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1. Introduction

The LIBOR market model is very popular for pricing interest rate deriva-
tives, but is known to have several pitfalls. In addition, if the model is driven
by a jump process, then the complexity of the drift term is growing expo-
nentially fast (as a function of the tenor length). In this work, we consider a
Lévy-driven LIBOR model and aim at developing accurate and efficient log-
Lévy approximations for the dynamics of the rates. The approximations are
based on truncation of the drift term and Picard approximation of suitable
processes. This document is based on the paper 10) which can be referred
to for more details as well as other alternative approximations.

2. Lévy LIBOR framework

Let 0 = T0 < T1 < · · · < TN < TN+1 = T∗ denote a discrete tenor
structure where δi = Ti+1 − Ti, i = 0, 1, . . . , N, are the so called day-count
fractions. For this tenor structure we consider an arbitrage free system of
zero coupon bond processes Bi, i = 1, . . . , N + 1, on a filtered probability
space (Ω, F , (Ft)0≤t≤T∗

, IP∗), where IP∗ := IPN+1 is a numeraire measure
connected with the terminal bond BN+1. From this bond system we may
deduce a forward rate system, also called LIBOR rate system, defined by

Li(t) :=
1

δi

(
Bi(t)

Bi+1(t)
− 1

)
, 0 ≤ t ≤ Ti, 1 ≤ i ≤ N. (2.1)

Li is the annualized effective forward rate contracted at date t ≤ Ti for
the period [Ti, Ti+1]. 7) derived a general representation for the LIBOR
dynamics in a semimartingale framework. In this article we consider a Lévy
LIBOR framework as constructed by 4); see also 5) and 2) for jump-diffusion
settings.

Consider a standard Brownian motion W in R
m, m ≤ N , a bounded

deterministic nonnegative scalar function α(s), s ∈ [0, T∗], and a random
measure µ on [0, T∗]×R

m with IP∗-compensator F (s, dx)ds, where µ and W
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are mutually independent. Let H = (H(t))0≤t≤T∗
be a time-inhomogeneous

Lévy process with canonical decomposition

H(t) =

t∫

0

√
α(s)dW (s) +

t∫

0

∫

Rm

x(µ(ds, dx) − F (s, dx)ds). (2.2)

We denote by µ̃ the compensated random measure of the jumps of H, that is
µ̃(ds, dx) := µ(ds, dx)−F (s, dx)ds. In order to avoid truncation conventions
we assume that F satisfies the (stronger than usual) integrability condition

T∗∫

0

∫

Rm

(
‖x‖ ∧ ‖x‖2

)
F (s, dx)ds < ∞.

We further assume that
T∗∫

0

∫

‖x‖>1

exp
(
uTx

)
F (s, dx)ds < ∞, (2.3)

for all ‖u‖ ≤ (1 + ε)M , with M, ε > 0 constants. Thus, by construction, the
process (H(t))0≤t≤T∗

is a IP∗-martingale. The cumulant generating function
of H(t), t ∈ [0, T∗], is provided by

ln IE
[
euTH(t)] = κt(u) =

α(t)

2
‖u‖2 +

∫

Rm

(
euTx − 1 − uTx

)
F (t, dx). (2.4)

Along with the Lévy martingale (2.2) we introduce a set of bounded de-
terministic vector-valued functions λi(s) ∈ R

m, i = 1, . . . , N, usually called
loading factors. In order to avoid local redundances we assume that the ma-
trix [λ1, . . . , λN ](s) has full rank m for all s ∈ [0, T∗]. Moreover, we assume
that ‖λi(s)‖ ≤ M , for all i, and ‖∑i λi(s)‖ ≤ M , for all s ∈ [0, T∗].

