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Abstract. We propose a new methodology to compute Value at Risk (VaR) and Expected

Shortfall (ES) for quantifying losses in credit portfolios. We approximate the cumulative
distribution of the loss function by a finite combination of Haar wavelet basis functions
and calculate the coefficients of the approximation by inverting its Fourier transform. The
Wavelet Approximation (WA) method is particularly suitable for non-smooth distributions,
often arising in small or concentrated portfolios, when the hypothesis of the Basel II formulas
are violated. To test the methodology we consider the one-factor Merton model as our model
framework. WA is an accurate, robust and fast method, allowing to estimate VaR and ES
much more quickly than with a Monte Carlo (MC) method at the same level of accuracy
and reliability. This work is based on [Mas11, Ort12].

Premia 18

1. Introduction

Financial companies need to evaluate and to manage risks originated from their business
activities. In particular, the credit risk underlying the credit portfolio is often the largest
risk in a bank and its measure is used to assign capital in order to absorb potential losses
arising from the credit portfolio.

The Merton model is the basis of the Basel II IRB approach. It is a Gaussian one factor
model such that default events are driven by a latent common factor that is assumed to follow
a Gaussian distribution. Under this model, loss only occurs when an obligor defaults in a
fixed time horizon. If we assume certain homogeneity conditions, this one factor model leads
to a simple analytical asymptotic approximation for the loss distribution and Value at Risk

(VaR), also called the Asymptotic Single Risk Factor (ASRF) model. This approximation
works well for a large number of small exposures but can underestimate risks in the presence
of exposure concentrations (see [Gie06]).

Concentration risks in credit portfolios arise from an unequal distribution of loans to
single borrowers (name concentration) or different industry or regional sectors (sector or
country concentration). Moreover, certain dependencies like, for example, direct business
links between different borrowers, can increase the credit risk in a portfolio since the default
of one borrower can cause the default of a dependent second borrower. This effect is called
default contagion and is linked to both name and sector concentration.
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In credit risk management one is particularly interested in the portfolio loss distribution.
Since the portfolio loss is usually modeled as a sum of random variables, the main task is
to evaluate the probability density function (PDF) of such a sum. The PDF of a sum of
random variables is equal to the convolution of the respective PDFs of the individual asset
loss distributions. The analytical evaluation of this convolution is a difficult problem and
even computationally is very intensive. In full generality it is impractical for realistic size
portfolios.

Monte Carlo simulation is a standard method for measuring the risk of a credit portfolio.
However this method is very time-consuming when the size of the portfolio increases. Com-
putations can become unworkable in many situations, taking also into account that financial
companies have to re-balance their credit portfolios frequently.

For all these reasons, several methods have been developed during the last years. The
saddle point approximation due to [Mar01] gives an analytical approximation of the Laplace
inversion of the moment generating function (MGF). This method has been improved by
[Mar06] based on conditional independence models. [Gla07] applies the methodology devel-
oped by [Aba00] to the one-factor Merton model. First, the Bromwich integral is approxi-
mated by an infinite series using the Trapezoidal Rule and second, the convergence of the
infinite series is accelerated by a method called Euler summation. They have shown that the
cumulative distribution function (CDF) is comparatively accurate in the regions associated
with small losses but it worsens in the tail region, i.e. for big losses. This is due to the fact
that the infinite series obtained by the Euler summation is an alternating series where each
term is very big in absolute value.

Another approach to numerically invert the Laplace transform has been studied by [Hoo82]
and [Ahn03]. Following [Aba00], it consists in applying the Poisson algorithm to approx-
imate the Bromwich integral by an infinite series, and then to use the quotient-difference
(QD) algorithm to accelerate its slow convergence. We refer to this approach as the Hoog

algorithm. Also [Tak08] applies this methodology to the multi-factor Merton model. The nu-
merical examples presented in these papers show that, in contrast with the Euler summation
technique, Hoog algorithm is quite efficient in measuring tail probabilities.

