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Abstract. We describe “The Fourier Space Time-stepping method” (FST-method)
for pricing barrier and American options for a wide class of Lévy processes. The method
uses a backward induction approach and the Fast Fourier Transform algorithm for the
efficient computation of the convolution with the probability density. The method
implemented into Premia 13 is based on the one developed in Jackson et al. (2008).

Premia 18

1. Introduction

In recent years more and more attention has been given to stochastic models of finan-
cial markets which depart from the traditional Black-Scholes model. At this moment a
wide range of models is available. One of the tractable empirical models are jump dif-
fusions or, more generally, Lévy processes. We concentrate on the one-dimensional case.
For an introduction on these models applied to finance, we refer to Cont and Tankov
(2004).

By now, there exist several large groups of relatively universal numerical methods for
pricing of American and barrier options under exponential Lévy processes. The number
of publications is huge, and, therefore, an exhaustive list is virtually impossible. We
concentrate on the one-dimensional case.

Existing numerical methods in literature can be categorized into three groups: Monte
Carlo simulation, partial-(integro) differential equation (PIDE) methods, and backward
induction methods. We will consider the last group.

The backward induction methods are based on the fact that the risk-neutral valuation
formula for the European option can be seen as a convolution of the payoff function
with the transition density. The key idea is to set up a time lattice and view the
option as of European type between two adjacent dates. Hence, the backward induction
method requires the transition density to be known in closed-form, which is the case in
e.g. the Black-Scholes model and Merton’s jump-diffusion model. The approximation
proposed by Geske and Johnson (1984) uses the discretization of the time parameter
and the backward induction for pricing American options in the GBM model. The
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method was extended in Boyarchenko and Levendorskǐi (2002) for some Lévy models,
and its applications can be founded e.g. in Kudryavtsev and Levendorskǐi (2006) and
Levendorskǐi et al. (2006). If there is no an explicit formula for the probability density,
it can be recovered by inverting the characteristic function, so the method can be used
for a wide range of Lévy models.

Since convolutions can be handled very efficiently by means of the Fast Fourier Trans-
form (FFT), an overall complexity of the method is O(mn lnn), where m and n are the
numbers of points on the grid in time and space, respectively. The FFT-based backward
induction method was applied in Jackson et al. (2008), see also Lord et al. (2008).

First, we will consider the model case of a down-and-out put option, without rebate.
The down-and-out call options and up-and-out calls and puts can be reduced to the model
case by suitable change of numeraire and/or the direction on the real axis. The method
is applicable to American options as well, and, after straightforward modifications, to
barrier options with a rebate (hence, to digitals as well).

2. Backward induction method for the down-and-out barrier options

Let T,K,H be the maturity, strike and barrier, and the stock price St = eXt is
an exponential Lévy process under a chosen risk-neutral measure. The riskless rate is
assumed constant. Set h = lnH. Then the payoff at maturity is 1(h,+∞)(XT )G(XT ),
where G(x) = (K − ex)+, and the no-arbitrage price of the barrier option at time t < T
and Xt = x > h is given by

(2.1) V (x, t) = V (T,H;G; t, x) = Et,x
[

e−r(T−t)1XT>h
G(XT )

]

,

where X t = inf0≤s≤tXt is the infimum process. Further, without loss of generality, we
will assume that h = 0.

In Section A.1, we remind the definitions of the Lévy density F (dy) of the Lévy process
Xt and characteristic exponent ψ(ξ), and explicit formulas for ψ and L, the infinitesimal
generator of Xt. We also list several classes of Lévy processes used in empirical studies
of financial markets.

We approximate V (Xt, t) in (2.1) by the price f(Xt, t) of the down-and-out barrier
option in the corresponding discrete time model with equally spaced dates tk, k =
0, 1, . . . ,m, where t0 = 0, tm = T . Set ∆τ := T/m. We have

(2.2) f(x, tm) = (K − ex)+, x > 0,

and for all k,

(2.3) f(x, tk) = 0, x ≤ 0.

