
20 pages Intro /Doc /Kernel /Interface /Contents 1

Premia Kernel

version 17

C. Martini, A.Zanette

March 11, 2015

Contents

1 Models and Options 2

1.1 Options . 2
1.2 Models . 3
1.3 Accessing to Models and Options objects . 4

2 Pricing methods 5

2.1 Subdirectories of pricing methods . 5
2.2 Pricing method files . 5
2.3 The master file (e.g. bs1d_std.c) . 10
2.4 Shared routines . 11

3 Dynamical tests 12

4 The VAR system 12

4.1 General definition . 12
4.2 The enumeration type . 14
4.3 Iterating a parameter . 15
4.4 Input-Output of a VAR . 16
4.5 Initialization . 16

5 Numerical functions 18

6 Computation time information 19

Architecture

Even if it is written in C (even ANSI C), the kernel of Premiais strongly object-oriented.
Premia relies on 3 basic objects: models, options, and pricing methods. All the types of
Premia are defined in optype.h.

Biblio C Source

20 pages Intro /Doc /Kernel /Interface /Contents 2

1 Models and Options

By model, we mean the modeling of the financial environment (underlying of the option,
interest rate for options on securities. . .). For instance the type of the Black-Scholes model
defines the spot value, the current date, the instantaneous interest rate, the volatility, the
trend (or yet historical drift) or the underlying.
The options directly correspond to the contingent claim itself. For instance, the parameters
of a Call option will be its strike, maturity, exercise feature.

1.1 Options

The options are grouped by families, every family corresponding to a subdirectory of the
directory OPT . This directory bears the family name (ex: STD) and contains in a systematic
manner a .c and a .h which bear the same name (ex: std.c et std.h). The .h file contains
the definition of the type of the options of the family, the .c contains input (Get), output
(Show) and check (Check) functions for this type. All the other files of the directory are .c
files, each corresponding to a precise option. They bear the name of the option at hand (ex:
CallEuro.c). They contain an instance of the type of the family, and also an initialization
function (Init).
Notice that we distinguish between a European Call and an American Call (i.e. there are two
files).
To allow some kind of automatic treatment for the options of different families, we also
designed a kind of super-type (or yet class) Option : every instance of a specific type (like
STD) is wrapped in an instance of this type. The type Option is the following:

typedef struct Option{

Label ID;

const char* Name;

void* TypeOpt;

int (*Get)(int user, Planning*,struct Option*, Model*);

int (*FGet)(char **InputFile,int user, Planning*,struct Option*, Model*);

int (*Show)(int user,Planning*,struct Option*, Model*);

int (*Check)(int user,Planning*,struct Option*);

int (*Init)(struct Option*, Model*);

int nvar; /* number of VARS */

int init; /* zero before initialization */

int nvar_setable; /* number of VARS which are asked interactively */

const char * HelpFilenameHint;

} Option;

ID will store the name of the family (e.g. STD), Name the option’s name (e.g. CallEuro),
TypeOpt is a universal pointer which will point to the instance of the specific type we dis-
cussed above. The other pointers will store the addresses of the functions described above.
user is only a flag which is intended to manage the input/output stuff (file or screen, etc. . .).
Planning* is related to the possibility of iterating every scalar variable in the fields of Type-
Opt*, Option* points to itself.
For every instance of a specific type of option, the wrapping instance of the super-type is
automatically created by the macro MAKEOPT(X) (in optype.h). This macro is intended

Biblio C Source

20 pages Intro /Doc /Kernel /Interface /Contents 3

also to avoid conflicting names between two options of different families which bear the same
name (e.g. CallDownOutEuro in lim and also limdisc . Indeed the new super-object is
created under the name directoryname_optionname (ex: std_CallEuro).
The master file of the directory (e.g. std.c) contains an array of all the options of the directory:

extern Option OPT(CallEuro);

extern Option OPT(CallSpreadAmer);

extern Option OPT(CallSpreadEuro);

extern Option OPT(DigitAmer);

extern Option OPT(DigitEuro);

extern Option OPT(PutAmer);

extern Option OPT(PutEuro);

extern Option OPT(CallAmer);

Option*OPT(family)[]=

{

&OPT(CallEuro),

&OPT(PutEuro),

&OPT(CallSpreadEuro),

&OPT(DigitEuro),

&OPT(CallAmer),

&OPT(PutAmer),

&OPT(CallSpreadAmer),

&OPT(DigitAmer),

NULL

};

The above macro OPT(X) expands in TYPEOPT_X where TYPEOPT is a macro defined in
directoryname.h (e.g. std.h) which itself expands in directoryname:

#define TYPEOPT STD

In fact the name of the type of a given option family is imposed, it is TYPEOPT. Notice also
that the name of the array of options is also imposed, it is OPT(family).