Our contribution is a novel methodology for computing VaR and ES via numerically
inverting the Fourier transform of the CDF of the loss function, once we have approximated
it by a finite sum of Haar wavelets basis functions. Up to certain extent, the idea is similar
to the one in [Aba96], which uses Laguerre polynomials instead of wavelets. In the financial
context, [Hav09] also performs a Laplace transform inversion for option pricing purposes
using a series expansion in terms of the Franklin hat wavelets. The authors numerically
compute the coefficients of the approximation by minimizing the average of squared errors
between the true option prices and estimated prices. The technique to get the coefficients
in our method is quite different in the sense that, our analytical treatment provides an
expression for the wavelet coefficients by means of the Cauchy’s integral theorem. Then
one can compute them using an ordinary trapezoidal rule avoiding this way the infinite
series of [Gla07] and [Tak08]. The power of the WA method mostly resides in the good
balance between computational time and accuracy both for small and high loss levels, and
also for a wide range of portfolios, independent of concentration types and sizes. The saddle
point approach, as an asymptotic method, tends in general to work better for high VaR
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confidence levels when the size of the portfolio increases. Moreover, if the loss distribution
is not smooth due to exposure concentration, a straightforward implementation may be
insufficient. Finally, it is important to remark that Haar wavelets are naturally capable to
reproduce the step-like form distribution derived from the Vasicek model, even when dealing
with extremely small or concentrated portfolios.

2. Portfolio Loss and Value at Risk

To represent the uncertainty about future events, we specify a probability space (Ω,F ,P)
with sample space Ω, σ-algebra F , probability measure P and with filtration (Ft)t≥0 satisfying
the usual conditions. We fix a time horizon T > 0. Usually T equals one year.

Consider a credit portfolio consisting of N obligors. Any obligor n can be characterized
by three parameters: the exposure at default En, the loss given default which without loss
of generality we assume to be 100% and the probability of default Pn, assuming that each of
them can be estimated from empirical default data. The exposure at default of an obligor
denotes the portion of the exposure of the obligor that is lost in case of default. Let Dn be
the default indicator of obligor n taking the following values

Dn =

{
1, if obligor n is in default,
0, if obligor n is not in default,

Let L be the portfolio loss given by:

L =
N∑

n=1

Ln,

where Ln = En ·Dn.
To test our methodology we consider the one-factor Merton model as our model framework.

The Merton model is a one period default model, i.e., loss only occurs when an obligor
defaults in a fixed time horizon. Based on the firm-value model, to describe the obligor’s
default and its correlation structure, we assign to each obligor a random variable called firm-
value. The firm-value of obligor n at time T , Vn(T ), is represented by a common, standard
normally distributed factor Y component (the state of the world or business cycle, usually
called systematic factor) and an idiosyncratic noise component ǫn:

Vn(T ) =
√
ρnY +

√
1 − ρnǫn,

where Y and ǫn, ∀n ≤ N are i.i.d. standard normally distributed.
In case that ρn = ρ for all n, the parameter ρ is called the common asset correlation and

it corresponds to the correlation between obligors. The important point is that conditional
to the realization of the systematic factor Y , the firm’s values and defaults are independent.
From now on, we assume ρn to be constant.

Let us explain in detail the meaning of systematic and idiosyncratic risk. The first one can
be viewed as the macro-economic conditions and affect the credit-worthiness of all obligors
simultaneously. The second one represents conditions inherent to each obligor and this is
why they are assumed to be independent of each other.

In the Merton model, obligor n defaults when its firm-value falls below the threshold level
Tn, defined by Tn ≡ Φ−1(Pn), where Φ−1(x) denotes the inverse of the standard normal
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cumulative distribution function. The probability of default of obligor n conditional to a
realization Y = y is then given by,

pn(y) ≡ P(Vn < Tn | Y = y) = Φ

(
Tn − √

ρy√
1 − ρ

)
.

