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Premia 18

1 LIBOR market model

Let us consider a set of dates Ty, 11, ..., Ty with0 =Ty < Ty < ... <Tyand T;,1—T; = 9.
We note Fi(t), for a certain date t < T}, the value at date ¢ of the Libor rate settled

at T; and payed at T;;,. We extend this definition to ¢ > T; simply by Fi(t) = Fi(T;).
By absence of arbitrage, the Libor rates are related to Zero Coupon bond by :

1( B(LT)
Flt) = s (B(t>ﬂ+1) N 1)

In the Libor market model, we suppose the following dynamic for the forward Libor
rates :
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dF,(t) = F(t)y(t: Tp, Tiay)dWE

where (WQTHl;t > 0) is a D-dimensional Brownian motion under the forward proba-
bility Q7+ associated with the numeraire B(t, T;,,) and v(t; T}, Ti, 1) is a deterministic
function, such that ~(t;7;, T;41) = 0 for t > T;.

In the next section we will be interested in the pricing of bermudan swaption with
a starting date T, and an ending date T such that Ty < T, < ... < T < T. this
contract gives the right of choosing, at each date T; with v < i < (3, whether to enter
or not into an european swaption over [1;, T3]

Exercising a payer [1},Tj]-european swaption with strike K means to be payed at
time 7; the quantity :

H@mJHZ(i5M%E0@@JHH—M+

j=i+1

where S(T3;,T;,T5) is the swap rate at date T}, settled at T; and expiring at 7. !

Thus the price of a bermudan swaption with starting date 7;, and ending date T is
given, under the measure Q" associated with the numeraire N(t), by :

N(1)

N (rin. 1) )

where 7 is the set of stopping time taking values in {T},,..., T3}, with ¢, is an
integer verifying 7;, 1 <t <T;,.

U(t) = supEY
TeT

. —~ H(T;
We define the N-discounted price U(t) = ][\][((?) and H(T;) = Nngi Then:
U(t) = supEYN {ﬁ(T; T, Tg)} (2)

TET

Standard theory of optimal stopping time ensures us that U (0) is the solution of the
following dynamic programing problem:

Us_y = Hs_,
U; = max {'ﬁ EN [(ZH}} Ni=a,.., -2 (3)
Uo = B U]

with following notations : U, = lj(TZ) and H; = E(Tz, T;,Ts).

'We recall that the swap rate S(T3,T;,Tj) and zero coupon bond B(T;,T;) depend explicitly on the
Libor rates.
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2 Lower bound of the price U(0)

Using equation 2, one can compute a lower bound for the price of the bermudan swaption
by choosing an exercise strategy 7y and compute the associated price N(0)E) [H (7'0)]
For example, Andersen proposes in [Andersen 2000] a method that parameterizes the
exercise policy and then optimizes these parameters over a set of simulated paths to
determine an approximation to the optimal exercise strategy. An alternative way is to
approximate the conditional expectation in the dynamical programing equation 3 by
mean of least square regression method as proposed in [Longstafl and Schwartz 2001].

3 Primal-Dual methods

The duality approach was recently introduced by [Rogers, 2002] and [Haugh and Kogan, 1999].
It provides a method to compute an upper bound from the specification of some arbitrary
martingale process.

In fact, if we consider a martingale M starting at M, = 0, then, using martingale
property and Optional Sampling Theorem:

Uuo) = sup E [E(T) — M(7)+ M(T)}

= supEY [E(T) - M(T)}
TET

< E{)V{ max (E—Miﬂ

a<i<f—1

where M; = M(T;).

We denote

[7ur () = EN H. — M
U (0) = E} L%?é‘_l (H, M)} (4)
It’s an upper bound for the price of the bermudan swaption. Thus, choosing any
martingale M, starting at 0, will give an upper bound for the price. Moreover, there
exist a martingale such that the upper bound U"?(0) coincides with the price U(0).

Indeed, knowing that the process U (t) is a super-martingale, we can write it, by the
Doob-Meyer decomposition:

U(t) = U(0) + M(t) — A(t)

where M (t) is a martingale and A(t) is an increasing process with M (0) = A(0) = 0.
We can then prove that, with this martingale M, the "duality gap” U"P(0) — U(0) is
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zero. This suggests to choose M as the martingale component of a good lower bound
of the N-discounted price U(t). We can use for example [Longstaff and Schwartz 2001]
algorithm or any parameterized exercise strategy, as in [Andersen 2000] to compute a
lower bound L(t) then plug the martingale component of L(t) in equation 4 to get an

upper bound of U(t).

