CDOs’ hedging in Markovian contagion models
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The following method to compute the hedge of a CDO tranche is based on
the article of J-P. Laurent, A. Cousin and J-D. Fermanian [I]

Premia 18

1 CDO tranche hedging

We consider a synthetic CDO of maturity 7" based on n companies which
can make default at a random time 7;, 1 <7 < n. We denote by H; the natural
filtration generated by the default times and we assume that no simultaneous
default can occur.

We suppose also the existence of some (P, H;) intensities for the counting pro-
cesses N;(t) = 1{r,<¢}, i =1,...,ni.e. there exist some H; predictable processes

(o) (1<i<n) such that t — N;(t) — fg af (s)ds are (P, H;)-martingales.

1.1 Market assumptions

We assume that instantaneous digital default swaps are traded on the names.
A such product provides a payoff of dN;(t) — «;(t)dt at t + dt. dN(t) is the
payment of the default leg while «;(¢)dt is the one of the payment leg.
We further assume that default-free interest rates are constant and equal to
r. Hence, given some initial investment V[ and some H;-predictable processes
d1,...,0, associated with some self-financed trading strategy in instantaneous
digital CDS, we attain at time 7' the payoff

n T
Voe'T + Z/O 5i(s)e” ™) (dNi(s) — ai(s)ds) W)
i=1

1.2 Hedging and martingale representation theorem

>From the absence of arbitrage opportunities and under mild regularity
assumptions, there exists a probability Q equivalent to P such that the a; are
the (Q,H:) intensities associated with the default times. Then, considering a
payoff M Hp-measurable and Q-integrable, the integral representation theorem



of point process martingales gives n processes H;-measurable 6, ...,6, such
that :

n_ T
M=EM]+) / 0:(s)(AN;(s) — a;(s)ds) (2)
i=170
Identifying expressions (1) and (2), we obtain :
6i(s) =0i(s)e "™ for0<s<Tand i=1,...,n

and an initial investment Vp = EQ[Me~"T].

1.3 The Markovian contagion model

We assume that intensities ; depend only on the current credit status : they
are deterministic functions of Ny(t),..., N,(¢). In a homogeneous Markovian
model, they take the following form : a;@ (t, N1(t),..., N,(t)). Moreover, we can
specify the model by considering that intensities depend only on the number of
defaults at the date ¢t. Then, let N(¢) = Y| N;(¢), and the default intensities
become a®(t)(t, N(t)). For simplicity, we will assume a constant recovery rate
R. The aggregate loss at time t is given by :

Lo=0-r)™Y

As a consequence of the assumption of no simultaneous defaults, L; is the sum
of the default intensities and then depends only upon the number of defaults at
time ¢. Let A(¢, N(t)) define the risk-neutral loss intensity, we have :

A, N(t) = (n = N(1)a®(t)(t, N(#)) 3)

Under those assumptions, The process N(t) is Markovian (under Q) whose
generator A is :

=A(t,0)  A(t,0) 0 0
0 =A(t,1) At 1) 0
0 0 ' 0 (4)
0 0 0 “At,n—1) =A(t,n—1)
0 0 0

1.4 Computation of the ¢

We consider a European type payoff M and we denote by V(¢,.) its re-
plication price at time ¢ : this is a vector whose components are V (¢, k) =
e "(T=YR[M|N(t) = k]. By Ito’s lemma we have :

oV (t,N(t))

dV (N (1) = =

dt+ (V(¢,N(t)+1) = V(t, N(t))dN(t)  (5)

Since M, := e~ "'V (t, N(t)) is a Q-martingale, we deduce the following relation :

OV (t,N(t))

5 +AEN@)(V(E,N(E) +1) = V(E,N(t)) =rV(t,N(t)  (6)



Then,

dV(t,N(t)) =rV(t, N(t))dt + (V(t, N(t) + 1) = V(t,N(t))) (AN (t) — A(t, N(t))dt)

=7V (t, N(t))dt + (V(t,N(t) +1) = V(t,N(1)) (dN:(t) — a®(t, N(t))dt)

i=1

Identifying (1) and the last equality gives the hedge ratio for the company i at
time ¢ :

6 =e "IV, N(t) +1) = V(t,N(t)) (1 — Ni(t)) (7)

We can also perfectly hedge a CDO tranche using only the index portfolio
and the risk free asset and the hedge ratio is given by :

= Vi N + 1) — Vil N (D) ®)

where V;(t,.) is the replication price vector of the index portfolio whose com-
ponents are V;(t,k) =E[1 — ¥|N(t) = k]. See [1, page 9] for more details.