For k = m− 1,m− 2, . . . , and x > 0, the price f(x, tk) can be found as the price of the
European option with the terminal payoff f(Xtk+1

, tk+1) and the expiry date tk+1:

(2.4) f(x, tk) = E[e−r∆τf(Xtk+1
) | Xtk = x], x > h.

If an explicit formula for the probability density p∆τ of X∆τ under EMM is known (e.g.
GBM or NIG model), we can use it to write (2.4) in the form

(2.5) f(x, tk) = e−r∆τ
∫ +∞

−∞
p∆τ (y)f(x+ y, tk+1)dy, x > 0.
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In the general case, p∆τ can be expressed in terms of the characteristic exponent ψ(ξ),
by using the Fourier transform

(2.6) p∆τ (x) = (2π)−1
∫ +∞

−∞
e−ixξ−∆τψ(ξ)dξ.

Now, we can rewrite (2.5) by using (2.6), and we obtain for x > 0

f(x, tk) = e−r∆t(2π)−1
∫ +∞

−∞

∫ +∞

−∞
f(x+ y, tk+1) exp[−iyξ − ∆τψ(ξ)]dξdy.

We change a variable z = x+ y. If f(x, tk+1) is absolutely integrable, we can change the
order of the integration:

f(x, tk) = e−r∆t(2π)−1
∫ +∞

−∞

∫ +∞

−∞
f(z, t+ ∆τ)e−i(z−x)ξ exp[−∆τψ(ξ)]dξdz

= (2π)−1
∫ +∞

−∞
f̂(ξ, tk+1) exp[ixξ − ∆τ(r + ψ(ξ))]dξ, x > 0,(2.7)

where f̂(ξ, tk+1) is the Fourier transform of a function f(z, tk+1) in the first variable.
The integral operator in the RHS of the formula (2.7) can be represented as a pseudo-
differential operator (PDO) with the symbol

(2.8) Ψ∆τ (ξ) = exp[−∆τ(r + ψ(ξ))].

Recall that a PDO A = a(D) with the symbol a(ξ) acts as follows:

(2.9) Au(x) = (2π)−1
∫ +∞

−∞
eixξa(ξ)û(ξ)dξ,

where û is the Fourier transform of a function u:

û(ξ) =
∫ +∞

−∞
e−ixξu(x)dx.

Thus, in terms of PDO, we can rewrite the algorithm in the following form.

f(x, tk) = Ψ∆τ (D)f(x, tk+1), x > 0

f(x, tk) = 0, x ≤ 0.

Note that the inverse Fourier transform in (2.9) is defined in the classical sense only
if the symbol a(ξ) and function û(ξ) are sufficiently nice. In general, one defines the
(inverse) Fourier transform, Fx→ξ (the subscript means that a function defined on the x–
space becomes a function defined on the dual ξ-space), and the inverse Fourier transform,
F−1
ξ→x by duality; in many cases, in particular, in the context of pricing of put and call

options, one can use the classical definition of the integral but integrate in (2.9) not
over the real line but along an appropriate line in the complex plane. It means that we
integrate the function with an appropriate exponential weight. See, e.g., Boyarchenko
and Levendorskǐi (2002) for details and examples.

To improve the convergence, one can introduce new function:

(2.10) fω(x, tk) = eωxf(x, tk), k = 0, 1, . . . ,m,
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where ω ∈ R is chosen in a such way that fω(x, tk) is absolutely integrable. Then taking
into account that eωxΨ∆τ (D)e−ωx = Ψ∆τ (D + iω), we obtain the following backward
recursion for fω(x, tk).

fω(x, tk) = Ψ∆τ (D + iω)fω(x, tk+1), x > 0

fω(x, tk) = 0, x ≤ 0.

Formally, the action of a PDO A with the constant symbol a(ξ) can be described as the
composition

(2.11) Au(x) = F−1
ξ→xa(ξ)Fx→ξu(x)

If the functions u and a are represented as arrays suitable for application of the Fast
Fourier Transform and inverse Fast Fourier Transfrom algorithms (FFT and iFFT), then
(2.11) can be programmed as Au = iFFT (a. ∗ (FFT (u))).

