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Abstract. We describe FFT-based method for computing standard risk measures
in infinitely divisible distributions. The method efficiently recovers the cumulative
distribution function from the characteristic function using the inversion theorem by
means of the Fast Fourier Transform algorithm. The method for computing VaR and
CTE implemented into Premia 14 is closely related to the papers Kim et al. (2010)
and Kelani and Quittard-Pinon (2011).

Premia 18

1. Introduction

In recent years more and more attention has been given to stochastic models of finan-

cial markets which depart from the traditional Gaussian model. At this moment a wide

range of models is available. One of the tractable empirical models are jump diffusions

or, more generally, Lévy processes. We concentrate on the one-dimensional case. For an

introduction on these models applied to finance, we refer to [5, 7].

In insurance and in the financial industry, pricing contracts at fair price is an important

subject as well as hedging and assessing risk of portfolios or positions. Among the risk

management tools promoted by the Basel committee, the most popular is the Value-at-

Risk (VaR) which measures the potential loss in value of a risky asset or portfolio over

a defined period for a given confidence interval. It was introduced by JP Morgan, and

has been intensively used in the financial and insurance sector since then.
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Nevertheless, VaR has a number of well-known limitations as a risk measure, see e.g.

[2]. It has led to another risk measure, namely the conditional Value-at-Risk (CVaR) also

known as Conditional Tail Expectation (CTE), see [10, 16, 19, 20]. By the definition,

CTE is the average of VaRs larger than the VaR for a given tail probability. It should

be noted that CVaR is a superior alternative to VaR because it satisfies all axioms

of coherient risk measures and it is consistent with preference relations of risk-averse

investors (see details in Rachev et al. [21]).

In recent years, many generalization of risk measures have been suggested, see e.g.

[1, 22]. However, VaR and CTE still remain the most applicable risk measures. In

general Lévy models special numerical procedures are needed for computing VaR and

CTE, in contrast to the Gaussian case where explicit formulas are known. See details in

[12, 11].

2. Infinitely divisible distributions: a short reminder

An infinitely divisible distribution (i.i.d.) is defined as a distribution which can be

written – for every positive integer n - as the n-fold convolution of some distribution

function (for details, see e.g. [21]). An i.i.d may have a Gaussian component and/or

pure jump component. The latter is characterized by the density of jumps, which is

called the Lévy density. We denote it by F (dy).

An i.i.d. X can be completely specified by its characteristic exponent, ψ, definable

from the equality (we confine ourselves to the one-dimensional case):

(2.1) φX(ξ)(= E[eiξX ]) = e−ψ(ξ).

The characteristic exponent is given by the Lévy-Khintchine formula:

(2.2) ψ(ξ) =
σ2

2
ξ2 − iµξ +

∫ +∞

−∞
(1 − eiξy + iξy1|y|≤1)F (dy),

where σ2 is the variance of the Gaussian component, and F (dy) satisfies

(2.3)
∫

R\{0}
min{1, y2}F (dy) < +∞.
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Example 2.1. [KoBoL(CGMY) model] The characteristic exponent of a pure jump

KoBoL (CGMY) model of order ν ∈ (0, 2), ν 6= 1, is given by

(2.4) ψ(ξ) = −iµξ + cΓ(−ν)[λν+ − (λ+ + iξ)ν + (−λ−)ν − (−λ− − iξ)ν ],

where c > 0, µ ∈ R, and λ− < −1 < 0 < λ+, see [5]. The paper [6] uses different

parameter’s labels C,G,M, Y :

(2.5) ψ(ξ) = −iµξ + CΓ(−Y )[GY − (G+ iξ)Y +MY − (M − iξ)Y ].

The relation between two parameterizations is quite easy to obtain:

(2.6) c = C, λ+ = G, λ− = −M, ν = Y.

Example 2.2. [Normal Inverse Gaussian model] A normal inverse Gaussian process

(NIG) can be described by the characteristic exponent of the form (see [3])

(2.7) ψ(ξ) = −iµξ + δ[(α2 − (β + iξ)2)1/2 − (α2 − β2)1/2],

where α > |β| > 0, δ > 0 and µ ∈ R.

