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Abstract

This paper presents a sparse grid finite difference method to compute an approxi-

mation of European option price. In the first part, we will give a short description of

our model and the PDE formulation associated to the option pricing problem. Then,

we will describe the sparse finite difference method use to solve the PDE. Keywords:

finite difference method, sparse grid, variance swap model.

Premia 18

Introduction

We derive a numerical scheme to compute approximation price as solution of PDE.
In this paper, we are interested in the PDE formulation and discretization schemes for

a multi-factor stochastic volatility model (Varswap-nd for short). We study the pricing
problem for a European call option when the volatility of the underlying asset is random
and follows the exponential of a sum of Ornstein-Uhlenbeck process. This is a generalization
of the Scott model in the one factor case.

∗Email: david.pommier@inria.fr
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1 Model definition

The random diffusion model proposed is a four-dimensional market process that takes a
log-Brownian motion to describe price dynamics and a sum of Ornstein-Uhlenbeck subor-
dinated process describing the randomness of the log-volatility.

dSt = (r − q)Stdt+ σtStdWt. (1)

We suppose σt = f (Yt) , where f is a positive function and (Yt) is the driven process. Some
examples of driven process and f function are presented in [3],[1] for one factor model.

Definition 1.1 (multi-factor model). We consider a driven process (Yt) defined in R
n,

so the stochastic volatility (σt) depend of a n-dimensional Ornstein-Uhlenbeck process Yt =(
Y 1

t , . . . , Y
n

t

)T
. All one dimensional process Y i

t , 1 ≤ i ≤ n follows the stochastic differential
equation:

dY i
t = λi(mi − Y i

t )dt+ βidZt, (2)

where λi and βi are positive constants. We suppose that Wt and Zt are two Brownian
motion with a correlation factor equals to ρ.

In the following, we consider

f(Yt) = σ0 exp

(
1

2

n∑

i=1

Y i
t

)
. (3)

With this choice of volatility function, mi = 0 seems to be natural.

Remark 1.2. Note that n OU process are perfectly correlated. The SDE (2) are driven by
only one Brownian motion.

First, let us note that close formula methods have been not find for this model. This
is due to our choice of f , the volatility function. So we propose a Monte Carlo method to
deal with convergence of Sparse Grid method.

We will present here some technicals points in problem formulation.
To reduce complexity in implementation and subtract some terms in the PDE formu-

lation, we solve problem on Forward Price in place of Spot Price. So we consider than the
discounted price Pt of an European contract depend of t, Ft, Y

1
t , . . . , Y

n
t where Ft is given

by :
F T

t = exp((r − q)(T − t))St.

To give same rules to each Y i
t , we use a change of variable. With this, all of them have the

same variance (= 1) at time T = ∞. We define Ŷ i
t =

√
2λi

βi
Y i

t , so (2) becomes

dŶ i
t = −λiŶ

i
t dt+

√
2λidZt, (4)

and (3) becomes

f
(
Ŷt

)
= σ0 exp

(
1

2

n∑

i=1

βi√
2λi

Ŷ i
t

)
. (5)

We keep the Yt in place of Ŷt in the following.
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2 Monte Carlo Method

We use a standard Euler scheme for the Monte-Carlo discretization. We apply standard
reduction variance method. This method is consistent with the PDE formulation study in
the next part. We will not compute price in our model, but the surprime u, define as the
difference between the price in our model and the Black & Scholes price with good choice
of volatility.

In other word, we define

F̃ T
t = exp((r − q)(T − t))S̃t, dF̃ T

t = σ0F̃
T
t dWt.

The suprime is obtained by an approximation of:

ut = E

[
h
(
F T

t

)
− h

(
F̃ T

t

)∣∣∣Ft

]
. (6)

To reduce variance on ut, we consider only Put option in choice of h in (6). To define Pt

for a call (resp put) option, we add Black & Scholes price of a call (resp put) at ut.

We make choice to simulate xt = log
(
F T

t

)

3 PDE formulation

With standard assumptions, we can show that

Proposition 3.1. The price of European option is solution of the following backward PDE,
with xt = log

(
F T

t

)
:

∂P

∂t
+

1

2
f(y)2∂

2P

∂x2
− 1

2
f(y)2∂P

∂x
+ ρ

n∑

i=1

βif(y)
∂2P

∂x∂yi

+
1

2

n∑

i,j=1

βiβj
∂2P

∂yi∂yj

−
n∑

i=1

λiyi
∂P

∂yi

= 0, (t, x, y) ∈ [0, T ) × R × R
n,

P (x, y, T ) = h(x), (x, y) ∈ R × R
n,

(7)
where T is the maturity contract and h the payoff function.

