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1 Discrete optimal stopping problem

Let us consider a discrete non-negative random process (Hi)0≤i≤k adapted to a filtration
(Fi)0≤i≤k. We suppose that this process is a function of another underlying process Xi:
Hi = hi(Xi) for some function hi.

We are interested in the problem of finding a stopping time that maximizes the
Fi-conditional expectation Ei[Hτ ] over stopping time τ taking value in {i, ..., k}

sup
τ∈{i,...,k}

Ei[Hτ ] (1)

We call an optimal stopping time for this problem an Fi-stopping time τ ∗
i such that

Ei[Hτ∗

i
] = sup

τ∈{i,...,k}
Ei[Hτ ]
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We define the process Q∗
i := Ei[Hτ∗

i
]. The process (Q∗

i )0≤i≤k is called the Snell

envelope process of (Hi)0≤i≤k. It can be constructed using the well known backward

dynamic programming algorithm. In fact, by definition we have Q∗
k = Hk

{
Q∗

k = Hk

Q∗
i = max

(
Hi, Ei

[
Q∗

i+1

])
, for 0 ≤ i ≤ k − 1

(2)

Then τ ∗
i can be represented by

τ ∗
i = inf

{
j, i ≤ j ≤ k : Hj ≥ Ej[Q

∗
j+1]

}

= inf
{
j, i ≤ j ≤ k : Hj ≥ Ej[Hτ∗

j+1
]
}

or

{
τ ∗

k = k

τ ∗
i = i1IA + τ ∗

i+11IAc

(3)

where A = {Hi ≥ Ei+1[Hτ∗

i+1
]}

2 Examples of sub-optimal family of stopping time

The optimal stopping time family (τ ∗
i )i (or equivalently the price process (Q∗

i )) can
be estimated via plain Monte Carlo simulation of the backward dynamic program (3).
But this raises the problem of how to estimates the conditional expectation Ei+1[Hτ∗

i+1
].

Using Monte Carlo method to estimate this latter implies nested simulations, which
makes the algorithm potentially very slow, as illustrated in the figure (1).

In fact, to estimate Q∗
i = max

(
Hi, Ei

[
Q∗

i+1

])
, we need the conditional expectation

Ei

[
Q∗

i+1

]
. We estimate this latter by sampling conditional on the state at time i, hence

the nested simulations.
One possible way to circumvent this problem is the well known Longstaff-Schwartz

algorithm. We note the price given by this algorithm by QLS
i .

The idea is to estimate the conditional expectations Ei

[
QLS

i+1

]
using some regression

methods, without any nested simulation. In fact, in the case of a Markovian setting,
the conditional expectation is a function of the underlying process Xi

Ei

[
QLS

i+1

]
= φi(Xi)

The function φi is then approximated by an orthogonal projection 〈αi, gi〉. We then
choose αi as the one that minimize the second order moment





min E

[(
QLS

i+1 − 〈αi, gi〉(Xi)
)2

]

αi ∈ R
d
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Figure 1: Backward dynamic programming using nested Monte Carlo simulations

Using Monte Carlo method, this minimization problem can be rewritten, for a set of
M simulated paths {w1, w2, ..., wM}:





min
∑

m

[
QLS

i+1(wm) − 〈αi, gi〉(Xi(wm))
]2

αi ∈ R
d

Then QLS
i is estimated by QLS

i (wm) = max (hi(Xi(wm)), 〈αi, gi〉(Xi(wm))).
The stopping time given by this method is

τLS
i = inf {j , i ≤ j ≤ k : hj(Xj) ≥ 〈αj, gj〉(Xj)}

Of course, this exercise strategy is generally sub-optimal, in the sense that we have
QLS

i ≤ Q∗
i .

Another possibility is to suppose a parametric form for the stopping time. For ex-
ample, in the context of bermudan swaption, Andersen proposes in [Andersen 2000] a
method that parametrizes the exercise policy and then optimizes these parameters over
a set of simulated paths to determine an approximation of the optimal exercise strategy.
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In fact, this method considers the following exercise strategy

τA1
i = inf {j , i ≤ j ≤ k : Hj ≥ αj}

where (αj)0≤j≤k is a vector of parameters that will be estimated by a standard
optimization routine that maximizes the price of corresponding bermudan prices.