Example 2.3. [Variance Gamma model The characteristic exponent of a Variance

Gamma model is given by (see [15])

(2.8) ψ(ξ) = −iµξ + c[ln(λ+ + iξ) − lnλ+ + ln(−λ− − iξ) − ln(−λ−)],

where c > 0, µ ∈ R, and λ− < −1 < 0 < λ+.

Example 2.4. [Kou model] If F∓(dy) are given by exponential functions on negative

and positive axis, respectively:

F∓(dy) = c±(±λ±)eλ±y,

where c± ≥ 0 and λ− < 0 < λ+, then we obtain Kou model. The characteristic exponent

of the process is of the form

(2.9) ψ(ξ) =
σ2

2
ξ2 − iµξ +

ic+ξ

λ+ + iξ
+

ic−ξ

λ− + iξ
.

The version with one-sided jumps is due to [8], the two-sided version was introduced in

[9], see also [13].
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3. Computing VaR and CTE

Let the random infintely divisible variable X represents the loss of a portfolio, and

FX(x) = P(X < x), pX = d
dx
FX(x), φ(ξ) = E[eiξX ] stand for the cumulative distribution

function (cdf), the probability distribution function (pdf), and the characteristic function

(chf) of X, respectively.

It is well known (see e.g. [12]), that the VaR of X at tail probability α is defined as

follows.

(3.1) VaRα(X) = inf{y ∈ R|FX(y) ≥ α}.

Further, the CTE at tail probability α is defined as the average of VaRs which are larger

than the VaRα(X), that is

(3.2) CTEα(X) =
1

1 − α

∫ 1

α
VaRǫ(X)dǫ.

If FX(x) is continuous, then

(3.3) FX(x) =
∫ x

−∞
pX(y)dy,

and the following formulas are valid (see [12]):

(3.4) VaRα(X) = F−1
X (α),

and

(3.5) CTEα(X) =
1

1 − α

∫ +∞

VaRα(X)
xpX(x)dx =

1

1 − α
E

[

X1X≥VaRα(X)

]

.

If the probability density pX is known, one can apply a quadrature rule to (3.3) and

(3.5) for computing numerically VaR and CTE, respectively. However, in the case of

infinitely divisible distributions as a rule explicit analytical formulas for pdf are not

available. In order to recover the pdf pX one can use the characteristic function φX

which is typically known in the closed form. In the general case, pX can be expressed in

terms of the characteristic function φX(ξ), by using the Fourier transform

(3.6) pX(x) = (2π)−1
∫ +∞

−∞
e−ixξφX(ξ)dξ,
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where the chf φX(ξ) can be written via the characteristic exponent, see (2.1). The formula

(3.6) can be efficiently realized by means of the Fast Fourier Transform algorithm, see

the next section.

One can also substitute the formula (3.6) into (3.3) and express the cumulative dis-

tribution function FX in terms of the Fourier integral (see [12, 11].

(3.7) FX(x) =
exρ

π
Re

∫ ∞

0
e−ixξφX(ξ + iρ)

ρ− iξ
dξ, x ∈ R,

where ρ > 0. Note that the correspondent Fourier integral for CTE is more involved.

The difference between results obtained by these two approaches is unsignificant. How-

ever, the method which uses quadrature rule and (3.6) is more simpe for a numerical

implementation. Thus we have chosen to implement the first approach.

Further, we consider computing VaR and CTE for geometrical Lévy models. Let the

stock price St = S0e
Xt is an exponential Lévy process, then the chf of Xt is given by

the formula φXt
(ξ) = e−tψ(ξ), where ψ is the characteristic exponent of the form (2.2).

As well as [11], we consider a more general quantity Lt = St − K, where K ≥ 0. The

computation of the VaR for Lt is straightforward because it is related to the Value at

Risk of Xt, which has already been obtained, see (3.4). From [11] we have

(3.8) VaRα(LT ) = S0e
VaRα(XT ) −K.

