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1 Introduction

Swing options are options with many exercise rights of American type. That means that

the option’s holder has the right of exercise or not exercise at many times under condition

that he respects the refracting time that separates two successive exercises. Due to the

complex patterns of consumption and the limited fungibility of energy, Swing options are

usually embedded in energy contracts allowing flexibility of delivery with respect to both

the timing and the amount of energy used.

Under a regulated market and since prices were set by regulator, pricing such contracts

was not an issue. With the transition to a deregulated environment, energy contracts will

need to be priced according to their financial risk. Consequently, pricing Swing options

will be more and more important.

Many numerical recipes exist for pricing Swing options. In [9], Swing options are priced

through a binomial ”forest”, a multiple-layer tree extension of traditional binomial tree

dynamic programming approach. We also refer to [13] and [1] for other numerical pricing

algorithms. However, in [5], Carmona and Touzi proposed a different method to price

Swing options. They showed that pricing Swing options comes within the scope of optimal

multiple stopping. They gave the solution of American put option with multiple exercise

rights in the case of geometric Brownian motion. This work was followed by [4] where the

problem of optimal multiple stopping was studied for general linear regular diffusions and

reward function by using excessive functions.
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In the energy market, the consumption is very complex because it depends on exogenous

parameters like weather temperature. When we register a high temperature variation,

the power consumption increases sharply and prices follow. Although these spikes of

consumption are infrequent, they have a large financial impact, so pricing Swing options

must take them into account. Therefore, we propose to price Swing options in a market

where the price process is allowed to jump.

In this paper, we extend the results of [5] by proving the existence of a solution to the

optimal multiple stopping problem in a market where jumps are permitted. To obtain

the required result in our context, it was necessary to have an additional assumption on

Snell envelop variation. This assumption is naturally accurate in a Lévy market. Then,

we provide an explicit solution for a perpetual put Swing option, when the energy price is

driven by a Lévy process with no negative jumps. The perpetual put Swing option explicit

formula extends the results of [6] and [12] to the optimal multiple stopping problem.

In contrast with [5], the value function is not smooth in a Lévy market. It follows that

the boundaries of each optimal exercise interval are characterized in terms of the sub-

gradient value function. In the case of punctual Poisson process with no null volatility, we

obtain the same results as in the continuous case of [5].

Finally, we give a numerical result for Swing options with a finite maturity. We use a

Monte Carlo approximation method suggested by Lions and Regnier [11], then developed

by Bouchard and Touzi [3]. Later, we apply the results of [2] to estimate the conditional

expectations for the simple Lévy process using the Malliavin calculus.

This paper is organized as follows: in section 2, we formulate and solve the multiple

optimal stopping problem in a Lévy model. We provide an explicit solution to the per-

petual put Swing options for Lévy process with no negative jumps and we characterize

the exercise boundaries regions in section ??. Then, we study Swing options with infinite

exercise rights. It is an asymptotic analysis of the optimal multiple stopping problems pre-

sented in section ??. Finally, we provide a numerical solution for put Swing options with

finite maturity using the Monte Carlo approximation method with the Malliavin calculus

in section 3.

2 Problem Formulation

Let (Ω, F ,P) be a complete probability space, and F{Ft}t≥0 a filtration which satisfies the

usual conditions. Let T ∈ (0, ∞) be the option’s maturity time, S the set of F-stopping

times with values in [0, T ] and Sσ = {τ ∈ S ; τ ≥ σ} for every σ ∈ S.

We shall denote by δ > 0 the refracting period which seperates two succesive exercises.

We also fix l ≥ 1 the number of rights we can exercise. Now, we define by S(l)
σ the set of
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all vectors of stopping times :

S(l)
σ :=

{

(τ1, ..., τl) ∈ S l
σ, τ1 ∈ Sσ, τi − τi−1 ≥ δ on {τi−1 ≤ T} a.s, ∀ i = 2, ..., l

}

(2.1)

Let X = {Xt}t≥0 be a non-negative F-adapted process with right-continuous paths. We

assume that X satisfies the integrability condition :

E
[

X̄p
]

< ∞ for some p > 1, where X̄ = sup
t≥0

Xt. (2.2)

For the valuation of Swing options, we introduce the following optimal multiple stopping

problem :

