
Premia 18

The underlined algorithms have been already

implemented.

1 Standard European Options in the Black-Scholes

Model

1.1 Call, Put, CallSpread, Digit

1.1.1 Analytic

• Black-Scholes Type Formula The general version of the Black-Scholes for-
mula used to price European options on stocks paying a continuos dividend
yields [202]

• Stochastic expansion for the pricing of call options with discrete dividends.
[226]

1.1.2 Tree

• Cox Ross Rubinstein Binomial Binomial algorithm with the Cox-Ross-
Rubinstein stock price parameters and probabilities [201]

• Extended Cox Ross Rubinstein Binomial Two steps backward CRR scheme,
for a better accuracy of the Greeks [20]

• Hull White Binomial Binomial algorithm with the Hull-White stock price
parameters and probabilities modified to account for dividends [30]

• Euler Binomial Stock price parameters and probabilities obtained from
the discretization of the Wiener process

• Kamrad Ritchken Trinomial Trinomial tree with a stretch parameter λ

[235]

• Third Moment Trinomial tree with matching first three moments

• LnThird Moment Trinomial tree with matching first four moments giving
a o(h2) order of accuracy

• Figlewski Gao AMM Trinomial tree with Adaptive Mesh Model[263]

• Moment and Matching Strike Algorithm Binomial tree with Moment and
Matching Strike Algorithm[43]
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• Efficient pricing of derivatives on assets with discrete dividends[194]

• Pricing American barrier options with discrete dividends by binomial
trees[190]

• Smooth convergence in the binomial model[175]

1.1.3 Finite-Difference

• Gauss Method For a given time step the elliptic problem is solved by the
direct method of Gauss for tridiagonal matrix [44]

• Explicit Method Direct explicit scheme [44]

• Iterative Sor Method For a given time step the elliptic problem is solved
by the iterative method Sor(Successive Overrelaxation) [44]

• Multigrid Method For a given time step the elliptic problem is solved by
a FMG Multigrid algorithm [296]

• Adaptative Finite Element Method Adaptative time step and space varies
to improve precision.[91] [32]

• Localization of the Black-Scholes equation using transparent boundary
conditions

1.1.4 Montecarlo

• Monte Carlo Standard

• Quasi Montecarlo Low discrepancy sequences(Faure, SquareRoot, VanDerCorput,
Sobol, Niedereitter, Owen’s Randomization Technique) [139], [119], [124],
[122], [8]

• Variance Reduction Various reduction variance methods(Antithetic Methdod,
Stratified Sampling, Control Variate,Moment Matching, Importance Func-
tion, Newton,Malliavin Calculus for Digital Options) [208],[299],[132] [92]

• Scaling and multiscaling in financial series: a simple model [18]

2 Standard American Options in the Black-Scholes

Model

2.1 Call, Put, CallSpread, Digit

2.1.1 Tree

• Cox Ross Rubinstein Binomial Binomial algorithm with the Cox-Ross-
Rubinstein stock price parameters and probabilities [201]
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• Extended Cox Ross Rubinstein Binomial Two steps backward CRR scheme,
for a better accuracy of the Greeks [20]

• Hull White Binomial Binomial algorithm with the Hull-White stock price
parameters and probabilities modified to account for dividends [30]

• Euler Binomial Stock price parameters and probabilities obtained from
the discretization of the Wiener motion process

• Kamrad Ritchken Trinomial Trinomial tree with a stretch parameter λ

[235]

• Third Moment Trinomial tree with matching first three moments

• Breen Accelerated Binomial The Breen accelerated method approximates
the Geske-Johnson option pricing formula [242]

• Broadie-Detemple BBSR Binomial Black-Scholes modification of binomial
algorithm with Richardson extrapolation [135]

• LnThird Moment Trinomial tree with matching first four moments giving
a o(h2) order of accuracy

• Figlewski Gao AMM Trinomial tree with Adaptive Mesh Model[263]

• Moment and Matching Strike Algorithm Binomial tree with Moment and
Matching Strike Algorithm[43]

• Smooth convergence in the binomial model[175]

2.1.2 Finite-Difference

• Brennan-Schwartz Algorithm The Brennan-Schwartz algorithm solves the
linear complementarity problem [90],[45]

• Splitting Gauss Method The obstacle problem is splitted in two steps.
Theta-method finite difference algorithm [198]

• Splitting Explicit Method The obstacle problem is splitted in two steps.
Explicit finite-difference algorithm [198]

• Iterative Psor Method Projected SOR algorithm is used to solve large-scale
linear complementarity problem [65]

• Cryer’s Algorithm Pivoting method to solve directly linear complementar-
ity problem [66]