1.2 Models

It is almost the same story for the models (subdirectories of the directory Model . The type
model is:

typedef struct Model{

Label ID;

const char* Name;

void* TypeModel;

int (*Get)(int user, Planning*,struct Model*);

int (*FGet)(char **InputFile,int user, Planning*,struct Model*);

int (*Show)(int user,Planning*,struct Model*);

int (*Check)(int user,Planning*,struct Model*);

Biblio C Source

20 pages Intro /Doc /Kernel /Interface /Contents 4

int (*Init)(struct Model*);

int nvar; /* number of VARS in TypeModel */

int init; /* zero before initialization */

const char *HelpFilenameHint;

} Model;

The only difference is that there is only a single instance (and therefore no array) of the type
defined in directoryname.h (e.g. bs1d.h, which is in the file directoryname.c along with the
corresponding initialization function. The macros corresponding to OPT(X) and MAKEOPT(X)

are MOD(X) and MAKEMOD(X).

1.3 Accessing to Models and Options objects

In the main file Premia17.c the above objects are first declared as extern ones, next they are
stored in two arrays models and families. We need here of course to expand explicitly the
macros OPT and MOD since we are neither in a subdirectory of Opt nor Mod .

extern Model BS1D_model;

extern Model BS2D_model;

Model*models[]=

{

&BS1D_model,

&BS2D_model,

NULL

};

extern Family STD_family;

extern Family LIM_family;

extern Family LIMDISC_family;

extern Family DOUBLIM_family;

extern Family PAD_family;

extern Family STD2D_family;

Family *families[]=

{

&STD_family,

&LIM_family,

&LIMDISC_family,

&DOUBLIM_family,

&PAD_family,

&STD2D_family,

NULL

};

where the type Family is

typedef Option* Family[MAX_OPT];

Biblio C Source

20 pages Intro /Doc /Kernel /Interface /Contents 5

2 Pricing methods

2.1 Subdirectories of pricing methods

The pricing methods are grouped by families which are defined as a combination of a given
model and a given option family. Each family is stored in a subdirectory of the corresponding
model directory, the name of which is modelname_optionfamilyname (e.g. bs1d_std in the
bs1d directory stores all the algorithms pertaining to the pricing of standard options within
the bs1d model).
Every such directory contains a masterfile with name modelname_optionfamilyname.c, a
header file modelname_optionfamilyname.h (which mostly includes the files modelname.h
and optionfamilyname.h and therefore the corresponding macros TYEMOD and TYPEOPT).
All the other files (but one, see later) are .c files, each corresponding to a precise pricing
method. Every such files bears the name of the method (with a prefix which indicates the
nature of the algorithm: fd_, tr_, mc_, ap_, cf_) and defines an object of type Pricing-
Method which stores all the parameters and address of the pricing method itself.
The last file of the directory is a file modelname_optionfamilyname_test.c which stores a
DynamicalTest object which is pertaining to the simulation of a dynamical delta-hedge of
any option of the family within the model at hand, using the prices and hedge ratios given
by one of the pricing methods of the directory.

2.2 Pricing method files

Every pricing method is coded in a single C file which bears the method name: methode-
name.c (ex: Tree_CoxRossRubinstein.c). The structure of such a file is two-fold: in a first
part, where there is nothing mandatory regarding input-output parameters, names, etc. . . ,
the pricing function itself is coded. There maybe one or more functions within this part, the
only constraint is to declare everything as static in order to avoid conflicting names be-
tween different routines. In this part the functions and/or objects of mathtools.c, random.c,
numfunc.c maybe used, also some flags or macros of error_msg.c and optype.h. These files
are in the directory Common or Common\Math but the header files are included in the
file modelname_optionfamilyname.h, which is itself included at the first line of every pricing
method.
This first part of the file may look like:

#include "bs1d_std.h"

static int CoxRossRubinstein_79(int am,double s,NumFunc_1 *p,double t,double r,

double divid,double sigma,int N, double *ptprice,double *ptdelta)

{

int i,j;

double u,d,h,pu,pd,a1,stock,upperstock;

double *P,*iv;

/*Price, intrisic value arrays*/

P=(double *)malloc((N+1)*sizeof(double));

if (P==NULL)