Z
(l)
0 := sup

(τ1,...,τl)∈S
(l)
0

E

[

l
∑

i=1

Xτi

]

(2.3)

The optimal multiple stopping problem consist in computing the maximum expected re-

ward Z
(l)
0 and finding the optimal exercise strategy (τ1, ..., τl) ∈ S(l)

0 at which the supremum

in (2.3) is attained, if such a strategy exists. Notice that Assumption (2.2) guaranties the

finiteness of Z
(1)
0 . As it is easily seen Z

(l)
0 ≤ lZ

(1)
0 , every Z

(k)
0 , k ≥ 1, will also be finite.

To solve the optimal multiple stopping problem, we define inductively the sequence of

Snell envelops :

Y (0) = 0 and Y
(i)

t = ess sup
τ∈St

E
[

X(i)
τ /Ft

]

, ∀ t ≥ 0, ∀ i = 1, ..., l.

where the i-th exercise reward process X(i) is given by :

X
(i)
t = Xt + E

[

Y
(i−1)

t+δ /Ft

]

for 0 ≤ t ≤ T − δ (2.4)

and, if T < ∞,

X
(i)
t = Xt for T − δ < t ≤ T

Let us set:

τ∗
1 = inf{t ≥ 0; Y

(l)
t = X

(l)
t }

We immediately see that τ∗
1 ≤ T a.s. Next, for 2 ≤ i ≤ l, we define

τ∗
i = inf{t ≥ δ + τ∗

i−1; Y
(l−i+1)

t = X
(l−i+1)
t }1{δ+τ∗

i−1≤T } + (T+)1{δ+τi−1>T }.

Clearly, ~τ∗ = (τ∗
1 , ..., τ∗

l ) ∈ S(l)
0 .

Now, we shall prove that Z
(l)
0 can be calculated by solving inductively l single optimal

stopping problems sequentially. This result is proved in [5] under the Assumption that

the process X is continuous a.s and then in [4] for a process X right-continuous by us-

ing excessive functions. The existence of an optimal stopping strategy requires the left
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continuity in expectation of the process X in addition to Assumption (2.2). For more

details, we refer to Theorem 2.18 of [7]. This condition is not necessarily satisfied when

the process i s only càdlàg as in our context (i.e under a Lévy model). In this section, we

prove the result on optimal multiple stopping in a market where the price processes are

càdlàg without using excessive functions.

2.1 existence of an optimal stopping strategy

In order to prove the existence of an optimal stopping strategy, we also assume that :

E[∆Y
(i)

t ] = 0 (2.5)

For any predictable stopping time t ≥ 0 and for all i = 1, ..., l. Assumption (2.5) ensures

that the iterated reward processes X(i) are left continuous in expectation when X is also

left continuous in expectation. It will be verified for Lévy processes in the next section.

In Lemma 2.1, we show that the i-th exercise reward process X(i) satisfies the conditions

required to solve the i-th optimal stopping problem.

Lemma 2.1. Suppose that the process X is right-continuous, left continuous in expectation

and satisfies condition (2.2). Suppose further that Assumption (2.5) holds. Then, for all

i = 1, ..., l, the process X(i) is right continuous, left continuous in expectation and satisfies :

E
[(

X̄(i)
)p]

< ∞ where X̄(i) = sup
0≤t≤T

X
(i)
t ,

with p given in formula (2.2)

Proof. To prove the Lp-integrability and the right continuity of the process X(i), we

proceed exactly as in the proof of Lemma 1 in [5].

Y (i) is the Snell envelop of X(i) then, it is càdlàg and inherits the Lp-integrability of X.

In fact, the martingale inequality shows that

E

[

sup
0≤t≤T

(Y
(i)

t )p

]

≤ E

[

sup
0≤t≤T

(X̄
(i)
t )p

]

≤
(

p

p − 1

)p

E
[

(X̄(i))p
]

< ∞

where X̄
(i)
t = E[X̄(i)|Ft]. We deduce that Y (i) is uniformly integrable. Since Y (i) is càdlàg,

then for all (τn)n≥0 an increasing sequence of stopping times such that τn ր τ ∈ S, we

have

E
[

Y (i)
τn

]

→ E
[

Y
(i)

τ−

]

.