It’s also possible to consider a more refined strategy

τA2
i = inf

{
j , i ≤ j ≤ k : Hj ≥ max(αj , max

j≤p≤k
Ej[Hp])

}

Contrary to the first strategy, we don’t exercise if the payoff when exercising at j is
less than the price of a European option starting at j with maturity less than k.

See [Andersen 2000] for more details.

3 Iterative improvement upon an initial family of

stopping times

We suppose that we have at hand a family of stopping times τi that verify the following
properties

i ≤ τi ≤ k , τk = k

τi > i ⇒ τi = τi+1 , 0 ≤ i ≤ k − 1
(4)

We note Qi = Ei [Hτi
] the price given by the exercise policy τi. We introduce the

intermediate process

Q̃i = max
j≤p≤min(j+κ, k)

Ej[Hτp
]

where κ is a fixed window parameter such that 1 ≤ κ ≤ k.

[Kolodko, Schoenmakers 2009] shows that it’s possible to construct a new family of
stopping times that improves the original one, in the sense that we get a higher price
for the bermudan option. They propose a new exercise strategy τ̂i

τ̂i = inf
{
j ∈ [i, k] : Hj ≥ Q̃i

}

= inf

{
j ∈ [i, k] : Hj ≥ max

j≤p≤min(j+κ,k)
Ej[Hτp

]

}
(5)

This new stopping time verify the conditions (4).

If we note Q̂i = Ei

[
Hτ̂i

]
the price process given by the exercise policy τ̂i, then
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Qi ≤ Q̃i ≤ Q̂i ≤ Q∗
i , 0 ≤ i ≤ k

witch means that the stopping rule τ̂i is closer to the optimal one τ ∗
i than the initial

strategy τi. It’s then tempting to iterate this procedure in order to get a good estimate
of the stopping strategy τ ∗

i .

In fact, starting from an initial stopping strategy and its corresponding price (τ
(0)
i , Q

(0)
i )0≤i≤k,

we can construct a sequence of pairs
{
(τ

(m)
i , Q

(m)
i )0≤i≤k

}
m≥0

such that

τ
(m+1)
i = inf

{
j ∈ [i, k] : Hj ≥ max

j≤p≤min(j+κ,k)
Ej[Hτ

(m)
p

]

}

= inf
{
j ∈ [i, k] : Hj ≥ Q̃

(m)
i

} (6)

and

Q
(m+1)
i = Ei

[
H

τ
(m+1)
i

]
(7)

This sequence satisfies the important inequalities, for m ≥ 1 , 0 ≤ i ≤ k,

Q
(0)
i ≤ Q

(m)
i ≤ Q̃

(m)
i ≤ Q

(m+1)
i ≤ Q∗

i

τ
(m)
i ≤ τ

(m+1)
i ≤ τ ∗

i

This means that each iteration improves the estimation of the optimal strategy, in
a non-decreasing way. Moreover [Kolodko, Schoenmakers 2009] proves that this estima-
tion become exact after a finite number of iterations. In fact, we recall the Proposition
4.3 of [Kolodko, Schoenmakers 2009].

Proposition: For i ∈ [0, k] the following identity holds

Q
(m)
i = Q∗

i , for m ≥ k − i

τ
(m)
i = τ ∗

i , for m ≥ k − i

witch means that we need at most k iterations to get the exact price Q∗
0.

4 Monte Carlo implementation of the iterative Method

We recall the procedure proposed in [Kolodko, Schoenmakers 2009] to implement a
Monte Carlo version of the iterative method explained above.

We consider random set of dates Θ(m) where the strategy τ (m) says “exercise”

Θ
(m)
i = {j ≥ i : Hj ≥ Q̃

(m)
j } , 0 ≤ i ≤ k , m ≥ 1

Since the sequence (Q̃
(m)
j )m≥1 is non-decreasing, we have

Θ
(m+1)
i ⊂ Θ

(m)
i ⊂ Θ

(1)
i , 0 ≤ i ≤ k , m ≥ 1
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If we have at hand the set Θ
(m)
i , then we can compute the stopping time τ (m)

p , for
i ≤ p ≤ k, by

τ (m)
p = inf

{
Θ

(m)
i ∩ {p, ..., k}

}

Suppose we have at hand a sample path X = (Xj)0≤j≤k, we want to construct Θ
(m)
i .