We now apply same technique as used in Monte Carlo method.

Proposition 3.2. The surprice ut defined by (6) is solution of the following forward PDE:

∂u

∂t
− 1

2
f(y)2∂

2u

∂x2
+

1

2
f(y)2∂u

∂x
− ρ

n∑

i=1

βif(y)
∂2u

∂x∂yi

(8)

−1

2

n∑

i,j=1

βiβj
∂2u

∂yi∂yj

+
n∑

i=1

λiyi
∂u

∂yi

=
1

2

(
f(y)2 − σ2

0

)
V egaBS (x, t) ,

u(x, y, 0) = 0, (x, y) ∈ R × R
n,

with the change of time t → T − t.
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4 Short introduction to sparse grid finite difference

method.

We will give some notations in the first paragraph. After that, we will give some examples
on elliptic problems and the discrete scheme to solve it with sparse grid methods.

Note that consistency results have been prove in [9], more reading prove have been
proposed in [5].

4.1 Notations and Preliminary Results

Consider a boundary value problem in the hypercube Ω = (0, 1)d. One can think of a
Poisson problem ∆u = f with the Dirichlet boundary conditions u = 0 on ∂Ω. Let H1(Ω)
be the Hilbert space of the square integrable functions whose first order partial derivatives
are square integrable too. The norm in H1(Ω) is ‖v‖H1(Ω) =

√
‖v‖2

L2(Ω) + |v|2H1(Ω) where

|v|2H1(Ω) =
∑d

i=1 ‖ ∂v
∂xi

‖2
L2(Ω). Let H1

0 (Ω) be the completion in H1(Ω) of the subspace of
smooth functions compactly supported in Ω. The last elliptic problem has a weak or
variational formulation in H1

0 (Ω): find u ∈ H1
0 (Ω) such that

∫
Ω ∇u · ∇v =

∫
ω fv, for all

v ∈ H1
0 (Ω).

Assume that the solution of the Poisson problem is approximated by a conforming piecewise
multi-linear finite element method on a Cartesian mesh, more precisely with piecewise
linear functions of total degree ≤ d. This is the lowest order finite element method on
this mesh. Assume that the mesh is uniform and that each element is a cube of size
n−1. It is easy to see that the dimension of the approximation space is of the order of
nd: the algorithmic complexity grows exponentially with d, which actually forbids the use
of this method for d > 4. This too rapid growth in complexity is known as the curse of
dimensionality.
Yet, quite recent developments have shown that it may be possible to use deterministic
Galerkin methods or grid based methods for elliptic or parabolic problems in dimension
d, for 4 ≤ d ≤ 20: these methods are based either on sparse grids [4] or on sparse tensor
product approximation spaces [6].
In this paragraph, we aim at rapidly describing the principle of sparse approximations.
This presentation heavily relies on the review article by H.J. Bungartz and M.Griebel
[2]. We concentrate on the previously mentioned Dirichlet boundary value problem in Ω.
The solution u will be approximated by a Galerkin method, i.e., a variational problem
posed in a finite dimensional approximation space Vn instead of H1

0 (Ω). The goal is to use
approximation spaces Vn whose dimensions do not grow too rapidly with d.
The results below are proved in [2].

In this section, bold letters will stand for d-uples: for example, x = (x1, . . . , xd) and
α = (α1, . . . , αd). We set 1 = (1, . . . , 1) ∈ R

d and 0 = (0, . . . , 0) ∈ R
d. Take a sufficiently

smooth function f defined on [0, 1]d; if α ∈ N
d, we call Dαf the partial derivative

Dαf =
∂|α|f

∂xα1

1 . . . ∂xαd

d

,
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where |α| =
∑d

i=1 αi. For two multi-index α and β and a scalar λ, we define

α · β =
d∑

i=1

αiβi, λα = (λα1, . . . , λαd), 2α = (2α1 , . . . , 2αd).

