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CDO Pricing : Copula
Céline Labart - Vincent Lemaire – 29 janvier 2009

Premia 18

1 Link between CDOs and Copulas

We will thereafter consider a synthetic CDO with some given maturity T . This is based
upon n CDS with nominals Nj , j = 1, . . . , n and maturity also equal to T . We denote by δj

the recovery rate for credit j and by Mj = (1 − δj)Nj the corresponding loss given default.
For the n names in the collateral pool, we consider the associated default times τ1, . . . , τn

defined on a common probability space (Ω, G,P). In the following, we will consider only
reduced-form models of default times defined by

τi = inf
{

u ∈ R
+,

∫ u

0
hi(v)dv ≥ − log(Ui)

}

, (Hτ )

where the hi are deterministic and continuous positive functions, the Ui are some uniform
random variables.

In order to compute (by a semi-analytic approach) the price of one CDO tranche, all we
need is the portfolio loss distribution i.e. the portfolio aggregate loss on the credit portfolio
at time t:

L(t) =
n
∑

j=1

Mj1{τj≤t}

which is a pure jump process. This distribution depend on the joint distribution of the
default times τ1, . . . , τn that we modelling using a classical factor approach and Copula func-
tions.

We denote by F and S respectively the joint distribution and survival functions such that
for all (t1, . . . tn) ∈ [0, T ]n, F (t1, . . . , tn) = P(τ1 ≤ t1, . . . , τn ≤ tn) and S(t1, . . . , tn) = P(τ1 >
t1, . . . , τn > tn). F1, . . . , Fn represent the marginal distribution functions and S1, . . . , Sn the
corresponding survival functions. By the assumption (Hτ ), we have

Si(t) = P(τi > t) = exp
(−
∫ t

0
hi(v)dv

)

. (1)

We refer to Appendix for the proof of (1).
We will consider now a latent factor V such that conditionally on V , the default times are

independent. We will denote by p
i|V
t = P(τi ≤ t|V ) and q

i|V
t = 1 − pi|V (t) the conditional

default and survival probabilities. It is easy to check that

S(t1, . . . , tn) =

∫ n
∏

i=1

q
i|v
t f(v)dv,

F (t1, . . . , tn) =

∫ n
∏

i=1

p
i|v
t f(v)dv.

So, if we can easily compute the conditional default probabilities and integrate along the
density of the factor V , we are able to compute the joint distribution of the default times.
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Définition 1. A copula C is a multivariate joint distribution on the m-dimensional unit cube
[0, 1]m such that every marginal distribution is uniform on the interval [0, 1].

C : (u1, · · · , um) ∈ [0, 1]m 7−→ P(U1 ≤ u1, · · · , Um ≤ um)

U1, · · · , Um is a random vector whose marginals are uniform on [0, 1].

2 Gaussian Copula

We consider a standard Gaussian random variable V , and we define the Gaussian vector
(X1, . . . , Xn) by

Xi = ρV +
√

1 − ρ2Vi

where Vi are independent (∀i, j, Vi ⊥ Vj and ∀i, Vi ⊥ V ) standard Gaussian random variables.
We define the uniform random variable Ui = 1−N (Xi) where N is the cumulative distribution
function of a standard Gaussian variable. The joint distribution of (U1, . . . , Un) is known as
the Gaussian copula. Then, we get

p
i|V
t = N

(N −1(Fi(t)) − ρV
√

1 − ρ2

)

. (2)

with Fi(t) = 1 − exp
(− ∫ t

0 hi(v)dv
)

.
We refer to Appendix for the proof of (2).

3 Clayton Copula

We consider a positive random variable V following a standard Gamma distribution Γ(λ, α)
with parameters λ = 1, α = 1/θ where θ > 0. Its probability density is given by f(x) =

1
Γ(θ−1)

exp(−x)x(1−θ)/θ for x > 0. We define the uniform random variables U1, · · · , Un

Ui = 1 − Ψ
(

− log(Ūi)

V

)

,

where Ū1, . . . , Ūn are independent uniform random variables also independent from V , and
Ψ is the Laplace transform of f . The joint distribution of (U1, . . . , Un) is known as the Clayton
copula.

