
Exact retrospective Monte Carlo computation
of arithmetic average Asian options

Mohamed Sbai1 and Benjamin Jourdain 1

Premia 18

Abstract

Taking advantage of the recent litterature on exact simulation algorithms (Beskos, Papaspiliopoulos
and Roberts [1]) and unbiased estimation of the expectation of certain fonctional integrals (Wagner [27],
Beskos et al. [2] and Fearnhead et al. [6]), we apply an exact simulation based technique for pricing
continuous arithmetic average Asian options in the Black & Scholes framework. Unlike existing Monte
Carlo methods, we are no longer prone to the discretization bias resulting from the approximation
of continuous time processes through discrete sampling. Numerical results of simulation studies are
presented and variance reduction problems are considered.

Introduction

Although the Black & Scholes framework is very simple, it is still a challenging task to efficiently price Asian
options. Since we do not know explicitly the distribution of the arithmetic sum of log-normal variables, there
is no closed form solution for the price of an Asian option. By the early nineties, many researchers attempted
to address this problem and hence different approaches were studied including analytic approximations (see
Turnbull and Wakeman [24], Vorst [26], Levy [17] and more recently Lord [18]), PDE methods (see Vecer [25],
Rogers and Shi [21], Ingersoll [11], Lelievre and Dubois [5]), Laplace transform inversion methods (see Geman
and Yor [10], Geman and Eydeland [8]) and, of course, Monte Carlo simulation methods (see Kemna and
Vorst [15], Broadie and Glasserman [3], Fu, Madan and Wang [7]).

Monte Carlo simulation can be computationally expensive because of the usual statistical error. Variance
reduction techniques are then essential to accelerate the convergence (one of the most efficient technique is
the Kemna&Vorst control variate based on the geometric average). One must also account for the inherent
discretization bias resulting from approximating the continuous average of the stock price with a discrete
one. It is crucial to choose with care the discretization scheme in order to have an accurate solution (see
Lapeyre and Temam [16]). The main contribution of our work is to fully address this last feature by the use,
after a suitable change of variables, of an exact simulation method inspired from the recent work of Beskos
et al. ([1] and [2]) and Fearnhead et al. [6].
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In the first part of this note, we construct an unbiaised estimator of the price of an European option when
the underlying solves a one-dimensional stochastic differential equation. By a suitable change of variables,
one may suppose that the diffusion coefficient is equal to one. Then, according to the Girsanov theorem,
one may deal with the drift coefficient by introducing an exponential martingale weight. Because of the one-
dimensional setting, the stochastic integral in this exponential weight is equal to a standard integral with
respect to the time variable up to the addition of a function of the terminal value of the path. The entire
series expansion of the exponential function permits to replace this exponential weight by a computable
weight with the same conditional expectation given the Brownian path. This idea was first introduced by
Wagner [27],[28],[29] and [30] in a statistical physics context and it was very recently revisited by Beskos et
al. [2] and Fearnhead et al. [6] for the estimation of partially observed diffusions.

The second part is devoted to the application of this method to continuous Asian option pricing within

the Black & Scholes framework. Throughout the paper, St = S0 exp

(
σWt + (r − δ − σ2

2
)t

)
represents the

stock price at time t, T the maturity of the option, r the short interest rate, σ the volatility parameter, δ
the dividend rate and (W )t∈[0,T ] denotes a standard Brownian motion on the risk-neutral probability space

(Ω,F ,P). We are interested in computing the price C0 = E

(
e−rT f

(
1
T

∫ T

0
Stdt

))
of a European option with

pay-off f
(

1
T

∫ T

0
Stdt

)
assumed to be square integrable under the risk neutral measure P. We propose a new

change of variables which is singular at initial time and we show how to apply the method based on the
unbiased estimator of Wagner [27] presented in the first section.

1 The unbiased estimator (U.E)

Consider the stochastic process (ξt)0≤t≤T determined as the solution of a general stochastic differential
equation of the form : {

dξt = b(ξt)dt+ σ(ξt)dWt

ξ0 = ξ ∈ R
(1)

where b and σ are scalar functions satisfying the usual Lipschitz and growth conditions with σ non vanishing.
To simplify this equation, [1] suggests to use the following change of variables : Xt = η(ξt) where η is a
primitive of 1

σ (η(x) =
∫ x

.
1

σ(u)du).