If τ is a predictable time, by Assumption (2.5), we obtain that E[Y
(i)

τ−
] = E[Y

(i)
τ ] which

provides the left continuity in expectation of Y (i) at τ .
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Now, it remains to prove the left continuity in expectation of the iterated reward pro-

cesses X(i). By taking the expectation in the reward process expression, at the stopping

time τn, we get :

E
[

X(i)
τn

]

= E [Xτn ] + E
[

E[Y
(i−1)

τn+δ /Fτn ]
]

= E [Xτn ] + E
[

Y
(i−1)

τn+δ

]

we immediately see that the left continuity in expectation of X(i) at τ follows from the

left continuity in expectation of X at τ and Y (i−1) at τ + δ. Since τ + δ is a predictable

time, the required result follows by using Assumption (2.5).

✷

We generalize Theorem 1 of [5] to càdlàg price processes. The proof of the next Theorem

remains the same as in the case of continuous processes.

Theorem 2.1. Let us assume that the process X satisfies condition (2.2). We also suppose

that (2.5) holds. Then,

Z
(l)
0 = Y

(l)
0 = E

[

l
∑

i=1

Xτ∗

i

]

where (τ∗
1 , ..., τ∗

l ) represents the optimal exercise strategy.

Proof. In Lemma 2.1, we proved that the process X(i) satisfies the conditions required for

the solution of the ordinary single optimal stopping problem of order i. Next, the result

of the Theorem 2.1 is deduced by using the same arguments as in Theorem 1 of [5]. ✷

2.2 The Lévy Model

In the following, we fix the payoff function φ : R+ −→ R by :

φ(x) = (K − x)+

for a given parameter K > 0. We consider a price process which evolves according to the

formula :

St = xeXt , x > 0,

where X = {X}t≥0, the driving process, is an adapted Lévy process defined on the filtered

probability space (Ω, F ,F = {Ft}t≥0,P) satisfying the usual conditions. We shall also use

the notation S0,x
t for St whenever we need to emphasize the dependence of the process S

on its initial condition.
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Assumption 2.1. The probability P is chosen such that {e−rtSt}t≥0 is a P-martingale

process.

Lévy-Khinchine formula states, for a Lévy process X = {X}t≥0 :

E[eiµXt ] = exp{t[iµa − 1

2
σ2µ2 +

∫

R

(eiµy − 1 − iµy1(|y|<1))Π(dy)]}, (2.6)

where a and σ ≥ 0 are real constants and Π is a positive measure on R \ { 0} such

that
∫

(1 ∧ y2)Π(dy) < +∞, called the Lévy measure. The triplet of parameters (a, σ, Π)

completely determines the law of the process. For later use, we give the following remark :

Remark 2.1. A Lévy process is quasi-left continuous. It means that ∆Xt = 0 a.s on the

set {t < ∞}, for every predictable time t. Since the exponential function is continuous,

the price process is quasi-left continuous.

Proposition 2.1. Let X be a Lévy process characterized by the triplet (a, σ, Π) and φ(x) :=

(K − x)+. The reward process is then given by Zt := e−rtφ(St). Consequentely, Z satisfies

the following conditions :

Z is càdlàg, (2.7)

Z is left continuous in expectation, (2.8)

E
[

Z̄p
]

< ∞ where Z̄ = sup
t≥0

Zt and p > 1, (2.9)

E[∆Ẑ
(k)
t ] = 0 when t is a predictable time on {t < +∞}, (2.10)

where {Ẑ
(k)
t }t := {e−rtv(k)(St)}t for all k = 1, ..., l is the Snell envelop of the process

{Z
(k)
t }t := {e−rtφ(k)(St)}t.

Proof. Since e−rtφ is a continuous function and X is càdlàg, it immediately follows that

the process {Zt} = {e−rtφ(St)} is càdlàg.

The Lp-integrability of Z̄ in condition (2.9) follows from the boundedness of φ.

Since X is a Lévy process, X is quasi left continuous, i.e. lim
n−→+∞

Xτn = Xτ a.s on {τ <

∞}, where (τn, n ∈ N) is an increasing sequence of stopping times with limn→∞ τn = τ

a.s. Using the boundness of Z, by the dominated convergence theorem, we deduce that

limn→∞ E[Zτn ] = E[Zτ ] and so, property (2.8) is proved.