We say that α ≤ β if αi ≤ βi, i = 1, . . . , d, and that α < β if α ≤ β and α 6= β.
Let us introduce the functional spaces Xq,r(Ω), for r ∈ N and q ∈ [1,+∞]:

Xq,r(Ω) = {u ∈ Lq(Ω), ∀α s.t. α ≤ r1, Dαu ∈ Lq(Ω)}, (9)

which are endowed with the semi-norms:

|u|q,α =
(∫

Ω
|Dαu|q

) 1
q

, α ≤ r1, if q < ∞,

|u|∞,α = ‖Dαu‖L∞(Ω), α ≤ r1, if q = ∞.

Note thatXq,r(Ω) is embedded in the more usual Sobolev spaceW q,r(Ω) = {u ∈ Lq(Ω), ∀α s.t. |α| ≤
r, Dαu ∈ Lq(Ω)}.
For a multi-index ℓ, consider the Cartesian meshes Tℓ of Ω with mesh steps hℓ = 2−ℓ =
(2−ℓ1 , . . . , 2−ℓd). The grid nodes of Tℓ are the points xı = ı · hℓ, 0 ≤ ı ≤ 2ℓ.
We note by φ the mother hat function:

φ(x) =

{
1 − |x| if |x| < 1,
0 if |x| ≥ 1,

and φℓ,ı the d-dimensional hat function:

φℓ,ı(x) =
d∏

k=1

φ(2ℓkxk − ik). (10)

We call Vℓ

Vℓ = span
(
φℓ,ı, 1 ≤ ı ≤ 2ℓ − 1

)
(11)

We also consider the wavelet subspaces:

Wk = span
{
φk,ı,1 ≤ ı ≤ 2k − 1, ij odd , 1 ≤ j ≤ d

}
. (12)

We have
Vℓ =

⊕

1≤k≤ℓ

Wk.

The basis of Vℓ obtained by assembling the previously mentioned bases of Wk 1 ≤ k ≤ ℓ

is called the hierarchical basis of Vℓ. Calling Iℓ = {ı ≤ 2ℓ − 1 : ij odd , 1 ≤ j ≤ d}, the
hierarchical basis of Vℓ is {φk,ı, ı ∈ Ik, k ≤ ℓ}. Note that the completion of

⊕
1≤k Wk

with respect to the H1(Ω) norm is exactly H1
0 (Ω).

Rescaling the φk,ı as follows

ψk,ı = −2−(k+1)·1φk,ı, ı ∈ Ik, (13)

we obtain another basis of Wk.
If a function u is smooth enough, then the coefficients of its expansion in the hierarchical
basis are obtained by a simple integral formula:
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Lemma 4.1. If u ∈ H1
0 (Ω) ∩X1,2(Ω), then

u =
∑

k≥1

∑

ı∈Ik

uk,ıφk,ı, where uk,ı =
∫

Ω
D2u · ψk,ı. (14)

By using Lemma 4.1, one may evaluate the contribution uk of a subspace Wk to the
hierarchical expansion of u:

Lemma 4.2. If u ∈ H1
0 (Ω) ∩X2,2(Ω), then the component uk ∈ Wk of the expansion of u

in the hierarchical representation is such that

‖uk‖L2(Ω) ≤ 2−2|k|3−d|u|2,2,

|uk|H1(Ω) ≤ 2−2|k|3−d+ 1
2




d∑

j=1

22kj




1
2

|u|2,2.
(15)

4.2 Sparse Methods, approximation results

It is clear that the dimension of Vℓ is
∏d

j=1(2
ℓj − 1). In particular, dim(Vn1) = (2n − 1)d.

As already mentioned, the full tensor product space Vn1 is often too large for practical use
when d > 4.
Let us give an example of a sparse Galerkin method: the discrete space is chosen to be

Vn =
⊕

1≤k,|k|≤n+d−1

Wk (16)

instead of the full tensor product space Vn1 =
⊕

1≤k≤n1 Wk. One may prove that

dim(Vn) = 2n

(
nd−1

(d− 1)!
+O(nd−2)

)
. (17)

Therefore dim(Vn) is significantly smaller than dim(Vn1). It can be seen that a Galerkin
method with Vn is feasible for d of the order of 10. On Figure 1, we display the bases of
Vn1 and Vn.
Consider the discretization of the Dirichlet problem in Ω: the discretization error of the
Galerkin method with the approximation space Vn (resp. Vn1) is of the same order as the
best fit error when approximating the solution of the continuous problem by a function of
Vn (resp. Vn1). Let us assume that u is smooth. We know that infv∈Vn1

