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Abstract. We suggest new fast and accurate method, Fast Wiener-Hopf method
(FWH-method), for pricing barrier and American options for a wide class of Lévy
processes. The method uses the Wiener-Hopf factorization and Fast Fourier Transform
algorithm. We demonstrate the accuracy and fast convergence of the method using
Monte-Carlo simulations and an accurate finite difference scheme, compare our results
with the results obtained by Cont-Voltchkova method, and explain the differences in
prices near the barrier. The results are based on the ones obtained in Kudryavtsev,
O.E., and S.Z. Levendorskǐi (2007,2008).

1. Introduction

In this introductory section, we give a short overview of general results on pricing
barrier options in exponential Lévy models. By now, there exist several large groups
of relatively universal numerical methods for pricing of American and barrier options
under exponential Lévy processes. The number of publications is huge, and, therefore,
an exhaustive list is virtually impossible. We concentrate on the one-dimensional case.
First, we will consider the model case of a down-and-out put option, without rebate. The
down-and-out call options and up-and-out calls and puts can be reduced to the model
case by suitable change of numeraire and/or the direction on the real axis. The method
is applicable to American options as well, and, after straightforward modifications, to
barrier options with a rebate (hence, to digitals as well). In Section 2, we introduce Fast
Wiener-Hopf factorization method. In Section 3, we apply FWH-method to American
options. Numerical examples are presented in Section 4. The background of the theory of
Lévy processes and PDO and explicit numerical algorithms are relegated to appendices.

1.1. General set-up. Let T,K,H be the maturity, strike and barrier, and St = eXt the
stock price under a chosen risk-neutral measure. The riskless rate is assumed constant.
Set h = lnH. Then the payoff at maturity is 1(h,+∞)(XT )G(XT ), where G(x) = (K −
ex)+, and the no-arbitrage price of the barrier option at time t < T and Xt = x > h is
given by

(1.1) V (t, x) = V (T,H;G; t, x) = Et,x
[

e−r(T−t)1XT>h
G(XT )

]

,
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where X t = inf0≤s≤tXt is the infimum process. In Subsection A.1, we remind the
definitions of the Lévy density F (dy) of the Lévy process Xt and characteristic exponent
ψ(ξ), and explicit formulas for ψ and L, the infinitesimal generator of Xt. We also list
several classes of Lévy processes used in the main body of the paper.

We start with the reduction to the boundary problem for the option price, which is
the first step for many methods.

1.2. Boundary problem for the price of the down-and-out barrier option and
explicit formulas for the price. The boundary problem for V (t, x) is of the form

(∂t + L− r)V (t, x) = 0, x > h, t < T ;(1.2)

V (t, x) = 0, x ≤ h, t ≤ T ;(1.3)

V (T, x) = G(x), x > h.(1.4)

Boyarchenko and Levendorskǐi (1999, 2002b, c) derived the generalization of the Black-
Scholes equation (1.2) under a weak regularity condition: the process (t,Xt) in 2D
satisfies (ACP)-condition (for the definition, see, e.g., Sato (1999)). Note that (ACP)
condition is satisfied if the process Xt has the transition density. Equation (1.2) is
understood in the sense of the theory of generalized functions: for any infinitely smooth
function u with compact support suppu ⊂ (−∞, T ) × (h,+∞),

(1.5) (V, (−∂t + L̃− r)u)L2
= 0,

where L̃ is the infinitesimal generator of the dual process. One cannot state that the
boundary problem (1.2)–(1.3) has a unique bounded solution for an arbitrary Lévy pro-
cess. However, if the characteristic exponent ψ is sufficiently regular, which is the case
for Lévy processes used in empirical studies of financial markets, then the general tech-
nique of the theory of PDO can be applied to show that a bounded solution, which
is continuous on suppu ⊂ (−∞, T ) × (h,+∞), is unique – see, e.g., Kudryavtsev and
Levendorskǐi (2006).

Later, Cont and Voltchkova (2005) (see also Cont and Tankov (2004)) derived the same
equation (1.2) under much more stringent conditions. The latter version is called partial
integro-differential equation (PIDE) and uses the viscosity solution technique, which is
better known in probability than the language and technique of the theory of pseudo-
differential operators (PDO) used by Boyarchenko and Levendorskǐi (1999, 2002b, c).
Notice, however, that the definition of a solution in the sense of generalized functions is
standard in analysis for half a century, at least, and it is more natural for linear problems
than the language of viscosity solutions invented to tackle much more difficult non-linear
problems. Moreover, the PDO technique based on the Fourier transform is much more
powerful than the technique based on the study of the kernel of the PIDE. This was the
reason the theory of PDO was invented in the first place – see, e.g., Eskin (1973) and
Hörmaner (1985).

1.3. Carr’s randomization and Wiener-Hopf factorization.

1.3.1. Carr’s randomization. The methods constructed in this paper start with time
discretization (the method of lines). This method was introduced to finance by Carr and
Faguet (1994); Carr (1998) suggested a new important probability interpretation of the
method, which we call Carr’s randomization. One discretizes time (0 =)t0 < t1 < · · · <
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tN(= T ) but not the space variable. Set VN(x) = G(x). For s = N − 1, N − 2, . . . , 0, set
∆s = ts+1 − ts, q

s = r + (∆s)
−1, denote by Vs(x) the Carr’s randomized approximation

to V (ts, x), and replace the time derivative in (1.2) with the finite difference. The result
is a sequence of boundary problems on the line, which can be written as follows: for
s = N − 1, N − 2, . . . , find a (unique) bounded measurable V s, which satisfies

(qs)−1(qs − L)Vs(x) =
1

qs∆s

Vs+1(x), x > h,(1.6)

Vs(x) = 0, x ≤ h.(1.7)

The probabilistic version is: for s = N − 1, N − 2, . . . , calculate

(1.8) Vs(x) = Ex
[
∫ τ

0
e−qst(∆s)

−1Vs+1(Xt)dt
]

,

where τ is the hitting time of (−∞, h]. In the paper, we will use the uniform spacing,
therefore, qs and ∆s will be indepenedent of s and denoted q and ∆t, respectively.

The convergence of the Carr’s randomization procedure for barrier options is proved
by M.Boyarchenko (2008). Each problem in the sequence can be solved explicitly using
the operator form of the Wiener-Hopf factorization developed in Boyarchenko and Leven-
dorskǐi (2002a-c, 2005, 2007, 2008) to price barrier and American options. The operator
form of the Wiener-Hopf factorization is a standard analytical tool for solution of bound-
ary problems for pseudo-differential equations; the new element is the interpretation of
the factors denoted E± as the expected present value operators (EPV-operators) – op-
erators which calculate the (normalized discounted) expected present values of streams
of payoffs under supremum and infimum processes.

1.3.2. The Wiener-Hopf factorization. Let q be a positive real number. The Wiener-
Hopf factorization formula used in probability reads:

(1.9) E[eiξXT ] = E[eiξX̄T ]E[eiξXT ], ∀ ξ ∈ R,

where T ∼ Exp q, and X̄t = sup0≤s≤tXs and X t = inf0≤s≤tXs are the supremum and
infimum processes. Introducing the notation

φ+
q (ξ) = qE

[
∫ ∞

0
e−qteiξX̄tdt

]

= E
[

eiξX̄T

]

,(1.10)

φ−
q (ξ) = qE

[
∫ ∞

0
e−qteiξXtdt

]

= E
[

eiξXT

]

(1.11)

we can write (1.9) as

(1.12)
q

q + ψ(ξ)
= φ+

q (ξ)φ−
q (ξ).

Equation (1.12) is a special case of the Wiener-Hopf factorization of the symbol of a PDO
(see Subsection A.2 for the definition of PDO). In applications to Lévy processes, the
symbol is q/(q+ψ(ξ)), and the PDO is E = q/(q−L) = q(q+ψ(D))−1: the normalized
resolvent of the process Xt or, using the terminology of Boyarchenko and Levendorskǐi
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(2005, 2007, 2008), the expected present value operator (EPV–operator) of the process
Xt. The name is due to the observation that, for a stream g(Xt),

Eg(x) = E
[
∫ +∞

0
qe−qtg(Xt)dt | X0 = x

]

.

The factors φ±
q (ξ) also admit interpretation as the symbols of the EPV–operators E± =

φ±
q (D) under supremum and infimum processes

E+g(x) : = qE
[
∫ ∞

0
e−qtg(X̄t)dt | X0 = x

]

E−g(x) : = qE
[
∫ ∞

0
e−qtg(X t)dt | X0 = x

]

.

One of the basic observations in the theory of PDO is that the product of symbols
corresponds to the product of operators. In our case, it follows from (1.12) that

(1.13) E = E+E− = E−E+

as operators in appropriate function spaces.
The general results in this paper are based on simple properties of the EPV operators,

which are immediate from the interpretation of E± as expectation operators. For details,
see Boyarchenko and Levendorskǐi (2005).