Biblio C Source

20 pages Intro /Doc /Kernel /Interface /Contents 6

return MEMORY_ALLOCATION_FAILURE;

iv=(double *)malloc((2*N+1)*sizeof(double));

if (iv==NULL)

return MEMORY_ALLOCATION_FAILURE;

/*Up and Down factors*/

h=t/(double)N;

a1= exp(h*(r-divid));

u = exp(sigma*sqrt(h));

d= 1./u;

/*Risk-Neutral Probability*/

pu=(a1-d)/(u-d);

pd=1.-pu;

if ((pd>=1.) || (pd<=0.))

return NEGATIVE_PROBABILITY;

pu*=exp(-r*h);

pd*=exp(-r*h);

/*Intrisic value initialisation*/

upperstock=s;

for (i=0;i<N;i++)

upperstock*=u;

stock=upperstock;

for (i=0;i<2*N+1;i++)

{

iv[i]=(p->Compute)(p->Par,stock);

stock*=d;

}

/*Terminal Values*/

for (j=0;j<=N;j++)

P[j]=iv[2*j];

/*Backward Resolution*/

for (i=1;i<=N-1;i++)

for (j=0;j<=N-i;j++)

{

P[j]=pu*P[j]+pd*P[j+1];

if (am)

P[j]=MAX(iv[i+2*j],P[j]);

}

/*Delta*/

*ptdelta=(P[0]-P[1])/(s*u-s*d);

/*First time step*/

Biblio C Source

20 pages Intro /Doc /Kernel /Interface /Contents 7

P[0]=pu*P[0]+pd*P[1];

if (am)

P[0]=MAX(iv[N],P[0]);

/*Price*/

*ptprice=P[0];

free(P);

free(iv);

return OK;

}

The second part of the file consists of two functions and one object (with its initialization
function) which are designed to connect the previous stuff to the software. First there is
a wrapping function, with a mandatory name and parameter list, which calls the suitable
pricing functions of the previous part with the parameters of the objects option, model at
hand, and also the PricingMethod object parameters (this last one comes later on). In our
case this could be:

int CALC(TR_CoxRossRubinstein)(void *Opt,void *Mod,PricingMethod *Met)

{

TYPEOPT* ptOpt=(TYPEOPT*)Opt;

TYPEMOD* ptMod=(TYPEMOD*)Mod;

double r,divid;

r=log(1.+ptMod->R.Val.V_DOUBLE/100.);

divid=log(1.+ptMod->Divid.Val.V_DOUBLE/100.);

return

CoxRossRubinstein_79(ptOpt->EuOrAm.Val.V_BOOL,ptMod->S0.Val.V_PDOUBLE,

ptOpt->PayOff.Val.V_NUMFUNC_1,ptOpt->Maturity.Val.V_DATE-ptMod->T.Val.V_DATE,

r,divid,ptMod->Sigma.Val.V_PDOUBLE,Met->Par[0].Val.V_INT,

&(Met->Res[0].Val.V_DOUBLE),&(Met->Res[1].Val.V_DOUBLE));

}

The macro CALC(X) expands in modelname_optionfamilyname_X, its main purpose is to
avoid conflicting names between different modules. The return value of this function should
be zero if everything is OK, something else otherwise. It is possible to make use of the error
messages stuff discussed before by returning the adequate flag. The somewhat heavy way of
accessing the fields of the objects *Opt, *Mod, and *Met will be discussed later.

The second function is a little test function which returns zero if the option *Opt may
be priced with the pricing routine, anything else otherwise. Note that this function, with a
mandatory name and format, also takes the object *Mod as argument: this is required for
instance in the case of pricing methods which does not handle forward-starting options in
the Asian or Lookback families. Notice also that it will be applied only to the options of the
family optionfamilyname.

Biblio C Source

20 pages Intro /Doc /Kernel /Interface /Contents 8

int CHK_OPT(TR_CoxRossRubinstein)(void *Opt, void *Mod)

{

Option* ptOpt=(Option*)Opt;

TYPEOPT* opt=(TYPEOPT*)(ptOpt->TypeOpt);

return OK;

}

The CHK_OPT(X) macro expands in CHK_OPT_modelname_optionfamilyname_X. In our
example every option may be priced with this routine, so the body of the function is empty.
Here is another example for a closed formula:

int CHK_OPT(CF_Call)(void *Opt, void *Mod)

{

return strcmp(((Option*)Opt)->Name,"CallEuro");

}

or yet for a routine which applies only to American options:

int CHK_OPT(FiniteDifference_Psor)(void *Opt)

