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Abstract. Here we complete the pricing process of annuity with guaranteed minimum
maturity benefit, guaranteed minimum death benefit or guaranteed minimum income ben-
efit respectively based on the COS method. The exponential convergence rate and linear
computational complexity make COS method highly efficient in the pricing process. We
present the specific pricing process of the three annuity options under Heston model. And
the three annuity options program under BS Model and Heston Model have been com-
pleted in C.
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1 Introduction

Variable Annuities (VAs) are annuities different from the traditional annuities in having
the equity-linked feature and with embedded guarantees. The insurers provide different
forms of guarantees for VAs, these guarantees can be classified as guaranteed minimum
death benefits (GMDB) and the guaranteed minimum living benefits (GMLB). For the
GMLB, some with guarantees at the time of maturity, such as the called guaranteed min-
imum maturity benefits (GMMB), others with withdraw guarantees during the contract
period, called guaranteed minimum withdraw benefits (GMWB). The definition of the
above guaranteed benefits are slightly different in various literature, here we follow the
definition of the above guaranteed benefits of [2].

The guaranteed minimum maturity benefit (GMMB) guarantees the policy-
holder a specific monetary amount at the maturity of the contract. A simple GMMB
might be a guaranteed return of premium if the stock index falls over the term of the
insurance (with an upside return of some proportion of the increase in the index if the
index rises over the contract term). The guarantee may be fixed or subject to regular or
equity-dependent increases. Note that this definition of GMMB corresponds to that of
the GMAB with simple premium guarantees or with roll-up based guarantees in [1].

The guaranteed minimum death benefit (GMDB) guarantees the policyholder
a specific monetary sum upon death during the term of the contract. Again, the death
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benefit may simply be the original premium, or may increase at a fixed rate of interest.
More complicated or generous death benefit formulae are popular ways of tweaking a
policy benefit at relatively low cost.

The guaranteed minimum income benefit (GMIB) ensures that the lump sum
accumulated under a separate account contract may be converted to an annuity at a
guaranteed rate. When the GMIB is connected with an equity-linked separate account, it
has derivative features of both equities and bonds. In the United Kingdom, the guaranteed-
annuity option is a form of GMIB. A GMIB is also commonly associated with variable-
annuity contracts in the United States.

The guaranteed minimum accumulation benefit (GMAB), the policyholder
has the option to renew the contract at the end of the original term, at a new guarantee
level appropriate to the maturity value of the maturing contract. It is a form of guaranteed
lapse and reentry option. Again the GMAB defined here refers to the GMAB with ratchet
based guarantees.

The guaranteed minimum withdraw benefit (GMWB) gives the rights to the
policyholder to withdraw from the individual account at a guaranteed rate at some fixed
date till the maturity or the individual account is exhausted.

We consider the pricing of the GMMB, GMDB and GMIB and assume these products
with a single premium. The surrender and withdraw before the maturity is not considered
here.

2 Guaranteed Minimum Benefits

Denote the single premium is P . The premium forms the individual account of the
policyholder, denote At as the account value at time t, then A0 = P . The individual
account is invested in a mutual fund, the time t value of the underlying mutual fund is St.
The the dynamics of the account value of At is

dAt =
dSt

St
At − ϕAtdt, (2.1)

where ϕ is the rate of fee charged continuously by the insurer to hedge the provided guar-
anteed benefits and A0 is the premium paid at time.

The policyholder is entitled to a guaranteed benefit based on the premium. Usually
the guaranteed base is a percentage of the single premium αP , where 0 < α ≤ 1 is the
percentage of the premium that can be guaranteed. When α = 1, it means the premium
is fully guaranteed, otherwise it means partially guaranteed.

2.1 GMMB

The guaranteed benefit of GMMB at time of maturity B(T ) is the maximum of the
account value and the guaranteed minimum value, i.e.

B(T ) := max(GM
T , AT ),

where GM
T is the guaranteed value at maturity T . The guaranteed minimum value is

calculated differently according the the product design: simple case, roll-up base and
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ratchet base. The guaranteed minimum value is set as

GM
T =

{

αP eiT , with a compound roll-up rate i ≥ 0,

αP (1 + iT ), with a simple roll-up rate i ≥ 0.
(2.2)

Note that for i = 0 the guarantees is of simple case, otherwise is the roll-up based with
guaranteed roll-up rate i > 0.

2.2 GMDB

The guaranteed benefit of GMDB is a specific monetary sum that policyholder can get
upon the death of insured during the term of the contract. In our model, we assume the
death benefit is the total premiums accumulated at a fixed rate of interest. Assume the
death time for insured is τ and at τ the guaranteed benefit of GMDB is the maximum of
the current account value and the guaranteed minimum value, i.e.