Proposition 1.1. EPV-operators E± enjoy the following properties

(a) If g(x) = 0 ∀ x ≥ h, then ∀ x ≥ h, (E+g)(x) = 0 and ((E+)−1g)(x) = 0.
(b) If g(x) = 0 ∀ x ≤ h, then ∀ x ≤ h, (E−g)(x) = 0 and ((E−)−1g)(x) = 0.
(c) If g(x) ≥ 0 ∀x, then (E+g)(x) ≥ 0, ∀x. If, in addition, there exists x0 such that

g(x) > 0 ∀x > x0, then (E+g)(x) > 0 ∀x.
(d) If g(x) ≥ 0 ∀x, then (E−g)(x) ≥ 0, ∀x. If, in addition, there exists x0 such that

g(x) > 0 ∀x < x0, then (E−g)(x) > 0 ∀x.
(e) If g is monotone, then E+g and E−g are also monotone.
(f) If g is continuous and satisfies

(1.14) |g(x)| ≤ C(eσ−x + eσ+x), ∀ x ∈ R,

where σ− ≤ 0 ≤ σ+ and C are independent of x, then E+g and E−g are continuous.

1.3.3. Explicit solution of problem (1.6)–(1.7). In Boyarchenko and Levendorskǐi (2002a,
b), it was shown that the unique bounded solution is given by

(1.15) V s =
1

q∆t
E−1[h,+∞)E

+V s+1,

where 1[h,+∞) is the indicator function of [h,+∞). In Boyarchenko and Levendorskǐi
(2002a-c, 2005, 2007), no efficient numerical realization of the action of EPV–operators
was suggested. Levendorskǐi (2004) constructed a very accurate and fast realization of
the pricing procedure for the American put in Kou’s model and more general HEJD
model. For these models, efficient procedures are possible because the EPV-operators
are linear combinations of convolution operators with exponential kernels. If the analytic
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expressions for the Wiener-Hopf factors φ±
q (ξ) are available, one can calculate V s using

Fourier transform F and its inverse F−1:

(1.16) V s(x) =
1

q∆t
F−1
ξ→xφ

−
q (ξ)Fx→ξ1[h,+∞)(x)F−1

ξ→xφ
+
q (ξ)Fx→ξV

s+1(x).

1.4. New variants of Carr’s randomization–WHF method. The advantage of the
straightforward WHF-method and of the two variations constructed in the paper is that
the price of each option in the sequence has the same order of the asymptotics near the
barrier as the initial barrier option with finite time horizon, therefore, one can expect
that WHF–approach is more accurate than approaches, which approximate small jumps
by an additional diffusion component.

The main new element of the Fast Wiener-Hopf (FWH) method constructed in Section
2 is an efficient approximations to the EPV-operators, which leads to a very fast and
accurate pricing procedure. FWH-method is fully implicit because we approximate the
operators in the exact formula for the solution of the boundary problem.

2. Fast Wiener-Hopf factorization method (FWH–method)

2.1. General formulas. We start with the exact formula (1.16). Once sufficiently
accurate approximations to the factors φ±

q are constructed, the calculation of the option
price becomes accurate and fast. The FWH-method enjoys an additional appealing
feature: for arbitrary number of time steps, approximate formulas for φ±

q are needed at
the first and last steps in the cycle in s only. At all intermediate steps, the exact analytic
expression q/(q + ψ(ξ) is used, and, therefore, almost all errors are errors of FFT and
iFFT only. Indeed, for s = N − 1, N − 2, . . . , 0, define

(2.1) W s = 1[h;+∞)E
+V s+1.

Then

(2.2) V s = (q∆t)−1E−W s(x).

Using the Wiener-Hopf factorization formula (1.13), we obtain that

(2.3) W s = (q∆t)−11[h;+∞)EW
s+1,

or, equivalently,

(2.4) Ŵ s(ξ) = (q∆t)−1Fx→ξ1[h;+∞)F
−1
ξ→x

q

q + ψ(ξ)
Ŵ s+1(ξ).

Thus, if we are interested in the option value V 0 at the last step only, the algorithm
becomes very simple. However, the crucial problem of efficient calculation of the Wiener-
Hopf factors remains.

2.2. Reduction to symbols of order 0. The new ingredient is the reduction of the
factorization problems to symbols of order 0, which stabilize at infinity to 1. We explain
the reduction for a wide class of Lévy processes which consists of Variance Gamma
processes and RLPE of order ν ∈ (0; 2] (see basic facts and definitions on Lévy processes
in Appendix A).
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Introduce functions

Λ−(ξ) = λ
ν+/2
+ (λ+ + iξ)−ν+/2;(2.5)

Λ+(ξ) = (−λ−)ν−/2(−λ− − iξ)−ν−/2;(2.6)

Φ(ξ) = q
(

(q + ψ(ξ))Λ+(ξ)Λ−(ξ)
)−1

.(2.7)

Choices of ν+ and ν− depend on properties of ψ, hence on order ν (see (A.16)–(A.17))
and drift µ. We have to consider the following cases.1.

(1) If Xt – RLPE of order ν ∈ (1, 2), we set ν+ = ν− = ν/2.
(2) If Xt – RLPE of order ν ∈ (0, 1] and drift µ = 0, we set ν+ = ν− = ν/2.
(3) If Xt – RLPE of order ν ∈ (0, 1) and drift µ > 0, we set ν+ = 0, ν− = 1.
(4) If Xt – RLPE of order ν ∈ (0, 1) and drift µ < 0, we set ν+ = 1, ν− = 0.
(5) If Xt – VGP and drift µ > 0, we set ν+ = 0, ν− = 1.
(6) If Xt – VGP and drift µ < 0, we set ν+ = 1, ν− = 0.

Functions Λ±(ξ) are analytic and do not vanish in the half-plane ± Im ξ > 0, contin-
uous up to the boundary. In addition, Λ±(ξ) and its reciprocal grow not faster than a
polynomial. Therefore, it remains to factorize

(2.8) Φ(ξ) = Φ+(ξ)Φ−(ξ),

and then set

(2.9) φ±
q (ξ) = Λ±(ξ)Φ±(ξ).

2.3. Approximation of symbols Φ±(ξ). In this subsection, we, first, approximate Φ
by a periodic function Φd with a large period 2π/d, which is the length of the truncated
region in ξ-state, then approximate the latter by a partial sum of the Fourier series, and,
finally, use the factorization of the latter instead of the exact one.

We can apply this realization both after the reduction to symbols of order 0 has
been made, and without this reduction. In the latter case, we obtain a Poisson type
approximation.

It is well-known (see e.g. Lukacs, E., 1960) that the limit of a sequence of the Poisson
type characteristic functions is infinitely divisible characteristic function. The converse
is also true. Every infinitely divisible characteristic function can be written as the limit
of a sequence of finite products of Poisson type characteristic functions. Since ψ(ξ) is
the characteristic exponent of Lévy process, then the function q/(q + ψ(ξ)) is infinitely
divisible characteristic function.

The second step is straightforward. We impose an additional condition

(2.10) |Φ′(ξ)| ≤ C(1 + |ξ|)−ρ,

where ρ > 0; this condition is satisfied by all RLPEs and VGPs (and can be relaxed),
which makes the following lemma applicable.

1We can reduce the case ν ∈ (0, 1] and µ 6= 0 to (2) after the elimination of the drift. For driftless
VGPs we reduce to the cases (5) or (6) by suitable change of numeraire
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Consider a function fd ∈ C1[−π/d, π/d] depending on a small parameter d, and, for
m > 0, construct the partial sum

Sm(fd) =
d

2π

∑

|k|≤m

f̂d,ke
idkx

of the Fourier series for fd.

Lemma 2.1. Let fd(−π/d) = fd(π/d), and let there exists C > 0 such that for all
x ∈ [−π/d, π/d] and all d ∈ (0, 1], |∂xfd(x)| ≤ C.

Then there exists a function d 7→ m0(d) such that ∀ m ≥ m0(d), x ∈ [−π/d, π/d] and
d ∈ (0, 1],

(2.11) |fd(x) − Sm(fd)(x)| ≤ ǫ.

Proof. Changing the variables x = x′/d, we see that it suffices to prove lemma for a
gd ∈ C1[−π, π], such that gd(−π) = gd(π) and for all x ∈ [−π, π] and all d ∈ (0, 1],
|∂xgd(x)| ≤ C/d. Set

Sm(dd) =
1

2π

∑

|k|≤m

ĝd,ke
ikx.

We need to prove that there exists a function d 7→ m0(d) such that ∀ m ≥ m0(d),
x ∈ [−π, π] and d ∈ (0, 1],

(2.12) |gd(x) − Sm(gd)(x)| ≤ ǫ.