• Finite Element Method Finite Element Method

• Achdou Pironneau Method Finite difference Crank-Nicholson scheme cou-
pled, within each timestep, with an iterative algorithm to locate the free
boundary. This method is inspired from [302]
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2.1.3 Montecarlo

• Barraquand-Martineau Algorithm Stratification method. [74]

• Broadie-Glassermann Algorithm Approximation of dynamical program-
ming using a stochastic mesh method. [228]

• Tsitsiklis-VanRoy Algorithm Approximation of dynamical programming
using regression method.[255],[254]

• Longstaff-Schwartz Algorithm Estimation of optimal stopping time using
regression method.[89]

• Pages-Bally Algorithm Approximation of dynamical programming using
quantization method. [284]

• Broadie-Glassermann Algorithm Simulation algorithm for estimating the
prices of American option with exercise opprtunities in a finite set of times.
[227]

• Rogers Algorithm Method based on martingale Lagrangian. [253]

• Lions Regnier Algorithm Method based on Malliavin Calculus. [178]

• Barty Roy Strugarek Algorithm Stochastic algorithm.[158]

• Pricing and Hedging American-Style Options: A Simple Simulation-Based
Approach[295]

2.1.4 Approximation

• MacMillan Approximation Quadratic method based on exact solutions to
approximations of the partial differential equation [179]

• Whaley Approximation Quadratic method based on exact solutions to
approximations of the partial differential equation [248]

• Bjerksund-Stensland Approximation The approximation is based on an
exercise strategy corresponding to a flat exercise boundary [114]

• Ho-Stapleton-Subrahmanyam Approximation 2-points approximation for-
mula with exponential extrapolation [280]

• Bunch-Johnson Approximation 2-points Geske-Johnson approximation for-
mula [121]

• Carr Approximation Randomization and the American Put [51]

• Ju Approximation Pricing an American Option by approximating Its Early
Exercise Boundary as a Multipiece Exponential Function [209]

• Broadie-Detemple LBA and LUBA Methods Approximation methods based
on lower and upper bounds [135]
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3 Barrier European Options in the Black-Scholes
Model

3.1 Call, Put In-Out/Down-Up, Parisian

3.1.1 Analytic

• Reiner-Rubinstein Formula Black-Scholes type formula [200]

• Labart-Lelong Method Laplace transform method for Parisian option[60]

• Static Hedging of Standard Options.[180]

3.1.2 Trees

• Derman Kani Ergener Bardhan Algorithm Interpolation scheme for im-
proving the pricing error of a binomial method [123]

• Ritchken Trinomial Algorithm Choosing the strech parameter λ of the
Kamrad-Ritchken method such that the barrier is hit exactly [234]

• Rogers-Stapleton Method Tree with random time steps corresponding to
hitting times [82]

3.1.3 Finite-Difference

• Gauss Method Finite-difference algorithm with an interpolation scheme

• Finite Element Method Finite Element Method [133]

3.1.4 Montecarlo

• Baldi-Caramellino-Iovino Method Large deviations technique [192]

3.2 Discrete Barrier Option

3.2.1 Approximation

• Broadie-Glassermann-Kou Method A continuity correction for discrete
barrier options [265]

• Fusai-Abrahams-Sgarra Method Analitycal Solution for Discrete Barrier
Options [63]

• Finite Difference Finite-difference algorithm.

• Tree Cheuk-Vorst algorithm [282].

3.2.2 Montecarlo

• Variance Reduction Reduction variance methods
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4 Barrier American Options

4.1 Call, Put In-Out/Down-Up

4.1.1 Trees

• Derman Kani Ergener Bardhan Algorithm Interpolation scheme for im-
proving the pricing error of a binomial method [123]

• Ritchken Trinomial Algorithm Choosing the strech parameter λ of the
Kamrad-Ritchken method such that the barrier is hit exactly [234]

4.1.2 Finite-Difference

• Psor Method Psor Finite-difference algorithm with interpolation scheme
[65]

• Cryer’s Algorithm Pivoting method to solve directly linear complementar-
ity problem algorithm with interpolation scheme [66]

• Finite Element Method Finite Element Method [133]

5 Double Barrier European Options In/Out, Parisian
in the Black-Scholes Model

5.1 Call, Put In/Out

5.1.1 Analytic

• Kunitomo-Ikeda Formula Pricing formula expressed as the sum of an in-
finite series [206]

5.1.2 Approximation

• Geman-Yor Method Laplace transform method [204]

• Labart-Lelong Method Laplace transform method for Parisian option [60]