‖v − u‖H1(Ω) ≤
C2−n|u|W 2,2(Ω), where |u|2W 2,2(Ω) =

∑
|α|=2 ‖Dαu‖2

L2(Ω). Since Vn is much smaller than Vn1, a
similar estimate is not true for infv∈Vn

‖v−u‖H1(Ω). Griebel et al have proved the following
theorem:

Theorem 4.3. If u ∈ H1
0 (Ω) ∩X2,2(Ω), and if un ∈ Vn is the component of the expansion

of u in the hierarchical representation,

‖u− un‖L2(Ω) ≤
(

2−2n+1

12d

d−1∑

k=0

(
n+ d− 1

k

))
|u|2,2 = O(2−2nnd−1)|u|2,2, (18)

|u− un|H1(Ω) ≤
(

2−nd√
3 6d−1

d−1∑

k=0

)
|u|2,2 = O(2−n)|u|2,2. (19)
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Figure 1: The case d = 2: each entry of this array corresponds to a pair of integer
k = (k1, k2), 1 ≤ k1, k2 ≤ 4, and contains the grid corresponding to Wk. Each space Wk

is the tensor product of two spaces whose bases are plotted on the sides of the array. The
full tensor space Vn1 is given by Vn1 =

⊕
1≤k≤n1 Wk whereas the sparse tensor space Vn is

given by Vn =
⊕

1≤k,|k|≤n+d−1 Wk, (only the spaces Wk corresponding to the entries above
the diagonal are used to construct Vn)

Theorem 4.3 says that under the assumption that u ∈ H1
0 (Ω)∩X2,2(Ω) (which is a rather

strong regularity assumption, much stronger than the assumption u ∈ H1
0 (Ω) ∩ W 2,2(Ω)

required when the full tensor product space is used), then using the sparse approximation
space Vn instead of the full tensor space Vn1 does not deteriorate the accuracy, at least
with respect to the H1 semi-norm. There is a moderate deterioration for the L2 norm of
the error.
In our presentation, we have focused on sparse methods based on tensorizing one dimen-
sional hierarchical bases made of hat functions. This technique can be generalized to
other classes of bases functions, for example higher order piecewise polynomial functions
or wavelets as in Figure 2.

Figure 2: An example of wavelets
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4.3 Sparse Grids Finite Difference Method

Before defining finite difference methods on sparse grids, we need to introduce new nota-
tions and concepts.
Consider the one variable shape functions: φℓ,i(x) = φ(2ℓx − i), ℓ ≥ 1, 1 ≤ i ≤ 2ℓ − 1,
and call Vℓ the space spanned by (φℓ,i)1≤i≤2ℓ−1. Call Wℓ the subspace of Vℓ spanned by
(φℓ,2i−1)1≤i≤2ℓ−1 . We have Vℓ = Wℓ ⊕ Vℓ−1. We have already seen that V1 ⊂ . . . Vℓ ⊂
Vℓ+1 ⊂ . . . is a multiresolution analysis of H1

0 ((0, 1)). For a function u ∈ C0([0, 1]) s.t.
u(0) = u(1) = 0, we have

u =
∞∑

ℓ=1

2ℓ−1∑

i=1

uℓ,iφℓ,2i−1,

and the projection of u on Vℓ is

2ℓ−1∑

i=1

uℓ,iφℓ,i =
ℓ∑

k=1

2k−1∑

i=1

uk,iφk,2i−1.

The change of coordinates (uℓ,i)i=1,...,2ℓ−1 7→ (uk,i)k=1,...ℓ,i=1,...,2k−1 is called Tℓ, which define
transformation from nodal base to wavelet/hierarchical base. We call Uℓ and U ℓ the column
vectors: U ℓ = (uℓ,1, . . . , uℓ,2ℓ−1) ∈ R

2ℓ−1 and Uℓ = (uℓ,1, . . . , uℓ,2ℓ−1) ∈ R
2ℓ−1

. We have

TℓU
ℓ =




U1
...
Uℓ


 .

We denote by P ℓ the restriction operator

P ℓ : C0([0, 1]) → R
2ℓ−1, P ℓu = U ℓ. (20)

Note that T−1
ℓ is the representation of the operator P ℓ in the wavelet basis, i.e.,

P ℓ


∑

k≤ℓ

2k−1∑

i=1

uk,iφk,2i+1


 = T−1

ℓ




U1
...
Uℓ


 .