Under the additional assumption that 1
σ is continuously differentiable, one can apply ItÃ´’s lemma to get

dXt = η′(ξt)dξt +
1

2
η′′(ξt) d< ξ, ξ >t

=
b(ξt)

σ(ξt)
dt+ dWt − σ′(ξt)

2
dt

=

(
b(η−1(Xt))

σ(η−1(Xt))
− σ′(η−1(Xt))

2

)

︸ ︷︷ ︸
a(Xt)

dt+ dWt

So ξt = η−1(Xt) where (Xt)t is a solution of the stochastic differential equation
{
dXt = a(Xt)dt+ dWt

X0 = x.
(2)

Thus, without loss of generality, one can start from equation (2) instead of (1).
In finance, the pricing of contingent claims often comes down to the problem of computing an expectation

of the form
C0 = E (f(XT )) (3)

where X is a solution of the SDE (2) and f is a scalar function such that f(XT ) is square integrable. In a
simulation based approach, one is usually unable to exhibit an explicit solution of this SDE and will therefore
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resort to numerical discretization schemes, such as the Euler or Milstein schemes, which introduce a bias.
Here, we are going to present a technique which permits to compute exactly the expectation (3) under mild
assomptions.

Let us denote by (W x
t )t∈[0,T ] the process (Wt + x)t∈[0,T ], by QW x its law and by QX the law of the

process (Xt)t∈[0,T ]. From now on, we will denote by (Yt)t∈[0,T ] the canonical process, that is the coordinate
mapping on the set C([0, T ],R) of real continuous maps on [0, T ] (see [20] or [14]).

One needs the following assumption to be true

Assumption 1 : Under QW x , the process

Lt = exp

[∫ t

0

a(Yu)dYu − 1

2

∫ t

0

a2(Yu)du

]

is a martingale.

According to Rydberg [22], a sufficient condition for this assumption to hold is
-Existence and uniqueness in law of a solution to the SDE (2).

-∀t ∈ [0, T ],

∫ t

0

a2(Yu)du < ∞, QX and QW x almost surely on C([0, T ],R).

Thanks to this assumption, one can apply the Girsanov theorem to get that QX is absolutely continuous
with respect to QW x and its Radon-Nikodym derivative is equal to

dQX

dQW x

= exp

[∫ T

0

a(Yt)dYt − 1

2

∫ T

0

a2(Yt)dt

]
.

Consider A the primitive of the drift a, and assume that

Assumption 2 : a is continuously differentiable.

Since, by ItÃ´’s lemma, A(W x
T ) = A(x) +

∫ T

0
a(W x

t )dW x
t + 1

2

∫ T

0
a′(W x

t )dt, we have

dQX

dQW x

= exp

[
A(YT ) −A(x) − 1

2

∫ T

0

a2(Yt) + a′(Yt)dt

]
.

So, the expectation (3) writes

C0 = E

(
f(W x

T ) exp

[
A(W x

T ) −A(x) − 1

2

∫ T

0

a2(W x
t ) + a′(W x

t )dt

])
. (4)

In order to implement an importance sampling method, let us introduce a positive density ρ on the real
line and a process (Zt)t∈[0,T ] distributed according to the following law QZ

QZ =

∫

R

L
(

(W x
t )t∈[0,T ]|W x

T = y
)
ρ(y)dy.

By (4), one has

C0 = E

(
ψ(ZT ) exp

[
−
∫ T

0

φ(Zt)dt

])
(5)

where ψ : z 7→ f(z) e
A(z)−A(x)−

(z−x)2

2T√
2πρ(z)

and φ : z 7→ a2(z)+a′(z)
2 . The free parameter ρ is chosen in such a

way that it reduces the variance of the simulation.
In his first paper [27], Wagner constructs an unbiased estimator of the expectation (5) when ψ is a

constant, (Zt)t∈[0,T ] is an Rd−valued Markov process with known transition function and φ is a measurable
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function such that E

(
e

∫
T

0
|φ(Zt)|dt

)
< +∞. His main idea is to expand the exponential term in a power

series, then, using the transition function of the underlying Markov process and symmetry arguments, he
constructs a signed measure ν on the space Y =