5.1.3 Trees

• Ritchken Trinomial Algorithm Choosing the strech parameter λ of the
Kamrad-Ritchken method such that the barrier is hit exactly [234]

• The Binomial Interpolated Lattice Method for Step Double Barrier Options
[33]
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5.1.4 Finite-Difference

• Gauss Method Finite-difference algorithm with interpolation scheme

• Finite Element Method Finite Element Method [133]

5.1.5 Montecarlo

• Baldi-Caramellino-Iovino Method Large deviations technique [192]

6 Double Barrier American Options In/Out in

the Black-Scholes Model

6.1 Call, Put In/Out

6.1.1 Trees

• Ritchken Trinomial Algorithm Choosing the strech parameter λ of the
Kamrad-Ritchken method such that the barrier is hit exactly [234]

• The Binomial Interpolated Lattice Method for Step Double Barrier Options
[33]

6.1.2 Finite-Difference

• Psor Method Psor Finite-difference algorithm with interpolation scheme
[65]

• Cryer’s Algorithm Pivoting method to solve directly linear complementar-
ity problem algorithm with interpolation scheme [66]

• Finite Element Method Finite Element Method [133]

7 Lookback European Options in the Black-Scholes
Model

7.1 Call, Put Fixed-Floating

7.1.1 Analytic

• Goldman-Sosin-Gatto and Conze-Viswanathan Formula Black-Scholes type
formula [181],[259]

7.1.2 Trees

• Babbs Method Change of numeraire technique [260],[281]
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7.1.3 Finite-Difference

• Explicit Finite Difference algorithm

7.1.4 Montecarlo

• Anderson-Brotherton-Ratcliffe Method Bias Elimination for efficient sim-
ulation procedure [244]

8 Lookback American Options

8.1 Call, Put Fixed-Floating

8.1.1 Trees

• Babbs Method Change of numeraire technique [260],[281]

8.1.2 Finite-Difference

• Explicit Finite Difference algorithm

9 European Asian Options in the Black-Scholes

Model

9.1 Call, Put Fixed-Floating

9.1.1 Approximation

• Geman-Yor Method Laplace transform method [204]

9.1.2 Trees

• Forward Shooting Grid Method Barraquand-Pudet or Hull-White enhanced
method [279],[31]

• Singular Points Method[306]

9.1.3 Finite-Difference

• Rogers-Shi Method Reduction to a one-dimensional PDE [309]

• Dubois-Lelievre Method New finite difference scheme [76]

• Hameur Breton Ecuyer Method Finite Element Method [176]
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9.1.4 Montecarlo

• Kemma-Vorst Method Control variate variance reduction method to com-
pute the price of fixed-strike average-rate options with the approximation
of the integral using the law of the brownian bridge [160],[94]

• Glasserman-Heidelberger-Shahabuddin Method Gaussian Importance sam-
pling and stratification computational issue [236],[237],[38]

• Variance Reduction and Robbind-Monro algorithm [40]

• Exact retrospective Monte Carlo computation of arithmetic average Asian
options [146]

9.1.5 Approximation

• Rogers-Shi Method Rogers-Shi upper and lower bounds[309]

• Thompson Method Upper and lower bounds [278]

• Levy Formula Lognormal approximation with first two moments.[83]

• Turnbull-Wakeman Formula Edgeworth expansion around a lognormal us-
ing first four moments.[168]

• Milevski-Posner Formula Reciprocal gamma distribution using first two
moments. [262]

• Fusai-Tagliani Approximation Edgeworth expansion around a normal and
maximum entropy approximation using first four logarithmic moments.[25]

• Zhang Approximation Analytical approximation formula with error cor-
rection obtained by numerical solution of PDE.[137]

• Laplace-Fourier Algorithm Laplace and Fourier Transform Alogorithm.

• Lord Method Upper and lower bounds [250]

• Lognormal Stratified Sampling Stratified lognormal approximation for Asian
options.[136]

10 American Asian Options in the Black-Scholes
Model

10.1 Call, Put Fixed-Floating

10.1.1 Trees

• Forward Shooting Grid Method Barraquand-Pudet or Hull-White enhanced
method [279],[31]

• Singular Points Method[306]
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10.1.2 Finite-Difference

• Hameur Breton Ecuyer Method Finite Element Method

11 Europeen nD Standard Options in the Black-
Scholes Model

11.1 CallMax, PutMin, BestOf, Exchange

11.1.1 Analytic

• Stulz and Johnson Formula Black-Scholes type formula [256] ,[120]

• Generalizing the Black-Scholes formula to multivariate contingent claims
[286]

11.1.2 Tree

• Boyle-Evnine-Gibbs 4-branches Algorithm General lattice method to price
contingent claims on k assets [264]