We present here a procedure to construct this random set Θ
(m)
i .
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We note func(m, i, w) a function that take as arguments two integers m, i and a

random path w. This function has as output the set of integers Θ
(m)
i ⊂ {i, ..., k}.

Θ
(m)
i = func(m, i, w)

1. If m = 1
Using the given initial stopping family τ (0), we can write the set of exercise dates

Θ
(1)
i = {j ≥ i : Hj ≥ Q̃

(1)
j }

= {j ≥ i : Hj ≥ max
j≤p≤min(j+κ,k)

Ej[Hτ
(0)
p

]}

The conditional expectation in the definition of Θ
(1)
i can be estimated by Monte

Carlo, or by explicit formulas if available. For example, if we start with a simple
stopping family τ

(0)
i = i, the conditional expectation is just the price of a European

option, witch is in general available in closed formulas.

2. If m > 1
We construct Θ

(m)
i recursively, by nested Monte Carlo simulations, in the following

steps.

(a) Construct the set Θ
(m−1)
i = func(m − 1, i, w)

(b) ∀j ∈ Θ
(m−1)
i

i. Simulate Nm paths wα starting from Xj(w), for 1 ≤ α ≤ Nm.

ii. ∀wα ∈ {w1, ..., wNm
}

A. Construct the set Θ
(m−1)
j (wα) = func(m − 1, j, wα)

B. ∀p = j, ..., min(j + κ, k) , τ (m−1)
p (wα) = inf

{
Θ

(m−1)
j (wα) ∩ {p, ..., k}

}

iii. ∀p = j, ..., min(j + κ, k) , Ej[Hτ
(m−1)
p

] =
1

Nm

Nm∑

α=0

H
τ

(m−1)
p

(wα)

iv. Q̃
(m−1)
j = max

j≤p≤min(j+κ,k)
Ej[Hτ

(m−1)
p

]

v. If Hj ≥ Q̃
(m−1)
j , then j ∈ Θ

(m)
i .
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4.1 Practical implementation

Due to the computation time constraints, we will only consider the case of m = 1 i.e.
we start with an initial exercise strategy τ (0) then we construct the improved exercise
strategy τ (1). For the initial strategy τ (0), we chose the two following strategies:

1. The strategy that exercises when the payoff is greater than all the lasting European
options:

τ (0)
p = inf

{
i ≥ p , Hi ≥ max

i≤l≤k
Ei[Hl]

}

We suppose that we have at hand some exact or approximate formula to evaluate
European option price, so that we don’t need any nested Monte Carlo simulations
to evaluate them.

2. The strategy given by Longstaff-Schwartz algorithm:

τ (0)
p = inf {i ≥ p , Hi ≥ 〈αi, gi〉(Xi)}

where αi and gi are defined in section 2.

Now, to estimate τ
(1)
0 , we need to evaluate the conditional expectations in max

j≤p≤k
Ej[Hτ

(0)
p

]

for 0 ≤ j ≤ k.
One possibility would be to use nested Monte Carlo simulation as explained above in

the procedure. It’s also possible to use the same idea as in Longstaff-Schwartz algorithm
and approximate this conditional expectations with regression methods.

In fact, we can look for the coefficients β
p
j such that 〈βp

j , gj〉(Xj) is a good approxi-
mate of Ej[Hτ

(0)
p

], by solving the least squares problem





min
∑

m

[
H

τ
(0)
p

(wm) − 〈βp
j , gj〉(Xj(wm))

]2

β
p
j ∈ R

d

Then, the stopping time τ
(1)
0 can be approximated by

τ
(1)
0 = inf

{
j ≥ 0 , Hj ≥ max

j≤p≤min(j+κ,k)
〈βp

j , gj〉(Xj)

}

That way, we don’t have to simulate nested paths, hence the speed of the algorithm
improves.
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