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Abstract: We apply an efficient pricing method for arithmetic European-style
Asian options with discretely monitored version, based on Fourier Cosine expansion
and Clenshaw-Curtis quadrature proposed by Zhang and Oosterlee (2011). The
dynamics of underlying asset price is assumed to follow Lévy processes, we specified
the model as CGMY models. The main idea of this method and the manual of its
implementation are provided here.
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1 Introduction

Fourier Cosine expansion method for option pricing was proposed by Fang and Oost-
erlee (2009), it was firstly applied to pricing European option. The idea of Fourier
Cosine expansion is to recover the transitional density function in the risk-neutral
formula in terms of the conditional characteristic function, by a Fourier Cosine ex-
pansion which composes of the characteristic function of the underlying asset price
dynamics. Under the assumption that the underlying asset price follows Lévy pro-
cess, the characteristic function of the underlying asset is typically available in closed
form, thus it is feasible to use this method. Furthermore this method was applied
in pricing American options and other path-dependent options. This method was
proved to be efficient with low computational complexity in European options and
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American options.

Zhang and Oosterlee (2013)[4] developed a method with Fourier-Cosine expan-
sion for pricing the European-style arithmetic Asian options, now we apply this
method and implement it into PREMIA. In this method, the Fourier Cosine expan-
sions are not only used in the risk-neutral pricing formula, but also to recursively
recover the characteristic function of the log-return of the sum of the underlying
asset prices. And to derive the characteristic functions of the arithmetic sum of the
underlying asset, which is necessary for the Fourier Cosine expansions, the Clenshaw-
Curtis quadrature rule is used as well.

We will introduce the pricing methodology applying Fourier Cosine expansion
and Clenshw-Curtis quadrature here, but the error analysis will not be concerned,
the readers who are interested in the error analysis please refer to [4]. In the rest of
this document is arranged as follows. We will introduce the model and the notations
of Asian options in Section 2, then we provide the Fourier-Cosine expansion method,
the recovery of characteristic function by Clenshaw-Curtis quadrature, the put-call
parity for pricing a call Asian options, and how to determine the truncated range
for Fourier-Cosine expansion in Section 3, the program manual will be presented in
Section 4.

2 Model and product description

Assume the price of the underlying asset S(t), t ≥ 0 follows a Lévy model, especially
we are interested in the CGMY model. For CGMY model, the characteristic expo-
nent of the log-increments is given in a closed form:

ϕCGMY (u, t) = exp(iuµt) · exp
(

tCΓ(−Y )(M − iu)Y −MY + (G+ iu)Y −GY
)

,

where C,G,M, Y are the parameters of this model and i is the imaginary unit.

We consider the European-style arithmetic Asian option maturity at time T with
M monitored-dates and strike K, then the time step in between monitored-dates
is △t = T/M . Denote Sj := S(j△t), for j = 0, 1, · · · ,M for the underlying asset
price at the jth monitored-date, The payoff function of this Asian option is

v(S, T ) =







max
(

1
M

∑M
j=0 Sj −K, 0

)

for a call,

max
(

K − 1
M

∑M
j=0 Sj, 0

)

for a put.
(2.1)

To derive the price of the Asian option with payoff (2.1), we need to know the
conditional characteristic function of the arithmetic average of Sj, j = 0, · · · ,M,
which can be rewriteen as

1

M

M
∑

j=0

Sj =
S0[1 + exp(YM)]

M + 1
. (2.2)
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The YM in the above equation (2.2) can be derived recursively as

Y1 := RM ,

Yj := RM+1−j + Zj−1 = log

(

SM−j+1

M − j
+
SM−j+2

SM−j

+ · · · +
SM

SM−j

)

, j = 2, 3, · · · ,M

where
Zj := log(1 + exp(Yj)), (2.3)

and Rj, j = 1, 2, · · · ,M is the log-increment of Sj, j = 0, 1, · · · ,M given by

Rj := log

(

Sj

Sj−1

)

.

For Lévy processes, the increments Rj, j = 1, 2, · · · ,M are identically and indepen-
dently distributed, so that Rj =d R.

With the rewritten form (2.2) by YM , the payoff function (2.1) can be regarded
as the payoff function of a plain vanilla European option with the underlying asset
YM , i.e.

v(S, T ) = v′(YM , T ) =







max
(

S0[1+exp(YM )]
M+1

−K, 0
)

for a call,

max
(

K − S0[1+exp(YM )]
M+1

, 0
)

for a put.
. (2.4)

Thus we can apply the Fourier Cosine expansion method for plain vanilla European
option with payoff (2.4) to price the arithmetic Asian option with payoff (2.1) given
the conditional characteristic function of YM .