{

Option* ptOpt=(Option*)Opt;

TYPEOPT* opt=(TYPEOPT*)(ptOpt->TypeOpt);

if ((opt->EuOrAm). Val.V_BOOL==AMER)

return OK;

return WRONG;

}

The last component of the file is the object PricingMethod itself. The routine should be
accessed normally through this object, which therefore contains all the required information.
the type PricingMethod is the following (in optype.h):

typedef struct PricingMethod{

const char* Name;

VAR Par[MAX_PAR];

int (*Compute)(void*,void*,struct PricingMethod*);

VAR Res[MAX_PAR];

int (*CheckOpt)(void*,void*);

int (*Check)(int user, Planning*,void*);

int (*Init)(struct PricingMethod*, Option*);

int init; /* zero before initialization */

/* if HelpFilenameHint == NULL PDF file with documentation for the

* pricing method can be found at

* doc/pdf_html/mod/%Model%/%Model%/%Family%/%Name%_doc.pdf

* otherwise the path to the documentation is

* doc/pdf_html/mod/%Model%/%Model%/%Family%/%HelpFilenameHint%_doc.pdf

* where Model is "corrected" model name for the pricing (see

Biblio C Source

20 pages Intro /Doc /Kernel /Interface /Contents 9

* Model::HelpFilenameHint)

* Family is family name for the pricing (if family is STDg then it

* is taken as "STD") */

const char *HelpFilenameHint;

} PricingMethod;

The field Check is intended to check possible constrains between the input parameters of the
routine. The functions written in chk.c in Common may be used for that purpose. In our
case the last part of our file may look like:

static int MET(Init)(PricingMethod *Met)

{

static int first=1;

if (first)

{

Met->Par[0].Val.V_INT2=100;

first=0;

}

return OK;

}

PricingMethod MET(TR_CoxRossRubinstein)=

{

"TR_CoxRossRubinstein",

{{"StepNumber",INT2,100,ALLOW},

{" ",END,0,FORBID}},

CALC(TR_CoxRossRubinstein),

{{"Price",DOUBLE,100,FORBID},

{"Delta",DOUBLE,100,FORBID},

{" ",END,0,FORBID}},

CHK_OPT(TR_CoxRossRubinstein),

CHK_tree,

MET(Init)

};

Notice that the names of the initialization function and method object are mandatory. For
the generation of the documentation system and hyperlinks, the name of the routine
should be that of the C file (without the extension) . The macro MET(X) expands in
modelname_optionfamilyname_X.
The input (Get), output (Show) and check (Check) functions for the type PricingMethod
are in method.c in the directory Common .

Biblio C Source

20 pages Intro /Doc /Kernel /Interface /Contents 10

2.3 The master file (e.g. bs1d_std.c)

This file begins with a function which checks the compatibility of the parameters of the object
*Mod and *Opt. For instance it checks that the current date is before maturity. It returns
zero if everything is OK:

int MOD_OPT(ChkMix)(Option *Opt,Model *Mod)

{

TYPEOPT* ptOpt=(TYPEOPT*)(Opt->TypeOpt);

TYPEMOD* ptMod=(TYPEMOD*)(Mod->TypeModel);

int status=OK;

if ((ptOpt->Maturity.Val.V_DATE)<=(ptMod->T.Val.V_DATE))

{

Fprintf(TOSCREENANDFILE,"Current date greater than maturity!\n");

status+=1;

};

return status;

}

The macro MOD_OPT(X) expands in modelname_optionfamilyname_X. The name of the func-
tion is mandatory.

The next item is an array of the pricing methods of the directory:

extern PricingMethod MET(CF_Call);

extern PricingMethod MET(CF_Put);

[...]

extern PricingMethod MET(TR_BBSR);

PricingMethod* MOD_OPT(methods)[]={

&MET(CF_Call),

&MET(CF_Put),

[...]

&MET(TR_BBSR),

NULL

};

Next comes an object of type Pricing which essentially points to the previous objects. The
access to the routines of the directory should be made through this last one. The type Pricing
(in optype.h) is defined as:

typedef struct Pricing{

Label ID;

PricingMethod** Methods;

DynamicTest* Test;

int (*CheckMixing)(Option*,Model*);

} Pricing;

Biblio C Source

20 pages Intro /Doc /Kernel /Interface /Contents 11

In every master file of a pricing methods directory the instance of this type should be the
following:

extern DynamicTest MOD_OPT(test);

Pricing MOD_OPT(pricing)={

ID_MOD_OPT,

MOD_OPT(methods),

&MOD_OPT(test),

MOD_OPT(ChkMix)

};

Note that the object MOD_OPT(test) of type DynamicTest is defined in the file model-
name_optionfamilyname_test.c (e.g. bs1d_std_test.c), as we shall see later.