B(τ) := max(GD
τ , Aτ ),

where GD
τ is the guaranteed value at insured’s mortality time. The guaranteed minimum

value is calculated differently according the the product design: simple case, roll-up base
and ratchet base. The guaranteed minimum value is set as

GD
τ =

{

αP eiτ , with a compound roll-up rate i ≥ 0,

αP (1 + iτ), with a simple roll-up rate i ≥ 0.
(2.3)

Note that for i = 0 the guarantees is of simple case, otherwise is the roll-up based with
guaranteed roll-up rate i > 0.

2.3 GMIB

With guaranteed minimum income benefit, the policyholder can choose to annuitize
the guaranteed accumulation account at a guaranteed payment rate g per year. In some
other situation, it will pay per month or per season. The payoff of the guaranteed benefit
of GMIB at the date of annuitization T is

B(T ) := max(GI
T ga(T ), AT ),

where AT is the account value at maturity and g is the minimum guaranteed payment
rate prescribed by insurer at the outset of the insurance contract. a(T ) is the market price
of the an annuity with payments of $1 per year at maturity T. Same as the two types
of variable annuity, the guaranteed minimum value is calculated differently according the
the product design: simple case, roll-up base and ratchet base. The guaranteed minimum
value is set as

GI
T =

{

αP eiT , with a compound roll-up rate i ≥ 0,

αP (1 + iT ), with a simple roll-up rate i ≥ 0.
(2.4)

Note that for i = 0 the guarantees is of simple case, otherwise is the roll-up based with
guaranteed roll-up rate i > 0.



10 pages 4

To valuate the variable annuities with guarantees is to find a break-even value of ϕ
such that the present value of benefit at time of maturity equals to the present value of
the total of the continuously charged fee. We consider two models for the dynamics of the
underlying mutual fund that the individual account of variable annuities invested in:the
Heston stochastic volatility model and the Black Scholes Model with Vasicĕk interest rate
.

3 Models

3.1 The Heston Model

The underlying mutual fund value S is assumed to follow the Heston stochastic volatil-
ity model, which is given as

{

dSt = rStdt+
√
vtStdWS

t ,

dvt = κv(θv − vt)dt+ σv
√
vtdW v

t ,
(3.1)

where {St; t ≥ 0} and {vt; t ≥ 0} are the equity price and the volatility of equity, respec-
tively. And {WS,v

t ; t ≥ 0} are correlated standard Brownian motions with correlations ρSv

under risk-neutral measure Q. Moreover, the interest rate r and the coefficients κv, θv, σv

are constants representing the speed of reversion, mean of reversion and the volatility of
the volatility, respectively. Denote by Ft the filtration generated by St and vt. Then the
dynamics of the account value At is

dAt = (r − ϕ)Atdt+
√
vtAtdW

S
t . (3.2)

Let xt represents log(At), according to the Itô Lemma, the heston model turns to be:
{

dxt = (r − ϕ− vt

2 )dt+
√
vtdW x

t ,

dvt = κv(θv − vt)dt+ σv
√
vtdW v

t ,
(3.3)

For the Heston model, the characteristic function of is:

Φ(ω,x, v0) = φhes(ω; v0)eiωx. (3.4)

Here we use boldfaced value to distinguish vectors, where x, represents log(A0). It is
written as the vector because the summation in COS method below is a matrix-vector
product. See the COS part. v0 denotes the volatility of the underlying at the initial time
and φhes(ω; v0) := Φ(ω; 0, v0) So the characteristic function of the log-asset price turns to
be:

φhes(ω, v0) = exp

(

iω(r − ϕ)∆t+
v0

σ2
v

(

1 − e−D∆t

1 −Ge−D∆t

)

(κv − iρσvω −D)

)

exp

(

κvθv

σ2
v

(

∆t(κv − iρσvω −D) − 2 log(
1 −GeD∆t

1 −G
)

))

.