The Lévy martingale and the set of loading factors then constitute an
arbitrage free LIBOR system consistent with (2.1), whose dynamics under
the terminal measure IP∗ are given by

Li(t) = Li(0) exp




t∫

0

bi(s)ds +

t∫

0

λT

i (s)dH(s)


 , (2.5)

i = 1, . . . , N , where the drift terms in the exponent are given by

bi = −1

2
α |λi|2 −

N∑

j=i+1

δjLj−

1 + δjLj−
αλT

i λj (2.6)

−
∫

Rm



(
eλT

i
x − 1

) N∏

j=i+1


1 +

δjLj−

(
eλT

i
x − 1

)

1 + δjLj−


− λT

i x


F (·, dx);

for details see 4). For notational convenience, we set Lj−(s) := Lj(s−) in
(2.6), while the time variable is suppressed.

Due to the drift term (2.6), a straightforward Monte Carlo simulation of
(2.5) would involve a numerical integration at each time step, since the ran-

dom terms δjLj−

1+δjLj−

appear under the integral sign. In order to overcome this
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problem, we will re-express the drift in terms of random quotients multiplied
with cumulants of the driving process. We have that

bi = −κ(λi) −
N∑

j=i+1

δjLj−

1 + δjLj−
αλT

i λj

−
N−i∑

p=1

∑

i<j1<···<jp≤N

δj1
Lj1−

1 + δj1
Lj1−

· · · δjp
Ljp−

1 + δjp
Ljp−

×
p+1∑

q=1

(−1)p+q+1
∑

0≤r1<···<rq≤p

κ̂(λjr1
+ · · · + λjr1

); (2.7)

the derivation is deferred to Appendix A of 10). Here κ̂ denotes the part of
the cumulant κ stemming from the jumps of L, that is

κ̂s(u) =
∫

Rm

(
euTx − 1 − uTx

)
F (s, dx). (2.8)

Therefore, we can now avoid the numerical integration when simulating LI-
BOR rates. However, another problem becomes apparent in this representa-
tion: the number of terms to be computed in (2.7) grows exponentially fast
as a function of the number of LIBOR rates N , namely it has order O(2N ).

3. Efficient and accurate log-Lévy approximations

The aim of this section is to derive efficient and accurate log-Lévy approx-
imations for the dynamics of the LIBOR rates under the terminal measure.
This is based on an appropriate approximation of the drift term, cf. (2.6),
which has two pillars:

(1) expansion and truncation of the drift term,
(2) Picard approximation of suitably defined processes.

3.1. Log-Lévy approximation schemes. In the sequel, we are going to
follow this recipe for deriving efficient and accurate log-Lévy approximations,
and present the full details of the method. However, we will first truncate
the drift terms at the second order

1. The first step is to expand and truncate the drift term at the second
order, that is we will approximate bi by b′′

i , where

b′′
i = −θi −

∑

i+1≤j≤N

δjLj−

1 + δjLj−
ηij

−
∑

i+1≤k<l≤N

δkLk−

1 + δkLk−

δlLl−

1 + δlLl−
ζikl, (3.1)

where

θi = κ(λi), ηij = κ(λi + λj) − κ(λi) − κ(λj) (3.2)

and

ζikl = κ̂(λi + λk + λl) − κ̂(λi + λk) − κ̂(λi + λl)

− κ̂(λk + λl) + κ̂(λi) + κ̂(λk) + κ̂(λl). (3.3)
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The number of terms to be calculated is thus reduced from O(2N ) to O(N2),
while the error induced is

bi = b′′
i + O(N2δ3‖L‖3). (3.4)

Therefore, the gain in computational time is significant, while the loss in ac-
curacy is usually relatively small see the numerical analysis in 10). The above
approximation is referred to in Premia as the second order drift expansion.

2. The second step is to approximate the random terms

Zj(t) :=
δjLj(t)

1 + δjLj(t)
and Ykl(t) :=

δkLk(t)

1 + δkLk(t)

δlLl(t)

1 + δlLl(t)
(3.5)

in (3.1) by a time-inhomogeneous Lévy process. If we limit ourselves to a first
order log-Lévy approximation we can disregard the random terms Ykl(t). Let
us define,

f(x) =
δjex

1 + δjex

where

f ′(x) =
δjex

(1 + δjex)2 and f ′′(x) =
δjex(1 − δjex)

(1 + δjex)3 .

