
A non linear approximation method for solving high dimensional

partial differential equations: Application in Finance.

José Infante Acevedo and Tony Lelièvre

Université Paris-Est, CERMICS,

Ecole des Ponts, 6-8 avenue Blaise Pascal, 77455 Marne-la-vallée, France

jose-infante.acevedo@cermics.enpc.fr, lelievre@cermics.enpc.fr

February 18, 2016

Abstract: We present the problem of approximating a square-integrable function by a sum of tensor
products using a greedy algorithm. As an example of this approximation by a sum of tensor products,
we study the pricing of European basket options. In numerical experiments, we obtain results for up to
10 underlyings; that means the dimension d is equal to 10. This greedy algorithm thus enables to treat
problems in higher dimension than the sparse tensor product like Pommier in [6].
Acknowledgements: José Infante Acevedo is grateful to AXA Research Fund for his doctoral fellowship.

Premia 18

Introduction

Many problems of interest for various applications (for example material sciences and finance) involve high-
dimensional partial differential equations (PDEs). The typical example in finance is the pricing of a basket
option, which can be obtained by solving the Black-Scholes PDE with as dimension the number of underlying
assets.

We propose to investigate an algorithm which has been recently proposed by Chinesta et al. [1] for solving
high-dimensional Fokker-Planck equations in the context of kinetic models for polymers, and by Nouy et
al. [5] in uncertainty quantification framework based on previous works by Ladevèze [3]. This approach is
also studied in [4] to try to circumvent the curse of dimensionality in problems such as the Poisson problem.
This approach is a nonlinear approximation method that we will called below the greedy algorithm because
it is related to the so-called greedy algorithms introduced in nonlinear approximation theory by Temlyakov
in [8]. The principal idea is to represent the solution as a sum of tensor products:

u(x1, . . . , xd) =
∑

k≥1

r1
k(x1)r2

k(x2) . . . rd
k(xd)

=
∑

k≥1

(

r1
k ⊗ r2

k ⊗ . . . ⊗ rd
k

)

(x1, . . . , xd) (1)

and to compute iteratively each term of this sum using a greedy algorithm. This greedy algorithm can be
applied to any PDE which admits a variational interpretation as a minimization problem. The practical in-
terest of the greedy algorithm in various contexts has been demonstrated (see for example [1] for applications
in fluid mechanics).

1

In this paper, as a simple illustration, we explain how the greedy algorithm can be used to approximate
a square-integrable function by a sum of tensor products. This yields a simple technique to price a vanilla
basket option of European type for example. This algorithm also applies to approximating the solution
to high-dimensional partial differential equations, and in particular the Black-Scholes partial differential
equation. We refer to [2] for more details.

We will study also the practical implementation of the greedy algorithm. We will not solve the mini-
mization problem associated, but the first-order optimality conditions of this minimization problem, namely
the Euler equation. This leads to a system of equations where the number of degrees of freedom does not
grow exponentially with respect to the dimension, and this fact will be very important in order to attain
high-dimensional frameworks in practical applications. However, the algorithmic complexity of the approach
is problematic, given that a system of d nonlinear equations has to be solved, where d is the dimension
considered.

Other deterministic techniques have been applied to price European options in a high-dimensional frame-
work. Classical methods such as finite differences and finite elements are limited in their application when
the dimension increases (typically d = 4), because the number of degrees of freedom increases exponentially
with respect to the dimension, as the memory of space for storage is limited. Financial applications of the
sparse tensor product methods have been studied by Pommier in [6]. These sparse methods also use the
representation of the solution as a sum of tensor products, and assume that the solution is regular enough to
obviate fine discretizations in each direction. In practice, this method may be difficult to apply for reasons
such as the regularity of the solution and the mesh adaptation.

In numerical experiences, we obtain results for up to 10 underlyings; that means the dimension d is
equal to 10. This is higher than a result obtained using, for example, the sparse tensor product method like
Pommier in [6] where d = 5.