The proof is a modification of the classical proof of the uniform convergence of the Fourier
series due to U.Dini. We use

Sn(gd)(x) − gd(x) =
1

π

∫ π

0
hd(x, t)

sin((n+ 1/2)t)

2 sin(t/2)
dt,

where hd(x, t) = gd(x+ t) + gd(x− t) − 2gd(x), which presumes that gd is extended to a
periodic function. For any ǫ > 0, set δ = ǫd/(2C). Then

(2.13)

∣

∣

∣

∣

∣

1

π

∫ δ

0
hd(x, t)

sin((n+ 1/2)t)

2 sin(t/2)
dt

∣

∣

∣

∣

∣

≤
1

2

∫ δ

0

|hd(x, t)|

t
dt ≤ δC/d ≤ ǫ/2.

Next, integrating by parts,
∣

∣

∣

∣

∣

1

π

∫ π

δ
hd(x, t)

sin((n+ 1/2)t)

2 sin(t/2)
dt

∣

∣

∣

∣

∣

≤
1

2δ(n+ 1/2)

∣

∣

∣cos((n+ 1/2)t)hd(x, t)
t=π
t=δ

−
∫ π

δ
cos((n+ 1/2)t)∂thd(x, t)dt

∣

∣

∣

∣

≤
A(d)

n+ 1/2
,

where A(d) depends on d and C but not on n. Choosing m0 > 2A(d)/ǫ and taking (2.13)
into account, we obtain (2.12). �
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For the first and third steps, we fix a small positive d and large even M (on the
strength of Lemma 2.1, M should be much larger than 1/d), set

bdk =
d

2π

∫ π/d

−π/d
ln Φ(ξ)e−iξkddξ, k 6= 0,(2.14)

bd,M(ξ) =
M/2
∑

k=−M/2+1

bdk(exp(iξkd) − 1),(2.15)

b+
d,M(ξ) =

M/2
∑

k=1

bdk(exp(iξkd) − 1),(2.16)

b−
d,M(ξ) =

−1
∑

k=−M/2+1

bdk(exp(iξkd) − 1);(2.17)

Φd,M(ξ) = exp(bd,M(ξ)),(2.18)

Φ±
d,M(ξ) = exp(b±

d,M(ξ)).(2.19)

2.4. Approximation of φ±
q (D) using Fast Fourier Transform. Let d be the step

in x-space, ζ–the step in ξ-space, and M = 2m the number of the points on the grid;
decreasing d and increasing (even faster) M , we obtain a sequence of approximations
to the option price. Approximants for EPV-operators can be efficiently computed by
using the Fast Fourier Transform (FFT). Consider the algorithm (the discrete Fourier
transform (DFT)) defined by

(2.20) Gl = DFT [g](l) =
M−1
∑

k=0

gke
2πikl/M , l = 0, ...,M − 1.

(It differs in sign in front of i from the algorithm fft in MATLAB). The DFT maps m
complex numbers (the gk’s) into m complex numbers (the Gl’s). The formula for the
inverse DFT which recovers the set of gk’s exactly from Gl’s is:

(2.21) gk = iDFT [G](k) =
1

M

M−1
∑

l=0

Gle
−2πikl/M , k = 0, ...,M − 1.

In our case, the data consist of a real-valued array {gk}
M
k=0. The resulting transform

satisfies GM−l = Ḡl. Since this complex-valued array has real values G0 and GM/2, and
M/2−1 other independent complex values G1, ..., GM/2−1, then it has the same “degrees
of freedom” as the original real data set. In this case, it is inefficient to use full complex
FFT algorithm. The main idea of FFT of real functions is to pack the real input array
cleverly, without extra zeros, into a complex array of half of length. Then a complex
FFT can be applied to this shorter length; the trick is then to get the required values
from this result (see Press, W. et al (1992) for technical details). To distinguish DFT of
real functions we will use notation RDFT.

Depending on the type of the option under consideration, we choose real ω, and apply
the Fourier transform Fx→ξ and the inverse Fourier transform F−1

ξ→x with x living in R

and ξ living in R + iω. Thus, a grid for ξ is the grid ξj = ηj + iω on the line Im ξ = ω.
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Then ψ1(η) = ψ(η + iω) − ψ(iω) be also characteristic exponent of infintely divisible
distribution. Set q1 = q + ψ(iω), and we will apply FWH-method for factorization of
q1/(q1 + ψ1(η)) with q1 and ψ1(η) instead q and ψ(η), respectively. In the case of down-
and-out options, for typical parameters values, we will choose ω = −2; for up-and-out
options, ω = 1 is a good choice.

Fix the space step d > 0 and number of the space points M = 2m. Define the partitions
of normalized log-price domain [−Md

2
; Md

2
) by points xk = −Md

2
+kd, k = 0, ...,m−1, and

frequency domain [−π
d

+ iω; π
d

+ iω] by points ξl = 2πl
dM

+ iω, l = −M/2, ...,M/2. Then
the Fourier transform of a function g on the real line can be approximated as follows:

ĝ(ξl) ≈
∫ Md/2

−Md/2
e−ixξlg(x)dx ≈

M−1
∑

k=0

g(xk)e
−ixkξld = deiπl

M−1
∑

k=0

g(xk)e
ωxke−2πikl/M ,

and finally,

(2.22) ĝ(ξl) ≈ deiπlRDFT [geω.](l), l = 0, ...,M/2.

Here z denotes the complex conjugate of z. Now, we approximate E . Using the notation
p(ξ) = q(q + ψ(ξ))−1, we can approximate

(Eg)(xk) =
1

2π

∫ +∞+iω

−∞+iω
eixkξp(ξ)ĝ(ξ)dξ

by

e−ωxk

(

2

M
Re

M/2−1
∑

l=1

e−2πikl/Mp(−ξl)RDFT [geω.]l

+
1

M
(RDFT [geω.]0 + Re p(−ξM/2)RDFT [geω.]M/2)

)

.

Finally,

(2.23) (Eg)(xk) ≈ e−ωxkiRDFT [p. ∗RDFT [geω.]](k), k = 0, ...,M − 1.

To approximate operators E± = φ±
q (D), we find an approximation of function ln Φ by

the Fourier series using the formula (2.15). The coefficients bdk in (2.15) are defined by
(2.14) and can be efficiently computed by using iRDFT. We have:

bdk =
d

2π

∫ π/d

−π/d
ln Φ(ξ)e−iξkddξ ≈ iRDFT [ln Φ](k).(2.24)

Next, we calculate b±
d,M in (2.16)–(2.17), and then, calculate the approximations to the

Wiener-Hopf factors

(2.25) p±(ξl) = Λ±
−ν/2(ξl) exp(b±

d,M(ξl)), l = −M/2, ..., 0.
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The action of the EPV-operator E± is approximated as follows:

(E±g)(xk) =
1

2π

∫ ∞+iω

−∞+iω
eixkξφ±(ξ)ĝ(ξ)dξ ≈

1

2π

∫ π/d+iω

−π/d+iω
e−ixkξp±(−ξ)ĝ(ξ)dξ

≈
1

2π

M/2
∑

l=−M/2+1

e−ixkξlp±(−ξl)ĝ(ξl)
2π

dM
,

and, finally,

(2.26) (E±g)(xk) = e−ωxkiRDFT [ p± ·RDFT [geω.]](k), k = 0, ...,M − 1.

The reader can find the detailed algorithm of FWH method in Subsection C.1.

3. FWH-method for pricing American options

3.1. Free boundary problem for the price of the American put option. We
consider the American put on a stock which pays no dividends; the generalization to the
case of a dividend-paying stock and the American call is straightforward. (Moreover, as
it is well-known, changing the direction on the line, the unknown function, the riskless
rate and the process, one can reduce the pricing problem for the American call to the
pricing problem for the American put).

Let V (t, St) be the price of American put with the strike price K and the terminal date
T . Set x = ln(S/K), g(x) = K(1−ex) and v(t, x) = V (t,Kex). Assume that the optimal
stopping time is of the form τ ′

B ∧ T , where τ ′
B is the hitting time of a closed set B ⊂

R × (−∞, T ] by the two-dimensional process X̂t = (Xt, t). Set C = R × [0, T ) \B (this
is the continuation region, where the option remains alive), and consider the following
boundary value problem

(∂t + L− r)v(t, x) = 0, (t, x) ∈ C;(3.1)

v(t, x) = g(x), (t, x) ∈ B or t = T ;(3.2)

v(t, x) ≥ g(x)+, t ≤ T, x ∈ R;(3.3)

(∂t + L− r)v(t, x) ≤ 0, t < T, (t, x) 6∈ C̄,(3.4)

where g(x)+ := max{g(x), 0}.
Under certain regularity conditions (see Theorem 6.1 in Boyarchenko and Levendorskǐi

(2002b)), the continuous bounded solution to the free boundary problem (3.1)-(3.4) gives
the optimal early exercise region, B, and the rational option price, v.