3 The pricing Method by Fourier Cosine Expan-

sion and Clenshw-Curtis quadrature

In this section, we introduce how to obtain the option price by Fourier Cosine expan-
sion given the conditional characteristic function of YM , then present how to recover
the conditional characteristic function of YM recursively from the characteristic func-
tions of log-increment Rj, j = 1, · · · ,M., at last we propose the Clenshaw-Curtis
quadrature in the derivation of the characteristic function of YM .

3.1 Fourier Cosine Expansion

Denote the riskless interest rate by r, the risk-neutral option pricing formula for
plain vanilla European options is

v′(x, t0) = e−r(T −t0)
E

t0 [v′(YM , T )] = e−r(T −t0)
∫ +∞

−∞

v′(y, T )f(y | x)dy, (3.1)

where f(y|x) is the transitional density function of YM given the initial value of S0 =
x. f(y|x) typically doesn’t have a closed form, it is approximated on a truncated



?? pages 4

domain [a, b], by a truncated Fourier Cosine series expansion, with N terms, based
on its conditional characteristic function, as follows:

f(y|x) ≈
2

b− a

N−1
∑

k=0

′Re

[

ϕYM

(

kπ

b− a
;x

)

exp

(

−i
akπ

b− a

)]

cos
(

kπ
y − a

b− a

)

, (3.2)

where ϕYM
(u;x) the conditional characteristic function of f(y|x) given the initial

value of S0 = x, Re means taking the real part of the argument, and the prime at
the sum symbol indicates the first term in the expansion is multiplied by one-half.
The appropriate size of the integration interval, i.e. [a, b] can be determined with
the help of the cumulants as in [1].

Replacing f(y|x) by its approximation (3.2) in equation (3.1) and interchanging
integration and summation gives the Fourier Cosine formula for computing of plain
vanilla European options:

v′(x, t0) ≈ e−r(T −t0)
N−1
∑

k=0

′Re

[

ϕYM

(

kπ

b− a
;x

)

exp

(

−i
akπ

b− a

)]

Vk, (3.3)

where

Vk =
2

b− a

∫ b

a
v′(y, T ) cos

(

kπ
y − a

b− a

)

dy, k = 0, · · · , N − 1

are the Fourier-Cosine coefficients of v′(y,M), it can be derived analytically as

Vk =







2
b−a

[

S0

M+1
χk(x′, b) +

(

S0

M+1
−K)φk(x′, b)

)]

, for a call
2

b−a

[

− S0

M+1
χk(a, x′) +

(

K − S0

M+1
)φk(a, x′)

)]

, for a put
, (3.4)

where x′ = log
(

K(M+1)
S0

− 1
)

, functions χk(l∗, u∗) and φk(l∗, u∗) for all l∗ ≤ u∗ are
as follows:

χk(l∗, u∗) :=
∫ u∗

l∗
ex cos

(

nπ
x− a

b− a

)

dx

=
1

1 +
(

nπ
b−a

)2

[

cos
(

nπ
u− a

b− a

)

eu − cos

(

nπ
l − a

b− a

)

el

+
nπ

b− a
sin

(

nπ
u− a

b− a

)

eu −
nπ

b− a
sin

(

nπ
l − a

b− a

)

el

]

,

ψk(l∗, u∗) :=
∫ u∗

l∗
cos

(

nπ
x− a

b− a

)

dx

=







[

sin
(

nπ u−a
b−a

)

− sin
(

nπ l−a
b−a

)]

b−a
nπ
, n 6= 0

u− l, n = 0.
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3.2 Recovery of Characteristic Function of YM

In the following, we will use the simplified notation ϕX(u) for the conditional chara-
teristic function of any random variable X, ϕX(u;x), for convenience without con-
fusion. To recover the conditional characteristic function of YM , i.e. ϕYM

( kπ
b−a

) for
k = 0, · · · , N − 1, we start with Y1 with characteristic function of closed form:

ϕY1
(u) = ϕR(u). (3.5)

Then, by definition of Yj (2.3), ϕYj
(u) can be recovered in terms of ϕYj−1

(u) and
the characteristic function of the log-increment RM+1−j for j = 2, · · · ,M. Since
the log-increment Rj, j = 1, · · · ,M are independent, then RM+1−j and Zj−1 =
log(1 + exp(Yj−1)) are independent, which gives:

ϕYj
(u) = ϕR(u)ϕZj−1

(u). (3.6)

Apply once again the Fourier Cosine series expansion to approximate ϕZj−1
, we have

ϕZj−1
(u) = E [exp(iu log(1 + exp(Yj−1)))]

=
∫ +∞

−∞

(exp(x) + 1)iufYj−1
(x)dx

≈
2

b− a

N−1
∑

l=0

′Re

[

ϕ̂Yj−1

(

lπ

b− a

)

exp

(

−ia
lπ

b− a

)]

×
∫ b

a
(exp(x) + 1)iu cos

(

(x− a)
lπ

b− a

)

dx, (3.7)

where ϕ̂Yj−1
(u) is approximation of ϕYj−1

(u).

Since we need ϕYj
( kπ

b−a
) for k = 0, · · · , N−1, it needs ϕZj−1

( kπ
b−a

), k = 0, · · · , N−1
as well, which forms a vector

Φj−1 = [Φj−1(k)]N−1
k=0 =

[

ϕZj−1

(

kπ

b− a

)]N−1

k=0

,

thus the equation (3.7) can be written as matrix-vector form as

Φj−1 = MAj−1, (3.8)

where

M = [M(k, l)]N−1
k,l=0, M(k, l) =

∫ b

a
(exp(x) + 1)iuk cos((x− a)ul)dx,

Aj = (Aj(l))
N−1
l=0 , Aj(l) =

2

b− a
Re

(

ϕ̂Yj−1
(ul) exp(−iaul)

)

.

The elements in the matrix M will be derived by the Clenshaw-Curtis quadrature
as it is shown in the next subsection.
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3.3 Clenshaw-Curtis Quadrature

By variable subsititution, the elements of matrix M are given as

M(k, l) =
∫ b

a
(exp(x) + 1)iuk cos((x− a)ul)dx, (3.9)

=
∫ 1

−1

b− a

2

[

exp

(

b− a

2
x+

a+ b

2

)

+ 1

]iuk

cos

[(

b− a

2
x+

a+ b

2
− a

)

ul

]

dx.

By Clenshaw-Curtis Quadrature, the above integral can be approximated as
follows

M(k, l)

≈
nq/2
∑

n=0

D0,nyn +
nq/2−1
∑

m=1

2

1 − (2m)2





nq/2
∑

n=0

Dm,nyn



+
1

1 − n2
q

nq/2
∑

n=0

Dnq/2,nyn,

=
nq/2
∑

m=0

dm





nq/2
∑

n=0

Dm,nyn



 =
nq/2
∑

n=0

yn

nq/2
∑

m=0

(dmDm,n). (3.10)

where

Dm,n =
2

nq

cos

(

mnπ

nq/2

)

·







1/2, if n = 0, nq/2,

1, otherwise,
m, n = 0, · · · , nq/2, (3.11)

d and y are nq/2 + 1-vectors defined respectively as:

d := (dm)
nq/2
m=0 =

[

1,
2

1 − 4
,

2

1 − 16
, · · · ,

2

1 − (2k)2
, · · · ,

1

1 − n2
q

]T

, (3.12)

y := (yn)
nq/2
n=0 =

(

f

[

cos

(

nπ

nq

)]

+ f

[

− cos

(

nπ

nq

)])nq/2

n=0

, (3.13)

with

f(x) =
b− a

2

[

exp

(

b− a

2
x+

a+ b

2

)

+ 1

]iuk

cos

[(

b− a

2
x+

a+ b

2
− a

)

ul

]

.

The second summation in the last term of (3.10) is a type I Discrete Cosine Trans-
form(DCT), it can be computed by Discrete Fourier Transform (DFT) of nq-element

vector d := (dm)
nq−1
m=0 generated from vector d, which reads

dm =































2 = 2dm, m = 0;

dm, m = 1, · · · , nq/2 − 1
2

1−n2
q

= 2dm, m = nq/2;

dnq−m, m = nq/2 + 1, · · · , nq − 1.

