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Implementation of the Low Discrepancy Sequences
QMC simulation

Quasi Monte Carlo simulation consists in approximating the integral
Jio.1je f(u)du by L3N, f(u;) where {&} are quasi-random numbers, that
means they are generated from low-discrepancy sequences. As we already
have explained it, such sequences neither are random nor pseudo-random but



12 pages 2

deterministic and successive values are not independent. However they sat-

isfy good properties of equidistribution on [0, 1]¢ and we have that % SN &) —

Jioge f(u)du.

In the following sections we describe some low discrepancy sequences. We
explain their construction and discuss some of their properties, especially on
their discrepancy.

General references about the Quasi-Monte Carlo simulation are [2], [7], [8],
[6] or [1].

The implementation of the sequences are described in the implemented part.

1 Tore-SQRT sequences

They are d-dimensional sequences, obtained by considering the multiples of
suitable irrational numbers modulo 1.

e Tore sequence

It is defined by :

&= ({n.a}) = {n.ax}, ..., {n.aq})

where a = (ay,...,a4) € R? such that (1,ay,...,a4) are linearly indepen-
dent on Q.
{z} = x — [z] denotes the fractional part of z.

¢ SQRT sequence
It is a particular case of the Tore sequence with

a=(yp1,---s\/Pd)

where (p1,...,pq) are the first d prime numbers.

If aq, ..., a4 are algebric, then the discrepancy satisfies:

DiE) =0 (nll> Ve >0

Click there to reach the implemented part: implementation.
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2 Van der Corput and Halton sequences

2.1 Van der Corput sequence

This is a one-dimensional sequence defined by the radical-inverse function
p in base p:
R(n)

Q;
pp(n) = Z i+1
i—0 P

where the coefficients a; are given by the digit expansion in base p of n :
R(n)
n = Z a;p"
i=0

R(n) denotes the maximum index for which apg,) is not equals to 0. Its value
depends on n and p by the relation p™ < n < pfM+1 that is:

logn
logp

R(n) = [

Discrepancy of the Van der Corput sequence satisfies the following majora-

tion: 1 plog(pn) |
. plog(pn) ogn

Remarks: (ref Article of Alan Jung and Silvio Galanti)

- For n < p, there is only one positive coefficient a in the decomposition in
base p, that is ag = n. Thus ¢,(n) = » and the sequence is increasing.

- There are cycles of length p in this sequence. Each subsequence of length
p (indices kp to (k4 1)p — 1) is increasing in magnitude proportionnaly to
power of 1/p, and covers uniformly the interval [0,1). Consequences of this
property will be studied for multidimensional sequences (especially Halton
sequence).

2.2 Halton sequence

The Halton sequence is a d-dimensional generalization of the Van Der Corput
sequence. Let (p1,...,pq) be the d first prime numbers, then &, is defined
by:

En = (90}71 (TL), R (de(n))
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where ¢, (n) is the Van der Corput sequence in base p;.
The Halton sequence satisfies :

d d pk—l
with a constant C'* = [ Slogpr

This constant grows to infinity super-exponentially with dimension.
Click there to reach the implemented part: implementation.

2.3 Permuted (Generalized) Halton sequence

Orthogonal projections of points from the Halton sequence show non uniform
distribution for some dimensions (see Morokoff and Caflish [6], Jung ?7? or
Bratley and Fox 7777). This non-uniformity is due to cycles of length p; for
each one-dimensional sequence.

To break correlations between the inverse radical functions of different di-
mensions, we realize permutations of coefficients a;.

We consider (II,,,1 < i < d) d permutations over {0,...,p;_1} such that
sz<0) =0.

Each term of the permuted Halton sequence is defined by:

Hpi(a[]) NI Hpi(aR(n))
Di pR(n)Jrl

%

Sp;(n) =

with n = 70 q,p°.

The global sequence is given by :

§n = (SP1(n)7 R Spd(n))

There is no optimal choice for the permutations. We present 3 approaches
to modify the Halton sequence

e An algorithm was suggested by Braaten and Weller [1] for d < 16 with a
possible extension to a larger d (however with significant computation).

e Reverse-Radix Algorithm

An other algorithm (see Kocis and Whiten [5]) consists in reversing the bi-
nary digits of integers, expressed using a fixed number of base 2 digits and
removing any values that are too large.

This algorithm can be applied for very large values of dimensions.
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e Halton Sequence Leaped:
This other variant for the Halton sequence consists in using only every Lth
Halton number subject to the condition that L is a prime different from all

=

bases p1,...,pq (see Kocis and Whiten [5]).

3 Faure sequence

This is a d-dimensional sequence.

The Faure sequence is a permutation of the Halton sequence, but it uses
the same base r for each dimension. We choose r as the smallest odd prime
integer such that r > d.

Note that the k-th dimension of a d-dimensional Faure sequence is different
from the k-th dimension of a d’-dimensional Faure sequence as soon as the
base r is different.