Consequently, the conditional probability of default depends on the systematic factor,
reflecting the fact that the business cycle affects the possibility of an obligor’s default.

Let us consider a portfolio with N obligors, let fL be the density function of L and FL the
cumulative distribution function of L.

Let α ∈ (0, 1) be a given confidence level (usually α of interest are very close to 1). The
α-quantile of the loss distribution of L in this context is called Value at Risk (VaR):

VaRα = inf{l ∈ R : P(L ≤ l) ≥ α} = inf{l ∈ R : FL(l) ≥ α}.
This is the measure chosen in the Basel II Accord for the computation of capital requirement,
meaning that a bank that manages its risks according to Basel II, must reserve capital by
an amount of VaRα to cover potential extreme losses.

By definition, the Expected Shortfall at confidence level α is given by,

(1) ESα =
1

1 − α

∫ +∞

V aRα

xfL(x)dx.

3. The Haar Basis Wavelets System

Consider the space L2(R) = {f :
∫+∞

−∞ |f(x)|2 dx < ∞}. For simplicity we can view this
set as the set of functions f(x) which get small in magnitude fast enough as x goes to plus
and minus infinity.

A general structure for wavelets in L2(R) is called a Multi-resolution Analysis (MRA). We
start with a family of closed nested subspaces,

... ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ ...

in L2(R) where,
⋂

j∈Z

Vj = {0},
⋃

j∈Z

Vj = L2(R),

and

f(x) ∈ Vj ⇐⇒ f(2x) ∈ Vj+1.

If these conditions are met, then there exists a function φ ∈ V0 such that {φj,k}k∈Z is an
orthonormal basis of Vj, where,

φj,k(x) = 2j/2φ(2jx− k).

In other words, the function φ, called the father function, generates an orthonormal basis
for each Vj subspace.

Let us define Wj in such a way that Vj+1 = Vj ⊕Wj. This is, Wj is the space of functions
in Vj+1 but not in Vj, and so, L2(R) =

∑
j ⊕Wj. Then (see [Dau92]) there exists a function

ψ ∈ W0 such that defining,

ψj,k(x) = 2j/2ψ(2jx− k),
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{ψj,k}k∈Z is an orthonormal basis of Wj and {ψj,k}j,k∈Z is a wavelet basis of L2(R). The ψ
function is called mother function and the ψj,k functions are known as wavelet functions.

For any f ∈ L2(R) a projection map of L2(R) onto Vm,

Pm : L2(R) → Vm,

is defined by means of

(2) Pmf(x) =
m−1∑

j=−∞

k=+∞∑

k=−∞

dj,kψj,k(x) =
∑

k∈Z

cm,kφm,k(x),

where dj,k =
∫+∞

−∞ f(x)ψj,k(x)dx are the wavelet coefficients and the cm,k =
∫+∞

−∞ f(x)φm,k(x)dx
are the scaling coefficients. Note that the first part in (2) is a truncated wavelet series. If j
were allowed to go to infinity, we would have the full wavelet summation. The second part
of (2) gives an equivalent sum in terms of the scaling functions φm,k. Considering higher m
values (i.e. when more terms are used), the truncated series representation of the function f
improves. There exists also an interesting relation between the wavelet coefficients and the
scaling coefficients at different scales:

(3) cj,k =
cj+1,2k + cj+1,2k+1√

2
, dj,k =

cj+1,2k − cj+1,2k+1√
2

.

To develop our work we consider Haar wavelets (see [Dau92]). Using these wavelets, Vj is
the set of L2(R) functions which are constant on each interval of the form [ k

2j ,
k+1
2j ) for all

integers k. In this case the father and mother functions are given by,

φ(x) =

{
1, if 0 ≤ x < 1,
0, otherwise,

and

ψ(x) =





1, if 0 ≤ x < 1
2
,

−1, if 1
2

≤ x < 1,
0, otherwise.