The conditional default probabilities can be expressed as

p
i|V
t = exp

(

V
(

1 − Fi(t)
−θ)

)

,

with Fi(t) = 1 − exp
(− ∫ t

0 hi(v)dv
)

.

4 NIG Copula

For more details on the NIG copula, we refer to [1]. The Normal Inverse Gaussian distri-
bution (NIG) is a mixture of normal and inverse Gaussian distributions. A non-negative r.v.
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Y has inverse Gaussian distribution with parameters α > 0 and β > 0 if its density function
is of the form:

fIG(y; α, β) =







α√
2πβ

y−3/2 exp
(

− (α−βy)2

2βy

)

if y > 0

0 y ≤ 0.

A r.v. X follows a Normal Inverse Gaussian (NIG) distribution with parameters α, β, µ and
δ if:

X|Y = y ∼ N (µ + βy, y)

Y ∼ IG(δγ, γ2) with γ :=
√

α2 − β2,

with parameters satisfying the following conditions: 0 ≤ |β| < α and δ > 0. We write
X ∼ N IG(α, β, µ, δ) and the density function is given by:

fN IG(x; α, β, µ, δ) =
δα exp(δγ + β(x − µ))

π
√

δ2 + (x − µ)2
K1
(

α
√

δ2 + (x − µ)2
)

,

where K1(w) = 1
2

∫∞
0 exp

(−1
2 w(t + t−1)

)

dt is the modified Bessel function of the third kind.
The probability function is given by

FN IG(x) :=

∫ x

−∞
fN IG(t)dt =

∫ ∞

0
N
(

x − (µ + βy)√
y

)

fIG(y; δγ, γ2)dy

=

∫ 1

0
N
(

x − (µ − β log(t))
√

− log(t)

)

fIG(− log(t); δγ, γ2)
1

t
dt

The first equality is due to the fact that the NIG distribution stems from a convolution of
the normal and the inverse Gaussian distribution. The second one follows from the change
of variable t = exp(−y).

The main properties of the NIG distribution class are the scaling property

X ∼ N IG(α, β, µ, δ) =⇒ cX ∼ N IG(
α

c
,
β

c
, cµ, cδ)

and the closure under convolution for independent r.v. X and Y

X ∼ N IG(α, β, µ1, δ1), Y ∼ N IG(α, β, µ2, δ2)

=⇒ X + Y ∼ N IG(α, β, µ1 + µ2, δ1 + δ2)

In our implementation, we consider a random variable V following a NIG distribution with
parameters

V ∼ N IG(α, β, −αβ

γ
, α
)

where γ =
√

α2 − β2, and we define the vector (X1, · · · , Xn)

Xi = ρV +
√

1 − ρ2Vi,
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where Vi are independent (and independent from V ) NIG random variables with parameters

Vi ∼ N IG(
√

1 − ρ2

ρ
α,

√

1 − ρ2

ρ
β, −

√

1 − ρ2

ρ

αβ

γ
,

√

1 − ρ2

ρ
α
)

.

To simplify notations we denote FN IG(s)(x) the cumulative distribution of a NIG random

variable with parameters N IG(sα, sβ, −sαβ
γ , sα

)

. Using the scaling property and stability
under convolution of NIG distribution we get Xi ∼ N IG(1/ρ). We define the uniform random
variable Ui = 1 − FN IG(1/ρ)(Xi). The joint distribution of (U1, . . . , Un) is known as the NIG
copula. We get

p
i|V
t = F

N IG(
√

1−ρ2/ρ)

(F −1
N IG(1/ρ)(Fi(t)) − ρV

√

1 − ρ2

)

.