• Kamrad-Ritchken 5-branches Algorithm 5-branches tree with a stretch
parameter λ [235]

• Euler 4-branches Algorithm Stock price paramenters and probabilities ob-
tained from the discretization of the Wiener motion processes [199]

• Product Tree 4-branches Algorithm The tree is the product of two one-
dimensional trees

11.1.3 Finite-Difference

• Alterning Direction Implicite Algorithm(ADI) At each time step, one can
integrate “in each direction” [149], [150]

• Explicit Method Direct explicit scheme [44]

• Implicit Method Implicit scheme solved with iterative stationary(SOR)
and not stationary methods(GMRES and BiCgStab).[290],[203], [65]

• Multigrid Method The elliptic problem is solved by a FMG multigrid
algorithm [296]

• Howard Method Implicit scheme solved with iterative Howard Method

• Greedy methods method for basket options
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11.1.4 Montecarlo

• Monte Carlo Standard

• Quasi Montecarlo Low discrepancy sequences(Faure, SquareRoot, Halton,
Sobol, Niedereitter, Owen’s Randomization Technique) [139], [119], [124],
[122], [8]

• Variance Reduction Various reduction variance methods(Antithetic Meth-
dod, Stratified Sampling, Control Variate,Moment Matching, Importance
Function, Newton) [208],[299],[132] [92]

12 American nD Standard Options in the Black-

Scholes Model

12.1 CallMax, PutMin, BestOf, Exchange

12.1.1 Tree

• Boyle-Evnine-Gibbs 4-branches Algorithm General lattice method to price
contingent claims on k assets [264]

• Kamrad-Ritchken 5-branches Algorithm 5-branches tree with a stretch
parameter λ [235]

• Euler 4-branches Algorithm Stock price paramenters and probabilities ob-
tained from the discretization of the Wiener motion processes [199]

• Product Tree 4-branches Algorithm The tree is the product of two one-
dimensional trees

12.1.2 Finite-Difference

• Splitting Adi Method One combines an Adi method with splitting tech-
nique [198],[37]

• Splitting Explicit Method Splitting method and an explicit scheme [198]

• Splitting Implicit Method Implicit scheme solved with iterative station-
ary(SOR) and not stationary methods(GMRES and BiCgStab).[290],[203],
[65]

• FMGH Multigrid Method The linear complementarity problem is solved
by a FMGH multigrid algorithm

• Howard Method Implicit scheme solved with iterative Howard Method
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12.1.3 Montecarlo

• Barraquand-Martineau Algorithm Stratification method. [74]

• Broadie-Glassermann Algorithm Approximation of dynamical program-
ming using a stochastic mesh method. [228]

• Tsitsiklis-VanRoy Algorithm Approximation of dynamical programming
using regression method.[255],[254]

• Longstaff-Schwartz Algorithm Estimation of optimal stopping time using
regression method. Variance Reduction.[89],[210]

• Pages-Bally Algorithm Approximation of dynamical programming using
quantization method. [284]

• Broadie-Glassermann Algorithm Simulation algorithm for estimating the
prices of American option with exercise opprtunities in a finite set of times.
[227]

• Lions Regnier Algorithm Method based on Malliavin Calculus. [178]

• Barty Roy Strugarek Algorithm Stochastic algorithm. [158]

• Ehrlichman Henderson Algorithm Adaptive control variates for pricing
multi-dimensional American options.[271]

• Andersen-Broadie Algorithm Primal-Dual Simulation Algorithm for Pric-
ing Multidimensional American Options. [187]

• Broadie-Cao Algorithm Improved lower and upper bound algorithm for
pricing American options by simulation. [188]

• Pricing and Hedging American-Style Options: A Simple Simulation-Based
Approach[295]

• Pricing Convertible Bonds with Call Protection[58],[21]

• Nonparametric Variance Reduction Methods on Malliavin Calculus.[26]

• Pricing high-dimensional Bermudan options using the stochastic grid method[77]

• The Stochastic Grid Bundling Method: Efficient Pricing of Bermudan
Options and their Greeks[129]

• Pricing American-Style Options by Monte Carlo Simulation: Alternatives
to Ordinary Least Squares. [303]

12.1.4 Sparse Grid

• The effect of coordinate transformations for sparse grid pricing of basket
options [56]
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13 Standard European Options in the Merton
Model

13.1 Call, Put, CallSpread, Digit

13.1.1 Analytic

• Merton Formula Pricing formula expressed as the sum of an infinite series.
[246]

13.1.2 Approximation

• Carr-Madan Approximation Fourier Transform Algorithm [69]