We obviously have that

Zj(t) = f
(
Gj(t)

)
(3.6)

The function f is C2-differentiable, hence we can apply Itô’s formula for
semimartingales (cf. e.g. 6, Theorem I.4.57) to Zj and derive (with time
variable s suppressed or denoted by · in the integrands)

dZj =
( ∫

Rm

(
f(Gj + λT

j x) − f(Gj) − f ′ (Gj) λT

j x
)

F (·, dx) (3.7)

+ f ′ (Gj) b′′
j +

1

2
f ′′ (Gj) |λj |2 α

)
ds + f ′ (Gj)

√
αλT

j dW

+
∫

Rm

(
f(Gj− + λT

j x) − f(Gj−)
)

(µ(ds, dx) − F (·, dx)ds) .

Hence, we have that

dZj(s) = Aj(s, L(s))ds + BT

j (s, Lj(s))dW (s)

+
∫

Rm

Cj(s, Lj(s), x) (µ(ds, dx) − F (·, dx)ds) , (3.8)

with obvious definitions of the deterministic functions Aj , Bj , and Cj . Due
to the drift term b′′

j , the function Aj depends on the whole LIBOR vector L

rather than Lj only.
3. The next step is to approximate Zj by a suitable Lévy processes. This

approximation is based on a Picard iteration for the SDEs in (3.8). The
initial value of the Picard iteration is

Z
(0)
j = Zj(0) =

δjLj(0)

1 + δjLj(0)
, (3.9)
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while the first order Picard iteration is provided by

Z
(1)
j (t) = Zj(0) +

t∫

0

Aj(s, L(0))ds +

t∫

0

BT

j (s, Lj(0))dW (s)

+

t∫

0

∫

Rm

Cj(s, Lj(0), x) (µ(ds, dx) − F (·, dx)ds) . (3.10)

We can easily deduce that Z(1) is a time-inhomogeneous Lévy process, since
the coefficients Aj(·, L(0)), Bj(·, Lj(0)), and Cj(·, Lj(0), ·) in (3.10) are de-

terministic. Indeed, we have that

Aj(s, L(0)) = f ′ (Gj(0)) b
(0)
j (s) +

1

2
f ′′ (Gj(0)) |λj |2 (s)α(s)

+
∫

Rm

(
f(Gj(0) + λT

j (s)x) − f(Gj(0)) − f ′ (Gj(0)) λT

j (s)x
)

F (·, dx), (3.11)

where

b
(0)
j (s) := −θi(s) −

∑

i+1≤j≤N

δjLj−(0)

1 + δjLj−(0)
ηij(s)

−
∑

i+1≤k<l≤N

δkLk−(0)

1 + δkLk−(0)

δlLl−(0)

1 + δlLl−(0)
ζikl(s),

and

Bj(s, Lj(0)) = f ′ (Gj(0))
√

α(s)λj(s), (3.12)

Cj(s, Lj(0), x) = f
(
Gj(0) + λT

j (s)x
)

− f(Gj(0)). (3.13)

4. The fourth step is to apply the Lévy approximations of the random
terms to (3.1). Let us denote by b̂i the resulting approximate drift term; we
have that

b′′
i ≈ b̂i := −θi −

∑

i+1≤j≤N

ηijZ
(1)
j (3.14)

Keeping in mind that b̂i will be integrated over time, we define

Vij(s, t) =

t∫

s

ηij(r)dr,
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which is seen to be a deterministic process of finite variation. Now, for fixed
t > 0, we can apply integration by parts, which yields

t∫

0

ηij(s)Z(1)
j (s)ds

(3.10)
= Vij(0, t)Zj(0) +

t∫

0

Vij(s, t)Aj(s, L(0))ds

+

t∫

0

Vij(s, t)BT

j (s, Lj(0))dW (s) (3.15)

+

t∫

0

Vij(s, t)
∫

Rm

Cj(s, Lj(0), x)µ̃(ds, dx).