(3.5)

with
D =

√

(κv − iρσvω)2 + (ω2 + iω)σ2
v

and

G =
κv − iρσvω −D

κv − iρσvω +D
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3.2 The Black Scholes Model with Vasicĕk Interest Rate

Now we assume the underlying mutual fund value St follows the Black-Scholes model
with the stochastic interest rate rt following the Vasicĕk model, that is

{

dSt = rtStdt+ σSStdWS
t ,

drt = κr(θr − rt)dt+ ηrdW r
t ,

(3.6)

where the coefficients σS , κr, θr, ηr are constants representing the volatility of the mutual
fund, the speed of reversion, mean of reversion and volatility of the interest rate respec-
tively, WS

t , V
r

t are Brownian motions under risk-neutral measure Q with correlation ρSr.
Under this model, the dynamics of the account value At is

dAt = (rt − ϕ)Atdt+ σSAtdW
S
t . (3.7)

Let the xt = log(At). According to Itô Lemma, the model changes to:






dxt = (rt − ϕ− σ2

S

2 )dt+ σSdWS
t ,

drt = κr(θr − rt)dt+ ηrdW r
t ,

(3.8)

For a given state vectorX(t) = [x(t), r(t)]T , and Φ := Φ(ω,X(t), t, T ) with x(t) = x; r(t) =
r, the following pricing PDE is satisfied according to the Feynman-Kac formula:

0 =
∂2Φ

∂x2
+

1

2
η2∂

2Φ

∂r2
+ ρx,rσ

∂2Φ

∂x∂r
+ [r(t) − ϕ− σ2

2
]
∂Φ

∂x

+ κ[θ − r(t)]
∂Φ

∂r
+
∂Φ

∂t
− r(t)Φ

(3.9)

subject to terminal condition Φ(ω,X(T ), T, T ) = exp(iωx(T )). Because the PDE above
is affine, its solution is of the following form according to the standard characteristic
equation:

Φ := Φ(ω,X(t), t, T ) = exp(A(ω, t, T ) +B(ω, t, T )x(t) + C(ω, t, T )r(t)).

Here let A := A(ω, t, T ), B := B(ω, t, T ), C := C(ω, t, T ), we find the following partial
derivatives:

∂Φ

∂t
= Φ

∂A

∂t
+ x(t)

∂B

∂t
+ r(t)

∂C

∂t
(3.10)

∂Φ

∂x
= BΦ,

∂2Φ

∂x2
= B2Φ,

∂2Φ

∂x∂r
= BCΦ (3.11)

∂Φ

∂r
= CΦ,

∂2Φ

∂r2
= C2Φ (3.12)

According to the derivatives, we can rewrite the PDE:

0 =
1

2
σ2B2 +

1

2
η2C2 + ρx,rσηBC + [r(t) − ϕ− σ2

2
]B + κ[θ − r(t)]C

+
∂A

∂t
+ x(t)

∂B

∂t
+ r(t)

∂C

∂t
− r(t)

(3.13)
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We find the following ODEs by collecting the terms for x(t), r(t):

∂B

∂t
= 0 (3.14)

∂C

∂t
= −B + κC + 1 (3.15)

∂A

∂t
= −κθC − 1

2
η2C2 − ρx,rσηBC − 1

2
σ2B2 + (ϕ+

1

2
σ2)B (3.16)

With the boundary condition A(u, 0) = 0, B(u, 0) = iu, C(u, 0) = 0. The solution of
the ODEs is given by:

B(u,∆t) = iω (3.17)

C(u,∆t) = (iω − 1)κ−1(1 − eκ∆t) (3.18)

A(u,∆t) = κ−1(Le2κ∆t +Neκ∆t − L−N) +M∆t (3.19)

The expressions of L, M, N are as followings:

L = −1

4
η2(iω − 1)2κ−2

N = η2(iω − 1)2κ−2 + (iω − 1)κ−1(ρσηiω + κθ)

M =
1

2
[iωσ2 + σ2ω2 − η2(iω − 1)2κ−2] + iωϕ− (iω − 1)κ−1(ρσηiω + κθ)

By the analysis above, we find the characteristic function for the BS model with vasicêk
interest rate:

Φ = exp(κ−1(Le2κ∆t +Neκ∆t − L−N) +M∆t+ iωx+ (iω − 1)κ−1(1 − eκ∆t)r) (3.20)

4 Pricing Process with COS Method

After the introduction above about the three variable annuities and two different mod-
els about underlying assets, we now analyse the specified pricing procedure. The charac-
teristic function Φ(ω) and the possibility density function are a Fourier pair. Here we use
the COS method to complete the pricing process. The convergence rate of COS method
is exponential and the computational complexity is linear. It has been proved to be a
efficient way in pricing of some underlying dynamics, such as the Heston model.[3]

4.1 Pricing Process of GMMB under Heston Model

The present value of GMMB g(ϕ) at time of maturity or the present value of the
expected liability should equals to the present value of the total of the continuously charged
fee f(ϕ).