It remains to prove that E[∆Ẑ
(k)
t ] = 0 for all k = 1, ..., l and for any predictable time

t ≥ 0. Since Ẑ(k) is the Snell envelop of Z(k), Ẑ(k) is a super-martingale process. From the

Proposition D.2 of [?], for every stopping time τ ≥ 0, E[Ẑ
(k)
τ /Fτ− ] ≤ Ẑ

(k)
τ−

, which implies

E[∆Ẑ(k)
τ ] ≤ 0, for every stopping time τ ≥ 0.
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To obtain the reverse inequality, we set :

Ẑ(k)(t, x) = e−rtv(k)(x)

= e−rtEss sup
τ∈ St

E
[

e−r(τ−t)φ(k)(Sτ )/St = x
]

= Ess sup
τ∈ St

E
[

e−rτ φ(k)(Sτ )/St = x
]

.

Now, we have to prove inductively that Ẑ(k) is Lipschitz in x. We check for k = 1. Let

x, y ∈ R
+ and t ≥ 0. We have that :

|Ẑ(1)(t, x) − Ẑ(1)(t, y)| = e−rt|v(1)(x) − v(1)(y)|.

>From Lemma ??, v(1) is convex and non increasing on R
+ which implies that v(1) is

Lipschitz on any interval bounded from below. Particularly, v(1) is Lipschitz on [x∗
1, +∞)

where x∗
1 is defined in Theorem ??. From Proposition ??, for all x ∈ [0, x∗

1], we have that :

v(1)(x) = φ(1)(x) = φ(x).

Since φ is Lipschitz, , convex and non increasing, we have that v(1) is Lipschitz on R
+

with Lipschitz constant |φ′(0+)|.

Now, suppose that Ẑ(k−1) is Lipschitz in x and let us prove that the property is also

true for Ẑ(k).

>From Lemma ??, Ẑ(k) is a convex and non increasing function in x. It follows that it is

Lipschitz on an interval bounded from below. In particular, v(k) is Lipschitz on [x∗
k, +∞)

where x∗
k is defined in Proposition ??. It remains to show that Ẑ(k) is also Lipschitz in

x ∈ [0, x∗
k]. Recall that v(k)(x) = φ(k)(x) on [0, x∗

k] from Proposition ??. By using the

Lipschitz property of φ and the induction Assumption, we obtain that : for all x, y ∈ [0, x∗
k]

and t ≥ 0,

|Ẑ(k)(t, x) − Ẑ(k)(t, y)| = e−rt|v(k)(x) − v(k)(y)|
= e−rt|φ(k)(x) − φ(k)(y)|
≤ e−rt|φ(x) − φ(y)| + E|Ẑ(k−1)(t + δ, St,x

t+δ) − Ẑ(k−1)(t + δ, St,y
t+δ)|

≤ |φ′(0+)||x − y| + K(k−1)E|St,x
t+δ − St,y

t+δ|

where K(k−1) is the Lipschitz constant of Ẑ(k−1). From Assumption 2.1, we have that :

E|St,x
t+δ − St,y

t+δ| = |x − y|E[St,1
t+δ]

= |x − y|erδ,

which implies that : for all x, y ∈ [0, x∗
k] and t ≥ 0,

|Ẑ(k)(t, x) − Ẑ(k)(t, y)| ≤ |φ′(0)||x − y| + K(k−1)erδ|x − y|
= (|φ′(0)| + K(k−1)erδ)|x − y|.
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It follows that Ẑ(k) is Lipschitz in x with a Lipschitz constant K(k) equal to |φ′(0)| +

K(k−1)erδ :

|Ẑ(k)(t, x) − Ẑ(k)(t, y)| ≤ K(k)|x − y|. (2.11)

Finally, for t ≥ 0 a predictable time, we have that :

0 ≥ E[∆Ẑ
(k)
t ] = E[Ẑ(k)(t, St) − Ẑ(k)(t−, St−)]

= E[Ẑ(k)(t, St) − Ẑ(k)(t, St−)]

by the continuity on time property of Ẑ(k). The inequality (2.11) implies that :

E[Ẑ(k)(t, St) − Ẑ(k)(t, St−)] ≥ −K(k)E[∆St].