The plan of this document is the following. In Section 1, we introduce the general setting for the definition
of the greedy algorithms and we give some theoretical results that have been proved in the literature and
that assure the convergence of the approach. The practical implementation of the greedy algorithm in the
case of the approximation of a function by a sum of tensor products is discussed in Section 2.1. Results and
applications on the approximation of a basket put option are presented in Sections 2.2 and 2.3.

1 Greedy algorithms for high dimensional problems

In this section, we define a general framework for the greedy algorithm that we will use to solve the high-
dimensional problems studied in this paper.

The bottom line of deterministic approaches for high-dimensional problems is to represent the solutions
as linear combinations of tensor products of one-dimensional functions as in (1). If the number of terms in
the expansion remains small, this enables us to represent the solution, avoiding the curse of dimensionality.

The greedy algorithm proposed in [1, 4, 5] is based on two important points. The first one is to recast
the original problem (in our case, this is the option pricing problem) as a minimization problem:

u = argmin
v∈V

E(v), (2)

where E : V 7→ R is functional with a unique global minimizer u ∈ V with V a Hilbert space. For example,
V = L2(X d) with X a bounded one-dimensional domain and d large.

The second point is to look iteratively for the best tensor product in the expansion of the solution as a
sum of tensor products of lower-dimensional functions

un(x1, x2, . . . , xd) =

n
∑

k=1

r1
k ⊗ r2

k . . . ⊗ rd
k(x1, . . . , xd) (3)

where for all i = 1, . . . , d and k = 1, . . . , n, the functions ri
k ∈ Vxi

, with Vxi
Hilbert spaces depending on the

low-dimensional variable xi. This sequential search for the terms in the sum (3) is related to the so-called

2

greedy algorithms introduced in the nonlinear approximation theory by Temlyakov in [8] and by De Vore
and Temlyakov in [7].

In what follows, we assume that V, Vx1
, Vx2

, . . . , Vxd
are Hilbert spaces such that

(H1) Vect{r1 ⊗ r2⊗, . . . ⊗ rd, r1 ∈ Vx1
, r2 ∈ Vx2

, . . . , rd ∈ Vxd
} ⊂ V is dense.

To compute un in the separated form (3), un being the approximation of u that is the solution of the
problem (2), we define the greedy algorithm as follows:

Iterating for all n ≥ 1:

(r1
n, r2

n, . . . , rd
n) ∈ argmin

r1∈Vx1
, r2∈Vx2

,...,rd∈Vxd

E

(

n−1
∑

k=1

r1
k ⊗ r2

k ⊗ . . . ⊗ rd
k + r1 ⊗ r2 ⊗ . . . ⊗ rd

)

. (4)

The following result given in [4] ensures the convergence of the greedy algorithm defined in (4) for the
case where the functional E has the following form:

E(v) = ‖u − v‖2
V . (5)

Theorem 1.1. Let us assume that the assumption (H1) holds and that the functional E has the form (5).
Then,

‖un − u‖V −→
n→∞

0. (6)

An estimate of error is also proposed in [4]. To obtain this result, we need to introduce the functional
space adapted to the convergence analysis

A1 =

{

u =
+∞
∑

k=1

r1
k ⊗ r2

k ⊗ . . . ⊗ rd
k, where ri

k ∈ Vxi
, i = 1, . . . , d,

+∞
∑

k=1

‖r1
k ⊗ r2

k . . . ⊗ rd
k‖V < +∞

}

(7)

and the associated norm is

‖u‖A1 = inf

{

+∞
∑

k=1

‖r1
k ⊗ r2

k . . . ⊗ rd
k‖V | u =

+∞
∑

k=1

r1
k ⊗ r2

k ⊗ . . . ⊗ rd
k

}

(8)

Theorem 1.2. Let us assume that the assumption (H1) is verified and that the functional E has the form
(5). Then, for a function u ∈ A1, there exists a constant C > 0 such that

‖un − u‖V ≤ Cn−1/6, (9)

for all n ∈ N
∗.

We note that the convergence rate factor of 1
6 can be improved to 11

62 and that the constant C depends
on the norm ‖u‖A1 . See [4, 7].