5 Student Copula

Définition 2. Let G and Y be two independent r.v. s.t. G ∼ N (0, 1) and Y ∼ χ2(ν). Then,

X :=
√

ν
Y G is a Student r.v. with parameter ν. The density of the Student law is given by

tν(t) :=
Γ((ν + 1)/2)√

νπ

1
(

1 + t2

ν

)(ν+1)/2
, t ∈ R.

In our implementation, we define for i = 1, · · · , n

Xi =

√

ν

Y

(

ρV +
√

1 − ρ2Vi

)

,

where V , Y and V1, · · · , Vn are independent r.v. s.t. V ∼ N (0, 1), Vi ∼ N (0, 1) and Y ∼
χ2(ν). Xi is a Student r.v. with parameter ν. Let us define Ui := 1 − Tν(Xi), where Tν is the
cumulative distribution function of a Student r.v. with parameter ν. The joint distribution
of (U1, . . . , Un) is known as the Student copula. We get

p
i|V
t = N

(T −1
ν (Fi(t))

√

Y
ν − ρV

√

1 − ρ2

)

. (3)

The proof of (3) is postponed to the Appendix.

6 Double T Copula

Let M be a Student r.v. s.t. M ∼ S(ν). We define the vector (X1, · · · , Xn) by

Xi := ρ

√

ν − 2

ν
M +

√

1 − ρ2

√

ν̄ − 2

ν̄
Zi,

where (Zi)i=1···n are independent Student variables with parameter ν̄. Let Tν,ν̄ denote the
cumulative distribution of Xi. The definition of Tν,ν̄ can be found by using the law of M and
Zi:

P(Xi ≤ z) =

∫

R

dx

∫

R

dy

(

ρ

√

ν − 2

ν
x +

√

1 − ρ2

√

ν̄ − 2

ν̄
y

)

1x+y≤ztν(x)tν̄(y).
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Then, we define Ui := 1 − Tν,ν̄(Xi). The joint distribution of (U1, . . . , Un) is known as the
Double-t copula. We get

p
i|V
t = Tν̄

(T −1
ν,ν̄ (Fi(t)) − ρ

√

ν−2
ν M

√

1 − ρ2
√

ν̄−2
ν̄

)

. (4)

The proof of (4) is similar to the proof of (3).

7 Numerical values for the Copula parameters

Type Parameters (example value)

Gaussian Correlation ρ (0.03)

Clayton θ (0.2)

NIG Correlation ρ (0.06), α (1.2), β (−0.2)

Student Correlation ρ (0.02), Degree of freedom t1 (5)

Double t Correlation ρ (0.03), Degree of freedom t1 (5), Degree of freedom t2 (7)

8 Appendix

8.1 Proof of (1)

We have

τi = inf{u ∈ R
+ : −

∫ u

0
hi(v)dv ≥ − log(Ui)},

= inf{u ∈ R
+ : exp(−

∫ u

0
hi(v)dv) ≤ Ui}.

Since u 7−→ exp(− ∫ u
0 hi(v)dv) is adecreasing function (denoted f) with values in [0, 1], we get

P(τi > t) = P(inf{u ∈ R
+ : f(u) ≤ Ui} > t) = P(f(t) > Ui) = f(t) = exp(−

∫ t

0
hi(v)dv).

8.2 Proof of (2)

Ui is a uniform r.v.: 1 − Ui = Φ(Xi) and Φ is the cumulative density function of Xi, then
Φ(Xi) ∼ U[0, 1]. (P(Ui ≤ k) = P(Φ(Xi) ≤ k) = P(Xi ≤ Φ−1(k)) = Φ(Φ−1(k)) = k).
From the definition of τi, we get τi = inf{t : Si(t) ≤ Ui} = inf{t : 1 − Fi(t) ≤ Ui} = inf{t :
Fi(t) ≥ 1 − Ui} = inf{t : Fi(t) ≥ Φ(Xi)} = inf{t : Xi ≤ Φ−1(Fi(t))}. Then

P(τi ≤ t|V ) = P(inf{u ∈ R
+ : Xi ≤ Φ−1(Fi(u))} ≤ t|V )