2.4 Shared routines

The feature ’one routine-one file’ of course has its limitations. If within the same family
(directory) of pricing methods a same function is used in several files it should be defined (not
declared, but defined) with the keyword static in the file modelname_optionfamilyname_.h.
This happens for instance in the bs1d_std family for which the file bs1d_std.h is the following:

#ifndef _BS1D_STD_H

#define _BS1D_STD_H

#include "bs1d.h"

#include "std.h"

#include "mathtools.h"

#include "random.h"

#include "numfunc.h"

#include "transopt.h"

static double Nd1(double s,double r,double divid,

double sigma,double T,double K)

{

double d1=(log(s/K)+(r-divid+0.5*sigma*sigma)*T)/(sigma*sqrt(T));

return N(d1);

}

#endif

In the more exceptional case where a routine or function may be used in pricing method files
across different directories, it should be declared in a global way in the file transopt.h and
defined, also in a global way and not as a static function, in one file method.c. For instance:
In CF_Call.c:

int Call_BlackScholes_73(double s,double k,double t,double r,

double divid,double sigma,double *ptprice,double *ptdelta)

Biblio C Source

20 pages Intro /Doc /Kernel /Interface /Contents 12

instead of static int Call . . . The file transopt.h could then be:

#ifndef _TRANSOPT_H

#define _TRANSOPT_H

int Call_BlackScholes_73(double s,double k,double t,double r,

double divid,double sigma,double *ptprice,double *ptdelta);

[..]

#endif

3 Dynamical tests

Within every directory of pricing methods there should be a single file model-
name_optionfamilyname_test.c which contains the simulation of a dynamically delta-hedged
selling of an option of the family until maturity, in discrete time.
The situation is almost the same as for a pricing method, except that there is no check on
the option (i.e. the dynamical test should work for every option of the family). The type
DynamicTest (in optype.h) is the following:

typedef struct DynamicTest {

const char* Name;

VAR Par[MAX_PAR_DYNAMIC_TEST];

int (*Simul)(void*,void*,PricingMethod *Met,struct DynamicTest

VAR Res[MAX_PAR_DYNAMIC_TEST];

int (*CheckTest)(void*,void*,PricingMethod *Met);

int (*Check)(int user, Planning*,void*);

int (*Init)(struct DynamicTest*, Option*);

} DynamicTest ;

The Get, Show and Check utilities for this type are in the file test.c in Common .

4 The VAR system

4.1 General definition

For the purpose of easily modifying and also iterating the various parameters which come into
play either through a model, an option, or a pricing method, we have designed a somewhat
elaborated type, which enables to transparently handle parameters with various types.

typedef struct VAR_t VAR;

struct VAR_t {

const char* Vname;

int Vtype;

union {

int V_INT;

int V_INT2;

int V_RGINT130;

int V_RGINT13;

Biblio C Source

20 pages Intro /Doc /Kernel /Interface /Contents 13

int V_RGINT12;

double V_DOUBLE;

long V_LONG;

double V_PDOUBLE;

double V_SPDOUBLE;

double V_SNDOUBLE;

double V_SDOUBLE2;

double V_RGDOUBLE051;

double V_DATE;

double V_RGDOUBLE;

double V_RGDOUBLE1;

double V_RGDOUBLEM11;

int V_PINT;

double V_RGDOUBLE12;

double V_RGDOUBLE02;

int V_BOOL;

int V_PADE;

double V_RGDOUBLE14;

char *V_FILENAME;

struct NumFunc_1* V_NUMFUNC_1;

struct NumFunc_2* V_NUMFUNC_2;

struct NumFunc_nd* V_NUMFUNC_ND;

struct PtVar* V_PTVAR;

PnlVect* V_PNLVECT;

PnlVectCompact* V_PNLVECTCOMPACT;

enumeration V_ENUM;

} Val;

int Viter;

vsetable Vsetable; /* a flag telling if a variable is to

* be set or get interactively */

};

• Vname stores the name of the parameter

• Vtype is an integer describing the real type of the parameter (which may be a user
created type)

• Val is a union of keys with names V_Vtype actually containing the data

• Viter is a flag with possible values

– ALLOW: the parameter can be iterated

– FORBID: iteration is not allowed

– ALREADYITERATED: the parameter has already selected for iteration

– IRRELEVANT: the parameter is not meaningful so it chould not be taken into account

• Vsetable is a flag SETABLE or UNSETABLE stating if the value of the parameter can be
modifed or not. The value of this flag is not to mixed with the IRRELEVANT value of the

Biblio C Source

20 pages Intro /Doc /Kernel /Interface /Contents 14

flag Viter. For instance, some parameters are inherited from models to options; in this
case, at the option level, they appear as UNSETABLE.