⋃+∞
n=0([0, T ] × Rd)n+1 such that the expectation at hand is

equal to ν(Y). Consequently, any probability measure µ on Y that is absolutely continuous with respect to
ν gives rise to an unbiased estimator ζ defined on (Y, µ) via ζ(y) = dν

dµ (y). In practice, a suitable way to
construct such an estimator is to use a Markov chain with an absorbing state. Wagner also discusses variance
reduction techniques, specially importance sampling and a shift procedure consisting on adding a constant c
to the integrand φ and then multiplying by the factor e−cT in order to get the right expectation. Wagner [29]
extends the class of unbiased estimators by perturbating the integrand φ by a suitably chosen function φ0 and
then using mixed integration formulas representation. Very recently, Beskos et al. [2] obtained a simplified
unbiased estimator for (5), termed Poisson estimator, using Wagner’s idea of expanding the exponential in
a power series and his shift procedure. To be specific, the Poisson estimator writes

ψ(ZT )ecpT −cT
N∏

i=1

c− φ(ZVi
)

cP
(6)

where N is a Poisson random variable with parameter cP and (Vi)i is a sequence of independent random
variables uniformly distributed on [0, T ]. Fearnhead et al. [6] generalized this estimator allowing c and cP to
depend on Z and N to be distributed according to any positive probability distribution on N. They termed
the new estimator the generalized Poisson estimator. We introduce a new degree of freedom by allowing
the sequence (Vi)i to be distributed according to any positive density on [0, T ]. This gives rise to following
unbiased estimator for (5) :

Lemma 1. — Let pZ and qZ denote respectively a positive probability measure on N and a positive probability
density on [0, T ]. Let N be distributed according to pZ and (Vi)i∈N∗ be a sequence of independent random
variables identically distributed according to the density qZ , both independent from each other conditionally
on the process (Zt)t∈[0,T ]. Let cZ be a real number which may depend on Z. Assume that

E

(
|ψ(ZT )|e−cZ T exp

[∫ T

0

|cZ − φ(Zt)|dt
])

< ∞.

Then

ψ(ZT )e−cZ T 1

pZ(N)N !

N∏

i=1

cZ − φ(ZVi
)

qZ(Vi)
(7)

is an unbiased estimator of C0.

Proof. The result follows from

E

(
ψ(ZT )e−cZ T 1

pZ(N)N !

N∏

i=1

cZ − φ(ZVi
)

qZ(Vi)

∣∣∣(Zt)t∈[0,T ]

)
= ψ(ZT )e−cZ T

+∞∑

n=0

(∫ T

0
cZ − φ(Zt)dt

)n

pZ(n)n!
pZ(n)

= ψ(ZT ) exp

(
−
∫ T

0

φ(Zt)dt

)
.

Using (7), one is now able to compute the expectation at hand by a simple Monte Carlo simulation. The
practical choice of pZ and qZ conditionnaly on Z is studied in the appendix A.
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Remark 2. — One can derive two estimators of C0 from the result of Lemma 1 :

δ1 =
1

n

n∑

i=1

f(Zi
T )
eA(Zi

T )−A(x)−
(Zi

T
−x)2

2T√
2πρ(Zi

T )
e−cZ T 1

pZ(N i)N i!

Ni∏

j=1

cZ − φ(Zi
V i

j

)

qZ(V i
j )

δ2 =

n∑

i=1

f(Zi
T )
eA(Zi

T )−A(x)−
(Zi

T
−x)2

2T√
2πρ(Zi

T )

1

pZ(N i)N i!

Ni∏

j=1

cZ − φ(Zi
V i

j

)

qZ(V i
j )

n∑

i=1

eA(Zi
T )−A(x)−

(Zi
T

−x)2

2T√
2πρ(Zi

T )

1

pZ(N i)N i!

Ni∏

j=1

cZ − φ(Zi
V i

j

)

qZ(V i
j )

.

2 Application : the pricing of continuous Asian options

In the Black & Scholes model, the stock price is the solution of the following SDE under the risk-neutral
measure P

dSt

St
= (r − δ)dt+ σdWt (8)

where all the parameters are constant : r is the short interest rate, δ is the dividend rate and σ is the
volatility.
Throughout, we denote γ = r − δ − σ2

2 . The path-wise unique solution of (8) is

St = S0 exp(σWt + γt) .

We consider an option with pay-off of the form

f

(
1

T

∫ T

0

Stdt

)
(9)

where f is a given function such that E

(
f2
(

1
T

∫ T

0
Stdt

))
< ∞, T is the maturity of the option. Note

that an Asian call corresponds to the special case f(x) = (x − K)+ and that an Asian put corresponds to
f(x) = (K − x)+.

The fundamental theorem of arbitrage-free pricing ensures that the price of the option under consideration
is

C0 = E

(
e−rT f

(
1

T

∫ T

0

Sudu

))
.