Our work relies on these theoretical results because in the setting that we plan to analyze in this paper,
we will consider a functional E such that E(v) = ‖u − v‖2

V .

2 Implementation of the algorithm in the case of the approxima-

tion of a square-integrable function

In this section, we will discuss the implementation of the algorithm defined by (4) in the case of the ap-
proximation of a function f by a sum of tensor products. We will then provide numerical examples of
the application of this approach. This particular case has the advantage of being an easy example to help
understanding the implementation of the greedy algorithm.

3

2.1 Greedy algorithm for the approximation of a square-integrable function

In order to show the implementation that we use for the algorithm (4), let us present the simple problem of
approximating a square-integrable function f by a sum of tensor products.

Mathematically, we consider the spaces V = L2(Ω1 × Ω2 × . . . × Ωd), Vxi
= L2(Ωi) for i = 1, . . . , d,

where Ωi ⊂ R is a bounded domain for i such that 1 ≤ i ≤ d. We recall that we are looking for a separate
representation f =

∑

k≥1 r1
k ⊗ r2

k ⊗ . . . ⊗ rd
k. So, let us consider the following minimization problem:

Find u ∈ L2(Ω1 ×Ω2 × . . .×Ωd) such that u = arg minu∈L2

(

1

2

∫

Ω1×Ω2×...×Ωd

u2 −

∫

Ω1×Ω2×...×Ωd

uf

)

(10)

where the solution is u = f . In this context, the greedy algorithm (4) can be rewritten as follows:
Iterate for all n ≥ 1: Find (r1

n, r2
n, . . . , rd

n) ∈ Vx1
× Vx2

× . . . × Vxd
such that (r1

n, r2
n, . . . , rd

n) belongs to

argmin
r1∈L2(Ω1),...,rd∈L2(Ωd)

1

2

∫

Ω1×Ω2×...×Ωd

∣

∣

∣

∣

∣

n−1
∑

k=1

r1
k ⊗ r2

k ⊗ . . . ⊗ rd
k + r1 ⊗ r2 ⊗ . . . ⊗ rd

∣

∣

∣

∣

∣

2

−

∫

Ω1×Ω2×...×Ωd

(

n−1
∑

k=1

r1
k ⊗ r2

k ⊗ . . . rd
k + r1 ⊗ r2 ⊗ . . . ⊗ rd

)

f,

(11)

As proposed in [4] instead of solving the problem (11), we will determine the solutions of the Euler
equation for (11). It has to be remarked that, in general, the solutions of the Euler equation are not
necessarily the solutions of the minimization problem, given the nonlinearity of the tensor product space
L2(Ω1) ⊗ L2(Ω2) ⊗ . . . ⊗ L2(Ωd).

The Euler equation for (11) has the following form:
Find (r1

n, r2
n, . . . , rd

n) ∈ L2(Ω1) × L2(Ω2) × . . . × L2(Ωd) such that for any functions (r1, r2, . . . , rd) ∈
L2(Ω1) × L2(Ω2) × L2(Ωd)

∫

Ω1×Ω2×...×Ωd

(r1
n ⊗ r2

n ⊗ . . . ⊗ rd
n)
(

r1 ⊗ r2
n ⊗ . . . ⊗ rd

n + r1
n ⊗ r2 ⊗ . . . ⊗ rd

n + . . . + r1
n ⊗ r2

n ⊗ . . . ⊗ rd
)

=

∫

Ω1×Ω2×...×Ωd

fn−1

(

r1 ⊗ r2
n ⊗ . . . ⊗ rd

n + r1
n ⊗ r2 ⊗ . . . ⊗ rd

n + . . . + r1
n ⊗ r2

n ⊗ . . . ⊗ rd
)

(12)

where fn−1 = f −
∑n−1

k=1 r1
k ⊗ r2

k ⊗ . . . ⊗ rd
k.