3.2. General formulas. Again we apply the Lévy analog of Carr’s randomization pro-
cedure developed in Section 6.2.2 of Boyarchenko and Levendorskǐi (2002b) for the Amer-
ican put. Normalize the strike price to 1, divide [0, T ] into n subperiods by points
tj = j∆t, j = 0, 1, . . . , n, where ∆t = T/n, and denote by vj(x) the approximation
to v(x, tj); hj denotes the approximation to the early exercise boundary at time tj.
Then vn(x) = K(1 − ex)+, and by discretizing the derivative ∂t in (3.1), we obtain, for
j = n− 1, n− 2, . . . , 0,

(3.5)
vj+1(x) − vj(x)

∆t
− (r − L)vj(x) = 0, x > hj.
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Equation (3.2) assumes the form

(3.6) vj(x) = g(x), x ≤ hj.

The approximation hj to the early exercise boundary is found so that the vj be maximal.
Introduce ṽj(x) = vj(x) − g(x) and substitute vj(x) = ṽj(x) + g(x) into (3.5)–(3.6):

ṽj+1(x) − ṽj(x)

∆t
− (r − L)ṽj(x) = (r − L)g, x > hj,(3.7)

ṽj(x) = 0, x ≤ hj.(3.8)

Set q = ∆t−1 + r and Gj = ṽj+1 − ∆t(r − L)g, then equation (3.7) can rewritten as
follows.

(3.9) q−1(q − L)ṽj(x) = (q∆t)−1Gj(x), x > hj.

Note that continuous function g(x) is decreasing admits bound (1.14) with σ+ = 1,
σ− = 0, and satisfies condition g(−∞) > 0 > g(+∞) = −∞. Taking into account
that (r − L)g = Kr one can show that the following statements hold (for details see
Boyarchenko S.I. and S.Z. Levendorskǐi (2005)).

For j = n− 1, n− 2, ..., 0:

a) function Gj is a non-decreasing continuous function satisfying bound (1.14) with
σ+ = 1, σ− = 0; in addition,

(3.10) Gj(−∞) < 0 < Gj(+∞) = +∞;

b) function

(3.11) w̃j := E+Gj

is continuous; it increases and satisfies (3.10);
c) equation

(3.12) w̃j(h) = 0

has a unique solution, denote it hj;
d) the hitting time of (−∞, hj], τ(hj), is a unique optimal stopping time;
e) (Carr’s approximation to) the option value at the moment j is given by

(3.13) vj = (q∆t)−1E−1(hj ,+∞)w̃j + g;

equivalently,

(3.14) ṽj = (q∆t)−1E−1(hj ,+∞)w̃j;

f) ṽj = vj−g is a positive non-decreasing function that admits bound (1.14) with σ+ = 1,
σ− = 0, and satisfies ṽj(+∞) = +∞; it vanishes below hj and increases on [hj,+∞).

It follows from Wiener-Hopf formula that functions w̃j and w̃j+1 are connected by the
formula

(3.15) w̃j = (q∆t)−1Ew̃j+1 −Kr∆t.

Thus, for calculations of v0 and early exercise boundaries hj we need to apply E+ and
E− only on the first and last steps, respectively.
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To improve the convergence of the method we will choose ω = −2 and ω = 1 (see
(2.23) and (2.26)), in the case of American put and American call, respectively.

4. Numerical examples

In this section, we compare the performance of the two methods: Cont and Voltchkova
(2005) method and FWH–method.

In numerical examples, we implement the algorithm of FWH–method described in
Subsection C.1.

We use Monte-Carlo method (MC-method) and the accurate finite-difference scheme
of FDS-method as the benchmarks. It is well known that the convergence of Monte
Carlo estimators of quantities involving first passage is very slow. Hence, a large number
of paths was needed to obtain convergence. For the Monte Carlo calculations we used
500, 000 paths with time step = 0.00005 for ν < 1 and time step = 0.00001 for ν > 1.
For simulating trajectories of the tempered stable (KoBoL) process we implemented the
code of J. Poirot and P. Tankov (www.math.jussieu.fr/ ∼ tankov/). The program uses
the algorithm in Madan and Yor (2005), see also Poirot and Tankov (2006).

For sequentially generating VG sample paths on [0, T ], we used the algorithm of simu-
lating Variance Gamma as Gamma time-changed Brownian motion (see Madan and Yor
(2006)).

We consider the down-and-out put option with strike K, barrier H and time to expiry
T . The option prices were calculated on a PC with characteristics Intel Core(TM)2 Due
CPU, 1.8GHz, RAM 1024Mb, under Windows Vista. For computation of the prices by
CV-method we used Premia 8 routine (www.premia.fr).

We consider two types of processes, two times to maturity, and two ratios H/K.
Certainly, it would be interesting to study more variants but a detailed study of several
case will require dozens of tables. The examples, which we analyze in detail below,
are fairly representative. The option price depends on several parameters of the chosen
scheme. For a fixed number of time steps, N , and step in x-space, d, we will vary the
other parameters of the scheme to ensure that the price does not change significantly
(the details will be explained below). This explains why we can denote the price by Vd,N
(the scheme will be indicated separately). It should be noted that computation of the
prices under Premia 8 increases the CPU time by a factor of 3.

First, we take KoBoL model of order ν ∈ (0, 1), with parameters σ = 0, ν = 0.5,
λ+ = 9, λ− = −8, c = 1. We choose instantaneous interest rate r = 0.072310, time
to expiry T = 0.5 year, strike price K = 100 and the barrier H = 90. In this case,
the drift parameter µ is approximately zero. The localization domain is (xmin;xmax)
with xmin = − ln 2 and xmax = ln 2; we check separately that if we increase the domain
two-fold, and the number of points 4-fold, the prices change by less than 0.0001.

Table B.1, Panel A, reports prices for down-and-out put options calculated using
Monte-Carlo simulation and FDS, FWH and CV methods, with very fine grids. The
options are priced at five spot levels. ExtCV labels option prices obtained by linear
extrapolation of prices Vd,N with d = 0.000005 and d = 0.000002. In Panel B, the
sample mean values are compared with the prices computed by FDS, FWH and CV-
methods. The results show a general agreement between the Monte Carlo simulation
results and those computed by FDS and FWH methods. FWH-prices converge very
fast and agree with MC-prices and FDS-prices very well (relative error less than 1%
even in the out-of-the money region) after 0.5 sec whereas CV-method produces relative
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errors larger than 3% after dozens of hours of calculation. In Table B.2, we consider
the same model for smaller time to expiry T = 0.1 year. Notice that, near the barrier,
the CV-prices are lower than WHF-prices and MC-prices, which is to be expected for
processes of order ν < 1 with zero drift. Indeed, by construction, CV prices are of class
C2 up to the barrier, whereas the theoretical prices have the asymptotics (B.1). The
same systematic error is observed for processes of order ν > 1 (Table B.3).

In the case of Variance Gamma processes, we consider two sets of parameters. In
Table B.4, the drift is negative, and in Table B.5 - positive.

Appendix A. Basic facts

A.1. Lévy processes: a short reminder. A Lévy process is a process with stationary
independent increments (for details, see e.g. Sato (1999)). A Lévy process may have a
Gaussian component and/or pure jump component. The latter is characterized by the
density of jumps, which is called the Lévy density. We denote it by F (dy). A Lévy
process can be completely specified by its characteristic exponent, ψ, definable from the
equality E[eiξX(t)] = e−tψ(ξ) (we confine ourselves to the one-dimensional case). The
characteristic exponent is given by the Lévy-Khintchine formula:

(A.1) ψ(ξ) =
σ2

2
ξ2 − iµξ +

∫ +∞

−∞
(1 − eiξy + iξy1|y|≤1)F (dy),

where σ2 is the variance of the Gaussian component, and F (dy) satisfies

(A.2)
∫

R\{0}
min{1, y2}F (dy) < +∞.