At first sight, the problem seems to involve two variables : the stock price and the integral of the stock
price with respect to time. Dealing with the PDE associated with Asian option pricing, Rogers and Shi [21]
used a suitable change of variables to reduce the spatial dimension of the problem to one. We are going to
use a similar idea.

Let 



ξt =
S0

t

∫ t

0

eσ(Wt−Wu)+γ(t−u)du

ξ0 = S0.
(10)

Obviously, the two variables ξT and 1
T

∫ T

0
Sudu have the same law. Hence, the price of the Asian option

becomes

C0 = E

(
e−rT f

(
1

T

∫ T

0

Sudu

))
= E

(
e−rT f(ξT )

)
.
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Remark 3. — The pricing of floating strike Asian options is also straightforward using this method. It is
even more natural to consider these options since it unveils the appropriate change of variables as we shall
see below.

Let us consider a floating strike Asian call for example. We have to compute

C0 = E

(
e−rT

( 1

T

∫ T

0

Sudu− ST

)
+

)
.

Using S̃t = Ste
δt as a numÃ c©raire (see the seminal paper of Geman et al. [9]), we immediately obtain that

C0 = EP
S̃

(
S0e

−δT
( 1

T

∫ T

0

Su

ST
du− 1

)
+

)

where P
S̃

is the probability measure associated to the numÃ c©raire S̃t. It is defined by its Radon-Nikodym

derivative
dP

S̃

dP = eσWT − σ2

2 T .
Under P

S̃
, the process Bt = Wt − σt is a Brownian motion and we can write that

C0 = EP
S̃

(
S0e

−δT
(

1
T

∫ T

0
eσ(Bu−BT )+(r−δ+ σ2

2 )(u−T )du− 1
)

+

)

= E

(
S0e

−δT
(

1
T

∫ T

0
eσ(Wu−WT )+(r−δ+ σ2

2 )(u−T )du− 1
)

+

)

= E

(
e−δT

(
ξT − S0

)
+

)

where ξt is the process defined by (10) but with γ = r − δ + σ2

2 . We see therefore that the problem simplifies
to the fixed strike Asian pricing problem.

Let us write down the stochastic differential equation that rules the process (ξt)t∈[0,T ]. Using ItÃ´’s
lemma, we get {

dξt = ξ0−ξt

t dt+ ξt

(
σdWt + (γ + σ2

2 )dt
)

ξ0 = S0.

Note that we are faced with a singularity problem near 0 because of the term ξ0−ξt

t . We are going to reduce
its effect using another change of variables.

Using ItÃ´’s lemma, we show that

C0 = E
(
e−rT f

(
S0e

XT
))

(11)

where Xt = log(ξt/ξ0) solves the following SDE

{
dXt = σdWt + γdt+ e−Xt −1

t dt
X0 = 0.

(12)

Lemma 4. — Existence and strong uniqueness hold for the stochastic differential equation (12).

Proof. Existence is obvious since we have a particular solution Xt. The diffusion coefficient being constant
and the drift coefficient being a decreasing function in the spatial variable, we have also strong uniqueness
for the SDE.

6



Because of the singularity of the term e−Xt −1
t in the drift coefficient, the law of (Xt)t≥0 is not absolutely

continuous with respect to the law of (σWt)t≥0. That is why we now define (Zt)t≥0 by the following SDE
with an affine non-hommogenous drift coefficient :





dZt = σdWt + γdt− Zt

t
dt

Z0 = X0 = 0.
(13)

The drift coefficient exhibits the same behavior as the one in (12) in the limit t → 0 in order to ensure the
desired absolute continuity property. It is affine in the spatial variable so that (Zt)t≥0 is a Gaussian process
and as such is easy to simulate recursively.

Lemma 5. — The process

Zt =
σ

t

∫ t

0

sdWs +
γ

2
t (14)

is the unique solution of the stochastic differential equation (13).

Proof. Using ItÃ´’s Lemma, we easily check that Zt given by (14) is a solution of (13). Again, constant
diffusion coefficient and decreasing drift coefficient ensures strong uniqueness.

Remark 6. — For the computation of the price C0 = E
(
e−rT (S0e

XT −K)+

)
of a standard Asian call

option, the random variable e−rT (S0e
ZT − K)+ provides a natural control variate. Indeed, since ZT is a

Gaussian random variable with mean γ
2T and variance σ2T

3 , one has

E
(
e−rT (S0e

ZT −K)+

)
= S0e

( γ
2 + σ2

6 −r)T N
(
d+ σ

√
1

3
T

)
−Ke−rT N (d)

where N is the cumulative standard normal distribution function and d =
log(S0/K)+ γ

2 T

σ
√

1
3 T

.