Equation (12) can be written equivalently as

(

∫

Ω2

|r2
n|2
)(

∫

Ω3

|r3
n|2
)

. . .
(

∫

Ωd

|rd
n|2
)

r1
n =

∫

Ω2×Ω3×...×Ωd

(

r2
n ⊗ . . . ⊗ rd

n

)

fn−1,
(

∫

Ω1

|r1
n|2
)(

∫

Ω3

|r3
n|2
)(

∫

Ω4

|r4
n|2
)

. . .
(

∫

Ωd

|rd
n|2
)

r2
n =

∫

Ω1×Ω3×Ω4...×Ωd

(

r1
n ⊗ r3

n ⊗ r4
n ⊗ . . . ⊗ rd

n

)

fn−1,

...
(

∫

Ω1

|r1
n|2
)(

∫

Ω2

|r2
n|2
)(

∫

Ω3

|r3
n|2
)

. . .
(

∫

Ωd−1

|rd−1
n |2

)

rd
n =

∫

Ω1×Ω2×Ω3...×Ωd−1

(

r1
n ⊗ r2

n ⊗ r3
n ⊗ . . . ⊗ rd−1

n

)

fn−1.

(13)

The system (13) is a non linear coupled system of equations which can be solved by a fixed point procedure
as proposed in [1].

Choose (r
1,(0)
n , r

2,(0)
n , . . . , rd,(0)) ∈ L2(Ω1) × L2(Ω2) × . . . × L2(Ωd), and at iteration k ≥ 0, compute

(r
1,(k)
n , r

2,(k)
n , . . . , rd,(k)) ∈ L2(Ω1) × L2(Ω2) × . . . × L2(Ωd) which is the solution to

4

‖r
2,(k)
n ‖2

L2(Ω2)
‖r

3,(k)
n ‖2

L2(Ω3)
. . . ‖r

d,(k)
n ‖2

L2(Ωd)
r

1,(k+1)
n =

∫

Ω2×Ω3×...×Ωd

(

r
2,(k)
n ⊗ . . . ⊗ r

d,(k)
n

)

fn−1,

‖r
1,(k+1)
n ‖2

L2(Ω1)
‖r

3,(k)
n ‖2

L2(Ω3)
‖r

4,(k)
n ‖2

L2(Ω4)
. . . ‖r

d,(k)
n ‖2

L2(Ωd)
r

2,(k+1)
n =

∫

Ω1×Ω3×Ω4...×Ωd

(

r
1,(k+1)
n ⊗ r

3,(k)
n ⊗ r

4,(k)
n ⊗ . . . ⊗ r

d,(k)
n

)

fn−1,

‖r
1,(k+1)
n ‖2

L2(Ω1)
‖r

2,(k+1)
n ‖2

L2(Ω2)
‖r

3,(k+1)
n ‖2

L2(Ω3)
. . . ‖r

d−1,(k+1)
n ‖2

L2(Ωd−1)
r

d,(k+1)
n =

∫

Ω̂1

(

r
1,(k+1)
n ⊗ r

2,(k+1)
n ⊗ r

3,(k+1)
n ⊗ . . . ⊗ r

d−1,(k+1)
n

)

(14)

until convergence is reached when discretized by standard full tensor product techniques.
An important point to note is that we start with a linear problem (10) with exponential complexity with

respect to the dimension, and at the end, we obtain a nonlinear problem (13) with at each iteration linear
complexity with respect to the dimension.

In the two-dimensional case, the algorithm given by (11) is related to the Singular Value Decomposition
(or rank one decomposition), as it is explained in [4]. In this case, the solutions of the variational problem (11)
are exactly the solutions to the Euler equation (12) that verify the second order optimality conditions. This
property does not hold for a d-dimensional framework with d ≥ 3.