g(ϕ) = e−rT EQ[(GM
T −AT )+|F0] = e−rT

∫ b

a
(GM

T − ey)f(y)dy. (4.1)

with y = log(At)
Here we use the COS method to get the COS formula with the cosine series

coefficientUk of g(ϕ).If the guaranteed minimum value is set with a compound roll-up
rate with the characteristic function of Heston model above, we find g(ϕ) turns to be

g(ϕ) = e−rT
∑

′N−1

k=0
Re

{

φhes

(

kπ

b− a
; v0

)

eikπ
y−a

b−a

}

Uk. (4.2)
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with

Uk =
2

b− a

∫ b

a
(GM

T − ey)+ cos(kπ
y − a

b− a
)dy

The cosine series coefficients, χ(k), of h(xt) = GM
T = αPeiT on [c, d] ⊂ [a, b]:

χk(c, d) :=

∫ d

c
αPeiT cos

(

kπ
y − a

b− a

)

dy (4.3)

and the cosine series coefficients, ψk of h(xt) = ext on [c, d] ⊂ [a, b]:

ψk(c, d) :=

∫ d

c
ey cos

(

kπ
y − a

b− a

)

dy (4.4)

Basic calculus shows that

χk(c, d) = αPeiT







[

sin
(

kπ d−a
b−a

)

− sin
(

kπ c−a
b−a

)]

b−a
kπ

k 6= 0

(d− c) k = 0
(4.5)

and

ψk(c, d) =
1

1 +
(

kπ
b−a

)2

[

cos

(

kπ
d− a

b− a

)

ed − cos

(

kπ
c− a

b− a

)

ec

+
kπ

b− a
sin

(

kπ
d− a

b− a

)

ed − kπ

b− a
sin

(

kπ
c− a

b− a

)

ec

]

(4.6)

We can get the present value of the GMMB g(ϕ) by the derivation above. As for the
sum of the continuously charged fee by the insurance company f(ϕ) is derived by the
following:

f(ϕ) = EQ(

∫ T

0
ϕAte

−rtdt|F0)

= EQ(
∑M−1

n=0
ϕ

∫ (n+1)∆t

n∆t
Ate

−rtdt|F0)

=
∑M−1

n=0
EQ(ϕAn∆te

−rn∆t∆t|F0)

=
∑M−1

n=0
∆te−rn∆tϕEQ(eiωxn∆t |F0)ω=−i

(4.7)

Here we make ω = −i, xn∆t = log(An∆t). And we take the compound interest rate for
example above.

Valuating the GMMB contract is to determine the expense feeϕ such that the present
value of the expected benefit g(ϕ) is equivalent to present value of the total paid fee

g(ϕ) = f(ϕ) (4.8)

Since σv, θv,κv,ρ,r,i,α,P ,T are constant, we could get the ϕ by Newton Recursion
Method with the program in C language. Because GMMB is a kind of put option, here
we find the truncation range [c, d] = [a, 0].

We propose the following to determine the interval of integration [a,b] within the COS
method.

[a, b] = [c1 − L
√
c2, c1 + L

√
c2] åĚűäÿŋL = 20 (4.9)
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where the cn denotes the n-th cumulant of ln(AT /G
M
T ). The cumulants for the Heston

model are as below

c1 =(r − ϕ)T + (1 − e−κT )
θ − v0

2κ
− 1

2
θT

c2 =
1

8κ3
(σTκe−κT (v0 − θ)(8κρ− 4σ) + κρσ(1 − e−κT )(16θ − 8v0) + 2θκT (−4κρσ + σ2 + 4σ2)

+ σ2((θ − 2v0)e−2κT + θ(6e−κT − 7) + 2v0) + 8κ2(v0 − θ)(1 − e−θT ))

4.2 Pricing Process of GMDB under Heston Model

The present value of GMDB g(ϕ) at insured’s mortality time or the present value of
the expected liability should equals to the present value of the total of the continuously
charged fee f(ϕ), it means

g(ϕ) = EQ[e−rτ (GD
τ −Aτ )+|F0] = EQ(

∫ T ∧τ

0
ϕAte

−rtdt|F0) = f(ϕ). (4.10)

where τ is the future lifetime of the policyholder.
Assume that the mortality risk can be diversified, then we can rewrite the left hand

side of the equation by taking conditional expectation on τ

∫ T

0
EQ[e−rt(GD

t −At)+|F0]tpxµx+tdt (4.11)

wheretpx and µx+t represent the survival probability and force of mortality. There are
some supposition about force of mortality. Here we choose the constant force of mortality
supposition and we can get

tpxµx+t = µe−µt

As for the part EQ[e−rt(GD
t − At)+|F0], it has slight different from GMMB. The dif-

ferent parts are that we get the integral upon t, so the integral range [a, b] will change
with variable t. We can program it by the definition of integral in C and the characteristic
function about xt will be the tiny time period ∆t instead of the whole period T.