Notice that in [15], Kemna and Vorst suggest the use of the control variate

e−rT
(
S0 exp

(
1
T

∫ T

0
σWt + γt dt

)
−K

)

+
which has the same law than e−rT

(
S0e

ZT −K
)

+
as

1

T

∫ T

0

σWt +

γt dt is also a Gaussian variable with mean γ
2T and variance σ2T

3 .

In order to define a new probability measure under which (Zt)t≥0 solves the SDE (12), one introduces

Lt = exp

[∫ t

0

e−Zs − 1 + Zs

σs
dWs − 1

2

∫ t

0

(
e−Zs − 1 + Zs

σs

)2

ds

]
.

Because of the singularity of the coefficients in the neighborhood of s = 0, one has to check that the integrals
in Lt are well defined. This relies on the following lemma

Lemma 7. — Let ǫ > 0. In a random neighborhood of s = 0, we have

|Zs| ≤ cs
1
2 −ǫ and |Xs| ≤ cs

1
2 −ǫ

where c is a constant depending on σ,γ and ǫ.

Since ∀ǫ > 0,

∀z ≤ cs
1
2 −ǫ,

(
e−z − 1 + z

σs

)2

≤ Cs−4ǫ,

we can choose ǫ < 1
4 to deduce that Lt is well defined.
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Proof. We easily check that the Gaussian process (Bt)t∈[0,T ] defined by Bt =

∫ (3t)
1
3

0

sdWs is a standard

Brownian motion. Thanks to the law of iterated logarithm for the Brownian motion (see for example [14] p.
112), there exists t1(ω) such that2,

∀t ≤ t1(ω), |Bt(ω)| ≤ t
1
2 − ǫ

3 .

Therefore,

∀t ≤ (3t1(ω))
1
3 , |Zt(ω)| =

∣∣σ
t
B t3

3

(ω) +
γ

2
t
∣∣ ≤ σ

3
1
2 − ǫ

3

t
1
2 −ǫ +

γ

2
t.

Taking c = max( σ

3
1
2

−
ǫ
3
, γ

2 ) yields

∀t ≤ (3t1(ω))
1
3 ∧ 1, |Zt(ω)| ≤ ct

1
2 −ǫ.

On the other hand, recall that Xt = log(ξt/ξ0) = log

(
1

t
eσWt+γt

∫ t

0

e−σWu−γudu

)
. So, using the law of

iterated logarithm for the Brownian motion, we deduce that there exists t2(ω) such that

∀t ≤ t2(ω), 0 ≤ 1

t
eσWt(ω)+γt

∫ t

0

e−σWu(ω)−γudu ≤ 1

t
eσt

1
2

−ǫ+γt

∫ t

0

eσu
1
2

−ǫ−γudu.

Denote g(t) = 1
t e

σt
1
2

−ǫ+γt
∫ t

0
eσu

1
2

−ǫ−γudu and let us investigate the order in time near zero of this
function. We have that

eσt
1
2

−ǫ+γt = 1 + σt
1
2 −ǫ + O(t1−2ǫ)∫ t

0

eσu
1
2

−ǫ−γudu = t+
σ

3
2 − ǫ

t
3
2 −ǫ + O(t2−2ǫ)

hence
g(t) = 1 + (σ +

σ
3
2 − ǫ

)t
1
2 −ǫ + O(t1−2ǫ),

so Xt(ω) ≤ log (g(t)) ∼
t→0

(σ +
σ

3
2 − ǫ

)t
1
2 −ǫ, which ends the proof for Xt.

Proposition 8. — (Lt)t∈[0,T ] is a martingale and, consequently, for all g : C([0, T ]) → R measurable, the
random variables g((Xt)0≤t≤T ) and g((Zt)0≤t≤T )LT are simultaneously integrable and then

E

(
g((Xt)0≤t≤T )

)
= E

(
g((Zt)0≤t≤T )LT

)
.

Proof. We have already shown existence and strong uniqueness for both SDE (12) and (13). Showing that
the stopping time

τn(Y ) = inf

{
t ∈ R+ such that

∫ t

0

(
e−Ys − 1 + Ys

σs

)2

ds ≥ n

}
, with the convention inf{∅} = +∞,

have infinite limits when n tends to +∞, QX and QZ almost surely, follows from the previous lemma.

