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The approximate formulas are based on the paper of Elisa Alos [1].

1. Extension of the Hull and White formula

1.1. Model and notations. We assume that the stock price follows the following
model:

dXt = rXtdt + σtXt(ρdWt +
√

1 − ρ2dZt) (1)

We have to define some notations for this model:

Notations 1.1. r: instantaneous interest rate

W et Z: independent standard Brownian motions

ρ ∈ [−1, 1]: correlation factor

σt: volatility process independent of Z

K: Strike

X: stock price

BSCall(t, X, σ): price of a European Call with maturity T, spot X and strike K

given by the Black-Scholes formula

BSPut(t, X, σ): price of a European Call with maturity T, spot X and strike K

given by the Black-Scholes formula

BS(t, X, σ) : we use this notation when the result is true for the Call and the Put
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Vt: instantaneous value of the option

DW
s A: Malliavin derivative of the random variable A with respect to the Brownian

motion W

We also have to define the following functions:

Notations 1.2.

d1(x, σ) =
ln( x

K
) + (r + σ2/2)T

σ
√

T
(2)

H(s, Xs, vs) = (
∂3

∂x3
− ∂2

∂x2
)BS(s, Xs, νs) =

Xs

σ
√

2π(T − s)
exp(−d2

1(Xs, vs)
2

)(1−d1(Xs, vs)

σ
√

T − s
)

(3)

Λs = σs(
∫ T

s

DW ∗

s σ2

rdr) (4)

v∗

t =

√

1
T − t

∫ T

t

E[σ2
s |Ft]ds (5)

vt =

√

1
T − t

∫ T

t

σsds (6)

1.2. Extended formula. The following proposition is the main result in [1].

Proposition 1.1. Considering the previous model, we have this formula:

Vt = E[BS(t, Xt, vt)|Ft] +
ρ

2
E[

∫ T

t

exp[−r(s − t)]H(s, Xs, vs)Λsds|Ft] (7)

To prove it, we have to use Itô’s formula for anticipated processes: We consider an
Itô process Xt = X0 +

∫ t

0
usdWs +

∫ t

0
vsds and the anticipated process Yt =

∫ T

t
θsds.

Let be F in C2(R3)

F (t, Xt, Yt) = F (0, X0, Y0) +
∫ t

0

∂F

∂s
(s, Xs, Ys)ds +

+
∫ t

0

∂F

∂x
(s, Xs, Ys)dXs +

∫ t

0

∂F

∂y
(s, Xs, Ys)dYs

+
∫ t

0

∂2F

∂x∂y
(s, Xs, Ys)[

∫ T

s

DW
s θrdr]usds +

1
2

∫ t

0

∂2F

∂2x
(s, Xs, Ys)us

2ds

The proof is based on the application of the previous formula to the process
exp(−rt)BS(t, Xt, vt) and it is given in [1].

2. Approximations for pricing

Proposition 2.1. The value of the option can be approximated by the following

expression:

V approx
t = BS(t, Xt, v∗

t ) +
ρ

2
H(t, Xt, v∗

t )E(
∫ T

t

Λs|Ft) (8)

3. Study of several continuous models

3.1. Stein’s and Scott’s models.
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3.1.1. Presentation. In these models, the volatility process σ can be written σt =
f(Yt) where Y is an Ornstein-Ulhenbeck process which is solution of the following
stochastic equation:

dYt = α(m − Yt)dt + λ
√

αdWt (9)

We have:

DW
s σ2

r = 2f(Yr)f ′(Yr)DW
s (Yr)

= 2λ
√

αf(Yr)f ′(Yr) exp[−α(r − s)]1s<r

So we have, in these models, the following approximated formula:

V approx
t = BS(t, Xt, v∗

t )+ρλ
√

αH(t, Xt, v∗

t )E(
∫ T

t

∫ t

s

f(Yr)f ′(Yr)f(Ys) exp[−α(r − s)]drds|Ft)

(10)

3.1.2. Stein’s model. In the model of stein, we consider the function f defined by:f :
x → x. We want to price at t=0,so we have:

Vapprox = BS(0, X0, v∗

0) + ρλ
√

αH(0, X, v∗

0)E[
∫ T

0

∫ T

s

Yr exp(−α(r − s))Ysdrds]