If the jump component is a process of finite variation, equivalently, if

(A.3)
∫

R\{0}
min{1, |y|}F (dy) < +∞,

then (A.1) can be simplified

(A.4) ψ(ξ) =
σ2

2
ξ2 − iµξ +

∫ +∞

−∞
(1 − eiξy)F (dy),

with a different µ, and the new µ is the drift of the gaussian component.
Assume that under a risk-neutral measure chosen by the market, the stock has the

dynamics St = eXt . Then we must have E[eXt ] < +∞, and, therefore, ψ must admit the
analytic continuation into a strip Im ξ ∈ (−1, 0) and continuous continuation into the
closed strip Im ξ ∈ [−1, 0]. Further, if the riskless rate, r, is constant, and the stock does
not pay dividends, then the discounted price process must be a martingale. Equivalently,
the following condition must hold

(A.5) r + ψ(−i) = 0,

which can be used to express µ via the other parameters of the Lévy process:

(A.6) µ = r −
σ2

2
+

∫ +∞

−∞
(1 − ey + y1|y|≤1)F (dy).
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Example 2.1. [Tempered stable Lévy processes] The characteristic exponent of a
pure jump KoBoL process of order ν ∈ (0, 2), ν 6= 1 is given by

(A.7) ψ(ξ) = −iµξ + cΓ(−ν)[λν+ − (λ+ + iξ)ν + (−λ−)ν − (−λ− − iξ)ν ],

where c > 0, µ ∈ R, and λ− < −1 < 0 < λ+. Formula (A.7) is derived in Boyarchenko
and Levendorskǐi (1999, 2000, 2002b) from the Lévy-Khintchine formula with the Lévy
densities of negative and positive jumps, F∓(dy), given by

(A.8) F∓(dy) = ceλ±y|y|−ν−1dy;

in the first two papers, the name extended Koponen family was used. Later, the same
class of processes was used in Carr et al. (2002) under the name CGMY-model. Note
that Boyarchenko and Levendorskǐi (2000, 2002b) consider a more general version with
c± instead of c, as well as the case ν = 1 and cases of different exponents ν±.

Example 2.2. [Normal Inverse Gaussian processes] A normal inverse Gaussian
process (NIG) can be described by the characteristic exponent of the form (see Barndorff-
Nielsen (1998))

(A.9) ψ(ξ) = −iµξ + δ[(α2 − (β + iξ)2)1/2 − (α2 − β2)1/2],

where α > |β| > 0, δ > 0 and µ ∈ R.

Example 2.3. [Variance Gamma processes] The Lévy density of a Variance Gamma
process is of the form (A.8) with ν = 0, and the characteristic exponent is given by (see
Madan et al. (1998))

(A.10) ψ(ξ) = −iµξ + c[ln(λ+ + iξ) − ln λ+ + ln(−λ− − iξ) − ln(−λ−)],

where c > 0, µ ∈ R, and λ− < −1 < 0 < λ+.

Example 2.4. [Kou model] If F∓(dy) are given by exponential functions on negative
and positive axis, respectively:

F∓(dy) = c±(±λ±)eλ±y,

where c± ≥ 0 and λ− < 0 < λ+, then we obtain Kou model. The characteristic exponent
of the process is of the form

(A.11) ψ(ξ) =
σ2

2
ξ2 − iµξ +

ic+ξ

λ+ + iξ
+

ic−ξ

λ− + iξ
.

The version with one-sided jumps is due to Das and Foresi (1996), the two-sided version
was introduced in Duffie, Pan and Singleton (2000), see also S.G.Kou (2002).

The infinitesimal generator of X, denote it L, is an integro-differential operator, which
acts as follows:

(A.12) Lu(x) =
σ2

2
u′′(x) + µu′(x) +

∫ +∞

−∞
(u(x+ y) − u(x) − y1|y|≤1u

′(x))F (dy).
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A.2. The infinitesimal generator of a Lévy process as a PDO. The infinitesimal
generator L can be represented as a pseudo-differential operator −ψ(D). Recall that a
PDO A = a(D) with the symbol a(ξ) acts as follows:

(A.13) Au(x) = (2π)−1
∫ +∞

−∞
eixξa(ξ)û(ξ)dξ,

where û is the Fourier transform of a function u:

û(ξ) =
∫ +∞

−∞
e−ixξu(x)dx.

Note that the inverse Fourier transform in (A.13) is defined in the classical sense only
if the symbol a(ξ) and function û(ξ) are sufficiently nice. In general, one defines the
(inverse) Fourier transform, Fx→ξ (the subscript means that a function defined on the x–
space becomes a function defined on the dual ξ-space), and the inverse Fourier transform,
F−1
ξ→x by duality; in many cases, in particular, in the context of pricing of put and call

options, one can use the classical definition of the integral but integrate in (A.13) not
over the real line but along an appropriate line or contour in the complex plane. See,
e.g., Boyarchenko and Levendorskǐi (2002a-c) for details and examples. Formally, the
action of a PDO A with the constant symbol a(ξ) can be described as the composition

(A.14) Au(x) = F−1
ξ→xa(ξ)Fx→ξu(x)

If the functions u and a are represented as arrays suitable for application of the Fast
Fourier Transform and inverse Fast Fourier Transfrom algorithms (FFT and iFFT), then
(A.14) can be programmed as Au = iFFT (a. ∗ (FFT (u))).

A.3. Regular Lévy processes of exponential type. In order that the PDO technique
were not complicated and solutions to boundary problems be regular, the symbols should
be sufficiently nice. For PDO with constant symbols (meaning: symbols independent of
x), a convenient condition is: the symbol admits a representation

(A.15) a(ξ) = am(ξ) +O(|ξ|m1), as ξ → ∞,

where am is positively homogeneous of degree m, and m1 < m (for PDO with “variable"
symbols a(x, ξ), additional conditions on the derivatives of the symbol are needed). The
m is called the order of PDO a(D), and am is called the principal symbol of a(D). If it
is necessary to consider the action of a PDO in spaces with exponential weights, then
the representation (A.15) must be valid in an appropriate strip of the complex plane (in
the multi-dimensional case, in a tube domain in Cn) – see e.g. Eskin (1973), Barndorff-
Nielsen and Levendorskǐi (2001) and Boyarchenko and Levendorskǐi (2002b). Essentially,
these two properties (the characteristic exponent is analytic in a strip, and (A.15) is valid
in the strip) are used in Boyarchenko and Levendorskǐi (1999, 2000, 2002a-c) to introduce
the class of RLPE in terms of the characteristic exponent; the other definition starts with
the Lévy density.

Loosely speaking, a Lévy process X is called a Regular Lévy Process of Exponential
type (RLPE) if its Lévy density has a polynomial singularity at the origin and decays
exponentially at infinity (see Boyarchenko and Levendorskǐi (1999, 2000, 2002a-c). An
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almost equivalent definition is: the characteristic exponent is analytic in a strip Im ξ ∈
(λ−, λ+), continuous up to the boundary of the strip, and admits the representation

(A.16) ψ(ξ) = −iµξ + φ(ξ),

where φ(ξ) stabilizes to a positively homogeneous function at the infinity:

(A.17) φ(ξ) ∼ c±|ξ|ν , as Re ξ → ±∞, in the strip Im ξ ∈ (λ−, λ+),

where c± > 0. “Almost" means that the majority of classes of Lévy processes used
in empirical studies of financial markets satisfy conditions of both definitions. These
classes are: Brownian motion, Kou’s model (Kou (2002)), Hyperbolic processes (Eberlein
and Keller (1995), Eberlein at all (1998)), Normal Inverse Gaussian processes and their
generalization (Barndorff-Nielsen (1998) and Barndorff-Nielsen and Levendorskǐi (2001)),
and extended Koponen’s family (a.k.a. KoBoL model and CGMY model). Koponen
(1995) introduced a symmetric version; Boyarchenko and Levendorskǐi (1999, 2000), gave
a non-symmetric generalization; later a subclass of this model appeared under the name
CGMY–model in Carr et al. (2002), and Boyarchenko and Levendorskǐi (2002a-c) used
the name KoBoL family. The two important exceptions are Variance Gamma Processes
(VGP; see, e.g., Madan et al. (1998)) and stable Lévy processes. The characteristic
exponent of a stable Lévy process does not admit the analytic continuation into a strip
adjacent to the real line, therefore, call options cannot be priced. VGP satisfy the
conditions of the first definition of RLPE but not the second one, since the characteristic
exponent behaves like const · ln |ξ|, as ξ → ∞.

If ν ≥ 1 or µ = 0, then the order of the KoBoL process equals to the order of
the infinitesimal generator as PDO, but if ν < 1 and µ 6= 0, then the order of the
process is ν, and the order of the PDO −L = ψ(D) is 1. Hyperbolic and normal
inverse Gaussian processes are RLPEs of order 1, and the generalization of normal inverse
processes constructed in Barndorff-Nielsen and Lévendorskǐi (2001) contains processes
of any order ν ∈ (0, 2). If there is a diffusion component, the order of the process is 2.

The difference between the definition in terms of the Lévy density and the one in terms
of the characteristic exponent is apparent in the case of a VGP without the diffusion
component: the Lévy density is given by (A.8) with ν = 0 but the characteristic exponent
involves a logarithmic function. Hence, the infinitesimal generator of a VGP is not of
order 0.

