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1 Model

Let S represent the price of the underlying asset. Its path is modelled by the following stochastic
differential equation

dSt

St
= ξdt + σdZt, (1)

where ξ is the drift rate, σ is the volatility and dZt is the increment of a standard Gauss-Wiener
process. Let V (S, t) be the value of a European contract that depends on the underlying asset
value S at time t with maturity T . Then

Vτ =
σ(Γ, S, t)2S2

t

2
∂SSV + rSt∂SV − rV, (2)

where τ = T − t, Γ = ∂SSV and r is the risk free rate of interest. We have allowed the volatility
to be a function of Γ = ∂SSV , as well as the underlying asset price S and time t. In an uncertain
volatility model, it is assumed that

σmin ≤ σ ≤ σmax. (3)

The worst case value for an investor with a long position in the option is determined from the
solution to equation 2 with σ(Γ) given by

σ(Γ) =

{

σmax if Γ < 0,
σmin if Γ > 0.

(4)

Conversely, the best case value corresponds to

σ(Γ) =

{

σmax if Γ > 0,
σmin if Γ < 0.

(5)

A cliquet option offers a combination of floors and caps on returns on the underlying asset. Let
S(ti) be the value of the underlying asset at time ti. There are a total of Nobs observation times
over the life of the contract. Define the return during the period [ti−1, ti] to be

Ri =
S(ti) − S(ti−1)

S(ti−1)
. (6)

The payoff of a cliquet is

Payoff = Notional × max

(

Fg, min

(

Cg,

Nobs
∑

i=1

max (Fl, min (Cl, Ri))

))

, (7)

where Cl, Fl are local caps and floors placed on the individual returns, and Cg, Fg are a global
cap and floor.
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2 New variables

We introduce two new state variables: P corresponding to the asset price at the previous observa-
tion

P (t) = S(tk), for all k ≥ 1, for t ∈ (tk, tk+1), (8)

and Z, such that for k ≥ 1, for t ∈ (tk, tk+1)

Z(t) =

k
∑

i=1

max (Fl, min (Cl, Ri)) , (9)

with Z(t < t1) = 0. Consequently, the payoff at time t = T becomes

Payoff = Notional × max (Fg, min (Cg, Z)) . (10)

If t−

k , t+
k are the times the instant before and after the kth observation, then, no arbitrage consid-

erations lead to the following jump conditions:

R =
S(tk) − P (t−

k )

P (t−

k )
(11)

R∗ = max(Fl, min(Cl, R)) (12)

Z(t+
k ) = Z(t−

k ) + R∗ (13)

P (t+
k ) = S(tk) (14)

V (S, t−

k , P (t−

k ), Z(t−

k ) = V (S, t+
k , P (t+

k ), Z(t+
k ), (15)

Since the stochastic differential equation is independent of the new state variables (P, Z), we
can discretize the state variables as

{P1, . . . , Pj , . . . , Pjmax
} and {Z1, . . . , Zk, . . . , Zkmax

} (16)

and solve a one dimensional PDE for each discrete value of (Pj , Zk) between two observation dates.
To move the solution across an observation date, we use the jump conditions. Notice that the jump
conditions are undefined if P = 0 (which is in fact unattainable in general case). Therefore, it is
important to discretize P such that P1 > 0. We use points with an hyperbolic repartition between
Smin and Smax (respectively the minimal and maximal value of the space domain of the underlying).
These points are centered on S0, the initial value of the underlying. The exact formula is

Pj = S0+

(

arctanh

(

−0.9 +
(j − 1)(0.9 + L)

jmax − 1

)

− arctanh(−0.45 + 0.5L))

)

×
(Smin − S0)

arctanh(−0.9)
(17)

where

L = tanh

(

Smax − S0

Smin − S0
× arctanh(−0.9)

)

/ 1 (18)

such that

P1 = Smin − (arctanh(−0.45 + 0.5L))) ×
(Smin − S0)

arctanh(−0.9)
≈ Smin,

P(jmax+1)/2 = S0,

Pjmax
= Smax −

(

arctanh(−0.45 + 0.5L)

arctanh(−0.9)

)

× (Smin − S0) ≈ Smax.