We introduce the interpolation operator Iℓ:

Iℓ : R2ℓ−1 → C0([0, 1]), IℓU =
2ℓ−1∑

i=1

uiφℓ,i. (21)

We also denote by Dℓ the finite difference operator for the discretization of d2

dx2 :

Dℓ :R2ℓ−1 → R
2ℓ−1,

∀U, V ∈ R
2ℓ−1 (DℓU, V ) = 2ℓ

∫ 1

0
(IℓU)′(IℓV )′.

(22)
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We consider the uniform grids of (0, 1): ωℓ = 2−ℓ{1, . . . , 2ℓ − 1}. For ℓ ∈ N
d, 1 ≤ ℓ, we

introduce the Cartesian grid of Ω: Ωℓ =
∏d

i=1 ω
ℓi . A grid function on Ωℓ is a mapping

from Ωℓ to R. The space of the grid functions on Ωℓ is exactly
∏d

i=1 R
2ℓi −1. The mapping

(uı)
1≤ı≤2

ℓ−1
7→ u =

∑
1≤ı≤2

ℓ−1
uıφℓ,ı is an isomorphism from the space of the grid functions

on Ωℓ onto Vℓ defined in (11). Moreover, the function u can be written on the wavelet
basis u =

∑
1≤k≤ℓ

∑
ı∈Ik

uk,ıφk,ı. Calling Uk the vector (uk,ı)ı∈Ik
, the grid function will be

represented by the family (Uk)1≤k≤ℓ.
For a positive integer n, we define the sparse grid Ωn as follows:

Ωn = ∪1≤ℓ,|ℓ|≤n+d−1Ω
ℓ ⊂ Ωn1. (23)

An example of a sparse grid in dimension d = 2 is presented in Figure 3.

Figure 3: An example of a sparse grid for d = 2, n+ 1 = 8

A grid function on Ωn is a mapping from Ωn to R. The space of the grid functions on
Ωn is isomorphic to Vn defined in (16). As for the full tensor grid, a grid function on Ωn

can be represented on the wavelet basis by
∑

1≤k,|k|≤n

∑
ı∈Ik

uk,ıφk,ı. Calling Uk the vector
(uk,ı)ı∈Ik

, the sparse grid function will be represented by the family (Uk)1≤k,|k|≤n+d−1.

We now define the sparse finite difference discretization of ∂2

∂x2
1

: given the vectors ǩ =

(k2, . . . , . . . kd) ∈ N
d−1, ı̌ ∈ Iǩ and a sparse grid function represented by (Uk)1≤k,|k|≤n+d−1,

let k̃ be the positive integer k̃ = n+ d− 1 − |ǩ|; we introduce Uǩ by

Uǩ,̌ı =




U(1,ǩ,̌ı)
...

U(k̃,ǩ,̌ı)


 where U(j,ǩ,̌ı) =

(
u(j,ǩ),(m,̌ı)

)T

{m odd, 1≤m≤2j−1}
.
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Proposition 4.4. The sparse grid discretization of the operator ∂2

∂x2
1

is

(Uk)1≤k,|k|≤n+d−1 7→ (Vk)1≤k,|k|≤n+d−1

such that Vǩ,̌ı = Tk̃D
k̃T−1

k̃
Uǩ,̌ı, ∀k, ı ∈ Ik.

(24)

The sparse grid discretization of the operators ∂2

∂x2
j

, ∂
∂xj

, j = 1, . . . , d, can be done in a

similar way.

Classical finite difference operator on (0, 1) Let we call the linear finite difference
schemes. They should be compute as a matrix vector product which include usual scheme
of order M , but exclude ENO schemes. All this operator should be use in place of Dk̃ in
(24).