Relying on the quasi-left continuity of the price process S stated in Remark 2.1, we obtain :

0 ≥ E[∆Ẑ
(k)
t ] ≥ −K(k)E[∆St]

= 0.

which implies that E[∆Ẑ
(k)
t ] = 0 when t is a predictable time on {t < +∞}.

✷

3 Numerical Study for Finite Maturity Problem

The object of this section is the computation of the value function of the multiple stopping

problem:

v(l)(0, x) = sup
(τ1,...,τl)∈S(l)

l
∑

i=1

E[e−rτiφ(Sτi
)]

and the associated exercise region. We recall that φ(x) = (K − x)+ is the put payoff with

strike K > 0 and S is the price driven by a Lévy process with no negative jumps.

We fix the option’s maturity T = 1 and we choose the Monte Carlo numerical procedure

for the implementation.

3.1 Monte Carlo Method

Let Tn = {tj = j/n}0≤j≤n be the partition of the time interval T = [0, 1]. We denote by

h the time step T
n

, and by Sn the subset of S defined by

Sn = {τ ∈ S ; τ ∈ Tn}.
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The discrete time approximation for the value function is given by :

v(k)(t, x) = sup
τ∈Sn∩St,T

E[e−rτ φ(k)
n (τ, St,x

τ )]

with v(0) = 0.

The discrete time approximation for the reward function of order k for k = 1, ..., l is

given by :

φ(k)
n (t, x) = φ(x) + e−rδE[(v(k−1)

n (t + δ, S0,x
δ )] for t ≤ T − δ,

and if T − δ < t ≤ T ,

φ(k)
n (t, x) = φ(x)

The Snell envelop is computed by backward induction :

v(k)(tn, Stn) = φ(k)
n (tn, Stn)

and

v(k)(tj−1, Stj−1) = max
{

φ(k)
n (tj−1, Stj−1); e−rhE[v(k)(tj , Stj

)/F (n)
tj−1

]
}

,

where F (n)
tj−1

= σ(Stk
, k ≤ j − 1) is the discrete-time filtration. Hence :

E[v(k)(tj , Stj
)/F (n)

tj−1
] = E[v(k)(tj , Stj

)/Stj−1 ] =: ρ(k)
n (tj−1, Stj−1).

As in section ??, we consider a simple Lévy process {Xt}t given by formula (??) and

the price process which evolves according to the formula (??).

For the implementation, we simulate N independent Brownian motions and N Poisson

processes as follow :

Wtj+1 − Wtj
∼ N(0, h) and Ntj+1 − Ntj

∼ P (λh).

Then, we deduce the price paths by using the formulas (??) and (??) :

Stj
= xe(r−λφ− σ2

2
)tj+σWtj

+ln(1+φ)Ntj

3.2 Estimation of the Conditional Expectation Using Malliavin Calculus

The implementation of the Monte Carlo numerical procedure requires the computation

of many conditional expectations. Several methods can be proposed for the evaluation of

these regression functions. We choose the Malliavin Calculus based Method proposed in

[8] and then developed in [2]. We refer to [5] for a discussion about other methods.
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We are interested in computing the conditional expectation E[g(St+h)/St] where g is

a real function satisfying E[|g(St+h)|2] < ∞. The main idea of the Malliavin method

consists in using the Malliavin integration by part formula in order to get rid of the Dirac

point masses in the following expression :

E[g(St+h)|St = s] =
E[g(St+h)δs(St)]

E[δs(St)]
. (3.1)

Notice that in our case, we have to make some relevant modifications because of the

existence of a Poisson process with no negative jumps in the price’s expression.

Proposition 3.1. Let g be a real function satisfying E[|g(St+h)|2] < ∞ and {St}t a

process driven by a simple Lévy process X :

St = xeXt , x > 0

where Xt = at + σWt + αNt with a, α and σ ≥ 0 real constants. Then,

E [g(St+h)δs(St)] = E

[

1St≤s g(St+h)

(

−Wt

t
+

Wt+h − Wt

h

)]

.

Proof.