As opposed to Fourier series, a key fact about using wavelets is that wavelets can be
moved (choosing the k value), stretched or compressed (choosing the j value) to accurately
represent the local properties of a function. Moreover, φj,k is nonzero only inside the interval
[ k

2j ,
k+1
2j ). In what follows we take worth of this fact to compute VaR without the need of

knowing the whole distribution of the loss function.

4. Fourier Transform Inversion in a Fixed Interval [a, b]: the WA[a,b] Method

Let us consider a function f ∈ L2(R) and its Fourier transform, whenever it exists:

(4) f̂(w) =
∫ +∞

−∞

e−iwxf(x)dx.
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Since f ∈ L2(R) we can expect that f decays to zero, so it can be well approximated in a
finite interval [a, b] by,

f c(x) =




f(x), if x ∈ [a, b],

0, otherwise.

Following the theory of MRA (in a bounded interval), we can approximate f c(x) ≃ f c
m(x)

for all x ∈ [a, b], where,

f c
m(x) =

2m−1∑

k=0

cm,kφm,k

(
x− a

b− a

)
,

with convergence in L2-norm.
The main idea behind the Wavelet Approximation method is to approximate f̂ by f̂ c

m and
then to compute the coefficients cm,k by inverting the Fourier Transform. Proceeding this
way, we have,

f̂(w) =
∫ +∞

−∞

e−iwxf(x)dx ≃
∫ +∞

−∞

e−iwxf c
m(x)dx

=
2m−1∑

k=0

cm,k

(∫ +∞

−∞

e−iwxφm,k

(
x− a

b− a

)
dx
)
.

Introducing a change of variables, y = x−a
b−a

, gives us,

f̂(w) ≃ (b− a) · e−iaw
2m−1∑

k=0

cm,k

∫ +∞

−∞

e−iw(b−a)yφm,k(y)dy

= (b− a) · e−iaw
2m−1∑

k=0

cm,kφ̂m,k ((b− a) · w) .

Finally, taking into account that φ̂m,k(ξ) = 2− m
2 φ̂( ξ

2m )e−i k
2m ξ and performing a change of

variables, z = e−i b−a
2m w, we find,

(5) f̂
(

2m

b− a
i · log(z)

)
≃ 2− m

2 (b− a) · z 2
ma

b−a φ̂ (i · log(z))
2m−1∑

k=0

cm,kz
k.

If we define,

Pm(z) :=
2m−1∑

k=0

cm,kz
k and Qm(z) :=

2
m
2 z− 2

ma
b−a f̂

(
2m

b−a
i · log(z)

)

(b− a)φ̂ (i · log(z))
,

then, according to the previous formula (5), we have,

(6) Pm(z) ≃ Qm(z).

Since Pm(z) is a polynomial, it is (in particular) analytic inside a disc of the complex plane
{z ∈ C : |z| < r} for r > 0. We can obtain expressions for the coefficients cm,k by means of
Cauchy’s integral formula. This is,

cm,k =
1

2πi

∫

γ

Pm(z)

zk+1
dz, k = 0, ..., 2m − 1,
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where γ denotes a circle of radius r, r > 0, about the origin.
Considering now the change of variables z = reiu, r > 0, gives us,

(7) cm,k =
1

2πrk

∫ 2π

0

Pm(reiu)

eiku
du,

where k = 0, ..., 2m − 1.
Then, we can further expand expression (7) by,

(8) cm,0 =
1

π

∫ π

0
ℜ(Pm(reiu))du,

and,

(9) cm,k =
2

πrk

∫ π

0
ℜ(Pm(reiu)) cos(ku)du, k = 1, . . . , 2m − 1.