• Static Hedging of Standard Options [52]

• Smart expansion and fast calibration for jump diffusions[84]

13.1.3 Finite-Difference

• Explicit Method Direct explicit scheme [44]

• Imp-Exp Method Splitting in Implicit and Explicit algorithm [130]

• ADI-FFT Method ADI-FFT algorithm [130]

13.1.4 Montecarlo

• Monte Carlo Standard

• Malliavin Monte Carlo in Pure Jump Model[162]

• Malliavin Monte Carlo in Merton Model

14 Standard American Options in the Merton

Model

14.1 Call, Put, CallSpread, Digit

14.1.1 Finite-Difference

• Splitting Explicit Method The obstacle problem is splitted in two steps.
Explicit finite-difference algorithm [198]

• Splitting ADI-FFT Method The obstacle problem is splitted in two steps.
ADI-FFT finite-difference algorithm [130],[307]
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15 Standard European Options in the Dupire-
Local Volatility Model

15.1 Call, Put, CallSpread, Digit

15.1.1 Finite-Difference

• Implicit Method Implicit scheme [44]

• Adaptative Finite Element Method Adaptative time step and space varies
to improve precision.[91] [32]

• Numerical algorithms for backward differential equations in local volatility
models and BS n-dimensional model [81]

15.1.2 Montecarlo

• Monte Carlo with variance reduction

15.1.3 Approximation

• Analytical formulas for local volatility model with stochastic rates.[85]

16 Standard European Options in the CEV Model

16.1 Call, Put

16.1.1 Approximation

• New approximations in local volatility models.[24]

17 Standard Options in the BSCIR Model

• A robust tree method for pricing American options with the Cox-Ingersoll-Ross
interest rate model.[305]

18 Standard Options in the BSHW Model

• A hybrid tree-finite difference approach for Heston-Hull-White type model[36]
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19 Standard European Options in the Hull-White,Stein,Scott
Model

19.1 Call, Put, CallSpread, Digit

19.1.1 Montecarlo

• Variance Reduction and Robbind-Monro algorithm [40], [29]

• A generalization of the Hull and White formula with applications to option
pricing approximation [78]

• Multi-level Monte Carlo path simulation[191]

• A Stochastic Volatility Alternative to SABR[288]

• Empirical martingale simulation of asset prices[75]

• Multi-level Monte Carlo path simulation[191]

• High order discretization schemes for stochastic volatility models.[147]

20 Standard European Options in the Heston

Model

20.1 Call, Put, CallSpread, Digit

20.1.1 Montecarlo

• Heston Closed-Form Solution [268],[251]

• Variance Reduction and Robbind-Monro algorithm[40]

• Finite Difference method.

• Functional quantization algorithms for Asian options[112].

• Ninomiya-Victoir Scheme approximation of SDE for Asian options[213]

•

• Kusouka-Ninomiya-Ninomiya Scheme approximation of SDE for Asian
options[197]

• A second-order discretization scheme for the CIR process:
application to the Heston model[15]

• Efficient Simulation of the Heston Stochastic Volatility Model[172]

• An almost exact simulation method for the Heston model [247]
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• Fast strong approximation Monte-Carlo schemes for stochastic volatility
models [50]

• Exact Simulation of Option Greeks under Stochastic Volatility and Jump
Diffusion Model[214]chjos11

• A Comparison of Biased Simulation Schemes for Stochastic Volatility
Models[252]

• Efficient, Almost Exact Simulation of the Heston Stochastic Volatility
Model[27]

• A Simple and Exact Simulation Approach to Heston Model[157]

• A.Alfonsi A.Ahdida High order discretization of Wishart process.

• Polynomial Processes and their applications to mathematical Finance[153]

• Time dependent Heston model[86]

• A Novel Option Pricing Method based on Fourier-Cosine Series Expansions[97]

• Pricing early-exercise and discrete barrier options by Fourier-cosine series
expansions[96]

• A Fourier-based valuation method for Bermudan and barrier options under
Heston’s model[95]

• Pricing options under stochastic volatility : a power series approach[19]

• Gamma expansion of the Heston stochastic volatility model[109]

• Fast and Accurate Long Stepping Simulation of the Heston Stochastic
Volatility Model[138]

• Wiener-Hopf methods for Heston model

• Robust Approximations for Pricing Asian Options and Volatility Swaps
Under Stochastic Volatility.[103]

• Small-time asymptotics for implied volatility under the Heston model[104]

• Robust approximations for pricing Asian options and volatility swaps
under stochastic volatility[105]

• A Mean-Reverting SDE on Correlation Matrices[5]

