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Premia 18

1 Hull and White

Hull and White method aim here at pricing zero-coupon bond, european and
american options on bond, cap and floor, coupon bearing, payer and receiver
swaptions and also ¢ for hedging, with tree or EDP technics.

Hull and white models are defined by an EDS which describes the evolution
of the spot rate r(t):

dr(t) = —ax(t)dt + cdW(t), x(0)=0
r(t) = x(t) + o(t).
Where the function ¢ is a deterministic function totally given by the market

values of the zero coupon bonds.
Let us denote by By (0,7") the market zero coupon bond value maturing at
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time 7" and fy(t) = — 909(BOY) the market present instantaneous forward

ot
rate, then with
2

O(t) = fu(t) + 55 (1 =)’

the model exactly fits the market bonds curve and we have several analytical
formulas:
Zero coupon bond at time t :

B(t,T) = Ay (t, T)e A1),
Explicite formulations for A; and A can be found in [?]. Option at time t :

E, [e— S r@ds(B(T,8) — K).| = B(t, S)®(h + 8h) — KB(t, T)®(h).

Where & is the cumulative function of the normal law, h = ﬁlog ( B?EtT”?}() —
%h and 0h =0 %Z@AQ(T ,S). This closed formula for european option
on bond also leads to closed formula for cap and floor and for coupon bearing

and sawption.

2 CIR ++

CIR4++ methods aim here at pricing zero-coupon bond, european and amer-
ican options on bond, cap and floor, coupon bearing, payer and receiver
swaptions and also ¢ for hedging, with tree or EDP technics.

CIR++ models are defined by an EDS which describes the evolution of the
spot rate r(t):

{ dz(t) = a(b — x(t)) dt + o \/z(t) dW (t), 2(0) = xg
r(t) = x(t) + ¢(t).
Where the function ¢ is a deterministic function totally given by the market

values of the zero coupon bonds.
Let us denote by Bys(0,T) the market zero coupon bond value maturing at

time T and fy(t) = —% the market present instantaneous forward
rate, with k = Va2 + 202 and
2ab (e’“ — 1) Ak2 ekt

o0 = Il = S e R (1) %k (at k) (1)
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the model exactly fits the market bonds curve and we have several analytical
formulas:
Zero coupon bond at time t :

B(t,T) = A (t,T)e 10

Explicite formulations for A; and A can be found in [?]. Option at time t :
E, e IO T9(B(T, §) — K| = B(t, 8)x(h + 5h) — KB(t, T)x(h).

Where y = is the cumulative function of the chi2 law with A;%) degree of
freedom and certain non central parameter (see [1] for the details of these
analytical formulas). This closed formula for european option on bond also
leads to closed formula for cap and floor and for coupon bearing and sawption.

3 Trinomial Tree method

It is possible to simulate de spot rate diffusion r through a trinomial tree for
a general positive shift model of the form :

{dx() pa ()t + o () AW (t),  2(0) = o
() = x(t) + o(t).

It is important that the volatility o is independant of x so that the trinomial
tree converges. The Hull and White model satifies this form, but not the
CIR++ model since

dr = a(b — w(t)) dt + o \/x(t) AW (1)

Hoverver setting y = \/x then the equation on y is

vooay o
dy=|———=|dt+ =dW(t
v=|2- 2|+ Gaw

wiht v = (3 — 8—2) Then y can be computed in a trinomial tree. For a very

usual log normal diffusion of a random variable z, the variable y simulated
in the tree will be y = log(x).

To summarise let us consider generally the diffusion y:

dy(t) = py(t)dt + o (t),dW (1)
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and the relation r(t) = F(y(t)) + ¢(t) where ' : D C R, —C R, is a
bijective function. The first node is yy (yo > 0 in general) then each node
can evolves in three nodes with a given transition probability computed as
follow:

Let 0 =ty < t; < .. <t, =T be a time scale for our tree in [0, 7] and y; ;
the y node value at time ¢; for the j space step of the tree (starting from
the down). We need then :

Ei;=FE (y(ti)\y(ti—1)=yi—1,j)

V;}j =V, = \/VCLT (y<ti)|y(tifl):yi71,j)
dy; = V3V space step at time ¢;.

Starting from node (top = 0,00 = vo), at time t; we set y1 9 = Eyo then
dy, = V/3V; and j7" = —1 and j"%® = +1 and then y;; = y10 + dy; and
Y1,-1 = Y10 — dy1. Then by a forward induction we compute all the nodes
till time 7.