On the other side, since φ̂ (i · log(z)) = z−1
log(z)

, we have,

Qm(z) =
2

m
2 z− 2

ma
b−a f̂

(
2m

b−a
i · log(z)

)
log(z)

(b− a)(z − 1)
,

and it has a pole at z = 1. Finally, making use of (6) and taking into account the former
observation, we can exchange Pm by Qm in (8) and (9) to obtain, respectively,

(10) cm,0 ≃ 1

π

∫ π

0
ℜ(Qm(reiu))du,

and,

cm,k ≃ 2

πrk

∫ π

0
ℜ(Qm(reiu)) cos(ku)du, k = 1, ..., 2m − 1,(11)

where r 6= 1 is a positive real number.
In practice, both integrals in (10) and (11) are computed by means of the Trapezoidal

Rule, and we can define,

(12) I(k) =
∫ π

0
ℜ(Qm,j(re

iu)) cos(ku)du,

and,

(13) I(k;h) =
h

2

(
Qm(r) + (−1)kQm(−r) + 2

M−1∑

s=1

ℜ(Qm(reihs)) cos(khs)

)
,

where h = π
M

and hs = sh for all s = 0, . . . ,M . Proceeding this way we find,

cm,k ≃ 2

πrk
I(k) ≃ 2

πrk
I(k;h)

=
1

Mrk

(
Qm(r) + (−1)kQm(−r) + 2

M−1∑

s=1

ℜ(Qm(reihs)) cos(khs)

)
,

(14)

where k = 1, ..., 2m − 1.
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5. Haar Wavelets Approximation

Here, we show that a semi-analytic formula, based on the Haar wavelets can be derived
based on the characteristic function of the portfolio loss, which is defined as,

ϕloss(w) =E

[
e−iwL

]
.(15)

The starting point for the derivation of the characteristic function is the tower property
to calculate the conditional expectation, conditional on variable Y ,

ϕloss(w) := E

[
E

[
e−iwL

∣∣∣Y
]]

= E

[
E

[
exp

(
−iw

N∑

n=1

En ·Dn

)
|Y
]]
.

We recall that in a one-factor model framework, if the systematic factor Y is fixed, default
occurs independently since the only remaining uncertainty is the idiosyncratic risk. Then,

(16) ϕloss(w) = E

[
N∏

n=1

E

[
e−iwEn·Dn|Y

]]
= E

[
N∏

n=1

ϑn(w; y)

]
=
∫

R

fY (y) ·
N∏

n=1

ϑn(w; y)dy,

where fY is the Gaussian density and,

ϑn(w; y) := e−iwEnpn(y) + 1 − pn(y).

The conditional characteristic function for an individual obligor ϑn can be obtained ana-
lytically, and we only need to evaluate (16), the integral over y, numerically to find ϕloss(w).

According to (15), the characteristic function ϕloss is the Fourier transform of the loss
density fL associated to the random variable L. Then,

(17) ϕloss(w) =
∫

R

e−iwlfL(l)dl =
∫

R

e−iwlF ′
L(l)dl,

where F ′
L is the derivative of distribution function FL associated to the random variable L.

Without loss of generality, we can assume that
∑N

n=1 En = 1, and therefore, we can
consider,

FL(l) =




FL(l), if 0 ≤ l ≤ 1,

1, if l > 1,

for certain FL defined in [0, 1].
If we integrate by parts the expression (17), we have,

ϕloss(w) = e−iw + iw
∫ 1

0
e−iwlFL(l)dl,

and then (ϕloss(w) − e−iw)/(iw) is the Fourier transform of FL.
Since FL ∈ L2([0, 1]), according to the theory of MRA we can approximate FL in [0, 1] by

a sum of Haar scaling functions,

(18) FL(l) ≃ F
m

L (l), F
m

L (l) =
2m−1∑

k=0

cm,kφm,k(x),
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with convergence in the L2-norm.
Finally, we can apply the WA[a,b] method in a bounded interval, as described in Section 4,

where [a, b] = [0, 1] in this case, to recover the coefficients of the approximation (18).
In summary, with the characteristic function of the portfolio loss determined, we can apply

the WA[a,b] method to perform the inverse Fourier transformation to recover the density or
the cumulative probability function of the portfolio loss efficiently. Then, VaR and ES values
can be easily extracted from the cumulative probability function.