• Efficient Simulation of the Double Heston Model[108]

• Importance sampling and Statistical Romberg Method

• A Multifactor Volatility Heston Model[134]
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• General approximation schemes for option prices in stochastic volatility
models[164]

• Simple Simulation Scheme for CIR and Wishart Processes[219]

• Low-bias simulation scheme for the Heston model by Inverse Gaussian
approximation.[294]

• The 4/2 Stochastic Volatility Model.[193]

• Coupling Importance Sampling and Multilevel Monte Carlo using Sample
Average Approximation. [12]

20.1.2 Finite Difference

• Finite Difference Schemes

• Componentwise splitting methods for pricing American options under
stochastic volatility[155]

• ADI finite difference schemes for option pricing in the Heston model with
correlation[125]

• ADI schemes with Ikonen-Toivanen splitting for pricing American put
options in the Heston model.[274]

• A hybrid tree-finite difference approach for the Heston model[35]

20.1.3 Tree

• A Tree-based Method to price American Options in the Heston Model[4]

21 Standard European Options in the Heston-

Local Volatility Model

• Being particular about calibration.[116]

• The Heston Stochastic-Local Volatility Model: Efficient Monte Carlo Simulation.[28]

22 Standard European Options in the Heston
Model with Stochastic Interest Rates

• On The Heston Model with Stochastic Interest Rates[113]

• A hybrid tree-finite difference approach for Heston-Hull-White type model[36]

• Alternating direction implicit finite difference schemes for the Heston
Hull-White partial differential equation.[273]
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23 UVM Model

•

• On the Fourier cosine series expansion (COS) method for stochastic control
problems.[258]

• Numerical methods and volatility models for valuing cliquet options[297]

24 Standard European Options in the Bergomi

Model

• Option pricing for a lognormal stochastic volatility model.[270]

25 Standard European Options in the Foque Pa-
panicolau Sircar Model

• Monte Carlo methods with variance reduction.[156]

26 Standard European Options in the Multi-
Factor Foque Papanicolau Sircar Model

• Finite Difference method.

27 Standard European Options and Barrier Op-

tions in Exponential Lévy models

Fourier transform [276],[184] and Finite difference methods [239],[293],Wiener-
Hopf[216], Closed Formulas for pricing American, Barrier options and Lookback
options in Kou model [165],[166], Pricing Fast pricing of American and barrier
options under Levy processes[266], Tree methods[182]

• Merton’s model (X has Gaussian jumps)

• Lévy processes with Brownian component (Kou).

• Tempered stable process, variance gamma.

• Normal inverse Gaussian.

• Monte Carlo for pricing Exotics options in jump models [73].

• Backward Convolution Algorithm for Discretely Sampled Asian Options
[57].
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• Computing exponential moments of the discrete maximum of a Levy
process and lookback options [100]

• Estimating Greeks in Simulating Levy-Driven Models[232]

• Finite intensity Levy process with non-parametric (calibrated) Lévy measure.

• Fourier space time-stepping for option pricing with Levy models[240]

• Saddlepoint methods for option pricing[54]

• Saddlepoint Approximations for Affine Jump-Diffusion Models[110]

• Importance sampling and Statistical Romberg Method for jump models

• Importance sampling for jump processes and applications to finance[174]

• Two-dimensional Fourier cosine series expansion method for pricing financial
options. [257]

28 Path Dependent Options in Exponential Lévy
models

• Barrier options and Lookback options in Kou model. [165],[166], Pricing

• Discretely Monitored Asian Options under Levy Processes. [17]

• Pricing Discretely Monitored Asian Options by Maturity Randomization.
[195]

• Wiener-Hopf techniques for Lookback options in Levy models. O. Kudryavt-
sev

• Efficient pricing of Asian options under Levy processes based on Fourier
cosine expansions. Part I: European-style products. B.Zhang C.W.Oosterlee.
[49]

• A Wiener-Hopf Monte Carlo simulation technique for Lévy process . A.
Kuznetsov, A.E.Kyprianou J. C. Pardo and K. van Schaik. [3]

• A Wiener-Hopf Monte Carlo simulation approach for pricing path-dependent
options under Lévy process. O. Kudryavtsev [217]

• Efficient variations of the Fourier transform in applications to option
pricing. S. Boyarchenko and S.Levendorski. [267]
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29 Standard European Options in Stochastic volatil-
ity models with jumps

• Bates model.

• Barndorff-Nielsen and Shephard OU-SV model.

• Exponential LÃľvy models with stochastic time change, given by an integrated
stochastic volatility process.