Appendix B. Behavior of the price of the barrier option near the
barrier

It is extremely difficult if at all possible to study the behavior of the price of a bar-
rier option near the barrier for an arbitrary Lévy process Xt. We concentrate on several
classes of processes used in empirical studies of financial markets. M.Boyarchenko (2009)
proved for wide classes processes of finite variation with positive drift and non-vanishing
transition densities (this class contains RLPEs), and payoff functions, which are not
identically zero above the barrier, that the price of a down-and-out option is discontinu-
ous at the boundary. Below, we prove that the delta of the down-and-out barrier option
is unbounded in the vicinity of the barrier assuming that Xt is an RLPE of order ν ≥ 1
or of order ν ∈ (0, 1) with µ = 0.

Let Veur(t, x) be the price of the European option with the payoff G(XT ), and set
V1 = Veur − V . This is the price of the option which pays G1(t,Xt) = Veur(t,Xt) the
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first time Xt reaches or crosses the barrier, and expires; at t > T , the option expires
worthless. For an RLPE, the jump density is positive on R \ 0, therefore, for all t < T
and x ≤ h, G1(t, x) = Veur(t, x) > 0. Suppose for the moment that G1 ≡ 1; then V1 is the
price of the first touch digital option. Boyarchenko and Levendorskǐi (2002c, Theorem
7.4 and Eq. (7.56)) proved that if ν ≥ 1, then there exist κ− ∈ (0, 1), δ > 0 and, for each
t < T , c(t) > 0 such that, as x ↓ h,

(B.1) V1(t, x) = 1 − c(t)(x− h)κ− +O((x− h)κ−+δ).

Equivalently, the price of the digital down-and-out option has the asymptotics

(B.2) V (t, x) = c(t)(x− h)κ− +O((x− h)κ−+δ).

In the case G1 = Veur, one can either prove (B.1) modifying in the straightforward fashion
the proof of Theorem 7.4 in Boyarchenko and Levendorskǐi (2002c). The first step of the
proof is the explicit formula for the solution, which we describe in the case h = 0. In
Eq. (7.13) in Boyarchenko and Levendorskǐi (2002c), one should replace 1/(ξη), which is
the Fourier transform of 1x<01τ>0, with the Fourier transform of G1(T − τ, x)1x<01τ>0.
After that, one has to modify the calculations in Boyarchenko and Levendorskǐi (2002c).
The calculations are typical for calculations of asymptotic expansions and rather tedious
(cf., e.g., Eskin (1973), Chapter 9).

Appendix C. Algorithms

C.1. Algorithm of the FWH-method. We assume that the “drift" µ = 0 (except the
VGP case); non-zero µ can be eliminated by the change of variable x = x′ + µt.

I. Preliminary steps
Step 1. Input r, ω and parameters of the characteristic exponent ψ(ξ) (see (A.16)-

(A.17)). Redefine ψ(ξ) = ψ(ξ + iω) − ψ(iω).
Step 2. Input space step d.
Step 3. Input the scale of logprice range L. Define the localization domain (xmin;xmax)

for the space variable x. Set xmin = L · ln(0.5) and xmax = L · ln(2.0). The choice
L = 1 is optimal for typical parameter values.

Step 4. Define the number of space points M as follows. Find a positive integer m such
that 2m−1 < xmax−xmin

2d
≤ 2m, and set M = 2m.

Step 5. Input time to maturity T , the number of time steps N , and set ∆t = T/n,
q = (∆t)−1 + r + ψ(iω).

Step 6. Set ξk = πk
Md

,k = −M+1, ...,M , and find pk = q(q+ψ(ξk))
−1, k = −M+1, ...,−1,

and p0 = 1, p−M = qRe(q + ψ(−ξM))−1. We need array pk, k = −M, ..., 0 for
approximation of E (see (2.23)).

Step 7. Find (ln Φ)k = ln Φ(ξk), k = 1, ...,M−1, and (ln Φ)0 = 0, (ln Φ)M = Re ln Φ(ξM).
We need array (ln Φ)k, k = −M, ..., 0 for calculation of coefficients bdk (see (2.15)
and (2.24)).

Step 8. Using inverse FFT for real-valued functions, we find (see (2.24))

bk = bdk = iRDFT [ln Φ](k), k = −M + 1, ...,M
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Step 9. Set b−
0 = −

∑l=−1
l=−M+1 bl, b

−
k = b−k, k = 1, ...,M b−

k = 0, k = −M + 1, ...,−1. We
need the array b−

k , k = −M+1, ...,M for calculation of b−(−ξl) (see (2.17),(2.25)
and (2.26))

Step 10. Find b−(−ξl) = RDFT [b−](l), l = 0, ...,M .
Step 11. Set b+

0 = b0 − b−
0 , b+

k = b−k, k = −M + 1, ...,−1 b+
k = 0, k = 1, ...,M . We need

array b+
k , k = −M + 1, ...,M for calculation of b+(−ξl) (see (2.16),(2.25) and

(2.26))
Step 12. Calculate b+(−ξl) = RDFT [b+](l), l = 0, ...,M .
Step 13. We find p±

l = Λ±(ξl) exp(b±(ξl)), l = −M, ..., 0 (see (2.25)). We need arrays p±
l ,

l = −M, ..., 0 for the approximation of E± (see (2.26)).

II.A Pricing barrier option
Denote vkj = vj(xk) and wkj = wj(xk), k = −M + 1, ...,M , j = N,N − 1, ..., 0. Let

G(S) be the payoff function.

Step 1. Input barrier H and strike K. Set γ = (q∆t)−1.
Step 2. Calculate values of payoff function: vkN = eωxkG(Hexk), k = −M + 1, ...,M.
Step 3. Calculate (see (2.1) and (2.26))

wkN−1 = iRDFT [p+ ·RDFT [vN ]](k), k = −M + 1, ...,M.

Step 4. Calculation in cycle s = N − 1, N − 2, ..., 1.
a. Set wks = 0, k ≤ 0.
b. Applying direct and inverse FFT, we calculate (see (2.3) and (2.23))

wks−1 = γiRDFT [p ·RDFT [ws]](k), k = −M + 1, ...,M

Step 5. Set wk0 = 0, k ≤ 0.
Step 6. Applying direct and inverse FFT, we calculate (see (2.2) and (2.26))

vk0 = γiRDFT [p− ·RDFT [w0]](k), k = −M + 1, ...,M

Step 7. Output: spot price: Sk = Hexk ; option price: Vk = e−ωxkvk0 , k = 1, ...,M .

II.B Pricing American put option
Denote vkj = vj(xk) and wkj = wj(xk), k = −M + 1, ...,M , j = N,N − 1, ..., 0.

Step 1. Input strike K. Set γ = (q∆t)−1.
Step 2. Calculate values of payoff function: vkN = 0, k = −M + 1, ..., 0 and vkN =

eωxk(Kexk −K), k = 1, ...,M.
Step 3. Calculate (see (3.11) and (2.26))

wkN−1 = iRDFT [p+ ·RDFT [vN ]](k), k = −M + 1, ...,M.

Step 4. Calculation in cycle s = N − 1, N − 2, ..., 1.
a. Set wks = wks − eωxkK∆tr. If wks < 0, then set wks = 0.
b. Applying direct and inverse FFT, we calculate (see (3.15) and (2.23))

wks−1 = γiRDFT [p ·RDFT [ws]](k), k = −M + 1, ...,M

Step 5. Set wk0 = wk0 − eωxkK∆tr. If wk0 < 0, then set wk0 = 0.
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Step 6. Applying direct and inverse FFT, we calculate (see (2.2) and (2.26))

vk0 = γiRDFT [p− ·RDFT [w0]](k), k = −M + 1, ...,M

Step 7. Output: spot price: Sk = Kexk ; option price: Vk = e−ωxkvk0 − Kexk + K,
k = 1, ...,M .

Remark:
a) Approximation of the Fourier transform (resp., inverse Fourier transform) using

FFT (resp., iFFT) involves two types of errors: truncation error and discretization error.
For an RLPE, the truncation error for FFT can be made small very easily because the
put option price decays exponentially as x → +∞ (we may consider the put options only
because of the call-put parity) and, after that, the discretization error can be controlled
by decreasing the step d of the grid in x-space, equivalently, increasing the number of
points M = 2m of the grid. Now, consider the inverse Fourier transform. Assuming that
the truncated region on the line Im ξ = ω is of the form [−Λ + iω,Λ + iω], and denoting
the step of the uniform grid by ζ, we have dζ/(2π) = 1/M , hence, Λ = 2m−1ζ = π/d. It
follows that if we keep the truncated region in x-space fixed and decrease d (equivalently,
increase m) then we can control the truncation error of iFFT but not the discretization
error. To control the latter, we need to increase the truncated region in x-space and,
in addition, increase M by a larger factor. In the numerical examples in Section 4, we
use the truncated region in x-space sufficiently large so that the doubling the region and
increasing the number of points 4-fold changes the option price by 0.01% or less.