Due to (3.5), we obtain

(3.9)

CTEα(LT ) =
1

1 − α

∫ +∞

VaRα(XT )
(S0e

x −K)pXt
(x)dx =

S0

1 − α

∫ +∞

VaRα(XT )
expXt

(x)dx−K.

We remark that (3.9) includes the requirement that E[eXt ] < ∞.

3.1. Computing the pdf of an infinitely divisible distribution by using Fast

Fourier Transform. Let d be the step in x-space, ζ–the step in ξ-space, and M = 2m

the number of the points on the grid; decreasing d and increasing (even faster) M , we

obtain a sequence of approximations to the option price. An approximation for the pdf

can be efficiently computed by using the Fast Fourier Transform (FFT). Consider the
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algorithm (the discrete Fourier transform (DFT)) defined by

(3.10) Gl = DFT [g](l) =
M−1
∑

k=0

gke
2πikl/M , l = 0, ...,M − 1.

(It differs in sign in front of i from the algorithm fft in MATLAB). The DFT maps m

complex numbers (the gk’s) into m complex numbers (the Gl’s). The formula for the

inverse DFT which recovers the set of gk’s exactly from Gl’s is:

(3.11) gk = iDFT [G](k) =
1

M

M−1
∑

l=0

Gle
−2πikl/M , k = 0, ...,M − 1.

In our case, the data (pdf) consist of a real-valued array {gk}
M
k=0. The resulting

transform satisfies GM−l = Ḡl. Since this complex-valued array has real values G0 and

GM/2, and M/2 − 1 other independent complex values G1, ..., GM/2−1, then it has the

same “degrees of freedom” as the original real data set. In this case, it is inefficient to

use full complex FFT algorithm. The main idea of FFT of real functions is to pack the

real input array cleverly, without extra zeros, into a complex array of half of length.

Then a complex FFT can be applied to this shorter length; the trick is then to get the

required values from this result (see [17] for technical details). To distinguish DFT of

real functions we will use notation RDFT.

Fix the space step d > 0 and number of the space points M = 2m. Define the partitions

of normalized log-price domain [−Md
2

; Md
2

) by points xk = −Md
2

+ kd, k = 0, ...,M − 1,

and frequency domain [−π
d
; π
d
] by points ξl = 2πl

dM
, l = −M/2, ...,M/2.

Using the formula (3.6) we can approximate the pdf pX as follows.

pX(xk) =
1

2π

∫ +∞

−∞
eixkξφX(ξ)dξ

≈
1

2π

∫ π/d

−π/d
eixkξφX(ξ)dξ ≈

1

2π

M/2
∑

l=−M/2+1

eixkξlφX(ξl)
2π

dM

≈
(

2

Md
Re

M/2−1
∑

l=1

e2πikl/Mp(ξl)(−1)l +
1

Md
(1 + ReφX(ξM/2))

)

.

Finally,

(3.12) pX(xk)(xk) ≈
1

d
iRDFT [φ̃X ](k), k = 0, ...,M − 1,

where (φ̃X)l = φX(ξl) · (−1)l. Note that real-FFT is two times faster than FFT.
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Table 4.1. VaR and CTE in the CGMY model

A
Quantile risk Measure Premia, d=0.0001 Premia, d=0.00005 FFT MC C.I.99%
VaR0.9(L) 0.162997 0.163055 0.16303 0.162332 [0.14748 , 0.17719]
VaR0.95(L) 0.287111 0.287111 0.28711 0.287141 [0.26756 , 0.30300]
VaR0.975(L) 0.410720 0.410720 0.41069 0.405142 [0.38026 , 0.43264]
VaR0.99(L) 0.578697 0.578618 0.57863 0.598236 [0.54706 , 0.65849]

B

Quantile risk Measure Premia, d=0.0001 Premia, d=0.00005 FFT MC
CTE0.9(L) 0.345468 0.344910 0.344812 0.344813
CTE0.95(L) 0.472005 0.471772 0.471422 0.472922
CTE0.975(L) 0.601702 0.601425 0.601138 0.606909
CTE0.99(L) 0.781253 0.781585 0.780711 0.790691

CGMY parameters: C = 1, G = 5, M = 10, Y = 0.5, µ = 0.
VaR and CTE parameters: K = 1, S = 1, T = 1, α.
Panel A: VaR; Panel B: CTE.