2.2 Example of a separated representation of a put payoff

In this section we will apply the algorithm (11) to obtain an approximation of the payoff of a basket
put option. For the practical implementation of the greedy algorithm, we need to introduce the space
discretization. In practice, the spaces V ∆x

xi
for i = 1, . . . , d that are used to discretize L2(Ωi) for i = 1, . . . d

are the P1 finite elements on a uniform mesh with space step ∆x. The number ∆x = 1
N is the discretization

parameter and N is the number of discretization points. For each k, we discretize the functions ri
k for

i = 1, . . . , d that appear in the approximation of the solution given by the expression (12) as follows:

r
i,∆x
k (xi) =

N
∑

j=0

r
i,j
k φj(xi), r

i,j
k ∈ R, ∀j, k, (15)

where φi(x) = φ
(

x−xi

∆x

)

with φ(x) =

{

1 − |x| if |x| ≤ 1,

0 if |x| > 0.

This type of discretization and its generalization to the d-dimensional case will be used throughout this
paper whenever simulations are concerned.

Let us consider now the problem (10) with f(x1, . . . , xd) =
(

K − 1
d

∑d
i=1 xi

)

+
. Figure 1 shows how the

algorithm approximates the basket put payoff in a two-dimensional framework (d = 2). We observe that
as the number of iterations of the greedy algorithm increases, the approximation of the function f(x1, x2)
improves.

Figure 2 shows the convergence curves that we obtain for this problem with respect to the dimension.
We observe that, as the dimension increases, the number of iterations needed to obtain the convergence
increases as well.

We also provide in Table 1 the number of iterations needed in order to obtain a relative error of 10−5

when we consider 11 points of discretization per dimension (N = 10). The relative error calculated is the
discrete L2 error

en =

√

1
N

∑N
i1=1

∑N
i2=1 . . .

∑N
id=1 (f(xi1

, xi2
, . . . , xid

) − un(xi1
, xi2

, . . . , xid
))

2

√

1
N

∑N
i1=1

∑N
i2=1 . . .

∑N
id=1 f(x1, . . . , xd)2

(16)

where un(x1, x2, . . . , xd) =
∑n

k=1 r1
k ⊗ r2

k ⊗ . . . ⊗ rd
k is the solution obtained with the greedy algorithm at

the iteration n.

5

-20

 0

 20

 40

 60

 80

 100

 120

 140

 0 10 20 30 40 50 60 70

Put payoff
First iteration of the greedy algorithm

Third iteration of the greedy algorithm

Figure 1: Basket put option with two assets. We have considered here the intersection between the surface of
prices and the plane S1 = S2. To obtain this approximation we take 31 points of discretization per dimension.
In this figure, we show the approximation given after the first and third iteration of the algorithm.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 5 10 15 20 25 30

L2
 E

rr
or

Number of Iterations

L2 Error vs Number of Iterations according to the dimension

2D
3D
4D
5D
6D
7D
8D
9D

10D

Figure 2: Convergence curves for the approximation of a basket put payoff by a sum of tensor products.
We observe that if the dimension increases, then the number of iterations needed to obtain the convergence
increases as well. The error calculated is given by (16).

6

Dimension Number of iterations
1 1
2 2
3 10
4 22
5 101
6 228
7 1077
8 3974

Table 1: Number of iterations needed to obtain a relative error of 10−5 when we take 11 discretization points
per dimension

Notice that the full tensor product approximation would require 118 ≃ 2.108 degrees of freedom in an
8-dimensional case to be compared with the 3974 × 8 × 11 ≃ 350000 degrees of freedom that we obtained.
For the evaluation of this number, we used the fact that at each iteration of the algorithm we get 8 functions
that are determined by 11 discretization points.

In order to reduce the computational time of this calculation, we use the specific form of the payoff
function to deduce in a preliminary step the points that belong to the support of this function. Therefore,
when we calculate numerically the integral term

∫

Ω2×Ω3×...×Ωd

(

r2
n ⊗ . . . ⊗ rd

n

)

fn−1 dx2dx3 . . . dxd, (17)

in (13), we do not need to pass through the points where the function vanishes. In practice, we have used a
backtracking algorithm to describe the support of this payoff. This type of algorithm consists in constructing
candidates sequentially and neglecting them when they do not verify the conditions required as a solution,
in this case to belong to the support of the payoff. For instance, in a 5-dimensional case, the computational
time is reduced by a factor of 4

5 by taking into account the support of the payoff in the computations of the
integral term.