E[g(St+h)δs(St)] = E[E[g(St+h)δs(St)|Nt = n, Nt+h = p]]

=
∑

0≤n≤p

E[g(St+h)δs(St)|Nt = n, Nt+h = p]P [Nt = n, Nt+h = p].

We focus on the calculation of E[g(St+h)δs(St)|Nt = n, Nt+h = p]. Let’s define

ĝt+h,p(y) := g(ea(t+h)+σy+αp)

and

x̂t,n :=
1

σ
(ln

s

x
− at − αn)

we obtain :

E[g(St+h)δs(St)|Nt = n, Nt+h = p] = E[ĝt+h,p(Wt+h)δx̂t,n(Wt)]

By the Independence of Brownian motion’s increments, we have :

E[ĝt+h,p(Wt+h)δx̂t,n(Wt)] =

∫ ∫

ĝt+h,p(w1 + w2)δx̂t,n(w1)ϕ(
w1√

t
)ϕ(

w2√
h

)
dw1√

t

dw2√
h

where ϕ is the density of standard one dimensional normal distribution. Recalling that

δs(w1) is a derivative of −1w1≤s and integrating by parts with respect to w1 variable and

then with respect to variable w2, we get :

E[ĝt+h,p(Wt+h)δx̂t,n(Wt)] = E

[

ĝt+h,p(Wt+h)1(−∞,x̂t,n](Wt)

(

−Wt

t
+

Wt+h − Wt

h

)]

.



?? pages 11

By denoting Ah := −Wt

t
+

Wt+h−Wt

h
, it follows that :

E[g(St+h)δs(St)] =
∑

0≤n≤p

E[ĝt+h,p(Wt+h)1(−∞,x̂t,n](Wt)Ah]P [Nt = n, Nt+h = p]

=
∑

0≤n≤p

E[g(St+h)1(−∞,s](St)Ah]P [Nt = n, Nt+h = p]

= E
[

g(St+h)1(−∞,s](St)Ah

]

.

✷

Remark 3.1. In [10], some useful formulas for computing Malliavin derivatives for simple

Lévy processes are given. However, in our context, since we have to differentiate under the

expectation, it was possible to condition on Poisson process and make usual computations

on the Brownian motion. This provides the same result.

3.3 Variance Reduction by Localization

By using Monte Carlo Method, we recover a convergence rate of the order
√

N for the

conditional expectation estimator. However, the variance of the estimator explodes as h

tends to zero.

To find a remedy to this problem, we introduce localizing functions. Such functions

catch the idea that the relevant information for the computation of E[g(St+h)|St = s], is

located in the neighborhood of s.

Let ϕ be an arbitrary localizing function. By definition, ϕ is smooth, bounded and it

satisfies ϕ(0) = 1. Recalling the proof of Proposition 3.1, we obtain a family of alternative

representations of the conditional expectation given by (3.1) :

Proposition 3.2. Let g be a real function satisfying E[|g(St+h)|2] < ∞, S a Lévy process

as defined in Proposition 3.1 and ϕ an arbitrary localizing function. Then,

E [g(St+h)δs(St)] = E [g(St+h)δx̂t(Wt)ϕ(Wt − x̂t)]

= E
[

1Wt<x̂t g(St+h)(ϕ(Wt − x̂t)Ah − ϕ′(Wt − x̂t))
]

.

where Ah = (−Wt

t
+

Wt+h−Wt

h
) and x̂t = 1

σ
(ln s

x
− at − αNt).

Moreover, it’s possible to reduce the Monte Carlo estimator variance by a convenient

choice of the localizing function.

We consider the integrated mean square error :

J(ϕ) :=

∫

R

E
[

1Wt<x̂t g2(St+h)A2
h,ϕ

]

dx. (3.2)
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where we adopted the following notation : Ah,ϕ := ϕ(Wt − x̂t)Ah − ϕ′(Wt − x̂t) and we

are interested in minimizing J respect to the subset { ϕ smooth, bounded and ϕ(0) = 1}.

Following [2], we prove that the optimal localizing function is given by :

ϕ(x) = eνhx where νh :=

(

E[g2(St+h)A2
h]

E[g2(St+h)]

)
1
2

.