4.2 The enumeration type

Enumerations are on the following two structures

typedef struct PremiaEnum_t PremiaEnum;

typedef struct PremiaEnumMember_t PremiaEnumMember;

/* the array of PremiaEnumMember must end with {NULL, NULLINT, 0, 0} */

struct PremiaEnum_t

{

unsigned size; /*!< size in bytes of an enum member */

PremiaEnumMember *members; /*!< a pointer to the first member of the enum */

const char *label; /*!< printable label for the enumeration */

};

struct PremiaEnumMember_t

{

const char *label; /*!< string describing the choice */

int key; /*!< value associated to this choice */

int nvar; /*!< length of array Par, must be smaller than MAX_PAR_ENUM */

VAR Par[MAX_PAR_ENUM]; /*!< extra parameters associated to this choice */

};

An entry of an enumeration consists in a variable of type PremiaEnumMember. Here is the
description of the different fields.

• label: a string describing the choice

• key: the integer identifier associated to the choice. Note that when creating a
PremiaEnum, the keys appearing in the PremiaEnumMembers do not always start form 0
and are not always contiguous. So, one cannot infer that the second choice of an enum
has key 2. To properly deal with this, we provide three functions

– PremiaEnumMember * lookup_premia_enum(const VAR * x, int id)

Returns a pointer to the entry with key id.

– PremiaEnumMember *

lookup_premia_enum_with_index(const VAR * x, int id, int *index)

Returns a pointer to the entry with key id and sets *index to the rank of the
choice in the list, counting the rank starts from 0.

– VAR * lookup_premia_enum_par(const VAR * x, int id) Returns a pointer to
the Par field of the entry with key id.

• nvar Real length of array Par

• Par Array of VARs holding the extra parameter associated to this choice in the enu-
meration.

Biblio C Source

20 pages Intro /Doc /Kernel /Interface /Contents 15

4.3 Iterating a parameter

If the parameter is selected for iteration (input stage), its address is stored in the first field
of an object of type Iterator which is designed to keep all the information relevant to the
iteration of this parameter. It will also store the minimum, maximum value of the iteration
and the sampling size. The type Iterator is the following:

typedef struct Iterator{

VAR* Location;

VAR Min;

VAR Max;

VAR Default;

int StepNumber;

} Iterator;

The field Default will keep the initial value of the parameter (which is defined within the
Init function of the object it belongs to) in order to reset the parameter at the end of the
session. The maximum value for the field StepNumber is (in optype.h):

#define MAX_ITER 1000

The function (in var.c)

int LowerVar(int user,VAR *x, VAR*y);

allows the checking of consistency between the minimum and maximum values set by the user.
During the current session the list of all the parameters selected for iteration is stored in

an object of type Planning :

typedef struct Planning{

Iterator Par[MAX_ITERATOR];

int VarNumber;

char Action;

int NumberOfMethods;

} Planning;

where MAX_ITERATOR is set in optype.h:

#define MAX_ITERATOR 3

and VarNumber keeps the number of parameters currently selected for iteration. The flag
NumberOfMethods stores the index of the method at hand in case of a comparison between
pricing methods, the flag Action is set to TOSCREEN during the input stage, its other possible
values are TOFILE and TOSCREENANDFILE, NAMEONLYTOFILE, VALUEONLYTOFILE for the output
stage.
If a parameter is selected for iteration, its field Viter will be set to the index of the Iterator

array of the object Planning. This way there is a two-ways channel between this object and
the parameter at hand. This is also the reason why the values of ALLOW,. . . , are negative.
The function (in var.c):

void NextValue(int count,Iterator* pt_iterator)

Biblio C Source

20 pages Intro /Doc /Kernel /Interface /Contents 16

deals with the iteration operation of the parameter corresponding to the *pt_iterator object.
Other utilities (in var.c) are devoted to the management of a Planning object:

void ResetPlanning(Planning *pt_plan);

void ShowPlanning(int user,Planning *pt_plan);

void ShrinkPlanning(int index,Planning*pt_plan);

int ChkStepNumber(int user,Iterator *pt_iterator,int step);