3. Backward induction for American put

We consider the American put on a stock which pays no dividends; the generalization
to the case of a dividend-paying stock and the American call is straightforward. (More-
over, as it is well-known, changing the direction on the line, the unknown function, the
riskless rate and the process, one can reduce the pricing problem for the American call
to the pricing problem for the American put).

Let V (t, St) be the price of American put with the strike price K and the terminal date
T . Set x = ln(S/K), G(x) = K(1 − ex)+ and v(t, x) = V (t,Kex). Again we divide [0, T ]
into n subperiods by points tj = j∆t, j = 0, 1, . . . ,m, where ∆τ = T/m, and denote by
f(x, t), the price of the corresponding option which can be exercised before expiry but
only on dates t1 < t2 < · · · < tm fixed in advance; hj denotes the approximation to the
early exercise boundary at time tj. Such the approximation to v(x, t), the Geske-Johnson
approximation, can be interpreted as an approximation of an American option by the
corresponding Bermudan option.

In the Gaussian case, the explicit analytical formula for the joint distribution of the
stock prices (St1 , . . . , Stm) is known, and so the application of the following procedure is
straightforward.

For j = m, when tm = T , f(x, tm) is the terminal payoff: f(x, tm) = g(x). At time tj,
j = m − 1,m − 2, . . . , 1, the option owner chooses the optimal exercise boundary hj as
the solution to the equation

(3.1) G(x) = e−r∆τE[f(Xtj+1
, tj+1)|Xtj = x],

In (3.1), the LHS is the payoff at the current level of the log-price, x, and the RHS is
the discounted expected value of keeping the option alive. If an analytical formula for
the probability density p∆τ of the process Xt under EMM is known, as is the case with
NIG, or Black-Scholes model, then (3.1) can be solved numerically, and after the optimal
exercise boundary hj is found, f(x, tj) is calculated as

f(x, tj) =

{

e−r∆τ
∫ +∞

−∞ p∆τ (y)f(x+ y, tj+1)dy, x > hj,
G(x), x ≤ hj.

In the general case, p∆τ can be expressed in terms of the characteristic exponent ψ(ξ),
by using the formula (2.6). To speed up the computation of the convolutions again we
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use Fast Fourier Transform (see details in Jakson et al. (2008)) and introduce weighted
functions fω(x, tj) (see (2.10). Now we can write the formula for fω(x, tj) as follows,

fω(x, tj) = max{Ψ∆τ (D + iω)f(x, tj+1), e
ωxG(x)}.

3.1. Approximation of Ψ(D) using Fast Fourier Transform. Let d be the step
in x-space, ζ–the step in ξ-space, and M = 2m the number of the points on the grid;
decreasing d and increasing (even faster) M , we obtain a sequence of approximations
to the option price. An approximation for the Ψ(D) operator action can be efficiently
computed by using the Fast Fourier Transform (FFT). Consider the algorithm (the
discrete Fourier transform (DFT)) defined by

(3.2) Gl = DFT [g](l) =
M−1
∑

k=0

gke
2πikl/M , l = 0, ...,M − 1.

(It differs in sign in front of i from the algorithm fft in MATLAB). The DFT maps m
complex numbers (the gk’s) into m complex numbers (the Gl’s). The formula for the
inverse DFT which recovers the set of gk’s exactly from Gl’s is:

(3.3) gk = iDFT [G](k) =
1

M

M−1
∑

l=0

Gle
−2πikl/M , k = 0, ...,M − 1.

In our case, the data consist of a real-valued array {gk}
M
k=0. The resulting transform

satisfies GM−l = Ḡl. Since this complex-valued array has real values G0 and GM/2, and
M/2−1 other independent complex values G1, ..., GM/2−1, then it has the same “degrees
of freedom” as the original real data set. In this case, it is inefficient to use full complex
FFT algorithm. The main idea of FFT of real functions is to pack the real input array
cleverly, without extra zeros, into a complex array of half of length. Then a complex
FFT can be applied to this shorter length; the trick is then to get the required values
from this result (see Press, W. et al (1992) for technical details). To distinguish DFT of
real functions we will use notation RDFT.