5. Finally, collecting all the pieces together we can derive a Lévy approxi-
mation for the log-LIBOR rates. The approximate log-LIBOR is denoted by
Ĝi and has the following dynamics

Ĝi(t) = Gi(0) +

t∫

0

b̂i(s)ds +

t∫

0

λT

i (s)dH(s), (3.16)

which using (3.14) and (3.15) leads to

Ĝi(t) = Ĝi(0, t) −
t∫

0


θi(s) +

∑

i+1≤j≤N

Vij(s, t)Aj(s, L(0))


 ds

+

t∫

0



√

α(s)λT

i (s) −
∑

i+1≤j≤N

Vij(s, t)BT

j (s, Lj(0))


 dW (s)

+

t∫

0

∫

Rm


λT

i (s)x −
∑

i+1≤j≤N

Vij(s, t)Cj(s, Lj(0), x)


 µ̃(ds, dx),

(3.17)

with
Ĝi(0, t) := Gi(0) −

∑

i+1≤j≤N

Vij(0, t)Zj(0).

Let us abbreviate (3.17) by

Ĝi(t) = Ĝi(0, t) +

t∫

0

Hi(t, s)ds +

t∫

0

ΘT

i (t, s)dW (s) +

t∫

0

Ii(t, s, x)µ̃(ds, dx)

Obviously, the above approximation is a time-inhomogeneous Lévy process
whose characteristic function may be expressed by the Lévy–Khintchine
formula in terms of Hi, Θi and Ii in a straightforward manner.

Remark 3.1. We will call the approximation in (3.17) the first order log-

Lévy approximation of the LIBOR rate. The approximation can be further
refined by including the second order terms (i.e. those depending on Lk and
Ll) in (3.1). These terms can be approximated in a manner analogous to the
Zj ’s. See again 10) for more details.
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4. Example: Pricing of Swaptions

The implementation considers the following simple example. We assume
a a flat and constant volatility structure i.e. constant λ′

is. Similarly, zero
coupon rates are generated from a flat term structure of LIBOR interest
rates with equidistant tenor points. Furthermore we set α = 0, thus limiting
ourselves to the case where H is a pure jump Lévy process. In particular
we choose H to be a CGMY process (cf. 3 and 9). The CGMY process has
cumulant generating function defined for all u ∈ C with |ℜu| ≤ min(G, M),

κCGMY(u) = Γ(−Y )GY

{(
1 − u

G

)Y

− 1 +
uY

G

}

+ Γ(−Y )MY

{(
1 +

u

M

)Y

− 1 − uY

M

}
. (4.1)

The necessary conditions are then satisfied for term structures with volatil-
ity structures that satisfy

∑N
i=1 |λi| ≤ min(G, M). Exact simulation of the

increments can be performed without approximation using the approach in
11). This approach can be used when simulating with or without drift ex-
pansions, but cannot be employed in the case of the log-Lévy approximation
in (3.17) where jump sizes are transformed in a non-linear fashion. Instead
we employ an approximation where we replace jumps smaller than ǫ with
their expectation which is zero since the jumps are compensated. This means
that jumps bigger than ǫ follow a compound Poisson process which can be
easily simulated using the so-called Rosinski rejection method (see 12 and
1, p. 338). We set the truncation point sufficiently low, at ǫ = 10−3, thus
making the variance of the truncated term small enough to safely disregard.
To be consistent, we employ this procedure everywhere we simulate from
the CGMY process.
The payoffs we price are payer and receiver swaptions respectively. Following
8, pp. 78), we have that the price of a receiver swaption with strike rate K,
where the underlying swap starts at time Ti and matures at Tm (i < m ≤ N)
is given by

S0 = B(0, T∗) IEIP∗



(

−
m∑

k=i

(
ck

N∏

l=k

(1 + δiLl(Ti))
))+

 , (4.2)

where

ck =





−1, k = i,

δkK, i + 1 ≤ k ≤ m − 1,
1 + δkK, k = m.

(4.3)

Analogously, payer swaptions can be priced by merely replacing the minus
inside the expecation in (4.2).
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