4. Numerical examples

In this section, we assume a loss of the type LT = S0e
XT − K, where Xt follows the

exponential CGMY (KoBoL) process (see Example 2.1). The parameters C,G,M, Y play

an important role in capturing some properties of the stochastic process under study. In

particular, the parameters M and G, respectively, control the rate of exponential decay

in far parts of the right and the left tails of the probability density. We will use zero

drift with the parameters C = 1, G = 5, M = 10, Y = 0.5 which were obtained in [15]

by calibrating the CGMY model to the options prices on the S&P 500 index.

We compare the results obtained by the aprroach based on (3.3) and a quadrature

rule (implemented into Premia), and the method which uses (3.7) (FFT-method). The

Table 4.1 shows the Premia and FFT values of the standard risk measures compared

to the ones simulated, the 99% confidence interval for the VaR(L) is also provided (see

[11]).

5. The implementation into Premia 14

We implemented computing VaR and CTE under the exponential CGMY (KoBoL)

model (see Example 2.1). One can use the routine for the other types of Lévy processes
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by replacing the corresponding part with the computation of the characteristic exponent.

Notice that due to (3.9), the parameter of the CGMY model labeled M should satisfy

the following inequality: M > 1. The method converges well if G > 1 as well.

The input parameters of the problem are Maturity T , Strike K, the Tail Probabil-

ity α. Note that in the program implemented to Premia 14 one can manage by two

parameters of the algorithm: the space step d, the scale of logprice range L. Parame-

ter L controls the size of the truncated region in x-space; it corresponds to the region

(−L ln(4)/d;L ln(4)/d). The typical values of the parameter are L = 1, L = 2 and L = 4.

By default we set L = 2. To improve the results one should decrease d, when L is fixed.
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[14] Kudryavtsev, O.E., and S.Z. Levendorskǐi, 2006, “Pricing of first touch digitals under normal
inverse Gaussian processes”, International Journal of Theoretical and Applied Finance, Vol. 9,
No. 6, 915–949.



COMPUTING VALUE-AT-RISK AND CONDITIONAL TAIL EXPECTATION IN LÉVY MODELS 9

[15] Madan, D.B., Carr, P., and E. C. Chang, 1998, “The variance Gamma process and option pricing",
European Finance Review, 2, 79–105. 3, 7

[16] G. Pflug, 2000, “Some remarks on the value-at-risk and the conditional value-at-risk”, in: Proba-

bilistic Constrained Optimization: Methodology and Applications, S. Uryasev (Ed.), Kluwer Aca-
demic Publishers, pp. 272-Ű281. 2

[17] Press,W., Flannery,B., Teukolsky, S. and W. Vetterling, 1992, Numerical recipes in C: The Art of

Scientific Computing, Cambridge Univ. Press, available at www.nr.com. 6
[18] S. T. Rachev, S. Stoyanov and F. J. Fabozzi, 2007, “Advanced Stochastic Models, Risk As-

sessment,and Portfolio Optimization: The Ideal Risk, Uncertainty, and Performance Measures”,
Wiley, New Jersey.

[19] R. T. Rockafellar and S. Uryasev, 2000, “Optimization of conditional value-at-risk”, Journal of

Risk, 2(3), pp. 21-Ű41. 2
[20] R. T. Rockafellar and S. Uryasev, 2002, “Conditional value-at-risk for general loss distributions”,

J. Banking and Finance, 26, pp. 1443–1471. 2
[21] Sato, K., 1999, Lévy processes and infinitely divisible distributions, Cambridge University Press,

Cambridge. 2
[22] Wang, T., 1999, A class of dynamic risk measures. University of British Columbia.

2


	1. Introduction
	2. Infinitely divisible distributions: a short reminder
	3. Computing VaR and CTE
	3.1. Computing the pdf of an infinitely divisible distribution by using Fast Fourier Transform

	4. Numerical examples
	5. The implementation into Premia 14
	References