30 Pricing European options in affine jump-diffusion

• Non-Gaussian Ornstein–Uhlenbeck-based models and some of their uses
in financial economics[39]

• Stochastic volatility for Lévy processes.[183]

• Transform Analysis and Asset Pricing for Affine Jump-Diffusions [161]
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31 Calibration in the Dupire Model

• Numerical solution of an inverse problem.[249],[207],

• Mercurio-Brigo Lognormal-mixture dynammics and calibration to market
[98]

• Weighted Monte-Carlo Approach [185]

• Inference of a consistent implied volatility under a minimum of entropy
criterion [186]

• Tree calibration algorithm [79],[41]

• Empirical semi-groups and calibration[285]

32 Calibration in Stochastic Volatility and Jump

Model

• Calibration in a Heston-Merton Model[22]

• Algorithm of Andersen Andreasen [169],[22].

• Non-parametric exponential Lévy models[276]

• European Options Sensitivity with Respect to the Correlation for Multidimensional
Heston Models.[72]

• A hybrid tree-finite difference approachfor the Bates model[34]

• A.Achdou D.Pommier T.Arnarson : Calibration of American options in
Levy models.
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33 Pricing Interest Rate Derivatives

33.1 Zero-Coupon Bond,Coupon Bearing,European, Amer-
ican Option on ZCB,Cap/Floor,Swaptions, Bermu-
dan Swaptions

33.1.1 Vasicek,Hull-White,Hul-White 2D

• Closed Formula and Implicit Finite Difference Methods [140]

• Hull-White Trinomial Tree[142],[141]

33.1.2 Cir,Cir++

• Closed Formula

• Explicit and Implicit Finite Difference Methods

• Trinomial Tree[142],[141]

• Teichmann-Bayer:Cubature on Wiener space in infinite dimension. Finite
difference methods for SPDEs and HJM-equations[154]

33.1.3 Black-Karasinski

• Trinomial Tree[142],[99]

33.1.4 Squared-Gaussian

• Schmidt Lattice[298]

• Closed Formula [102]

33.1.5 Li,Ritchken,Sankarasubramanian

• Li,Ritchken,Sankarasubramanian Lattice Methods [16]

• Carr-Yang American Monte Carlo Methods[222]

33.1.6 Bahr-Chiarella

• ADI Finite Difference [241]
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33.1.7 LMM Models

• Black Formula

• Approximation of Swaptions [11]

• Monte Carlo Methods [230],[231],[11]

• Tang Lange Bushy tree methods[304]

• Pedersen Monte Carlo Methods[225]

• Andersen Monte Carlo Methods[?]

• Jump Diffusion Libor Market Model[229]

• LMM-CEV :Closed Formula, Monte Carlo[171]

• The Levy LIBOR model[80]

• Extended Libor market models with stochastic volatility[243]

• Iterative Construction of Optimal Bermudan stopping time [14]

• True upper bounds for Bermudean products via Non-Nested Monte Carlo.
[68]

• Pricing and hedging callable Libor exotics in forward Libor models [292]

• A stochastic volatility forward Libor model with a term structure of volatility
smiles [291]

• A new approach to LIBOR modeling [159]

• Iterating cancelable snowballs and related exotics in a many-factor Libor
model [152],[126]

• Jump-adapted discretization schemes for Levy-driven SDEs [13]

• Efficient and accurate log-Lévy approximations to Lévy driven models
[220]

33.1.8 Hunt Kennedy Pellser Markov-functional interest rate mod-
els

• Monte Carlo [128]

• An n-Dimensional Markov-functional Interest Rate Model [170]

33.1.9 Affine Models

• Collin-Dufresne Goldstein Algorithm [224]

• Finite Difference Algorithm for Affine 3D Gaussian Model [224]
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33.1.10 Multi-factor quadratic term structure models

• The eigenfunction expansion method in multi-factor quadratic term structure
models[46]

34 Calibration Interest Rate Derivatives

• Calibration in LMM Model [151]

• Calibration in LMM-Jump Model [67]

• Calibration in LMM-Stochastic Volatility model [68]
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35 Pricing Inflation Derivatives

• Pricing Inflation-Indexed Derivatives in Jarrow-Yildirim model [212]

• Pricing Inflation-Indexed Options with Stochastic Volatility [211]

• Inflation products with stochastic volatility and stochastic interest rates.[283]

36 Pricing Credit Risk Derivatives

36.0.1 Credit Default Swaps: reduced form models on a single name

• HW Tree ,Monte Carlo methods [233],[131]

• CIR++ Monte Carlo Method, Derivatives pricing with the SSRD stochas-
tic intensity model [47]

36.0.2 CDO

• Hull-White [144]