Corollary 3.1. With the same notations as in Proposition 3.2 and by choosing the optimal

ϕ that minimizes (3.2),

E [g(St+h)δs(St)] = E
[

1Wt<x̂t g(St+h)eνh(Wt−x̂t)(Ah − νh)
]

.

where Ah := (−Wt

t
+

Wt+h−Wt

h
) and νh :=

(

E[g2(St+h)A2
h

]

E[g2(St+h)]

)
1
2

.

>From (3.1), it follows that :

E [g(St+h)/St = s] =
E
[

1Wt<x̂t g(St+h)eνh(Wt−x̂t)(Ah − νh)
]

E
[

1Wt<x̂te
νh(Wt−x̂t)(Ah − νh)

]

with x̂t = 1
σ

(ln s
x

− at − αNt).

3.4 The Value Function Formula

According to the previous section, we are able to calculate the value function :

v(k)(tj−1, Stj−1) = max
{

φ(k)
n (tj−1, Stj−1); e−rhρ(k)

n (tj−1, Stj−1)
}

.

Let us denote S(i) the i-th price simulation such that 1 ≤ i ≤ N , where N is the simulation

number. Then, we define the estimators of ρ
(k)
n and φ

(k)
n by :

ρ̃(k)
n (tj , Stj

) =

1
N

∑N
i=1 v(k)(tj+1, S

(i)
tj+1

)1
S

(i)
tj

<Stj

A
(i)
1
n

1
N

∑N
i=1 1

S
(i)
tj

<Stj

A
(i)
1
n

and

φ̃(k)
n (tj , Stj

) = φ(Stj
) + e−rδ

1
N

∑N
i=1 v(k−1)(tj+δ, S

(i)
tj+δ

)1
S

(i)
tj

<Stj

A
(i)
δ

1
N

∑N
i=1 1

S
(i)
tj

<Stj

A
(i)
δ

1tj<T −δ.

where A
(i)
h := eνh(W

(i)
t −x̂

(i)
t )(Ah − νh) and x̂

(i)
t = 1

σ
(ln s

x
− at − αN

(i)
t ) with W

(i)
t , N

(i)
t i-th

simulations of Wt and Nt.

Notice that ρ
(k)
n ≤ kK and φ

(k)
n ≤ kK which allows us to truncate the estimators :

ρ̂(k)
n (tj , Stj

) = ρ̃(k)
n (tj , Stj

)+ ∧ kK

φ̂(k)
n (tj , Stj

) = φ̃(k)
n (tj , Stj

)+ ∧ kK

and, hence to improve the algorithm.
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3.5 Numerical Results for Swing Value Functions and Exercise Regions

The computation reported in this section uses strike price K = 100, initial stock price

x = 100, maturity T = 1 year, refraction period δ = 0.1, an interest rate r = 0.05, a

volatility σ = 0.3, an intensity λ = 1 and jump coefficient φ = 0.1. The maximal number

of exercise rights is l = 3. We choose n = 50 and N = 8000 as in Carmona and Touzi [5].

In table 1, we present some numerical results for the put Swing price with and without

jumps. If φ = 0, we find similar results as in the Black and Scholes model of Carmona

and Touzi [5]. When φ = 0.1, we also obtain high precision for the Put Swing value.

φ = 0 φ = 0.1

v(1) [stand dev.] 9.60 [.28%] 10.40 [.25%]

v(2) [stand dev.] 19.10 [.27%] 20.76 [.44%]

v(3) [stand dev.] 28.50 [.26%] 30.04 [.24%]

Table 1: Swing option values with and without jumps

In figure 1, we plot the value functions v(1), v(2) and v(3). We observe that these functions

are convex and non-increasing. These results are consistent with our expectation. We

proved them in the perpetual case.
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Figure 1: Plot of the value functions v(k) , for k = 1, 2, 3.

As for the infinite maturity problem, figure 2 shows that Put Swing prices are higher

when positive jumps occur. Even if this result is in contrast with the intuition, we explain
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that by the positive effect of positive jumps on the risk adjusted drift.
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Figure 2: Comparison between Swing value functions with and without jumps

In figure 3, the exercise boundaries are time functions. They are increasing in the

following sense x̂∗
k(t) ≥ x̂∗

k−1(t). This fact is not proved in the finite maturity case, but, it

is consistent with the intuition.
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