• For operator
∂

∂x
:

– Centered scheme of order M = 2 :

∂u

∂x
(x = xi) ≈

(
D1

ℓu
)

i
=
u
(
xi + 2−ℓ

)
− u

(
xi − 2−ℓ

)

2 · 2−ℓ
. (25)

– Left decentered scheme of order M = 1:

∂u

∂x
(x = xi) ≈

(
D−

ℓ u
)

i
=
u (xi) − u

(
xi − 2−ℓ

)

2−ℓ
. (26)

– Right decentered scheme of order M = 1:

∂u

∂x
(x = xi) ≈

(
D+

ℓ u
)

i
=
u
(
xi + 2−ℓ

)
− u (xi)

2−ℓ
. (27)

• for second order operator, centered scheme of order M = 2:

∂2u

∂x2
(x = xi) ≈

(
D2

ℓu
)

i
=
u
(
xi + 2−ℓ

)
− 2u (xi) + u

(
xi − 2−ℓ

)

2−2ℓ
. (28)

• Product by tensor product coefficient : suppose that c (x) = c1 (x1) . . . cd (xd),

d∏

i=1

ci· = T(d) ◦ cd ◦ T−1
(d) ◦ · · · ◦ T(1) ◦ c1 ◦ T−1

(1). (29)

Remark 4.5. As see in (29) standard multiplication is could be very expensive in com-
putational time. In fact, we have to do the product on the nodal base, so we have to
apply transformation from nodal to hierarchic and the inverse in each direction which c is
dependent.
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4.4 Consistency result

It is natural to define the restriction operator P ℓ : u 7→ u|Ωℓ and the interpolation operator
Iℓ = Iℓ1 ⊗ · · · ⊗ Iℓd :

∏d
i=1 R

2ℓi −1 → C0(Ω). The finite difference approximation of ∂2
x1
u on

the grid Ωℓ is (Iℓ ◦ (Dℓ ⊗Id)◦P ℓ)(u). It has been proved by Koster, see [5], that the sparse
grid approximation of ∂2

x1
u can be written in terms of these finite difference operators:

Theorem 4.6. For a function u ∈ C0(Ω) s.t. u = 0 on ∂Ω, we note Dn(u) the function
of Vn whose expansion in the wavelet basis is given by (Vk)1≤k,|k|≤n+d−1 in (24), where
(Uk)1≤k,|k|≤n+d−1 is the expansion on the wavelet basis of the projection of u on Vn. Then

Dn(u) =


 ∑

1≤k,|k|≤n+d−1

f(k)Ik ◦ (Dk1 ⊗ Id) ◦ P k


 (u), (30)

where f(k) is recursively defined by

f(k) = 0, if |k| > n+ d− 1 or k < 1,

f(k) = 1 −
∑

ℓ:k<ℓ

f(ℓ), if |k| ≤ n+ d− 1 and k ≥ 1.

Before stating a consistency estimate, let us introduce some Hölder spaces: let α belong
to R

d
+. Call [α] the vector of N

d whose ith component is the integer part of αi. Call

{α} = α − [α]. We note Cα(Ω̄) the space of continuous functions u such that for all
β ≤ [α], Dβu is continuous and

sup

{
|D[α]u(x + h) −D[α](x)|

|h1|{α1} . . . |hd|{αd} ,x,x + h ∈ Ω, |hi| > 0, i = 1, . . . , d

}
< +∞.

The last quantity corresponds to a semi-norm on Cα(Ω̄), which we call |u|Cα(Ω̄).
Theorem 4.6 is the key to the following consistency estimate, obtained in [5]:

Theorem 4.7. Assume that u ∈ Cα(Ω̄), where α1 > 2, αi > 0, i = 2, . . . , d, and that u = 0
on ∂Ω. Let P n be the restriction operator on the sparse grid Ωn: P n(u) = u(Ωn). We have
the consistency error estimate

‖P n(
∂2u

∂x2
1

) − P n ◦Dn(u)‖∞ ≤ Cn2−n min(α1−2,α2,...,αd,2)|u|Cα(Ω̄). (31)

Similarly, for the sparse discretization of the Laplace operator, the consistency error may
be bounded by Cn2−n min(α1−2,α2−2,...,αd−2,2)|u|Cα(Ω̄) if u ∈ Cα(Ω̄) with αi > 2, i = 1, . . . , d.
We see that the sparse grid discretization of ∆ is consistent and that the consistency error
is almost of the same order (up to the factor n) as the consistency error obtained with a
full tensor grid.
We are left with studying the stability of the sparse grid discretization. As far as we know,
there is unfortunately no theoretical stability estimates. There is even no proof that the
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matrix D arising in the discrete problem is invertible. Indeed D does not fall into the well
studied classes of matrices: in particular, D is neither a symmetric nor a M matrix. No
discrete maximum principle is available. Nevertheless, numerical tests were done in [9],
indicating that the stability constant , i.e., ‖D−1‖∞ is bounded by Cnd−1.
If such a stability estimate is true, we see that the sparse grid discretization of the Poisson
problem is convergent, with an error of the order of nd2−n min(α1−2,α2−2,...,αd−2,2), if u ∈ Cα(Ω̄)
with αi > 2, i = 1, . . . , d.