As discussed by Forsyth and al. (2002), it is generally necessary to carry out an interpolation
operation to approximate the jump conditions at observation dates. If we assume that

σ = σ(S, t, P ) = σ(ρS, t, ρP ) for all ρ > 0, (19)



then V is homogeneous of degree zero in (S, P )

V (S, t; P, Z) = V (ρS, t; ρP, Z) for all ρ > 0, (20)

which implies that we need only solve for one reference value P = P ∗. This effectively reduces the
dimensionality of the problem from three to two. This assumption seems somewhat peculiar, but
has a modelling rationale explained in [1]. In this case, we speak about similarity reduction.

With regard to the mesh for the Z variable, there are no particular noteworthy issues, so we
use a linear spacing between min(Fl, 0) × Nobs and Cl × Nobs with kmax values. However, some
issues arise in the construction of the P grid (for cases where no similarity reduction is available).
Suppose that we use an S grid (S1, . . . , Simax

) and a P grid (P1, . . . , Pjmax
). In a Cartesian product

S × P grid - with the same node spacing in the S and P directions - no interpolation is required
during the application of the state variable updating rule Pt+ = S. The major advantage of this
repeated grid is that no interpolation error is introduced at each observation date. But in Windcliff
et al. (2001), it is shown that this type of grid results in poor convergence. Normally, we choose
a fine node spacing near the initial asset price S = S∗, since this is the region of most interest.
However, since the nodes P = S for all values of S are required during the application of the jump
condition, these values may have poor accuracy in areas where the S node spacing is large. it is
therfore desirable to have a fine node spacing in the S direction for all nodes near the diagonal of
the (S, P ) grid. We have a prototype grid constructed in 17 such that S∗ is in the discretization,
so we use the following algorithm to construct the scaled grid:

Set jmax = imax.
For j = 1, . . . , jmax

Set Si,j = PiPj/S∗, for all i = 1, . . . , imax

Since there is an i∗ such that Pi∗ = S∗, then Si∗,j = Pj . In other words, for each line of
constant Pj , there is a node on the diagonal Si,j = Pj . In the scaled grid, interpolation is required
to satisfy the state variable updating rule. An obvious method is to linearly interpolate along the
S axis and then along the P axis, which we refer to as the xy interpolation in the following. We
use the following algorithm:

For the update between S and P (for all possible time t and variable Z).
Find the index s in the S grid such that Ss ≤ S ≤ Ss+1.
Find the index p in the P grid such that Pp ≤ P ≤ Pp+1.
Define the variables:

V S,Pp = V (Ss, Pp) +
V (Ss+1, Pp) − V (Ss, Pp)

Ss+1 − Ss
(S − Ss).

V S,Pp+1 = V (Ss, Pp+1) +
V (Ss+1, Pp+1) − V (Ss, Pp+1)

Ss+1 − Ss
(S − Ss).

Create the interpolated value:

V (S, P ) = V S,Pp +
V S,Pp+1 − V S,Pp

Pp+1 − Pp
(P − Pp).

An other method is given by the diagonal interpolation and the following algorithm:

For the update between S and P (for all possible time t and variable Z).
Find the index p in the P grid such that Pp ≤ S ≤ Pp+1.
Create the interpolated value:

V (S, P = S) = V (S = Pp, Pp) +
V (Pp+1, Pp+1) − V (Pp, Pp)

Pp+1 − Pp
(S − Pp).

For each one dimensional partial differential equation, we must specified the boundary condi-
tions on the domain [Smin, Smax]. At Smin and Smax we specified ∂SSV = 0. In order to avoid
non-desired effects, we may select a value of Smin on a coarse grid, and then reduce Smin as the
grid is refined, so as to ensure the correct limiting behavior. This is ensure by the formula 17.



