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Input parameters:

e Number of iterations N
e Time Step Number M
e Generator_Type

e Increment inc

Output parameters:

e Price P

e Error Price op

e Error Delta op

Description:

1 Ninomiya-Victoir Scheme

See there We consider a stochastic differential equation written in the Stratonovich

form
t gt

Vie =2+ [Vo(Va)ds + 3 [Vilo)odW! Yo, =2 (1)
0 =17
d .
dY;f,m = Z ‘/Z(Y;f,x) % thZ YE),:): =T (2)
i=0
where W = t.

Now, given a function f with some regularity, how can one approximate
efficiently E[f(Y1.)]? It is equivalent to the following deterministic problem:
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if L is the differential operator L = Vo+ 1 (V2+---+V7?) and u is the solution
of the heat equation

{ %—?(t, x) = —Lu(t,z) (3)
u(l,x) = f(z)

how does one approximate u(1, z) (which is equal to E[f (Y} )] by Feynman-
Kac theorem).

Notation If V is a smooth vector field, i.e. an element of C°(RY, RY),
exp(V')(x) denotes the solution at time 1 of the ordinary differential equation

dz
th =V(z), zm== (4)
forzx e R

.....

.....

random variables as follows:

Xy =,
XI?—H =
| a >
exp (;%) exp Z\%l ...exp Z\’“/? exp (g—g) ( ,?) si Ay =+1 )
VA z1 v .
exp (;—g) exp %d ...exp \%1 exp (;%) (X;?) siAp =—1
Then, for all Vf € C°(RY),
C
[Ef(X0) ~ Ef(Y (L) € 5 (6)

that is, the algorithm is of order 2.

Proof
First observe that

Err(T,h) = BEf(Xy) — Ef(X}) = Bu(0,7) — Bu(T, X}), Xo=x (7)

Using Taylor approximation of Eu(0,x) — Eu(T, X}) we see that Fu(0,z) —

Eu(T, X}) = E Y (u(ih, X") —u((i + 1)k, X},)) where h = 2. We add and
=1

take u((i + 1)h, X!*) from this expression. The sum becomes

é E (u(ih, X — (i + Dh, X))~ E (u((i + 1)k, X,) — (i + Db, X)) =

- é E(u(ih, X*) — u((i + 1)k, X))
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—3F {u (( 1)h, exp( )exp (Z:fv> . €xp ({j?)exp (;/*2) (f)) —u((i +1)h, X})
—iE {u <(z + 1)h, exp (;/—2) exp < \’%d) ...exp (Z\’%l> exp (;/—2) (Xf)) —u((i+1)h, XM

We consider one term of this sum. We know that
u(t,z) = Ef(X7")

u((i+1)h,x) = BF(XpM)
u(ih,z) = Eu((i + 1)h, Xzfﬁ)h)
By the Ito formula

- (i+1)h (i+1)h
X, = X+ / b(t, XYt + / o(t, X" aw,
ih ih
Then
u(ih, XY = Eu((i + 1)h, Xszf)h)
= E[ (ih, X]) + (Zflhg“ (t, X" aw, + (Z:Z)hL (t, X5 at

We calculer the mean of u(@h, X[). The integral stochastic equals to 0.
It remains to estimate

(i+1)h ) (i+1)h ¢
E /Lu(t X, e | X — = Lu(ih, X!) + //L2 XN s dt
ih
E(u(ih, X1 — B(u((i+1)h, X#)) = LX) | LPuh XD 4 ot =3 where

b LLf@ L) 1<%+1iw2)f<x>

+2}ﬂ<vo2 1%zv2+ zv2vo+ zv2v2>f(>

’Ljf

Further we apply the Taylor approximation of the ordinary differential

equations
%) exp (1) (@)
2
i—=1 ?

E [f (exp exp (Z Vl) (
d
V2435 2 VAVt
=1

—[x+1<%+ ZV2>f + 52 | VE+

<

0

N | =

)



d d
DAY v;ZVf) f(x)] = const ™"
i=1 1<J

E [f (exp (;%) exp (Z\’%d) ...exp (Z\’%l> exp (;%) ($))
d d

—PH&<%+§Z%ﬂﬂ@+;ﬂQﬁ+p&zW+;zmmﬁ
‘ i=1 i=1

d d
+ 12 Vi+I Y Vfo) f(x)] = const n=3 Then this term is bounded by
i=1 i>j

const n~3, and we conclude that the Ninomiya-Victoir scheme has an order
2.
Remarks

1. Ninomiya-Victoir scheme has the same order that the Milshtein scheme.
But here we haven’t to calculate an integral mixed. Then this scheme
is more commode in practice that Milschtein one.

2. In general, it is not always possible to obtain the closed form solution
to exp(sV;). Even in such cases, it is not difficult to implement this
algorithm. All we have to do is to find an approximation of exp(sV;).
This can be achieved by Runge-Kutta method.

3. This scheme is applied for a model with Brownian motions indepen-
dents.

2 Heston Model and Asian Call

The asset price Y) satisfies the following two factor stochastic volatility model

dYy = pYrdt + Y1/ YadW,  Y1(0) = 2 (8)
dYy = a0 — Yy)dt + 51/ YadWE  Y5(0) = 5o (9)

where (W', W?) is a 2-dimensional standard brownian motion with a corre-
lation coefficient p : dW; dWs = p
a, 0, u are some positives constantes such that 2a6 — 32 > 0 to ensure the ex-
istence and uniqueness of a solution to stochastic differential equation. Also
a is named mean reversion, 3 - volatility of volatility, p- annual interest rate,
et 0 log-run variance.