And the right hand side of the equation will be

f(ϕ) = EQ(

∫ T

0
ϕAte

−rt
tpxµx+tdt|F0)

= EQ(
∑N−1

n=0
ϕ

∫ (n+1)∆t

n∆t
Ate

−rtµe−µtdt|F0)

=
∑N−1

n=0
EQ(ϕAn∆te

−rn∆tµe−µ∆t∆t|F0)

=
∑N−1

n=0
∆te−rn∆tϕµe−µ∆tEQ(eiωxn∆t |F0)ω=−i

(4.12)

By the analysis above, we can get the insurance fee ϕ in C by the Newton Recursion
Method or Secant Method.

4.3 Pricing Process of GMIB under Heston Model

From above introduction about GMIB, we know there are two more parameters in
GMIB, which are g and a(T ). The present value of GMIB g(ϕ) at maturity or the present
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Table 1: Estimate Value of g for a 30-year Term Certain Annuity

Interest Rate 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
Annuity Value 25.81 22.40 19.60 17.29 15.37 13.76 12.41 11.26 10.27 9.43

Estimate Value of g 0.039 0.045 0.051 0.058 0.065 0.073 0.081 0.089 0.097 0.106

value of the expected liability should equals to the present value of the total of the con-
tinuously charged fee f(ϕ), it means

g(ϕ) = EQ[e−rT (GI
T ga(T ) −AT )+|F0] = EQ(

∫ T

0
ϕAte

−rtdt|F0) = f(ϕ). (4.13)

The two important points for GMIB are the value of a(T ) and g. About the value of
a(T), which represents the market price of the term certain annuity, the interest rate is
constant and fixed under HestonModel, that means the value of a(T ) at the maturity

a(T ) =
1

r

(

1 − 1

(1 + r)n

)

(4.14)

About the value of g, we refer to the method [4]. If we choose the 30-year term certain
annuity, the fair price of g will be approximately the inverse of the valued of a 30-year
term certain annuity. We can get the following table by setting different interest rates.

From the table above, we can find the value of g is between 4%-10% with the changeable
interest rate. Actually the interest rate hardly exceed 10% in realistic world based on the
date in European Financial Market. Besides, the insurance company chooses the value g in
a conservative way for funding the guarantees. And considering their conservative strategy,
the value of g will smaller that the fair price of estimate g. In our paper we consider
the value of g between 6.5%-7.5% is the conservative value from insurance company’s
perspective.

By the analysis above, we can get the estimate value of g and a(T ). And the present
value of expected liability burdened by the insurer and the present value of total charge
are similar as GMMB.

5 Program in C

We will implement the calculation of the valuation of the GMMB, GMDB, GMIB
under Heston model and the Black-Scholes model respectively. The main function for the
three cases are specified as follows.

5.1 GMMB

For the GMMB under Heston model:
double ap_fouriercosine_gmmb_heston(double A0, double v0, double r, double divid,
double sigma, double rho, double kappa,double alpha, double theta, double maturity,
double premium, double rollup_rate, int N, double *ptprice)

For the GMMB under Black-Scholes model:
double ap_fouriercosine_gmmb_heston(double A0, double r, double divid, double
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sigma,double alpha, double maturity, double premium, double rollup_rate, int N, dou-
ble *ptprice)

alpha: percentage of premium guaranteed;
T: maturity of GMMB.

5.2 GMDB

For the GMDB under Heston model:
double ap_fouriercosine_gmdb_heston(double d,double A0, double v0, double r, double
divid, double sigma, double rho, double kappa,double alpha, double theta, double matu-
rity, double premium, double rollup_rate, int N, double *ptprice);

For the GMDB under Black-Scholes model:
double ap_fouriercosine_gmdb_bs(double d,double A0, double r, double divid, double
sigma,double alpha, double maturity, double premium, double rollup_rate, int N, double
*ptprice)

alpha: percentage of premium guaranteed;
T: maturity of GMDB.

5.3 GMIB

For the GMIB under Heston model:
double ap_fouriercosine_gmib_heston(double y,double g,double A0, double v0, double r,
double divid, double sigma, double rho, double kappa,double alpha, double theta, double
maturity, double premium, double rollup_rate, int N, double *ptprice)

For the GMIB under Black-Scholes model:
double ap_fouriercosine_gmib_heston(double y ,double g,double A0, double v0, double r,
double divid, double sigma, double rho, double kappa,double alpha, double theta, double
maturity, double premium, double rollup_rate, int N, double *ptprice)

g: minimum guaranteed payment rate;
y: market price of term certain annuity(a(T)).
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