia for the case of barrier knocked-and-out options with rebate in the TSL model
on C++ programming language. The algorithm is presented in the Subsection 3.1. The
implementation required a possibility of sampling from a uniform distribution. This instru-
ment is provided by the PNL (a numerical library for C and C++ programmers, available at
http://pnl.gforge.inria.fr ). The correspondent procedure has the name TSL_Mc_Out_WHMC
and depend on 21 parameters including

• TSL model parameters (see Example 2.1):
– r – the interest rate r;
– divid – the divident rate d;
– cp – the TSL parameter c+;
– cm – the TSL parameter c−;
– lambdap – the TSL parameter λ+;
– lambdam – the TSL parameter λ−;
– p – the probability of positive jumps.

• Option parameters:
– K – the strike price;
– S0 – the spot price;
– Bar – the barrier;
– ifCall – a flag parameter for the option type (“1” for “Call” and “0” for “Put”);
– b_type – a flag parameter for the barrier type (“1” for “Up-and-Out” and “0” for

“Down-and-Out”);
– rebate – the rebate.

• The Wiener Hopf Monte Carlo method parameters:
– h – the space step (the FWHF-method parameter);
– er – the scale parameter L (the FWHF-method parameter);
– n_points – the number of randomized time steps;
– n_paths – the number of trajectories;
– generator – a random number generator.

• The output parameters:
– *ptPrice – the option price;
– *priceError – the Monte Carlo error.

Note that in the program implemented into Premia one can manage by two parameters of
the numerical Wiener-Hopf factorization algorithm: the space step h and the scale of logprice
range L. Parameter L controls the size of the truncated region in x-space; it corresponds to
the region (−L ln(2)/h;L ln(2)/h). The typical values of the parameter are L = 1, L = 2 and
L = 4. To improve the results one should decrease h, when L is fixed.
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[15] Boyarchenko, M., and S. Levendorskǐi (2011) : “Valuation of continuously monitored double barrier
options and related securities”. Mathematical Finance, 21: no. doi: 10.1111/j.1467-9965.2010.00469.x 2

[16] Lipton, A. (2002) : “Assets with jumps”. Risk Mag., 15, 149–153. 2, 4
[17] Kou, S.G.(2008): Discrete barrier and lookback options. In: Birge, J.R., Linetsky, V. (eds.) Financial

Engineering. Handbooks in Operations Research and Management Science, vol. 15, 343–373. Elsevier,
Amsterdam 2

[18] Sepp, A. (2004) : “Analytical Pricing of Double-Barrier Options under a Double-Exponential Jump
Diffusion Process: Applications of Laplace Transform”. International Journal of Theoretical and Applied
Finance, 7(2), 151–175. 2

[19] P. Carr, P. and J. Crosby (2010): “A class of Lévy process models with almost exact calibration to both
barrier and vanilla FX options", Quantitative Finance, Vol.10, No. 10, 1115–1136. 2

[20] J. Crosby, N. Le Saux and A. Mijatović (2010) : “Approximating Lévy processes with a view to option
pricing”, International Journal of Theoretical and Applied Finance, 13, 63–91.

[21] Jeannin, M. and M. Pistorius (2010) : “A transform approach to compute prices and greeks of barrier
options driven by a class of Lévy processes”. Quant. Finance., 10(6), 629 - 644. 2

[22] Kou, S. and H. Wang (2003) : “First passage times of a jump diffusion process”. Advances in Applied
Probability, 35, 504–531. 2

[23] Abate, J. and W. Whitt (2006): “A unified framework for numerically inverting Laplace transforms".
INFORMS Journal on Computing, 18(4), 408–421. 2
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