3 Boundary conditions and effect of grid interpolation

If the scaled one dimensional grids are constructed, then there will be situations where Si,j > Pjmax

or Si,j < P1. In these cases, our computational domain does not have sufficient data to allow
interpolation of the state variable updating rule P (t+) = S. If this happens, we assume that this
data can be approximated by assuming that the similarity reduction is locally valid. This means
that

V (Si,j , t; P = Si,j , Z) ∼ V (Pjmax
, t; Pjmax

, Z), Si,j > Pjmax

∼ V (P1, t; P1, Z), Si,j < P1.

In [1], the authors have studied the effect of grid interpolation. A series of refined grids was
constructed where on each refinement the timestep size was halved, new nodes were inserted be-
tween each coarse grid node, and a new node was inserted in the S grid in (0, S1). The results
in table ?? indicate that a repeated grid results in very poor convergence even though there is no
interpolation error in the (S, P ) directions when applying the jump conditions. Clearly, the use of
the scaled grid satisfying conditions described before is very effective. Hence, we will use only this
method.

Nodes Timesteps Scaled Grid Scaled Grid Repeated Grids
(imax, jmax, kmax) (diagonal interpolation) (xy interpolation)

35 × 35 × 13 40 .167847 .169728 .148230
70 × 70 × 25 80 .167229 .167837 .159672

140 × 140 × 49 160 .167046 .167211 .164720

Table 1: Value of a cliquet option given in [1].

4 Complete algorithm

- First we create a function in order to find the index i∗ in the S grid such that, for a given point
S∗, Si∗ ≤ S∗ ≤ Si∗+1. This function is extended to the P and Z grid.
- We define the scaled grid for S and P values and a uniform grid for Z values.
- We define the terminal value at time Nobs. It is max(Fg, min(Cg, Z)).
- We start a loop on observation dates (denoted as t below).

• We start a loop on the Z values (denoted Z∗ below).

– We start a loop on the P values (denoted P∗ below).

∗ We start a loop on the S values (denoted S∗ below).

· We define the variables R and R∗ needed for the jump condition given in 11.

· We find the indexes s, p and z such that Ps ≤ S∗ ≤ Ps+1, Pp ≤ P∗ ≤ Pp+1 and
Zz ≤ Z∗ + R∗ ≤ Zz+1.

· We use the diagonal interpolation to compute the V (S∗, t; P∗, Zz) and V (S∗, t; P∗, Zz+1).

· We do a linear interpolation between V (S∗, t; P∗, Zz) and V (S∗, t; P∗, Zz+1) to
compute V (S∗, t; P∗, Z∗).

· If s = 0 or s = jmax, then we are on the boundary, and we use the extrapolation
method according to a similarity reduction.

∗ End of loop on the S values.

– End of loop on the P values.

• End of loop on the Z values.

• We start a loop on the Z values (denoted Z∗ below).



– We start a loop on the P values (denoted P∗ below).

∗ We solve the partial differential equation for each P∗ and Z∗ values.

∗ We use the boundary conditions at S1 and Smax.

– End of loop on the P values.

• End of loop on the Z values.

- End of loop on the observation dates.
- Finally, we do an interpolation to find the value of the cliquet option at point Z = 0. So we find
the indexes s, p and z such that Ps ≤ S0 ≤ Ps+1, Pp ≤ S0 ≤ Pp+1 and Zz ≤ 0 ≤ Zz+1. s and p are
generally well defined (it is (jmax + 1)/2, see 17). But the indexes z could be undefined, especially
if the minimal value Z1 > 0. In this case, we fix z = 1 and we do a linear interpolation with the
values V (s, 0; s, Z1) and V (s, 0; s, Z2).

5 Conlusion

The discretely observed cliquet valuation problem reduces to solving a set of one dimensional
partial differential equations embedded in a two or three dimensional space. These one dimensional
problems exchange information through jump conditions at each sampling date. The type of grid
used and interpolation method employed for enforcement of the jump conditions at observation
dates has a very large impact on the convergence of the solution. Hence, we will use only the
scaled grid and the diagonal interpolation, coupled with an extrapolation method for determining
missing data at the extremes of the grid.
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