It just remains to evaluate v∗

0 and I:
We have:

v∗

0

2 =
1
T

∫ T

0

[m + (σ0 − m) exp(−αs)]2ds (11)

So, we have:

v∗

0

2 =
1

4Tα
[−σ2

0 − λ2 exp(4Tα) + 2σ0m − m2 − 4σ0m exp(Tα) +

4m2 exp(Tα) + 2m2Tα exp(2Tα) + 2λ2Tα exp(2Tα) + exp(2Tα)σ2

0 +

2 exp(2Tα)σ0m − 3 exp(2Tα)m2 + λ2 exp(2Tα)] exp(−2Tα)

Now, we consider the quantity I:

I = E[
∫ T

0

∫ T

s

Yr exp(−α(r − s))Ysdrds] (12)

By linearity, we have:

I =
∫ T

0

∫ T

s

E[YrYs] exp(−α(r − s))drds

So, we can write:

I = I1 + I2

and:

I1 =
∫ T

0

∫ T

s

cov[Yr, Ys] exp(−α(r − s))drds (13)

I2 =
∫ T

0

∫ T

s

E[Yr]E[Ys] exp(−α(r − s))drds (14)

We obtain the following results:

I1 = −λ2

8
(2T exp(−2Tα)α +

exp(−2Tα) − 1)
α2

)
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I2 =
1

4α2
[−9 exp(2Tα)m2 − 2m2Tα − 4mσ0Tα exp(Tα) + 4m2Tα exp(2Tα)

+4m2Tα exp(Tα) − 8mσ0 exp(Tα) + 12m2 exp(Tα) − 2σ2

0Tα − σ2

0

+4mσ0Tα + 4mσ0 − 3m2 + σ2

0 exp(2Tα) + 4 exp(2Tα)mσ0] exp(−2Tα)

3.1.3. Scott’s model. In this model, the function f is defined by: f : x → exp(x).
At t=0, we have:

Vapprox = BS(0, X0, v∗

0)+ρλ
√

αH(0, X, v∗

0)E[
∫ T

0

∫ T

s

exp[2Yr + Ys] exp[−α(r − s)]drds]

It just remains to evaluate this term:

I = E[
∫ T

0

∫ T

s

exp[2Yr + Ys] exp[−α(r − s)]drds] (15)

we denote g the the function define by:

g(r, s) = 2E(Yr) + E(Ys) + 2V ar(Yr) + 2Cov(Yr, Ys) +
V ar(Ys)

2
− α(r − s) (16)

g(r, s) = 3m + 2(ln(σ0) − m) exp(−αr) + (ln(σ0) − m) exp(−αs)

+λ2(1 − exp(2αr))

+λ2 exp(−α(r + s))(exp(2αs) − 1)

+1/4λ2(1 − exp(2αs)) − α(r − s)

So we can write:

I =
∫ T

0

∫ T

s

exp g(r, s)drds (17)

This expression can’t be formally calculated. So we have to use the Riemman
approximation to evaluate this quantity. It is the same thing to calculate v∗

0 . Indeed,
we easily show that if we use the following notation,

Notations 3.1.

h(s) = 2(E[Ys] + V ar(Ys)) (18)

So, we have:

v∗

0

2 =
1
T

∫ T

0

exp[h(s)]ds (19)

3.2. Heston’s model. In this model, the volatility can be written σt =
√

Yt where
Y is a Cox-Ingersoll-Ross process which is solution of the following stochastic equa-
tion:

dYt = k(θ − Yt)dt + ν
√

YtdWt (20)

We want to know the price of the option at t=0. We note I = E(
∫ T

0
Λs). It’s easy

to show this:

I =
∫ T

0

∫ T

s

E[E[DW
s σ2

r |Fs]σs]drds (21)

It’s very interesting because of the Clark-Ocone formula. Indeed, we can write:

Yt = θ + (Y0 − θ) exp(−kt) + ν

∫ t

0

exp[k(s − t)]
√

YsdWs (22)

Using the uniqueness of the decomposition of Clark-Ocone, we have:

E[DW
s σ2

r |Fs] = νσs exp[k(s − r)] (23)
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So, we have:

I = νE[
∫ T

0

[
∫ T

s

exp(−k(r − s))dr]σ2

sds]

We obtain:

I =
ν

k2
(θ(kT − 2) + σ2

0 + exp(−kT )(kT (θ − σ2

0) + 2θ − σ2

0)) (24)

Now, we just have to calculate v∗

0 . In this case, it’s very easy because we have:

E[σ2

s ] = E[vs] = θ + (σ2

0 − θ) exp(−ks) (25)

To finish, we have:

v∗

0

2 = θ +
1

kT
(σ2

0 − θ)(1 − exp(−kT )) (26)

4. Evaluation of δ

Differentiating the extended formula (7), we can write:

δ = E[
∂BS

∂x
(0, X0, v0)|F0] +

ρ

2
E

∗[
∫ T

0

exp[−r(s − t)]
∂H

∂x
(s, Xs, vs)Λsds] (27)

So, using the same reasoning than that we have done for the price, we can write:

δapprox =
dBS

dx
(0, X0, v0∗) +

ρ

2
∂H

∂x
(t, X0, v∗

0)E(
∫ T

0

Λs|Ft) (28)

Using the previous calculus, we can easily evaluate this quantity which gives us a
good approximation for the evaluation of δ.

5. Validity domain of the approximation

First, we can show that the approximation is valid for all commonly used initial
values of the volatility σ0. So, we have to consider the different maturity T. We
will make different observations for each model:

5.1. Stein’s and Heston’s models. We obtain the same evolution of the error
for these models. We consider for instance the evolution of the error in Heston’s
model when the maturity T increases.
Fixing the parameters to the values: X0 = 100 r = 0.0953 σ0 = 0.2 k = 8 θ = 0.04
ν = 0.1 ρ = −0.5
We have, for a Call:

T=0.25

K Monte-Carlo price Approximated price Error (percent)
90 12.5915 12.5885 0.0238
95 8.5333 8.53245 0.0099
100 5.2411 5.2419 0.0152
105 2.8769 2.8785 0.0556
110 1.3986 1.3995 0.0643

T=0.5

K Monte-Carlo price Approximated price Error (percent)
90 15.1768 15.1669 0.0652
95 11.3839 11.3861 0.0193
100 8.1617 8.1648 0.0380
105 5.5711 5.5762 0.0915
110 3.6173 3.6213 0.1106
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T=1

K Monte-Carlo price Approximated price Error (percent)
90 19.741 19.7276 0.0678
95 16.2029 16.1876 0.0944
100 13.0392 13.0269 0.0943
105 10.2855 10.2733 0.1186
110 7.9389 7.9543 0.1939

T=5

K Monte-Carlo price Approximated price Error (percent)
90 46.3924 45.6478 1.6179
95 43.5861 42.0262 1.2846
100 40.8455 40.4956 0.8566
105 38.1858 38.0600 0.3294
110 35.6192 35.725 0.2970

So we can see that the approximation gives good results when T is small. When
T increases, to have admissible results, we have to increase the strike K. We can
note that we can have some very good results for T < 1.

5.2. Scott’s model. In this model, the validity domain of the approximation is
smaller. Indeed, if we fix the different parameters to the values:
X0 = 100 r = 0.0953 σ0 = 0.2 α = 4 m = 0.02 λ = 0.05 ρ = −0.5
We have, for a Call:

T=0.1

K Monte-Carlo price Approximated price Error (percent)
90 11.2586 11.2635 0.0435
95 7.1924 7.1940 0.0222
100 4.0409 4.0441 0.0792
105 1.9586 1.9673 0.4442
110 0.8246 0.8209 0.4487

T=0.35

K Monte-Carlo price Approximated price Error (percent)
90 19.0901 19.0601 0.1571
95 16.2326 16.2237 0.0548
100 13.7233 13.7124 0.0794
105 11.5109 11.5135 0.0225
110 9.6189 9.6082 0.0110

T=0.5

K Monte-Carlo price Approximated price Error (percent)
90 24.9514 24.5138 1.7538
95 22.4683 22.0016 2.0771
100 20.2452 19.7117 2.6352
105 17.2243 17.6322 2.3682
110 16.2040 15.7501 2.7999

So, to have some admissible results, we have to work with very small maturities:
T < 0.3 gives very good results.
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6. Bates’ model

Now we will interest ourselves to the process with jump-diffusion and, more
particularly, to the Bates Model.