5.1. VaR and ES Computation. It can be easily proved that

0 ≤ cm,k ≤ 2− m
2 , k = 0, 1, ..., 2m − 1,

and

0 ≤ cm,0 ≤ cm,1 ≤ ... ≤ cm,2m−1.

Considering an approximation in a level of resolutionm, VaR can now be quickly computed
with m coefficients due to the compact support of the basis functions. Observe that due to
the approximation (18) we have,

FL(VaRα) ≃ 2
m
2 · cm,k

for a certain k ∈ {0, 1, ..., 2m − 1}. Thus, we can simply start searching VaRα by means

of the following simple iterative procedure: first we compute F
m

L (2m−1

2m ). If F
m

L (2m−1

2m ) > α

then we compute F
m
L (2m−1−2m−2

2m ), otherwise we compute F
m
L (2m−1+2m−2

2m ), and so on. This

algorithm finishes after m steps storing the k value such that F
m
L ( k

2m ) is the closest value to
α in our m resolution approximation.

In fact, due to the stepped shape of the Haar wavelets approximation, F
m
L (ξ) = F

m
L ( k

2m ),

for all ξ ∈
[

k
2m ,

k+1
2m

)
. In what follows let us take, VaRW (m)

α = 2k+1
2m+1 , the middle point of this

interval, as the VaR value computed by means of this wavelet algorithm at scale m.
Then, integrating by parts (1) and using the approximation in (18) we have,

(19) ESα =
1

1 − α

(
1 − αVaRα −

∫ 1

V aRα

FL(x)dx
)

≃ ESW (m)
α ,

where,

ESW (m)
α ≡ 1

1 − α


1 − αVaRW (m)

α − 1

2
m
2

+1
cm,k − 1

2
m
2

2m−1∑

k=k+1

cm,k


 .

6. Numerical Experiments Setting

Real situations in financial companies show the existence of strong concentrations in their
credit portfolios, while Basel II formulae to calculate VaR are supported under unrealistic
hypothesis, such as infinite number of obligors with small exposures. For these reasons, we
test our methodology with small and concentrated portfolios.
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In order to consider concentrated portfolios, we have fixed the exposure taking En = C
n

(where C is a constant such that
∑N

n=1 En = 1). Without loss of generality we assume that
Pn = pd, where pd is the probability of default associated to each obligor.

For the numerical integration (16) we truncate the domain to [−5, 5] and we apply the
rectangle method using 100 points. With this simple and naive method, we can achieve
high accurate results at high confidence levels. However, to get more precision further in
the tail with probably less computational effort, the authors recommend to use the Gauss-
Hermite quadrature. Finally, we consider M = 2m and r = 0.9995 in (14) for the coefficients
computation.

As an example, let us consider N = 100, pd = 0.003, α = 0.999, ρ = 0.15 and the scale of
approximation m = 10.

With this setting, the VaR value at 99.9% confidence level with the WA method is

VaR
W (10)
0.999 = 0.197754 and the ES value at 99.9% confidence level is ES

W (10)
0.999 = 0.217655.

7. Conclusions

We have presented a numerical approximation to the loss function based on Haar wavelets.
First of all we approximate the discontinuous distribution of the loss function by a finite sum-
mation of Haar scaling functions, and then we calculate the coefficients of the approximation
by inverting its Fourier transform. Due to the compact support property of the Haar system,
only a few coefficients are needed for the VaR computation.

A wide range of numerical examples are shown in [Mas11]. The WA method is applicable
and very accurate to different sized portfolios needing also of short time computations.
Moreover, the Wavelet Approximation is robust since the method is very stable under changes
in the parameters of the model. The stepped form of the approximated distribution makes
the Haar wavelets natural and very suitable for the approximation.
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