With usual notations, a; are the coefficients of the r-adic decomposition of n

R(n)
n = Z a;r'
i=0

We consider the following transformation 7" :

R o R
T:z=>Y ) = T(x) =) )
k=0 k=0

with by = ¥7% Cka; mod r and CF denote binomial coefficients.
The coefficients b, are a permutation of the ay.
Precision ... and reference 77777

The Faure sequence is defined by using successive transformations 7*:

§n = (907"(”>7 T(Qor(n))7 s JTdil(SOT(TL)))

where ¢, is the Van der Corput sequence in base r.

The discrepancy of the sequence satisfies :

log”(n)
n

D;(&) <c?

where C? is a constant dependent on d and r : C' = %(Q’io’glr)d.

The constant C? tends to 0 with dimension.
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The Faure sequence exhibits cycles of length r but cycles are not composed
of increasing terms, except for the first dimension. For the same dimension,
the Faure sequence has generally a smaller base than the Halton one, thus
cycles are smaller too. Because we use the smallest prime number greater
than the dimension d and not the d-th prime number.

Click there to reach the implemented part: implementation.

4 Generalized Faure sequence

This is a d-dimensional sequence. Let r be the smallest odd prime integer,
such that » > d.

The digit expansion of n in base r is given by n = S, (n)r.

The Generalized Faure sequence is defined by :

(d)

el mw g
L= ,,,kil""’ > Tkil

k=0 k=0
with

€l = z (), J<dk<R@m)
) = (c,gi)ongR(n),ogng(n) and ¢ = AU Pi=1 where AY) is a lower trian-

gular inversible matrix such that (a;;) € F, and P = (C¥) for k < R(n),s <
R(n) is built with the binomial coefficients.

The discrepancy of the sequence satisfies:

log”(n)

Di() < C(d,n)2

where C(d,r) ~ 5 (5=7)"

2logr

Click there to reach the implemented part: implementation.

5 Nets and (t,s)-sequences

(t, s)-sequences are a group of sequences with a very regular distribution be-
haviour. Their points are placed into certain equally sized volumes of the
unit cube for sequences of a fixed length. Chapter 4 of Niederreiter [7] well
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describes theoretical aspects for such sequences. We just summarize in this
section some definitions and properties of those sequences.

Definitions

e An elementary interval E € I? is defined as E = [T, [a;b~%, (a; +
1)b=%] where a;, d; > 0 are integers satisfying 0 < a; < b% for 1 <i < d.

e Let 0 <t < m be integers. A (t,m,s)-net in base b is a point set P of
b™ points in I¢ such that the number of points in F is equal to b' for
every elementary interval F in base b with II(E) = b'~™.

e Let t > 0 be an integer. A sequence xzg,x1,... of points in I® is a
(t, s)-sequence in base b if, for all integers k > 0 and m > ¢, the point
set constituting of the x,, with ko™ < n < (k+ 1)b™ is a (t,m, s)-net
in base b.

Properties:

e Any (t,m, s)-net in base b is also a (u,m, s)-net in base b for integers
t<u<m.
The same property holds for (¢, s)-sequences.
Then smaller values of t mean stronger regularity properties.

e The discrepancy of a (¢,m, s)-net P in base b with m > 0 satisfies:
NDy(P) < B(s,b)b'(log N)* ' + O(b' (log N)*~2)
where

(legglb)s—l lf either S = 2 or b — 2’ s = 3’4
1 (Lb/QJ
(s—1)!'\ logb

B(s,b) = {

)*~! otherwise

e The discrepancy of the first N terms of a (¢, s)-sequence P in base b

satisfies:
NDy(P) < C(s,b)b'(log N)* + O (¥ (log N)*")
where
O(s,5) = | 3(aloga)" f cither s = 2orb=2,5= 3,4
’ 1 b=l M S h :
s12[b/2] ( Tog b ) otherwise

e For m > 2, a (0,m,s)-net in base b can only exist if s < b+ 1.
A (0, s)-sequence in base b can only exists if s < b.
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Examples:

e The Van der Corput sequence is a (0, 1) sequence in base b. In fact, if
we consider the b™ points z,, with k0™ <n < (k+1)0™ (k> 0,m > 1),
every b-adic interval [ab™™, (a + 1)b~™] contains exactly one point .

e The s-dimensional Sobol sequence is a (7, s)-sequence in base 2, where
T =7 ,deg(P;) —s. It is called a LP.-sequence. Sobol sequence is
described in the next point.

e The s-dimensional Faure sequence in base r is a (0, s)-sequence where
r is the smallest prime integer greater or equal than s.

6 Sobol sequence

The Sobol sequence is a d-dimensional sequence in base 2 and it is a (7, d)-
sequence. It is one of the most used sequences for Quasi-Monte Carlo simula-
tion. It was first developped by Sobol [3] and it has been proved to have some
additional uniformity property under some initialization conditions (see [9]).
Its construction is based on primitive polynomials in the field Zy; and XOR
operations.

Each dimension is a permutation of the Halton sequence with base 2 whenever
N = 2¢. These permutations are generated from irreductible polynomials in
Zo. But they allow for certain correlations to develop, then they can produce
regions where no points fall until N becomes very large.