• Basket Default Swaps, CDO’s and Factor Copulas[148]

• Andersen-Sidenious [173]

• A comparative anailsys of CDO pricing models [300]

• Saddlepoint approximation method for pricing CDOs [301]

• Valuing Credit Derivatives Using an Implied Copula Approach [143]

• Approximation of Large Portfolio Losses by Stein’s Method and Zero Bias
Transformation [205]

• A dynamic approach to the modelling of credit derivatives using Markov
chains [62]

• Calibration of CDO Tranches with the dynamical Generalized-Poisson
Loss model [70]

• Portfolio losses and the term structure of loss transition rates: a new
methodology for the pricing of portfolio credit derivatives [261]

• A dynamic approach to the modelling of credit derivatives using Markov
chains. [71]

• Default Contagion in Large Homogeneous Portfolios. [2]

• Advanced credit portfolio modeling and CDO pricing. [289]

• Dynamic hedging of synthetic CDO-tranches with spread-and contagion
risk. [107]
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• Monte Carlo Computation of Small Loss Probabilities. [61]

• Pricing Credit from the top down with affine point processes [87]

• A.Alfonsi J.Lelong: A Closed-form extension to Black-Cox formula.

• Recovering portfolio default intensities implied by cdo quotes [238]

• Interacting particle systems for the computation of rare credit portfolio
losses[106]

• Stochastic local intensity loss models with interacting particle system.[6]

37 Pricing Energy and Commodity Derivatives

• Pricing of Swing options ([245],[9])

• Finite difference methods for pricing of Swing options in Lévy-driven
models[215]

• Variance optimal hedging for processes with independent increments and
applications [111]

• Efficient Pricing of Commodity Options with Early-Exercise under the
Ornstein–Uhlenbeck process. [48]

• Pricing and hedging spread options [287]

• Closed form spread option valuation. [115]

• A Fourier transform method for spread option pricing. [308]

• Multi-asset Spread Option Pricing and Hedging [177]

• Approximations for Options on Future in the Trolle–Schwartz model [88]

• Pricing Commodity Swaptions in Multifactor Models. [163]

• A finite dimensional approximation for pricing movingce average options.
[42]

38 Pricing Volatility Product

38.0.1 Variance/Volatility Swap,Options on Realized Variance/Volatility

• Numerical methods and volatility models for valuing cliquet options[297]

• Pricing Variance Swap, Options on Realized Variance in Tempered Stable
model [53],[223]
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• Pricing Variance Swap,Options on Realized Variance in Heston, Double
Heston, Bates Model model

• Pricing Variance Swap : Consistent Variance Curve Models [117]

• Pricing Variance Swap : Pricing options on realized variance in the Heston
model with jumps in returns and volatility.[23]

• Forward variance dynamics : Bergomi’s model revisited.[269]

• Pricing of Timer Options.[64]

• Asymptotic and exact pricing options on variance.[145]

• A Closed-Form Exact Solution for Pricing Variance Swaps with Stochastic
Volatility.[272]

• Model-free implied volatility: from surface to index.[93]

• Volatility swaps and volatility options on discretely sampled realized variance.[55]

39 Pricing Insurance Derivatives

• A bivariate model for evaluating fair premiums of equity-linked policies
with maturity guarantee and surrender option.[189]

• Pricing and hedging gap risk.[277]

• An Optimal Stochastic Control Framework for Determining the Cost of
Hedging of Variable Annuities[167] item Managing Gap Risks in iCPPI
for life insurance companies: A risk/return/cost analysis.[10]

• Variables Annuities GLWB pricing in the Heston and Black-Scholes/Hull-White
models with finite difference techniques.

• Fourier cosine method for Variables Annuities.

• A numerical scheme for the impulse control formulation for pricing variable
annuities with a Guaranteed Minimum Withdrawal Benefit (GMWB).[59]

40 FX-Change

• On cross-currency models with stochastic volatility and correlated interest
rates.[218]

• Repricing the Cross Smile: An Analytic Joint Density[221]
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41 Risk

• Computing VaR and AVar in Infinitely Divisible Distributions.[1]

• Haar Wavelets-Based Approach for Quantifying Credit Portfolio Losses.[127]

• Toward a coherent Monte Carlo simulation of CVA.[196]

• Cutting CVAâĂŹs complexity.[118]

• Monte Carlo Calculation of Exposure Profiles and Greeks for Bermudan
and Barrier Options under the Heston Hull-White Model..[101]

• A Forward Solution for Computing Derivatives Exposure..[275]

42 Trading

• Dynamic optimal execution in a mixed-market-impact Hawkes price model.[7]
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