2 Practical implementation

2.1 Calibration of loss intensities

Given the probabilities p(7T), k) of the number of default at time T (obtained
from the quotes of the liquid CDO tranches, see [1, foonote 20] for more details),
we can compute the loss intensities Ay using the forward Kolmogorov equation
for the Markov process N (t). We assume that p(7, k) can be written as p(T, k) =
Zf:o ak7ie_)‘iT for k=0,...,n — 1 where the a;; are defined by apo = 1 and
ak,; = %ak_u fori=0,....,k—1,k=1,...,n—1and ar, = —Zf:_(}am.
Then the A\x can be computed iteratively by solving the univariate non linear
implicit equations

k—1
1 — e Ae=A)T p(T, k)
At :
ap—1,4€ " = 7/€=1,...,n—1 9
zz:% o ( Ak — A ) Ak—1 ( )
and using p(0,k) = 0 and \g = _%.

In Premia, the system is solved using the Newton root method available in the
PNL. The default probabilities may be computed using a Gaussian Copula or
calibrated from the market data.

2.2 Computation of credit § through a recombining tree

We use a tree method to compute the price vectors V(¢,.) and V;(t,.) based
on the approximation of the transition probabilities of the process N (t), whose
its generator-matrix A is given by (4). For an European type payoff, the price
vector fulfils :

V(t,) =e "D exprt =Dy (¢ ).

We start by discretizing the interval [0, 7] using a set of node dates tp = 0 <
ty <...<ty =T, for simplicity we consider a constant time step A = ¢, —t;_1.



The most simple discrete time approximation for the transition probabilities is to
use the first order Taylor expansion of the exponential function : exp®ti+1—ti) ~
Id+ A(t;)(tiz1 —t;). Then we obtain the following probabilities :

Q[N(tit1) =k|N(t:) =kl =1—\A

and
Q[N(tit1) =k + 1N () = k] = MA

For numerical reason, we prefer use those expressions :
QIN(tis1) = FIN() = k] = 1 — ™4 (10)

and
QN(tis1) =k +1N(t;) = k] = e M4 (11)

Computation of the CDO replication price The loss at time ¢ is given
by L(t) = (1 — R)% Let us consider a CDO tranche [a, b], the outstanding
nominal on this tranche is O(N(¢)) =b—a+ (L(t) — b)* — (L(t) —a)™.

If d(i, k) denotes the value at time t; when N(¢;) = k of the default payment
leg of the CDO tranche, it verifies the following recurrence relation :

di, k) = e "2 (1—e2)(d(i+1,k+1)+O(k) — O(k+1)) + e *2d(i+1,k)),
(12)

initialized by d(N, k) = 0,Vk. Denote by T7,...,T), the regular premium pay-

ment dates and assume that {71,...,7,} C {to, -+ ,tn}. r(i, k) denotes the

value at time ¢; when N(t;) = k of the premium leg and satisfies :

if tit1 € {Tl, . ,Tp}

(i, k) = e "2 (O(k)(Tip1—Ti)+(1—e ) r(i+1, k+1)+e M 2r(i+1,k)) (13)
if t;v1 € {Th,...,T,}, denotes by I the integer such that T} < t;11 < Tj4q

(i, k) = e " ((L—e M 2) (r(i+1, k+1)+(0(k)—O(k+1)) (tiy1 —T1))+e *2r(i+1, k))
(14)
The spread of the CDO tranche is equal to s = © 8;. Hence the value of the

CDO tranche at time t; when N(¢;) = k is Vopo (i, k:) =d(i, k) — sr(i, k).

d(0,

Computation of the CDS index replication price Denote by rrs(i, k)
and d;s(i, k) the default and premium legs of the CDS index. The default leg is
the same that a [0,1] CDO tranche. r1s(i, k) satisfies (12) and (13) if we redefine

O(k) as O(k) =1— @. The spread is s;g = fggg’g;.
The program return a (N + 1) x (n 4+ 1) matrix where N is the size of the
subdivision of [0,7]. The value at the intersection of the k-th row and é-th

column corresponds to the hedge ratio at time ¢; if k defaults occur. We have :

Vepo(i+1,k+1) = Vepo(i +1,k) + (O(k) = Ok + 1))(1 = 14, gqry....13 (tiy1 — 1))

o(i k) =
(6, k) Vis(i+1,k+1) = Vig(i+ 1L, k) + =8 — Loy oir 1y
(15)



2.3 Parameters with Nsp

We have to fill several parameters through the Nsp interface to do the com-
putation.

— cdo_default_probability.dat : this is a file containing the default pro-

bability which allows the calibration of the loss intensity.

— T : maturity of the CDO (default value T = 5)

— R : this is the recovery rate (default value R = 0.4)

— n : number of companies

— delta : the time step (default value %)
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