In our numerical experiences, the initial conditions needed to begin the iterations in the fixed point
procedure are taken randomly because we get better results in terms of convergence than in the case where
we use constant initial conditions.

Concerning the computational time, we note that if the dimension increases, one iteration of the algorithm
takes more time to be computed because the number of the equations in the system generated by the Euler
equation increases linearly with respect to the dimension. The integral terms of type (17) also demand more
time of execution because the domain has a new variable.

2.3 Pricing of a basket put using the separated approximation of the payoff

As an example to show that the approximation by a sum of tensor products makes sense, we can use the
approximation as a method to obtain prices of options. In order to do this, we must obtain an approximation
of h(x1(T) . . . xd(T))fS1(T)...Sd(T)(x1(T) . . . xd(T); t) where h(x1(T) . . . xd(T)) is the payoff of the option and
fS1(T)...Sd(T)(x1(T) . . . xd(T); t) the joint density of the variables S1(T) . . . Sd(T).

So, given the price of a European option

Pt = E

[

e−r(T −t)h(S1(T) . . . Sd(T))|Ft

]

=

∫

Ω1×...×Ωd

e−r(T −t)h(x1(T) . . . xd(T))fS1(T)...Sd(T)(x1(T) . . . xd(T); t)dx1(T) . . . dxd(T),

7

we obtain a separable approximation of h(x1(T) . . . xd(T))fS1(T)...Sd(T)(x1(T) . . . xd(T); t) using the greedy
algorithm and then we can calculate this integral very efficiently using Fubini’s rule. In Figure 3, we apply
this idea for the case of a basket put option on 7 assets.

 8.7

 8.8

 8.9

 9

 9.1

 9.2

 9.3

 9.4

 9.5

 9.6

 9.7

 0 20 40 60 80 100 120 140 160 180 200

P
rix

Nb of iterations

Price given by the approximation of the product between the density and the payoff
MC1E4
MC1E5
MC1E6

Figure 3: Price of put basket option with 7 assets. The red curve gives us the price of this financial product
with respect to the number of iterations of the algorithm. The horizontal lines represent the confidence
interval obtained with a Monte Carlo method using respectively 104, 105 and 106 iterations.

8

References

[1] A. Ammar, B. Mokdad, F. Chinesta, and R. Keunings. A new family of solvers for some classes of
multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids.
J. Non-Newtonian Fluid Mech., 139:153–176, 2006. 1, 2, 4

[2] J. Infante Acevedo. Méthodes et modèles numériques appliqués aux risques du marché et à l’évaluation
financière. PhD thesis, Université de Paris-Est. 2

[3] P. Ladevèze. Nonlinear computational structural mechanics: new approaches and non-incremental meth-
ods of calculations. 1999. 1

[4] C. Le Bris, T. Lelièvre, and Y. Maday. Results and questions on a nonlinear approximation approach
for solving high-dimensional partial differential equations. Constructive Approximation, 30(3):621–651,
2009. 1, 2, 3, 4, 5

[5] A. Nouy. A priori tensor approximations for the numerical solution of high-dimensional problems: alter-
native definitions. Preprint, 2007. 1, 2

[6] D. Pommier. Méthodes numériques sur des grilles sparse appliquées à l’évaluation d’options en finance.
PhD thesis, Université Pierre et Marie Curie, 2008. 1, 2

[7] DeVore R.A. and Temlyakov V.N. Some remarks on greedy algorithms. Adv. Comput. Math., 5:173–187,
1996. 3

[8] V. N. Temlyakov. Greedy approximation. j-ACTA-NUMERICA, 17:235–409, 2008. 1, 3

9

	Greedy algorithms for high dimensional problems
	Implementation of the algorithm in the case of the approximation of a square-integrable function
	Greedy algorithm for the approximation of a square-integrable function
	Example of a separated representation of a put payoff
	Pricing of a basket put using the separated approximation of the payoff