Fix the space step d > 0 and number of the space points M = 2m. Define the partitions
of normalized log-price domain [−Md

2
; Md

2
) by points xk = −Md

2
+ kd, k = 0, ...,M − 1,

and frequency domain [−π
d
; π
d
] by points ξl = 2πl

dM
, l = −M/2, ...,M/2. Then the Fourier

transform of a function g on the real line can be approximated as follows:

ĝ(ξl) ≈
∫ Md/2

−Md/2
e−ixξlg(x)dx ≈

M−1
∑

k=0

g(xk)e
−ixkξld = deiπl

M−1
∑

k=0

g(xk)e
−2πikl/M ,

and finally,

(3.4) ĝ(ξl) ≈ deiπlRDFT [g](l), l = 0, ...,M/2.

Here z denotes the complex conjugate of z. Now, we approximate Ψ∆τ (D + iω). Using
the notation p(ξ) = Ψ∆τ (ξ + iω), we can approximate

(Ψ∆τ (D + iω)g)(xk) =
1

2π

∫ ∞

−∞
eixkξp(ξ)ĝ(ξ)dξ
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by

2

M
Re

M/2−1
∑

l=1

e−2πikl/Mp(−ξl)RDFT [g]l +
1

M
(RDFT [g]0 + Re p(−ξM/2)RDFT [g]M/2)

Finally,

(3.5) (Ψ∆τ (D + iω)g)(xk) ≈ iRDFT [p. ∗RDFT [g]](k), k = 0, ...,M − 1.

Note that real-FFT is two times faster than FFT.
Remark: Approximation of the Fourier transform (resp., inverse Fourier transform)

using FFT (resp., iFFT) involves two types of errors: truncation error and discretization
error. For an RLPE, the truncation error for FFT can be made small very easily because
the put option price decays exponentially as x → +∞ (we may consider the put options
only because of the call-put parity) and, after that, the discretization error can be con-
trolled by decreasing the step d of the grid in x-space, equivalently, increasing the number
of points M = 2m of the grid. Now, consider the inverse Fourier transform. Assuming
that the truncated region on the line Im ξ = ω is of the form [−Λ+iω,Λ+iω], and denot-
ing the step of the uniform grid by ζ, we have dζ/(2π) = 1/M , hence, Λ = 2m−1ζ = π/d.
It follows that if we keep the truncated region in x-space fixed and decrease d (equiv-
alently, increase m) then we can control the truncation error of iFFT but not the dis-
cretization error. To control the latter, we need to increase the truncated region in
x-space and, in addition, increase M by a larger factor.

4. Implementation to the Premia 13

We implemented FST-method for three types of options (barrier, American and digi-
tal) under the Variance Gamma model (see Example A.3). One can use the routine for
the other types of Lévy processes by replacing the corresponding part with the compu-
tation of the characteristic exponent.

Note that in the program implemented to Premia 13 one can manage by three param-
eters of the algorithm: the space step d, the scale of logprice range L and the number
of time steps N . Parameter L controls the size of the truncated region in x-space (see
Remark); it corresponds to the region (−L ln(2)/d;L ln(2)/d). The typical values of
the parameter are L = 1, L = 2 and L = 4. To improve the results one should decrease
d and/or increase N , when L is fixed.

Appendix A. Basic facts

A.1. Lévy processes: a short reminder. A Lévy process is a process with stationary
independent increments (for details, see e.g. Sato (1999)). A Lévy process may have a
Gaussian component and/or pure jump component. The latter is characterized by the
density of jumps, which is called the Lévy density. We denote it by F (dy). A Lévy
process can be completely specified by its characteristic exponent, ψ, definable from the
equality E[eiξX(t)] = e−tψ(ξ) (we confine ourselves to the one-dimensional case). The
characteristic exponent is given by the Lévy-Khintchine formula:

(A.1) ψ(ξ) =
σ2

2
ξ2 − iµξ +

∫ +∞

−∞
(1 − eiξy + iξy1|y|≤1)F (dy),
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where σ2 is the variance of the Gaussian component, and F (dy) satisfies

(A.2)
∫

R\{0}
min{1, y2}F (dy) < +∞.