The Sobol sequence is defined by:
o= (a0 & ® any Vi 1ol - @ any Vi)

where the Vi(j ) are direction numbers (expressed as binary fraction) obtained
from d different primitive polynomials and a; denote the coefficients of the
digit expansion of n in base b = 2, given by: n = Zf:(g) a;2".

@ represents the bitwise exclusive OR operator (XOR). For explanation
about XOR operation or primitive polynomials, we refer the reader to the

To implement this sequence, we use an other expression for &, depending
only on the previous point and one direction number. This principle is de-
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The discrepancy of the sequence satisfies:

Dr(e) < Cd(log n)? Lo ((bg n)d“>

n n

t(d) . . . .
where Cy = m grows superexponentially with dimension,

and for K >0 Klggl‘l’gd <t(d) < dli;ggd + O(dloglogd). t(d) grows superlin-

early with dimension.

e Definition of the constants V:
- For each j < d we first choose a primitive polynomial P(j) with degree

s(7):

P(j) = 2*D + bz D7 o p by gz +

and we select s(j) odd integers ) such that
<20 < i< s())

The choice for constants ¢ (] ) is not a easy step. Sobol’ article 77777 gives

some explanations about thls problem
- Once we have chosen P(j) and the c ) for i < s(j), we use the coefficients
b; through the recurrence relation :

¢ = 20, @ 22byc), @ 2900~ by )()@23(7) ()(])690(])()
to determine the ¢! for i > s(7).
- Finally we calculate V' by:
o

2i+1

V(j) _

e Uniformity property: An additional uniformity property of the sequence
is called by Sobol the property A.

- We define a binary segment of length 2° as a set of points P, whose sub-
scripts satisfy the inequality [2° < i < (I +1)2® where [ =0,1,....
We divide up the s-dimensional unit cube I° by the planes x; =

% into 2°
multidimensional small cubes, which represent binary parallelepipeds.

- Property A: If in any binary segment of length 2¢ of the sequence Fy, ..., P, ...
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all the points belong to different small cubes, then we say that the sequence
satisfies property A.

Sobol [9] proved a sufficient and necessary condition on the direction num-
bers so that the property A is verified. A table of good numerical values for
V' is given for a dimension s < 16.

- Property A’: The property A can be extended to the property A’ de-
fined as follows.

We divide up the s-dimensional unit cube I° by the planes x; = i, %, % into
22¢ multidimensional small cubes. If in any binary segment of the sequence
Py, ..., P, ... of length 22¢, all the points belong to different small cubes,

then we say that the sequence possesses the property A’

- Remark about the link between property A or A’ and the dimension s:
Note that the property A (resp. A’) holds for subsequences of length 2°
(resp. 2%%). In practice if s increases, it becomes difficult to verify the condi-
tion because we need to simulate at least 2° (2%%) points.

Click there to reach the implemented part: implementation.

7 Niederreiter sequence

The Niederreiter sequence is a s-dimensional (¢, s)-sequence in base b whose
theoretical aspects are described in Niederreiter [7]. It is defined as:

R ) R )
_ n,J n,J

j=0 7=0

with n = 27 4, (n)b" and

A R(n)
yff)] = Z cﬁar(n) eI,
r=0

cO = (cy?)n) is called the generator matrix of the i-th coordinate. An algo-
rithm to compute the values is given in Niederreiter [7]. Inititialization of

the (cy,)ﬂ) is done at the beginning of the simulation.

The discrepancy of the sequence satisfies:

D3(€) = 0 <“°g ”)S)

n
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Construction of the cg-?: (in the next version)

The method is based on the formal Laurent series.

Remark: If b is a prime power and s an arbitrary dimension such that s < b,
we can choose Pp,...,Ps as the linear polynomials P;(z) = x — b; where
by, ..., bs are distinct elements of F,. Then the Niederreiter sequence is a
(0, s)-sequence in base b and we have for 1 > ¢ > s and j > 1:

A =0if0<r<j—1

A= (r)j— oI if > 1

Click there to reach the implemented part: implementation.

8 General remarks on low discrepancy sequences

e Quasi-random numbers combine the advantage of a random sequence
that points can be added incrementally, with the advantage of a lattice
that there is no clumping of points.

e For large dimension s, the theoretical bound (log N)*/N may only be
meaningful for extremly large values of N. The bound in Koksma-
Hlawka inequality gives no relevant information until a very large num-
ber of points is used.

Low discrepancy sequences are very useful for low dimension. In high
dimension s, a lattice can only be refined by increasing the number of
points by a factor 2°.

e Orthogonal projections: if a d-dimensional sequence is uniformly dis-
tributed in 74, then two-dimensional sequences formed by pairing coor-
dinates should also be uniformly distributed. The appearance of non-
uniformity in these projections is an indication of potential problems
in using a quasi-random sequence for integration. This problem is de-
velopped in Morokoff and Caflish [6]. We will see that procedures like
scrambling permutation can be suggested to improve the uniformity
property while preserving the discrepancy.
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