Note that real-FFT is two times faster than FFT.
b) Note that in the program implemented to Premia 11 one can manage by three

parameters of the algorithm: the space step d, the scale of logprice range L and the
number of time steps N . Parameter L controls the size of the truncated region in x-
space (see remark a)). The typical values of the parameter are L = 1, L = 2 and L = 4.
To improve the results one should decrease d and/or increase N , when L is fixed. It
should be noted that FWH-method converges sufficently fast.
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[14] Boyarchenko, S.I. and S.Z.Levendorskǐi 2008, "Pricing American Options in Regime-Switching
Models: FFT Realization" . Available at SSRN: http://ssrn.com/abstract=1127562

[15] Broadie, M., and J. Detemple, 2004, “Option pricing: valuation models and applications," Man-

agement Science 50, 1145-1177
[16] Carr, P., 1998, “Randomization and the American put", Review of Financial Studies, 11, 597-626.
[17] Carr, P., and D. Faguet, 1994, “Fast accurate valuation of American options", Working paper,

Cornell University, Ithaca.
[18] Carr, P., H. Geman, D.B. Madan, and M. Yor, 2002, “The fine structure of asset returns: an

empirical investigation", Journal of Business, 75, 305-332.
[19] Carr, P., and A. Hirsa, 2003, “Why be backward?", Risk January 2003, 26, 103–107.
[20] Cont, R., and P.Tankov, 2004, Financial modelling with jump processes, Chapman & Hall/CRC

Press.
[21] Cont, R., and E. Voltchkova, 2005, “A finite difference scheme for option pricing in jump diffusion

and exponential Lévy models.", SIAM Journal on Numerical Analysis, 43, No. 4, 1596–1626.
[22] Duffie, D., J.Pan, and K. Singleton, 2000, “Transform analysis and options pricing for affine jump

diffusions", Econometrica, 68, 1343–1376.
[23] Eberlein, E., and U. Keller, 1995, “Hyperbolic distributions in finance", Bernoulli, 1, 281–299.
[24] Eberlein, E., U. Keller and K. Prause, 1998, “New insights into smile, mispricing and value at

risk: The hyperbolic model", Journal of Business, 71, 371–406.
[25] Eskin, G.I., 1973, Boundary Problems for Elliptic Pseudo-Differential Equations. Nauka, Moscow

(Transl. of Mathematical Monographs 52 Providence. Rhode Island: Amer. Math. Soc. 1980).
[26] Hirsa, A., and D.B. Madan, 2003, “Pricing American options under Variance Gamma", Journal

of Computational Finance, 7:2.
[27] Hörmaner, L., 1985, Analysis of Partial Differential Opertors. Vol. III, Springer-Verlag, Berlin

Heidelberg New-York.
[28] I. Koponen, 1995, “Analytic approach to the problem of convergence of truncated Lévy flights

towards the Gaussian stochastic process", Physics Review E, 52, 1197–1199.
[29] S.G. Kou, 2002, “A jump-diffusion model for option pricing", Management Science, 48, 1086-1101
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Table C.1. Down-and-out put prices in KoBoL model, ν = 0.5

A
MC FDS FWH CV

Spot Sample d = 0.0001 d = 0.001 d = 0.001 d = 0.0005 d = 0.000005 d = 0.000002 ExtCV
price mean N = 1600 N = 400 N = 800 N = 400 N = 10000 N = 18000
S = 91 0.236500 0.235866 0.237139 0.236491 0.236720 0.218617 0.223599 0.226920
S = 101 0.569974 0.566907 0.568303 0.567766 0.568134 0.552174 0.556747 0.559795
S = 111 0.383990 0.384982 0.385349 0.385557 0.385287 0.377460 0.379963 0.381632
S = 121 0.209492 0.208093 0.208223 0.208406 0.208196 0.204459 0.205700 0.206528
S = 131 0.108359 0.107262 0.107439 0.107516 0.107403 0.105499 0.106115 0.106526
CPU-time
(sec) 25,000 97,300 0.22 0.45 0.46 26,000 116,000

B
MC FDS FWH CV

Spot MC error d = 0.0001 d = 0.001 d = 0.001 d = 0.0005 d = 0.000005 d = 0.000002 ExtCV
price N = 1600 N = 400 N = 800 N = 400 N = 10000 N = 18000
S = 91 1.3% -0.0027 0.0027 0.0000 0.0009 -0.0756 -0.0546 -0.0405
S = 101 0.8% -0.0054 -0.0029 -0.0039 -0.0032 -0.0312 -0.0232 -0.0179
S = 111 1.0% 0.0026 0.0035 0.0041 0.0034 -0.0170 -0.0105 -0.0061
S = 121 1.4% -0.0067 -0.0061 -0.0052 -0.0062 -0.0240 -0.0181 -0.0141
S = 131 1.9% -0.0101 -0.0085 -0.0078 -0.0088 -0.0264 -0.0207 -0.0169

C
FWH CV

Spot price d = 0.001 d = 0.001 d = 0.0005 d = 0.000005 d = 0.000002 ExtCV
N = 400 N = 800 N = 400 N = 10000 N = 18000

S = 91 0.00540 0.00265 0.00362 -0.07313 -0.05201 -0.03793
S = 101 0.00246 0.00152 0.00216 -0.02599 -0.01792 -0.01254
S = 111 0.00095 0.00149 0.00079 -0.01954 -0.01304 -0.00870
S = 121 0.00062 0.00150 0.00049 -0.01747 -0.01150 -0.00752
S = 131 0.00165 0.00237 0.00131 -0.01644 -0.01069 -0.00686

KoBoL parameters: ν = 0.5, λ+ = 9, λ− = −8, c = 1, µ ≈ 0.
Option parameters: K = 100, H = 90, r = 0.072310, T = 0.5.
Algorithm parameters: d – space step, N – number of time steps, S – spot price.
Panel A: Option prices calculated by using MC, FDS, FWH and CV methods.
Panel B: Relative errors w.r.t. MC; MC errors indicate the ratio between the
half-width of the 95% confidence interval and the sample mean.
Panel C: Relative errors w.r.t. FDS.
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Table C.2. Down-and-out put prices in KoBoL model, ν = 0.5, T = 0.1

A
MC FDS FWH CV

Spot Sample d = 0.0001 d = 0.001 d = 0.001 d = 0.0005 d = 0.000002 d = 0.000001 ExtCV
price mean N = 1600 N = 400 N = 800 N = 400 N = 4000 N = 8000
S = 91 2.34771 2.349327 2.35472 2.35229 2.35060 2.247170 2.271554 2.295938
S = 101 1.00787 1.009248 1.01028 1.01081 1.00977 1.003694 1.005384 1.007074
S = 111 0.17782 0.177806 0.17798 0.17801 0.17802 0.176402 0.176776 0.177150
S = 121 0.04990 0.04938 0.04933 0.04932 0.04938 0.048932 0.049045 0.049158
S = 131 0.01700 0.017067 0.01726 0.01725 0.01708 0.016900 0.016941 0.016982
CPU-time
(sec) 5,000 99,000 0.22 0.45 0.47 18,300 96,400

B

MC FDS FWH CV
Spot MC error d = 0.0001 d = 0.001 d = 0.001 d = 0.0005 d = 0.000002 d = 0.000001 ExtCV

(error) N = 1600 N = 400 N = 800 N = 400 N = 4000 N = 8000
S = 91 0.4% 0.0007 0.0030 0.0020 0.0012 -0.0428 -0.0324 -0.0221
S = 101 0.6% 0.0014 0.0024 0.0029 0.0019 -0.0041 -0.0025 -0.0008
S = 111 1.5% -0.0001 0.0009 0.0011 0.0011 -0.0080 -0.0059 -0.0038
S = 121 2.9% -0.0104 -0.0115 -0.0116 -0.0105 -0.0194 -0.0172 -0.0149
S = 131 5.1% 0.0041 0.0153 0.0151 0.0049 -0.0057 -0.0033 -0.0009

C
FWH CV

Spot price d = 0.001 d = 0.001 d = 0.0005 d = 0.000002 d = 0.000001 ExtCV
N = 400 N = 800 N = 400 N = 4000 N = 8000

S = 91 0.00230 0.00126 0.00054 -0.04348 -0.03310 -0.02273
S = 101 0.00103 0.00155 0.00052 -0.00550 -0.00383 -0.00215
S = 111 0.00100 0.00117 0.00118 -0.00790 -0.00579 -0.00369
S = 121 -0.00109 -0.00115 -0.00002 -0.00908 -0.00679 -0.00450
S = 131 0.01119 0.01096 0.00076 -0.00978 -0.00740 -0.00501