= P(Φ−1(Fi(t)) > Xi|V ) since u 7−→ Φ−1(Fi(u)) is increasing

= P(ρV +
√

1 − ρ2V̄i < Φ−1(Fi(t))|V )

= P

(

V̄i <
Φ−1(Fi(t)) − ρV

√

1 − ρ2
|V
)

= Φ

(

Φ−1(Fi(t)) − ρV
√

1 − ρ2

)

.
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8.3 Clayton Copula

The Laplace transform of f is Ψ(s) = 1

(1+s)θ−1 . Indeed,

Ψ(s) =
1

Γ(θ−1)

∫ ∞

0
e−sxe−xx

1

θ
−1dx

=
1

Γ(θ−1)

∫ ∞

0
e−(s+1)xx

1

θ
−1dx

=
1

Γ(θ−1)

∫ ∞

0
e−tt

1

θ
−1dt

1

(s + 1)θ−1
.

Since Γ(θ−1) =
∫∞

0 e−tt
1

θ
−1dt, we get the result The inverse function is Ψ−1(s) = s−θ − 1.

The r.v. Ui are uniform:

P(Ui ≤ k) = P(1 − Ui ≤ k) = P

(

Ψ
(

− log(Ūi)

V

)

≤ k

)

= P

(

− log(Ūi)

V
≥ Ψ−1(k)

)

= P(− log(Ūi) ≥ V (k−θ − 1)) = P(Ūi ≤ exp(V (1 − k−θ)))

= E[E[1Ūi≤exp(V (1−k−θ))|V ]] = E[P(Ūi ≤ exp(V (1 − k−θ))|V )]

= E[exp(V (1 − k−θ))] =
1

Γ(θ−1)

∫ ∞

0
exp(v(1 − k−θ))e−vv

1

θ
−1dv

=
1

Γ(θ−1)

∫ ∞

0
e−vk−θ

v
1

θ
−1dv =

1

Γ(θ−1)

∫ ∞

0
e−xx

1

θ
−1dx

1

k−θ

(

1

k−θ

)
1

θ
−1

= k.

Let us prove that the conditional default probability is p
i|V
t = exp

(

V
(

1 − Fi(t)
−θ
)

)

. To

do so, we write τi = inf{t : Si(t) ≤ Ui} = inf{t : 1 − Fi(t) ≤ Ui} = inf{t : Fi(t) ≥
1 − Ui} = inf{t : Fi(t) ≥ Ψ

(

− log(Ūi)
V

)

} = inf{t : Ūi ≤ exp(−V Ψ−1(Fi(t)))}. Then, since

u 7−→ exp(−V Ψ−1(Fi(u))) is an increasing function, we get

P(τi ≤ t|V ) = P(inf{u ∈ R
+ : Ūi ≤ exp(−V Ψ−1(Fi(u)))} ≤ t|V )

= P(Ūi ≤ exp(−V Ψ−1(Fi(t)))|V ) = exp
(

V
(

1 − Fi(t)
−θ)

)

.

8.4 Proof of (3)

From the definition of τi, we get τi = inf{t : Si(t) ≤ Ui} = inf{t : 1 − Fi(t) ≤ Ui} = inf{t :
Fi(t) ≥ 1 − Ui} = inf{t : Fi(t) ≥ Tν(Xi)} = inf{t : Xi ≤ T −1

ν (Fi(t))}. Then

P(τi ≤ t|V ) = P(inf{u ∈ R
+ : Xi ≤ T −1

ν (Fi(u))} ≤ t|V )

= P(T −1
ν (Fi(t)) > Xi|V ) since u 7−→ T −1

ν (Fi(u)) is increasing

= P



ρV +
√

1 − ρ2Vi <

√

Y

ν
T −1

ν (Fi(t))|V




= P



Vi <

√

Y
ν T −1

ν (Fi(t)) − ρV
√

1 − ρ2
|V




= N




√

Y
ν T −1

ν (Fi(t)) − ρV
√

1 − ρ2



 .
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