2
ω is an element of the underlying probability space Ω.
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One has

LT = exp

[∫ T

0

e−Zt − 1 + Zt

σ2t
dZt −

∫ T

0

e−Zt − 1 + Zt

σ2t

(
e−Zt − 1 + Zt

2t
+ γ − Zt

t

)
dt

]
.

Set A(t, z) =
1 − z + z2

2 − e−z

σ2t
. The function A : ]0, T ]×R → R is continuously differentiable in time and

twice continuously differentiable in space. So, we can apply ItÃ´’s Lemma on the interval [ǫ, T ] for ǫ > 0 :

A(T,ZT ) = A(ǫ, Zǫ) +

∫ T

ǫ

e−Zt − 1 + Zt

σ2t
dZt −

∫ T

ǫ

1 − Zt + Z2
t

2 − e−Zt

σ2t2
dt+

∫ T

ǫ

1 − e−Zt

2t
dt

Using the lemma 5, we let ǫ → 0 to obtain

A(T,ZT ) =

∫ T

0

e−Zt − 1 + Zt

σ2t
dZt −

∫ T

0

1 − Zt + Z2
t

2 − e−Zt

σ2t2
dt+

∫ T

0

1 − e−Zt

2t
dt.

Then

LT = exp

[
A(T,ZT ) −

∫ T

0

φ(t, Zt)dt

]

where φ is the mapping

φ(t, z) =
e−z − 1 + z − z2

2

σ2t2
+

1 − e−z

2t
+
e−z − 1 + z

σ2t

(
e−z − 1 + z

2t
+ γ − z

t

)
. (15)

By (11) and Proposition 8, we get

C0 = E

(
e−rT f(S0e

ZT ) exp

[
A(T,ZT ) −

∫ T

0

φ(t, Zt)dt

])
.

We can use the unbiased estimator if, for a real number cZ possibly dependent on Z, we have

E

(
eA(T,ZT )−rT −cZT |f(S0e

ZT )|e
∫

T

0
|cZ −φ(t,Zt)|dt

)
< ∞. (16)

In order to be able to deal with both call and put options, a sufficient condition for (16) to be true when
f(x) = (x−K)+ or f(x) = (K − x)+ is the following conjecture

Conjecture 9. —

E

(
eA(T,ZT )−rT −cZT (eZT + 1)e

∫
T

0
|φ(t,Zt)|dt

)
< ∞.

Given the complexity of the function φ, it is difficult to give a theoretical proof of this result. Nevertheless,
numerical tests are very satisfactory.

Let pZ and qZ denote respectively a positive probability measure on N and a positive probability density
on [0, T ]. Let N be distributed according to pZ and (Ui)i∈N∗ be a sequence of independent random variables
identically distributed according to the density qZ , both independent conditionnaly on the process (Zt)t∈[0,T ].
Assuming the conjecture 9, we can write that

C0 = E

(
eA(T,ZT )−rT −cZT f(S0e

ZT )
1

pZ(N)N !

N∏

i=1

cZ − φ(Ui, ZUi
)

qZ(Ui)

)
for f(x) = (x−K)+ or f(x) = (K−x)+.

(17)
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The above expectation can be computed by the Monte Carlo method. It is very important then that the
random variable of interest is not only integrable but also square integrable in order that the central limit
theorem holds and so it becomes possible to build confidence intervals. The square integrability condition
writes

E


e2A(T,ZT )−2rT −2cZ T f2(S0e

ZT )

(∫ T

0
(cZ−φ(t,Zt))2

qZ(t) dt
)N

pZ(N)2 (N !)2


 < ∞, (18)

which is again very difficult to check whatever the choice of pZ and qZ . But, at least, we may choose the

probability distribution q such that the integral
∫ T

0
φ2(t,Zt)

qZ (t) dt is well defined. To do so, we need the following
lemma

Lemma 10. — Let ǫ > 0. In a random neighborhood of zero, we have that

φ(t, Zt) +
2Z3

t

3σ2t2
− Zt

2t
= O(t−ǫ) (19)

and consequently, for distributions q of the form q(t) = Cta with a > −1 and C a normalizing constant, we
have that ∫ T

0

φ2(t, Zt)

q(t)
dt < ∞ a.s if and only if a < 0.