. (3.14)
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In fact, the DFT of d is

d̂n =
nq−1
∑

m=0

dm exp

(

−i
2πmn

nq

)

=
nq−1
∑

m=0

dm

[

cos

(

πmn

nq/2

)

− i sin

(

πmn

nq/2

)]

= 2
nq/2
∑

m=0

dm cos

(

πmn

nq/2

)

− i
nq−1
∑

m=0

dm sin

(

πmn

nq/2

)

= nq

nq/2
∑

m=0

dmDm,n − i
nq−1
∑

m=0

dm sin

(

πmn

nq/2

)

.

Thus by taking the real part of the DFT of d and divided by nq, we have the value
the second summation in the last term of (3.10), hence the computation complexity
of (3.10) can be reduced from O((nq/2 + 1)2) to O(nq log2(nq)).

3.4 Integration Range

Now we explain how to determine integration range [a, b] so that the error of pric-
ing can be controlled. The integration range for each Yj, j = 1, 2, · · · ,M can be
determined by means of its cumulants as:

[ζ1(Yj) − L

√

ζ2(Yj) +
√

ζ4(Y ), ζ1(Yj) + L

√

ζ2(Yj) +
√

ζ4(Y )] (3.15)

where ζ1(Yj), ζ2(Yj), ζ4(Yj) the first, second and fourth cumulants of Yj, respectively.

Since it is hard to find the close formular to calculate the cumulants, then a
different integration range is proposed:









ζ1

(

log

(

j
SM−j+1

SM−j

))

− L

√

√

√

√

√ζ2

(

log

(

j
SM

SM−j

))

+

√

√

√

√ζ4

(

log

(

j
SM

SM−j

))

,

ζ1

(

log

(

j
SM

SM−j

))

+ L

√

√

√

√

√ζ2

(

log

(

j
SM

SM−j

))

+

√

√

√

√ζ4

(

log

(

j
SM

SM−j

))









.

And it can be simplified as [aj, bj] with

aj = log(j) + ζ1(R) − L

√

ζ2(R) +
√

ζ4(R), (3.16)

bj = log(j) + jζ1(R) + L

√

jζ2(R) +
√

jζ4(R), (3.17)
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since

ζ1

(

log

(

j
SM−j+1

SMj

))

= log(j)+ζ1(R), and ∀n ≥ 2, ζn

(

log

(

j
SM−j+1

SM−j

))

= ζn(R),

ζ1

(

log

(

j
SM

SMj

))

= log(j)+jζ1(R), and ∀n ≥ 2, ζn

(

log

(

j
SM−j+1

SM−j

))

= jζn(R),

with R is the increment of an exponential Lévy process, between any two consecu-
tive steps.

In order to compute the integration range only once, we adope the following
integration range:

[a, b] := [ min
j=1,2,··· ,M

aj, max
j=1,2,··· ,M

bj]

=

[

ζ1(R) − L

√

ζ2(R) +
√

ζ4(R), log(M) +Mζ1(R) + L

√

Mζ2(R) +
√

Mζ4(R)

]

for all time steps, where the cumulants of R are as follows:

ζ1(R) = (r − q)t+ CtΓ(−Y )Y (GY −1 −MY −1),

ζ2(R) = σ2t+ CtΓ(2 − Y )(MY −2 −GY −2),

ζ4(R) = CtΓ(4 − Y )(MY −4 −GY −4).

3.5 Put-Call Parity for Asian Option

Since for a call Asian option, the payoff is unbounded, which lead to large errors
when truncating the integration range of the risk-neutral formula. So we use the
put-call parity when pricing a call Asian option.

Assuming that no divident is paid, and denoting the Asian and put options prices
by c(S0, t0) and p(S0, t0) respectively. Using the risk-neutral valuation formula gives
us, for t0 < T ,

c(S0, t0) − p(S0, t0) = e−rT E





1

M + 1

M
∑

j=0

Sj −K|F0



 =
S0e

−rT

M + 1

M
∑

j=0

erj△t −Ke−rT .

(3.18)

4 Program manual

We implement the pricing of the Asian options by Fourier Cosine expansion. The
program HAS TO work with the pnl library.
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Parameters of the product:

S0: the initial value of stock price.
K0: strike K of the arithmetric Asian option.
T: the number of the monitored dates of this option.
r: the discount interest rate.
divid: the payout dividend.
Mn: the number of the monitoring dates.

Model Parameters:

C, G, M, Y: the four parameters in the CGMY model.

Parameters for Fourier-Cosine method and Clenshaw-Curtis quadrature:

N: number of Fourier-Cosine series, N in (3.2).
nq: numbers of terms in Clenshaw-Curtis quadrature.
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