6.1. The model. Using the same notations as before, Bates model is driven by
the following stochastic equations:

Xt = X0 + (r − λk)t − 1
2

∫ t

0

σ2

sds +
∫ t

0

σs(ρdWs +
√

1 − ρ2dBs) + Zt

Z is a composed Poisson process with intensity λ and ν is the Levy measure in-
dépendant of W and B and such as k = 1

λ

∫

R
(exp(y) − 1)ν(dy) < ∞. The volatility

σ is such as σt =
√

Yt where Y is a Cox-Ingersoll-Ross process:

dYt = k(θ − Yt) + µ
√

YtdWt

In this model, we choose that 1

λ
ν is following a normal law N (m, w2).

6.2. Options valuation.

6.2.1. Exact formula.

Notations 6.1.

G(s, Xs, vs) = (
∂2

∂x2
− ∂

∂x
)BS(s, Xs, vs)

Using the Itô formula for anticipated process, we can show that the instant value
of the option Vt can be written as:

Vt = E[BS(t, Xt, vt)|Ft] +
ρ

2
E[

∫ T

t

exp[−r(s − t)]
∂G

∂x
(s, Xs, vs)Λsds|Ft]

+E[
∫ T

t

∫

R

exp[−r(s − t)][BS(s, Xs + y, vs) − BS(s, Xs, vs)]ν(dy)ds|Ft]

−λkE[
∫ T

t

exp[−r(s − t)]
∂BS

∂x
(s, Xs, vs)ds|Ft]

The proof of its result is given in [2].

6.2.2. Approximated formula. Using the same methods as the ones used in the
continuous case, we can show that we can approximate the instant value of the
options by the following expression:

V approx
t = V̂ approx

t + (T − t)λBS(t, Xt + m +
ω2(T − t)

2
,

√

w2

T − t
+ v∗

t
2)

−λ(T − t)BS(t, Xt, v∗

t ) − λk(T − t)
∂BS

∂x
(t, Xt, v∗

t )

where V̂ approx
t is the approximate value of the option in the continuous case.

6.3. Delta calculation.

6.3.1. Exact formula. As we did in the continuous case, we can differentiate the
instant value of the option to obtain the value of δt. So we can write:

δt = E[
∂BS

∂x
(t, Xt, vt)|Ft] +

ρ

2
E[

∫ T

t

exp[−r(s − t)]
∂2G

∂x2
(s, Xs, vs)Λsds|Ft]

+E[
∫ T

t

∫

R

exp[−r(s − t)][
∂BS

∂x
(s, Xs + y, vs) − ∂BS

∂x
(s, Xs, vs)]ν(dy)ds|Ft]

−λkE[
∫ T

t

exp[−r(s − t)]
∂2BS

∂x2
(s, Xs, vs)ds|Ft]
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6.3.2. Approximated formula. Now, using the same methods as the one used for
approximate the value of the option, we can write:

δapprox
t = δ̂approx

t + (T − t)λ
∂BS

∂x
(t, Xt + m +

ω2(T − t)
2

,

√

w2

T − t
+ v∗

t
2)

−λ(T − t)
∂BS

∂x
(t, Xt, v∗

t ) − λk(T − t)
∂2BS

∂x2
(t, Xt, v∗

t )

where δ̂approx
t is the approximated value of δt in the continuous case.

6.4. Approximation validity. For continuous models, we have seen that the ma-
turity value T is very important for the precision of the approximation. (It’s visible
in the proofs when the error between the real and the approximated values is
bounded by T n). To apply the Îto’s formula for anticipated and continuous process
and to considerate that the lemma in [1] is also true in our case, we have to con-
siderate process with low jumps intensity. So, we have to considerate the influence
of λ in the precision of the approximation. We consider a call with the following
parametrization:
σ2

0 = 0.01 κ = 2 θ = 0.01 µ = 0.2 m = 0.7 w2 = 0.16 ρ = −0.5, X0 = 100 K = 90,
T = 0.5

λ Approximated price Fourier price Error (percent)
0.1 14.7041 14.5521 1.045
0.05 14.4957 14.4146 0.562
0.01 14.3289 14.3420 0.09

So, it appears that we can have very good results as λ <= 0.05. To conclude, we
can say that to have very good results in the approximation we have to work with
T <= 1 and λ <= 0.05.
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