Proof. We rewrite (15) this way

φ(t, z) =

(
1 − e−z

2
+ γ

e−z − 1 + z

σ2

)
1

t
−
(

1 − z + z2

2 − e−z − 1
2 (e−z − 1 + z)(e−z − 1 − z)

σ2

)
1

t2

and make the following Taylor expansions

1 − z + z2

2 − e−z − 1
2 (e−z − 1 + z)(e−z − 1 − z)

σ2
=

2

3σ2
z3 + O(z4)

and
1 − e−z

2
+ γ

e−z − 1 + z

σ2
=

1

2
z + O(z2).

Using lemma 7, we deduce that, in a random neighborhood of zero,

φ(t, Zt) +
2Z3

t

3σ2t2
− Zt

2t
= O(t−ǫ).

We then have

φ(t, Zt) = − 2Z3
t

3σ2t2
+
Zt

2t
+R(t, Zt),

where the remainder term R(t, Zt) is such that there exists t1(ω) for which ∀t ≤ t1(ω), |R(t, Zt(ω))| ≤ t−ǫ.
Hence, for a ∈ (−1, 0), taking ǫ such that 2ǫ+ a < 1 ensures that

∫ T

0

|R(t, Zt(ω))|2
ta

dt < ∞.

10



We have seen in the proof of lemma 7 that Zt = σ
t B t3

3

+ γ
2 t where Bt is a standard Brownian motion.

So, clearly,

∫ T

0

1

ta

(
2Z3

t

3σ2t2
− Zt

2t

)2

dt < ∞ a.s. if and only if

∫ T

0

1

ta

(
2

3σ2t2
(
σ

t
B t3

3

)3 − 1

2t
(
σ

t
B t3

3

)

)2

dt < ∞ a.s.

Using the change of variables u = t3

3 , we write that

∫ T

0

1

ta

(
2

3σ2t2
(
σ

t
B t3

3

)3 − 1

2t
(
σ

t
B t3

3

)

)2

dt =

∫ T 3

3

0

1

(3u)
a
3

(
2σ

3(3u)
5
3

B3
u − σ

2(3u)
2
3

Bu

)2

du

=

∫ T 3

3

0

1

(3u)
a+1

3

B̃udu

where the law of B̃u := u
1
3

(
2σ

3(3u)
5
3

B3
u − σ

2(3u)
2
3

Bu

)2

is independent of u by the scaling property of the

Brownian motion. We can now apply the so-called Jeulin’s lemma (see [12] Lemma 3.22, p. 44 or [13]) which
can be written this way (see [19]) :

Jeulin’s Lemma 11. — Let (Ht)t∈[0,T ] be a measurable and non negative process such that, for fixed t, the
law of Ht does not depend on t, and

E(Ht) < +∞ and P(Ht > 0) = 1.

Consider a deterministic, positive and σ−finite measure ν(dt) on [0, T ]. Then, the event {
∫ T

0
Htν(dt) < +∞}

has probability zero or one according to ν([0, T ]) = +∞ or ν([0, T ]) < +∞.

Consequently,

∫ T

0

1

ta

(
2Z3

t

3σ2t2
− Zt

2t

)2

dt < ∞ a.s. if and only if

∫ T 3

3

0

1

(3u)
a+1

3

dt,

which is true if and only if a ∈ (−1, 0).

Remark 12. — According to this lemma, when using a uniform variable for qZ , which corresponds to the
use of the generalized Poisson estimator of Fearnhead et al. [6], the square integrability condition (18) is not
satisfied and it is not legitimate to build confidence intervals. Yet, we were unable to illustrate this result by
numerical computations.

2.0.1 Numerical implementation

We first discuss the practical choice of the probability distributions pZ and qZ in order to compute (17) by
the Monte Carlo method. As suggested in the appendix A, we choose a Poisson distribution for p. Its mean
is set to cpT where cp is a free parameter. The choice of qZ is more intricate. Lemma 10 leads us to consider
probability distributions of the form qZ(t) = Cta with a ∈ (−1, 0). Using lemma 7 and the expansion (19),
we see that |φ| is approximately of order 1√

t
. So, as suggested in the appendix A, we choose the following

distribution for qZ : qZ(t) = 1
2

√
t
√

T
1[0,T ](t).

To fix the ideas, let us consider a call option. The price C0 simplifies then to

C0 = E

(
eA(T,ZT )−rT (S0e

ZT −K)+ e
cpT −cZT

N∏

i=1

2
√
Ui (cZ − φ(Ui, ZUi

))

cp

√
T

)
.