If the jump component is a process of finite variation, equivalently, if

(A.3)
∫

R\{0}
min{1, |y|}F (dy) < +∞,

then (A.1) can be simplified

(A.4) ψ(ξ) =
σ2

2
ξ2 − iµξ +

∫ +∞

−∞
(1 − eiξy)F (dy),

with a different µ, and the new µ is the drift of the Gaussian component.
Assume that under a risk-neutral measure chosen by the market, the stock has the

dynamics St = eXt . Then we must have E[eXt ] < +∞, and, therefore, ψ must admit the
analytic continuation into a strip Im ξ ∈ (−1, 0) and continuous continuation into the
closed strip Im ξ ∈ [−1, 0]. Further, if the riskless rate, r, is constant, and the stock does
not pay dividends, then the discounted price process must be a martingale. Equivalently,
the following condition must hold

(A.5) r + ψ(−i) = 0,

which can be used to express µ via the other parameters of the Lévy process:

(A.6) µ = r −
σ2

2
+

∫ +∞

−∞
(1 − ey + y1|y|≤1)F (dy).

Example A.1. [Tempered stable Lévy processes] The characteristic exponent of
a pure jump KoBoL process of order ν ∈ (0, 2), ν 6= 1 is given by

(A.7) ψ(ξ) = −iµξ + cΓ(−ν)[λν+ − (λ+ + iξ)ν + (−λ−)ν − (−λ− − iξ)ν ],

where c > 0, µ ∈ R, and λ− < −1 < 0 < λ+. Formula (A.7) is derived in Boyarchenko
and Levendorskǐi (2000, 2002) from the Lévy-Khintchine formula with the Lévy densities
of negative and positive jumps, F∓(dy), given by

(A.8) F∓(dy) = ceλ±y|y|−ν−1dy;

in the first two papers, the name extended Koponen family was used. Later, the same
class of processes was used in Carr et al. (2002) under the name CGMY-model. Note
that Boyarchenko and Levendorskǐi (2000, 2002b) consider a more general version with
c± instead of c, as well as the case ν = 1 and cases of different exponents ν±.

Example A.2. [Normal Inverse Gaussian processes] A normal inverse Gaussian
process (NIG) can be described by the characteristic exponent of the form (see Barndorff-
Nielsen (1998))

(A.9) ψ(ξ) = −iµξ + δ[(α2 − (β + iξ)2)1/2 − (α2 − β2)1/2],

where α > |β| > 0, δ > 0 and µ ∈ R.
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Example A.3. [Variance Gamma processes] The Lévy density of a Variance
Gamma process is of the form (A.8) with ν = 0, and the characteristic exponent is
given by (see Madan et al. (1998))

(A.10) ψ(ξ) = −iµξ + c[ln(λ+ + iξ) − ln λ+ + ln(−λ− − iξ) − ln(−λ−)],

where c > 0, µ ∈ R, and λ− < −1 < 0 < λ+.

Example A.4. [Kou model] If F∓(dy) are given by exponential functions on negative
and positive axis, respectively:

F∓(dy) = c±(±λ±)eλ±y,

where c± ≥ 0 and λ− < 0 < λ+, then we obtain Kou model. The characteristic exponent
of the process is of the form

(A.11) ψ(ξ) =
σ2

2
ξ2 − iµξ +

ic+ξ

λ+ + iξ
+

ic−ξ

λ− + iξ
.

The version with one-sided jumps is due to Das and Foresi (1996), the two-sided version
was introduced in Duffie, Pan and Singleton (2000), see also S.G.Kou (2002).
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