4.5 Sparse Grid in practice

Consider Poisson problem on (0, 1)d with Dirichlet homogene conditions.

∆u =
n∑

i=1

∂2u

∂x2
i

u = f. (32)

The discrete approximation of this problem is obtain by (24) :

(
n∑

i=1

TiD
1,iT−1

i

)
U = F. (33)

In fact, all application Ti,D
1,i,and T−1

i is associated to matrix with only three non zero
entries by row. So Matrix application is never construct to preserve optimal complexity.
and the best way to solve (33) without construct matrix, is to use Krylov minimization
methods like GMRES or BICGSTAB. We only need to matrix vector application construct

by applying step by step all applications in

(
n∑

i=1

TiD
1,iT−1

i

)
U .

Examples to solve Poisson Problem and Heat equation is given in examples/libpnl
repository. It seems to be the best way to study Sparse Grid code.

More details on implementation is given in [7] chaper 9.

5 Application of Sparse Grid Method in Finance

We study in this part, the discretization of (8) by a sparse finite difference scheme.

5.1 Exact PDE formulation

Localization The initial problem (8) is given on a non-bounded domain. To apply
numerical method, we have to truncate domain and impose boundary condition.

• on yi = ymax
i , flow is out drawing so boundary condition don’t impact solution in

center of domain.

• on x = xmax or x = xmin, u (x, y1, . . . , yn, t) ≈ 0.
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∂u

∂t
− 1

2
f(y)2∂

2u

∂x2
+

1

2
f(y)2∂u

∂x
− ρ

n∑

i=1

βif(y)
∂2u

∂x∂yi

(34)

−1

2

n∑

i,j=1

βiβj
∂2u

∂yi∂yj

+
n∑

i=1

λiyi
∂u

∂yi

=
1

2

(
f(y)2 − σ2

0

)
V egaBS (x, t) ,

(35)

with (x, y, t) ∈ [xmin, xmax] × [−ymax
i , ymax

i ] × [0, T ] and

u(x, y, 0) = 0 (x, y) (x, y, t) ∈ [xmin, xmax] × [−ymax
i , ymax

i ]

u(xmin/max, y, t) = 0 (y, t) ∈ [−ymax
i , ymax

i ] × [0, T ]

u(x, ymin/max, t) = 0 (x, t) ∈ [xminx, xmax] × [0, T ] (36)

Technical point To reduce point wise multiplications, operator L given by

Lu =
1

2
f(y)2∂

2u

∂x2
− 1

2
f(y)2∂u

∂x
+ ρ

n∑

i=1

βif(y)
∂2u

∂x∂yi

+
1

2

n∑

i,j=1

βiβj
∂2u

∂yi∂yj

−
n∑

i=1

λiyi
∂u

∂yi

. (37)

is written in source code as follow

Lu =
1

2

∂2f(y)2u

∂x2
− 1

2

∂f(y)2u

∂x
+ ρ

n∑

i=1

βi

(
∂2f(y)u

∂x∂yi

− ∂lnf(y)

∂yi

∂f(y)u

∂x

)
(38)

+
1

2

n∑

i,j=1

βiβj
∂2u

∂yi∂yj

−
n∑

i=1

λiyi
∂u

∂yi

.

5.2 Time discretization

We apply θ-scheme for time discretization. We note un(x, y) the approximation of u at
time tn. Equation (34) becomes

un − un−1

∆t
− L (θun + (1 − θ)un−1) =

1

2

(
f(y)2 − σ2

0

)
V egaBS

(
x, tn− 1

2

)
. (39)

We have to solve at each time step, same equation as (32) :

(1 − θ∆tL)un = f, (40)

with

(1 + (1 − θ)∆tL)un−1 + ∆t
1

2

(
f(y)2 − σ2

0

)
V egaBS

(
x, tn− 1

2

)
. (41)

6 Conclusion

Lots of details not given here like : use of other boundary conditions, preconditionner
construction, code structure, . . . , could be found in [7].
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