4.4 Input-Output of a VAR

The following functions manage the input-output of a VAR:

int Fprintf(int user,const char *s,...);

int FprintfVar(int user,const char s[],VAR *x);

int PrintVar(Planning *pt_plan,int user,VAR*);

int ScanVar(Planning *pt_plan,int user,VAR*);

int ChkVar(Planning *pt_plan,VAR *x);

int GetParVar(Planning *pt_plan,int user,VAR *x);

int ShowParVar(Planning *pt_plan,int user,VAR *x);

int ChkParVar(Planning *pt_plan,VAR *x);

Fprintf is only a redefinition of fprintf which takes into account the user flag we discussed
above (TOSCREEN,. . .).FprintfVar does what you think it does. PrintVar is more elaborated
since it displays in a suitable way the fields of the adequate Iterator object in case the VAR
has been selected for iteration. ScanVar displays the value of a VAR and prompt the user
either to agree with the current value, modify it or (if possible) iterate. ChkVar checks that
the current value of a VAR pertains to its Vtype: this allows the definition of constrained
types (the range [0, 1] for a correlation factor for instance). Lastly the ..ParVar functions
are list versions of the above ones.

4.5 Initialization

One of the main interest of the VAR system is to allow the definition of new types (see above).
Each type should be indexed by a flag in optype.h:

#define FIRSTLEVEL 29 /* first level types are stricly

* smaller than FIRSTLEVEL */

/*FirstClass*/

#define PREMIA_NULLTYPE 0

#define INT 1

#define DOUBLE 2

#define LONG 3

#define PDOUBLE 4

#define DATE 5

#define RGDOUBLE 6

#define BOOL 7

#define PADE 8

#define RGDOUBLE12 9

Biblio C Source

20 pages Intro /Doc /Kernel /Interface /Contents 17

#define INT2 10

#define RGINT13 11

#define RGINT12 12

#define SPDOUBLE 13

#define RGDOUBLE051 14

#define RGDOUBLE14 18

#define RGDOUBLEM11 19

#define PINT 20

#define RGDOUBLE1 21

#define RGDOUBLE02 22

#define FILENAME 24

#define ENUM 25

#define RGINT130 26

#define SNDOUBLE 27

#define SDOUBLE2 28

/*SecondClass*/

#define NUMFUNC_1 29

#define NUMFUNC_2 30

#define NUMFUNC_ND 31

#define PTVAR 32

#define PNLVECT 33

#define PNLVECTCOMPACT 34

/*This last type should be less than MAX_TYPE:*/

#define MAX_TYPE 40

PDOUBLE, for instance, is intended for strictly positive double. The maximum of user-defined
types in this way is MAX_TYPE. Some VAR does not store their values (for instance in case of
arrays of doubles) directly in the field Val, but in another field of a structure to which the
field Val should point: they are called second-level VARs, of course they require a peculiar
treatment in the above Input-Output routines.

The 3 arrays (in var.c)

static char **formatV;

int **true_typeV;

static char **error_msgV;

WHICH MUST BE INITIALIZED BEFORE ANY USE OF THE VAR SYSTEM by
the function

int InitVar(void);

with the corresponding desallocation function:

int ExitVar(void);

allow to deal with the various types at the input and output stages. formatV contains the
formatting string of the ’true type’ behind Vtype, which is itself in the array true_typeV.
The values for the type PDOUBLE for instance are:

Biblio C Source

20 pages Intro /Doc /Kernel /Interface /Contents 18

formatV[PDOUBLE]="%lf";

true_typeV[PDOUBLE]=DOUBLE;

error_msgV[PDOUBLE]="Should be greater than 0!";

The last thing to do to implement the type PDOUBLE is to write the adequate check in ChkVar:

case PDOUBLE:

status=(x->Val.V_PDOUBLE<0.); /* PDOUBLE>=0.*/

break;

5 Numerical functions

Numerical functions are implemented through the types (in optype.h):

/*NumericalFunctions*/

typedef struct NumFunc_1{

double (*Compute)(VAR*,double);

VAR Par[MAX_PAR];

int (*Check)(int user,Planning*,void*);

} NumFunc_1;

typedef struct NumFunc_2{

double (*Compute)(VAR*,double,double);

VAR Par[MAX_PAR];

int (*Check)(int user,Planning*,void*);