[Andersen and Broadie 2004] proposed to compute the martingale component of L
with a simulation within a simulation, using the following equation of M:

Mjp1 = M+ Ly — EY {INJJ'—H}

An inner simulation is used to estimate the conditional expectation is the above
equation 2, then an outer simulation is used to estimate the expectation in equation 4.

4 Upper bound by Schoenmakers et al.(2007)

In the case we use Longstaff and Schwartz algorithm to compute f/, then the expecta-
tion Eﬁv [Ejﬂ} can be estimated using the regression coefficients computed along the
algorithm, so we don’t have to use inner simulation. But by doing so, the estimator of
M may fail to verify the martingale property and thus ensure that the price calculated
is biased high. To overcome this difficulty, [Schoenmakers et al. 2009] proposed to con-

struct an estimator of M based on the martingale representation theorem °.

Indeed, there exist a square integrable, vector valued, process Z; = (Z},...,ZP)
satisfying:

TJ .
M(Tj):/o ZdW,, j=0,..0—1 (5)

where W, = (W}, ..., WP) is the Brownian motion, under N-measure, driving the dy-
namic of the Libor rates.

T ~ -
We have then: M; = M, +/ ZdW,. j=a+1,...8—1and M, = L, — L.
To

Hence, to compute the values of the (M;);, we first estimate the process Z; on a
time grid © = {to,....t7} C [Ta, Ts—1] such that t, = T,, t7 = Ts_1, then approximate
the continuous stochastic integral in equation 5 by a discrete integral. As noted in
[Schoenmalkers et al. 2009], for d € [1, D], Z{ can be computed by:

2If at date T} the swaption is not exercised, then ]E;V |:Lj+1:| = Zj ie: we don’t need inner simulation
to estimate Eé\’ [EM].

3This means that the model should be in a Brownian motion setting.
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1 _
Zy = mEg (W = WL, Ty <t < Ty (6)

The corresponding discrete approximation of M;, for j = a, ..., — 2:

Mj+1 - MJ + Z Zti(Wti_H - WQ) (7)

tiem, T <t;<Tji1

We recall that M, = L, — Ly and Zy, (W, W,,) is a scalar product.

i+l i
To estimate the conditional expectation in equation 6, we use the least squares
regression as in Longstaff and Schwartz algorithm as explained in the next section.

5 Practical design

To evaluate the price of bermudan swaption, we need to simulate the Libor rates
F(t,T;,T;+1). For this purpose we choose to use the simulation method proposed by
[Glasserman and Zhao 2000], that preclude arbitrage among bonds and keep interest
rates positive even after discretization. They transform Libor rates into two martin-
gales they discretize and then recover the Libor rates from these discretized variables.
We have at the end two methods to simulate Libor rates under two different measures:
Terminal measure and Spot measure.

As a lower bound, we choose the price given by Longstaff and Schwartz method, so
we have at hand at each exercise date 7} the regression coefficients noted §;. We can then
compute the price of swaption at each exercice date ZTJ. = max (HTj, <§j7 (I XTJ.)>)
where X7, is an explanatory variable used in the projection basis ¢». To have a good
stability in regression method, we can choose X, to be the brownian motion simulated
at date T} in the SDE discretization scheme.

To compute the conditional expectation in equation 6, we follow the recommandation
in [Schoenmakers et al. 2009] and use a least squares methods. We consider basis func-
tions ¥(t;,.) = (Yx(ts,.), k = 1,..., K) and N; independants simulations of libor rates

(t;, F{')n = 1,..., N1 constructed with the brownian increments AW, = W, —W,,, we
define for T; <t; < Tj4q,
J N1 A Wtd ~ 2
/r]ti = arg JSI}RI}{ n;l Atz ZLTj.H - <T/7 1/)(t“ 'r?,th)) (8>
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It’s also recommanded to compute the coeffients ntdi only on the exercise dates t; = T}
to obtain 77%_ then interpolate them locally constant: nd = 77%- for t € [T5,Tj4].
This means that we will have to resolve, for j = o, ..., 3 — 1:

2

Mo Wi — v %
J ) n . n s
N, = arg%lél( Z ]H(S "Ly, — <77’ W(T;, Tj)>
n=1

where Ly, = max (Hr,,,, (&1, ¥(Tji1, X1,,,))).

After having computed the coefficients n%_ ford=1,...,D and j = «, ..., — 2, we
simulate a new set of N, paths, independants of those used in the regression step, and
we construct a discrete approximation of the continuous stochastic integral in equation
5 on a refined partition 7 by:

nMj—H = nMj + Z <7]j7 w(tiv nth)> (nWti+1 - nWtz) (9>

tiem, T <t;<Tji1

Finaly we estimate the upper bound of the price by the mean:

1 X

ﬁup(()) = E Z:l agr?gaﬂx—l (nﬁl — an> (10)
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