11



Remark 13. — Simulating from the probability distribution qZ is straightforward using the inverse of the
cumulative distribution function. But we frequently simulate very small values (of order 10−9) which pose
over-floating problems with the computation of φ. The solution that we propose is to use the equivalent of φ
given in lemma 10 instead of its exact expression (15) for Ui smaller than 10−7.

Variance reduction : Subsequently, we investigate different ways to reduce the variance. We already
have two levers for reducing the variance which are the parameters cp and cZ .

Also, as pointed out in Remark 6, we can use a control variate technique. In order to get the best out of
it and, at the same time, to smoothen integrability problems, we compute a conditional expectation on the
trajectory of Zt. That is, for every simulated path (Zj

t )t∈[0,T ], we compute

1

n

n∑

k=1

Nk∏

i=1

2
√
Uk

i

(
cZ − φ(Uk

i , Z
j

Uk
i

)
)

cp

√
T

(20)

instead of
N∏

i=1

2
√
Ui

(
cZ − φ(Ui, Z

j
Ui

)
)

cp

√
T

.

This method of computation is more time consuming and we have to choose very carefully the parameter n
so that the variance reduction we obtain is sufficient to gain on the exchange. An empirical study suggested
the choice of cp = cZ = T

2 and n = 5.
To summarize, we approximate C0 by the following optimized unbiased estimation :

C0 ≈ 1

M

M∑

j=1

e−rT (S0e
Zj

T −K)+


eA(T,Zj

T
)ecpT −cZT


 1

n

n∑

k=1

Nk∏

i=1

2
√
Uk

i

(
cZ − φ(Uk

i , Z
j

Uk
i

)
)

cp

√
T


− 1




+S0e
( γ

2 + σ2

6 −r)T N
(
d+ σ

√
1

3
T

)
−Ke−rT N (d).

Remark 14. — Using the call-put parity, one may compute the put option instead of the call when the
variance is lower for the put and vice versa. In the implementation of the method, we choose to compute the
put whenever S0e

rT < K and to compute the call otherwise.

3 Conclusion

Clearly, the U.E method is not yet competitive regarding computation time. Nevertheless, unlike the usual
discretization methods which are prone to discretization errors, it gives an exact price within a Monte Carlo
confidence interval. We also point out the limit of the U.E method for long maturities and high volatilities.
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A The practical choice of p and q in the U.E method

The best choice for the probability law p of N and the common density q of the variables (Vi)i≥1 is obviously
the one for which the variance of the simulation is minimum. In a very general setting, it is difficult to
tackle this issue. In order to have a first idea, we are going to restrict ourselves to the computation of

E

(
1

p(N)N !

N∏

i=1

g(Vi)

q(Vi)

)
where g : [0, T ] → R.

Lemma 15. — When g is a measurable function on [0, T ] such that 0 <

∫ T

0

|g(t)|dt < +∞, the variance of

1

p(N)N !

N∏

i=1

g(Vi)

q(Vi)
is minimal for

qopt(t) =
|g(t)|

∫ T

0
|g(t)|dt

1[0,T ](t) and popt(n) =

(∫ T

0
|g(t)|dt

)n

n!
exp

(
−
∫ T

0

|g(t)|dt
)
.

Proof. Minimizing the variance in (7) comes down to minimizing the expectation of the square of
1

p(N)N !

N∏

i=1

g(Vi)

q(Vi)
.

Set

F (p, q) = E

(
1

(p(N)N !)2

N∏

i=1

g2(Vi)

q2(Vi)

)
=

+∞∑

n=0

(∫ T

0
g2(t)
q(t) dt

)n

p(n) (n!)2
.

Using Cauchy-Schwartz inequality we obtain a lower bound for F (p, q)

F (p, q) =
+∞∑

n=0




(∫ T

0
g2(t)
q(t) dt

)n
2

p(n)n!




2

p(n) ≥




+∞∑

n=0

(∫ T

0
g2(t)
q(t) dt

)n
2

n!




2

=




+∞∑

n=0

(∫ T

0

(
g(t)
q(t)

)2

q(t)dt

)n
2

n!




2

≥




+∞∑

n=0

(∫ T

0
|g(t)|dt

)n

n!




2

= exp

(
2

∫ T

0

|g(t)|dt
)
.

We easily check that this lower bound is attained for qopt and popt.

The optimal probability distribution popt is the Poisson law with parameter

∫ T

0

|g(t)|dt. This justifies our

use of a Poisson distribution for p.
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