} NumFunc_2;

where the suffix _1 or _2 correspond to the number of arguments of the *Compute field after
the parameter VAR* which should be the field Par of the structure. Typically the payoffs
of one-dimensional options will be implemented as NumFunc_1, those of two-dimensional or
path-dependent claims as NumFunc_2. The field Par stores some parameters upon which the
function may depend, like the strike for a Call or a Put payoff. The field Check is intended
to check possible constrains between the parameters of Par: for instance the strikes K1 and
K2 of a CallSpread should verify K1 ≤ K2. The field *Compute may point to a function
of the file numfunc.c in the directory Common . The check function in the same way may
be one of the functions of chk.c.
The implementation of a CallSpread payoff may thus look like (file callspreadeuro.c in
Opt/Std):

static NumFunc_1 callspread=

{

CallSpread,

{{"Strike 1",PDOUBLE,100,ALLOW},

{"Strike 2",PDOUBLE,110,ALLOW},

{" ",END,0,FORBID}

},

CHK_callspread

};

Biblio C Source

20 pages Intro /Doc /Kernel /Interface /Contents 19

where the function CallSpread is defined in numfunc.c:

double CallSpread(VAR *param,double spot)

{

double strike1=(*param).Val.V_PDOUBLE,strike2=(*(param+1)).Val.V_PDOUBLE;

return MAX(0.,spot-strike1)-MAX(0.,spot-strike2);

}

and also the function CHK_callspread in chk.c:

int CHK_callspread(int user, Planning *pt_plan,void* dum)

{

NumFunc_1* payoff=(NumFunc_1*)dum;

int status=OK;

status+=ChkParVar(pt_plan,payoff->Par);

if (payoff->Par[1].Val.V_PDOUBLE<payoff->Par[0].Val.V_PDOUBLE)

{

Fprintf(TOSCREENANDFILE,"%s: lower than %s\n",

payoff->Par[1].Vname,payoff->Par[0].Vname);

status+=1;

}

return status;

}

6 Computation time information

In order to get a basic information regarding the computation time of a routine, we have
designed the following structure:

/*Time Info*/

typedef struct TimeInfo{

Label Name;

VAR Par[MAX_PAR];

VAR Res[MAX_PAR];

int (*Check)(int user, Planning *, struct TimeInfo *);

int (*Init)(struct TimeInfo*);

} TimeInfo;

There is a single instance of this type which is in timeinfo.c in Common :

TimeInfo computation_time_info=

{

"No Computation Time Information",

{{"Choice",INT,100,FORBID},

{"AveragingTimeWidth",INT,100,FORBID},

{"NumberOfRuns",LONG,100,FORBID},

Biblio C Source

20 pages Intro /Doc /Kernel /Interface /Contents 20

{" ",END,0,FORBID}},

{ {"MeanTime(ms)",DOUBLE,100,FORBID},

{" ",END,0,FORBID}},

Chk_TimeInfo_OK,

Init

};

The corresponding Get, Show, Check and initialization function are in the same file.
Since many processes may be at work at the same time on your computer it is not that easy

to get a meaningful result by a plain call to some kind of difftime function. A more robust
result is obtained by averaging over several trials. The number of trials is the parameter
AveragingTimeWidth of the Par field. Lastly the computation time of a given routine may be
smaller than the unit of time measurement of the computer (typically for a closed formula).
In such a case you will get a nil computation time regardless of the averaging procedure.
So it may be necessary to measure a big enough number of trials instead of a single one
as a elementary input to the averaging stuff. This is the parameter NumberOfRuns. The
corresponding code, in the function Action(...) of the file tools.c is the following:

if (pt_time_info->Par[0].Val.V_INT==OK)

{

averaging=pt_time_info->Par[1].Val.V_INT;

number_of_runs=pt_time_info->Par[2].Val.V_INT;

diff_time=0.;

for (i=0;i<averaging;i++)

{

start=clock();

for (j=0;j<number_of_runs;j++)

error=(pt_method->Compute)(pt_option->TypeOpt,

pt_model->TypeModel,pt_method);

finish=clock();

diff_time+=((double)finish-(double)start)/(double)CLOCKS_PER_SEC;

}

pt_time_info->Res[0].Val.V_DOUBLE=diff_time/(double)averaging;

}

Biblio C Source

	Models and Options
	Options
	Models
	Accessing to Models and Options objects

	Pricing methods
	Subdirectories of pricing methods
	Pricing method files
	The master file (e.g. bs1d_std.c)
	Shared routines

	Dynamical tests
	The VAR system
	General definition
	The enumeration type
	Iterating a parameter
	Input-Output of a VAR
	Initialization

	Numerical functions
	Computation time information