The payoff of option is (Y3(7')/T — K)* where

dY; = Yidt, Y3(0)=0 (10)

The price of this option becomes e "7 (Y3(T)/T — K)™.
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We add two equations for reduction variance technique ! The control
variable is

- K)* (11)

where

dY; = pYadt+ YiyJeot(yo — 0) + 0dW}  Y3(0) = mg

dYs =1InY,dt Y5(0) =0
Here for Y, we use the same brownian motion W, that for Y;. In other words
Y, =Y; where g = 0.

2.1 The mean of the control variable

t t t
[ nds+ [ /e (yo—0)+0dWs—3 [(e=*(yo—0)+0)ds
0

4 = xoeo 0

t
pt— 204992 (et 1)+ [ /e=23 (yo—0) +0dW
0

= Ig€

t
InY, =Inzo+t(p—30)+ y%i;e(@_at -1+ \/e_as(yo —0) + 0dW,
0

T
OflnY4dt =TlInzy+ %Q(M —160) - %T - %OTQH(e_O‘T -1+

Tt
+ [ [ e (yo — 0) + 0dW,dt
00
Let f(s) = \/e_as(yo —0) + 6. We will calcule the integral multiple I =

T
[ ] f(s)dWdt. We apply two times a formula of integration by parties.
0

Ot —

T

I = [Wif(t)dt— [ [ 1/(s)Wads dt = [ W, f(t)dt — [(T — 1) /() W,dt
0 00 0 0

= [Wif(0) = (T = O (O)de = [(T = ) F(0)aW,

So I is normal random variable £ ~ N (0, 0?).

1'We would like to construct the control variable for asian call. We replace the stochastic
volatility in the equation (8) by a volatility determinate, solution of the equation (9) which
is Ya(t) = e “(yo — 0) + 0.
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T T
of = [(T =0t = [(T = 1)*(e™(yo — 0) + O)at
- (T;t) (yo 0) e (T — t)?2 ‘ 2(yo— 9)0f e=(T — t)dt
€T3 + (yo 0) T2 yo 0) [ featdt]
0 (0%
9T3+ (yo 0) {Ti?_,_ 12 7aT_1
.’ « [e%
% [In X¢at

And Z =e 0 = 20e"" 7€ where a = L(n—10) vt _ s028 (o=l _ 1)

E({Eoea-i-Tf — K)+ = :L'()eaE(GTS — %6 1 e%€>§e*a}
+oo x N z2
=zpe* [ \/#(ef — %e‘“)e_ﬁdx
T(ln%—a
+foo 1 ( K ) 2d
= xp€e” =(e7 — et t)e T dy
T (ln £ —q) vor ’
+o0 2 92_22'!/"";73
= 1p€ [ Lere 2 dy — KN(¥(In £ — q))
Z(ln% a)
= zge’" T2N( (lnx——a)—%)—KN(g(an—a))

2.2 The functions used in Euler Scheme and in Ninomiya-
Victoir Scheme.

For Euler Scheme we describe the functions b(Y,t), o(Y,t) like

YV =M, Ya, Y Vi Y5)
b(Y,t) = (uYr, o(0—Ys), Yi, pYy InYy),
YivYe 0
0 BVYs
0

oY,t) =0
Y4\/e—°‘t(y0—€) +6 0
0 0

For Ninomiya-Victoir Scheme (5) we have the functions:

Vi(Y) =(VivYs, 0, 0, YiJeot(yo—0)+06, 0)
eXp(s‘/l)(Y) - (X17 }/27 }/37 X47 }/5)t
where X; and X arise from the equations

dX dX
7; = SXl\/Yz ; 71 = 54/ Yadl ; X = Xl(o)esmt|t:1, X1(0)=Y;
1
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X =YV
dX dX
d7t4 = sX4\/e—°‘t(y0 —0)+6; 744 = s\/e—“t(yo —0) + 6dt

Yie® (b+\/§)<a7\/5)) siyo # 0

s (Q(b_a)_j’_\/gln (b—=v0)(a+V0)
X, {
YyesV? siyg =10

a:\/e—a(yo—é’)—l—@, b=/t

B(Y) =(0. BY¥ 0.0, 0f
exp(sV2)(Y) =M, (3+V%), Y, Ys Vi, Y5)

) = (Yi(p—1Ys), al0-Yo) - %, Vi, Yi(p— <=0 1y,
) = (X17 XQ; X37 X4; X5)t

Xl :HeXp ((#—%)3+%(67(13_1))
Xy =J+ (Y'Q _ J)efas
Y + T 1 O(s%) i Ya # 20

X = A
’ Ys+Yis S Y, = 2
o =Viewp (s(u =) + e - )
) iy, =
X5 —= 5 l - i g O

Y5+ sln Xy — §(y0—6(1 —

«

Oé+e

)—p+30) siYi#0

(0%
2

J=0-2 A=p-2

We approximate

Xi(t) = Yy DstH T (7)o y (T 2)st TR (—sat) _ y, st /2)

and then calcule X3
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