Knowing the nodes at time ¢,_;, we compute first y; 0 = E; ¢ then the V; and

all the EL]( ‘min malz) aIld .

j:.ji_l yeesdi—

dyi - \/g‘/z
gt such that ;e < By jnip = G < g juin iy
jimax such that y@jimaz_l < E%]ﬁalz + dgi < yiJ;ﬂaz

Yij = Yio +jdy; for g < j < grer

and then compute the transition probilities, pu, pm and pd (for all j4 <
J < ji§"), from node y;—1j t0 Yirt1, Yok and yip-1

PUi—1j = é + +2ZZ_2 + ﬁyi probability to go from (i — 1, ) to (i,k + 1)
pmi1; =3 — J;g probability to go from (i — 1, 7) to (i, k)
pdi_1; = % + 22; — #y_ probability to go from (i — 1,7) to (i,k — 1)

with n = F; ; — y;;, and k the integer such that y; ; is the closer to E; ; :
Eij —yi
k = round l’ﬂ Y ’0] .
dy;

Then we change all the y nodes of the tree in z nodes thanks to x = F(y)
then we can compute directly on the tree the translation ¢(t;) to get r;; =
x; j+¢(t;) for the nodes thanks to a forward iteration on ¢(¢;) and the Arrow-
Debreu node prices knowing all the By (0,t;) (see [?] g3.3.3).
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Important remarks :

It is important for computation without surprise that the function j — E; ;
is increasing so that there is no crossing pm probabilities and the number
of nodes is always increasing. Morever it more easy to define j™" since the
previous lowest expectation is £ jmin and 77" since the previous highest
expectation is E; jmas. For 1nstance 1n CIR ++ there is a low bound for y
to have this condition and we must forbid the tree to go under ; this is all
the more necessary in so far as y must stay positive and the equation on y
becomes totally unstable near 0 due to the term in 1.

There also can be tricky problems because of the condition domain of the
bijective function F', for CIR++ these domains are R, — R, and z (and
y) stay positive if 2ab > 0. We advise to chose a quite large zo (to have a
quite large yo) so the tree dlffusmn of y might not be too truncated by its
low bound even if it must induce negative ¢(t).

They is no particular problem dealing with Hull and White.

Now that we have a trinomial tree of the spot rate r; ; with their transition
probabilities we can compute any payoftf h(7, (7)) (european, american or
bermudean) thanks to a backward induction thanks to the approximation:

he = bt ) = E _ftt.m’"(s)dsh . ,
1] T (turz,]) - € ! (tz+17r(tz+1))|r(ti):m7j

hij = h(ti,ri;) =~ e rialtiva=t) [pui jhit g1 + P jhiga s + pdi jhi 1]

4 Implicite PDE method
Let us consider a general shifted model for the spot rate

{ d(t) = pa(t) dt + 0.(t) dW (1), 2(0) = o
r(t) = x(t) + o(t).

Then the option price

V(t) 7«) g [6 ftT T(S)dsh(T, T(T))|r(t)=r}

can be written with respect to z, V(t,r) = e~ I YA (t, 1 — ¢(t)), where
" a(s)d
Ult,a) = E e 080T a(T) = (7))t

and U is the solution of the following PDE:

ou ou 1 0*U
5 TH (t)%—l—*(f (t>ﬁ —2U(t,z) =0
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This transport equation is computed over a domain [0, Xp;4x]. In 2 =0,
supposing oo(t) = 0, we have:

ou ou

o FHot)5— =0.
This equation will give us our boundary condition in x = 0.
Let 0 =ty < t; < .. < t,, = T be a time scale for our PDE on [0, 7] and
x; = jdx be a space scale for j = 0 to nx (dx = round [%}) Let us
denote U™ the numerical space vector for the approximation of U(t,,z;) for
j =0to JMAX-
Then dicretizing the PDE and knowing U™, U"*! is solution of the linear
problem :

1

|
L - HMn> Ut — < Id+(1—0 Mn> U
<dt gla+t =10

with 6 chosen in (0,1) and where M,, is the tridiagonal nz.nx matrix of
discretized linear differential operator of the PDE : Vk =2, .. . nx — 1

M, K]k — 1] = §(0, (1) s — i (1) )
M, [K][K] = ~8(02,(t) s + )
My K]k + 1] = 80, (1) gtz + s (1) )

A Neuman limit condition is taken on the right boundary to have the last
line of the matrix and the previous x = 0 transport equation is used for the
left boundary condition to have the first line of the matrix.

Resolving this equation backwardly we can compute any payoffs.

remark: For tree and PDE methods to compute an option on a zero coupon
bond B(T,S) maturing at time 7" for instance, a tree or a PDE is contruct
over [0,5], a first backward resolution with a payoff 1 starting at time S
allows to built B(T,S) and then a second backward resolution starting at
time 7" allows to compute the option over the payoff B(T,S).
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