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We present here the implementation of a methodology for the valuation of Guaranteed Minimum
Withdrawal Benefits (GMWB) developed by Chen and Forsyth in [2]. First we describe the model,
then the numerical implementation.

1 GMWB model

A GMWB contract consists of a personal sub-account and a virtual guarantee account. The funds
in the sub account are invested in a reference portfolio by the insurance company. Let S denote
the value of the reference portfolio of the underlying assets. We suppose that the risk-adjusted
process of S follows a Black-Scholes model given by the stochastic differential equation (SDE):

dS = rSdt + σSdZ,

where r > 0 is the risk-free interest rate, σ is the volatility, and Z is a standard Gauss-Wiener
process. Let W denote the balance of the personal sub-account, and A denote the guarantee
account balance. At the inception of the contract, The policyholder pays a lump-sum premium
w0 to the insurer. This amount becomes the initial sub-account and guarantee account balance.
The GMWB contract allows the policyholder to withdraw funds from the sub-account at specified
times (annually, semi-annually or even continuously). The withdrawals reduce the balance of the
guarantee account with the same amount, therefore A is a decreasing process taking values in
[0, w0]. The policyholder may withdraw as long as the guarantee account is positive, even if the
sub-account balance falls to zero before the maturity of the contract. The insurer also issues a
proportional annual insurance rate α ≥ 0. The risk adjusted dynamics of the sub-account balance
W is given by the following SDE:

dW = (r − α)Wdt + σWdZ + dA

W = 0, if W = 0.

Let T denote the maturity of the contract. We will note by V (W, A, τ) the no-arbitrage value of
the contract at time t = T − τ . Withdrawals are allowed at discrete times ti

O, i = 1, 2, . . . , K with
tK
O . If the withdraw amount at ti

O is higher than the threshold Gr(ti
O − ti−1

O ) with Gr denoting
the withdrawal rate, then a proportional penalty κ > 0 is imposed on the value exceeding the
threshold as well as a fix cost c ≥ 0. Therefore the cash flow f(γ)received by the policyholder when
withdrawing the amount γ at ti

O is given by:

f(γ) =

{

γ if 0 ≤ γ ≤ Gr(ti
O − ti−1

O ),

γ − κ(γ − Gr(ti
O − ti−1

O )) − c if γ ≥ Gr(ti
O − ti−1

O ).
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Between withdrawal times, the value process V (W, A, τ) follows the dynamics given by:

Vτ =
1

2
σ2W 2VW W + (r − α)WVW + −rV. (1)

At a withdrawal time τ i
O = T − ti

O, V satisfies the no-arbitrage condition:

V (W, A, τ i+
O ) = sup

γ∈[0,A]

[

V (max(W − γ, 0), A − γ, τ i
O) + f(γ)

]

, i = 0, . . . , K − 1,

where τ i+
O is the time infinitesimally after τ i

O. The terminal boundary condition takes the form:

V (W, A, τ = 0) = max(W, (1 − κ)A − c).

2 Numerical method

We define the solution domain as (W, A, τ) ∈ [0, Wmax] × [0, w0] × [0, T ]. We use an unequally
spaced grid [W0, W1, . . . , Wimax

] with W0 = 0,Wimax
= Wmax in the W direction and an equally

spaced grid [A0, A1, . . . , Ajmax
] with A0 = 0,Ajmax

= w0 in the A direction. The discrete timesteps
are noted by τn = n∆τ , n = 0, . . . , N , with τN = T . We assume that the withdrawal times τk

O,
k = 1, 2, . . . , K coincide with some discrete timesteps. Between withdrawal times we solve the
PDE (1) for each value Aj , j = 1, . . . , jmax using second order finite difference methods in the
W direction, as the dynamics does not depend on the value of A. We use central, forward or
backward differencing in the discretization to ensure the positivity of the coefficients see [3] , and
we use a fully implicit timestepping scheme. The tridiagonal matrix equation is solved using a
simple forward sweep method.

At a withdrawal time τk
O, we need to compute the optimal withdrawal amount γk. This γk is

the solution of the local optimization problem:

V (Wi, Aj , τk+
O ) = sup

γk∈[0,Aj ]

[

V (max(Wi − γk, 0), A − γk, τk
O) + f(γk)

]

.

As it is computationally expensive to find the exact value of γk, we select a handful of control values
and use the best value amongst them as an estimator for γk. The control values ˆγk,ℓ, ℓ = 1, . . . , L

are homogeneously spread out on the interval [0, Aj ], and include the values 0, Gr(τk+1
O − τk

O) and
Aj . Since in most cases the true value corresponds to one of these three values, the magnitude of L

does not play a significant role in the quality of this estimator. Therefore choosing a low value for
L ( around one fourth of the number of discretization points used for A), will provide satisfactory
results.

Continuous withdrawal is approximated by letting every timestep become a withdrawal time,
giving K = N , τk

O = τk for k = 0, . . . , K − 1.
The pricing problem now reduces to find the fair fee α such that

Vα(S = w0, A = w0, t = 0) = w0 (2)

Viewing Vα as being parametrized by the rider fee αg, we solve the equation (2) using a classical
secant method. Typically, around 10 iterations are necessary to obtain convergence of the algorithm
under a fixed tolerance of 10−8.

2.1 Extension with additional variable modelling

In [1] the Authors consider the same GMBW contract taking into account additional structural
features such as the separation of the rider fee into mutual fund management fee and the guarantee
fee, time-dependent parameters, etc. In particular, if α = αm + αg where αm denotes the mutual
fund fee and αg denotes the guarantee fee, the dynamics between withdrawal times given by (1)
changes to:

Vτ =
1

2
σ2W 2VW W + (r − α)WVW + −rV + αmW.

The variable αm is exogenously given, therefore in the pricing problem we are looking for the
no-arbitrage insurance fee αg.



2.2 Numerical examples

There is multiple choices for parameters. Most of them can be treated by modifying correct lines
in the program. Table 1 gives an overview of the parameters with their default values in the last
column.

Table 1: Parameters implemented in the program for pricing GMWB contracts

Model r risk free interest rate 0.05
sigma volatility 0.2

t maturity 10

Product w0 initial lump-sum premium 100
gr maximum withdrawal rate 10/year
k withdrawal penalty 0.1
c fix cost of withdrawal 10−8

Table 2: Time-dependent penalty charge (κ(t))

Year Penalty κ(t)

0 ≤ t < 2 0.08
2 ≤ t < 3 0.07
3 ≤ t < 4 0.06
4 ≤ t < 5 0.05
5 ≤ t < 6 0.04
6 ≤ t < 7 0.03

7 ≤ t 0

• One can choose between the continuous model and the discrete model by setting the variable
is_cont to 1 or 0, respectively. In the case of discrete withdrawal, the difference between
consecutive withdrawal times can be set by the variable t_with. In [2], the Authors consider
0.5 and 1 year for t_with.

• In [1], the Authors introduce a time-dependent withdrawal penalty, which is a typical fea-
ture of many real GMWB contracts. The penalty is usually decreasing as we approach the
maturity, the values applied in the article are given in Table 2.

• Also in [1], the default value of the mutual fund fee alpha_m is set to 0.01.

3 Conclusion

The method is relatively easy to implement, the main difficulty is to understand the specifications
of the contract. I hope that this documentation is easier to read than the original article.
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