KoBoL parameters: ν = 0.5, λ+ = 9, λ− = −8, c = 1, µ ≈ 0.
Option parameters: K = 100, H = 90, r = 0.072310, T = 0.1.
Algorithm parameters: d – space step, N – number of time steps, S – spot price.
Panel A: Option prices calculated by using MC, FDS, FWH and CV methods.
Panel B: Relative errors w.r.t. MC; MC errors indicate the ratio between the
half-width of the 95% confidence interval and the sample mean.
Panel C: Relative errors w.r.t. FDS.
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Table C.3. Down-and-out put prices in KoBoL model, ν = 1.2

A
MC FWH CV

Spot Sample d = 0.001 d = 0.001 d = 0.0005 d = 0.00005 d = 0.000025 ExtCV
price mean N = 400 N = 800 N = 400 N = 1600 N = 6400
S = 81 0.52594 0.51967 0.51910 0.52006 0.481031 0.492062 0.503093
S = 91 2.43882 2.44192 2.44293 2.44245 2.407295 2.417447 2.427599
S = 101 2.38503 2.37340 2.37687 2.37367 2.357705 2.363777 2.369849
S = 111 1.59189 1.57551 1.57833 1.57566 1.570379 1.573140 1.575901
S = 121 0.87757 0.87454 0.87569 0.87463 0.872098 0.873271 0.874444
CPU-time
(sec) 50,000 0.22 0.45 0.47 121 1949

B
MC FWH CV

Spot MC error d = 0.001 d = 0.001 d = 0.0005 d = 0.00005 d = 0.000025 ExtCV
price N = 400 N = 800 N = 400 N = 1600 N = 6400
S = 81 1.3% -0.0119 -0.0130 -0.0112 -0.0854 -0.0644 -0.0434
S = 91 0.5% 0.0013 0.0017 0.0015 -0.0129 -0.0088 -0.0046
S = 101 0.5% -0.0049 -0.0034 -0.0048 -0.0115 -0.0089 -0.0064
S = 111 0.7% -0.0103 -0.0085 -0.0102 -0.0135 -0.0118 -0.0100
S = 121 0.9% -0.0035 -0.0021 -0.0033 -0.0062 -0.0049 -0.0036

KoBoL parameters: ν = 1.2, λ+ = 8.8, λ− = −14.5, c = 1, µ = 0.824313.
Option parameters: K = 100, H = 80, r = 0.04879, T = 0.1.
Algorithm parameters: d – space step, N – number of time steps, S – spot price.
Panel A: Option prices calculated using MC, FWH and CV methods.
Panel B: Relative errors w.r.t. MC; MC errors indicate the ratio between the
half-width of the 95% confidence interval and the sample mean.
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Table C.4. Down-and-out put prices in VG model, negative drift

A
MC FDS FWH CV

Spot Sample d = 0.0001 d = 0.005 d = 0.005 d = 0.0025 d = 0.0001 d = 0.00005 ExtCV
price mean N = 800 N = 200 N = 400 N = 200 N = 800 N = 1600
S = 81 3.390775 3.398799 3.389713 3.390362 3.396733 3.240458 3.308974 3.37749
S = 91 7.383015 7.38668 7.394133 7.390715 7.394453 7.38255 7.384723 7.386896
S = 101 1.40095 1.403506 1.405228 1.403736 1.405659 1.405159 1.403894 1.402629
S = 111 0.041495 0.042795 0.042338 0.042406 0.042369 0.042577 0.042523 0.042469
S = 121 0.000768 0.000724 0.000736 0.000734 0.000713 0.000705 0.000706 0.000707
CPU-time
(sec) 25,000 128,000 0.0079 0.0158 0.0158 9.5 40

B
MC FDS FWH CV

Spot MC error d = 0.0001 d = 0.005 d = 0.005 d = 0.0025 d = 0.0001 d = 0.00005 ExtCV
price N = 800 N = 200 N = 400 N = 200 N = 800 N = 1600
S = 81 0.5% 0.0024 -0.0003 -0.0001 0.0018 -0.0443 -0.0241 -0.0039
S = 91 0.2% 0.0005 0.0015 0.0010 0.0015 -0.0001 0.0002 0.0005
S = 101 0.3% 0.0018 0.0031 0.0020 0.0034 0.0030 0.0021 0.0012
S = 111 2.7% 0.0313 0.0203 0.0220 0.0211 0.0261 0.0248 0.0235
S = 121 19.3% -0.0573 -0.0417 -0.0443 -0.0716 -0.0820 -0.0807 -0.0794

C
FWH CV

Spot price d = 0.005 d = 0.005 d = 0.0025 d = 0.0001 d = 0.00005 ExtCV
N = 200 N = 400 N = 200 N = 800 N = 1600

S = 81 -0.00267 -0.00248 -0.00061 -0.04659 -0.02643 -0.00627
S = 91 0.00101 0.00055 0.00105 -0.00056 -0.00026 0.00003
S = 101 0.00123 0.00016 0.00153 0.00118 0.00028 -0.00062
S = 111 -0.01068 -0.00909 -0.00995 -0.00509 -0.00636 -0.00762
S = 121 0.01657 0.01381 -0.01519 -0.02624 -0.02486 -0.02348

VG parameters: λ+ = 56.4414, λ− = −21.8735, c = 5, µ = −0.0973754.
Option parameters: K = 100, H = 80, r = 0.04879, T = 0.5.
Algorithm parameters: d – space step, N – number of time steps, S – spot price.
Panel A: Option prices calculated by using MC, FDS, FWH and CV methods.
Panel B: Relative errors w.r.t. MC; MC errors indicate the ratio between the
half-width of the 95% confidence interval and the sample mean.
Panel C: Relative errors w.r.t. FDS.
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Table C.5. Down-and-out put prices in VG model, positive drift

A
MC FDS FWH CV

Spot Sample d = 0.00025 d = 0.005 d = 0.005 d = 0.0025 d = 0.001 d = 0.0005 ExtCV
price mean N = 600 N = 400 N = 800 N = 400 N = 200 N = 400
S = 81 2.99941 2.993117 2.977941 2.996258 2.974461 2.982662 2.993702 3.004742
S = 91 3.56916 3.577056 3.554800 3.568326 3.554509 3.537752 3.549693 3.561634
S = 101 1.87517 1.870955 1.863893 1.867966 1.863789 1.864022 1.864893 1.865764
S = 111 0.833637 0.836202 0.835492 0.835848 0.835473 0.835016 0.834656 0.834296
S = 121 0.358665 0.361734 0.362460 0.361995 0.362432 0.361219 0.361063 0.360907
CPU-time
(sec) 25,000 17,300 0.0140 0.0280 0.0280 0.21 0.94

B
MC FDS FWH CV

Spot MC error d = 0.00025 d = 0.005 d = 0.005 d = 0.0025 d = 0.001 d = 0.0005 ExtCV
price N = 600 N = 400 N = 800 N = 400 N = 200 N = 400
S = 81 0.5% -0.0021 -0.0072 -0.0011 -0.0083 -0.0056 -0.0019 0.0018
S = 91 0.4% 0.0022 -0.0040 -0.0002 -0.0041 -0.0088 -0.0055 -0.0021
S = 101 0.6% -0.0022 -0.0060 -0.0038 -0.0061 -0.0059 -0.0055 -0.0050
S = 111 0.9% 0.0031 0.0022 0.0027 0.0022 0.0017 0.0012 0.0008
S = 121 1.4% 0.0086 0.0106 0.0093 0.0105 0.0071 0.0067 0.0063

C
FWH CV

Spot price d = 0.005 d = 0.005 d = 0.0025 d = 0.001 d = 0.0005 ExtCV
N = 400 N = 800 N = 400 N = 200 N = 400

S = 81 -0.00507 0.00105 -0.00623 -0.00349 0.00020 0.00388
S = 91 -0.00622 -0.00244 -0.00630 -0.01099 -0.00765 -0.00431
S = 101 -0.00377 -0.00160 -0.00383 -0.00371 -0.00324 -0.00277
S = 111 -0.00085 -0.00042 -0.00087 -0.00142 -0.00185 -0.00228
S = 121 0.00201 0.00072 0.00193 -0.00142 -0.00185 -0.00229

VG parameters: λ+ = 14.4093, λ− = −60.2427, c = 6.25, µ = 0.363531.
Option parameters: K = 100, H = 80, r = 0.04879, T = 0.5.
Algorithm parameters: d – space step, N – number of time steps, S – spot price.
Panel A: Option prices calculated by using MC, FDS, FWH and CV methods.
Panel B: Relative errors w.r.t. MC; MC errors indicate the ratio between the
half-width of the 95% confidence interval and the sample mean.
Panel C: Relative errors w.r.t. FDS.
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