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Abstract

It is well-known from the work of Schönbucher (2005) that the marginal laws of a
loss process can be matched by a unit increasing time inhomogeneous Markov process,
whose deterministic jump intensity is called local intensity. The Stochastic Local Intensity
(SLI) models such as the one proposed by Arnsdorf and Halperin (2008) allow to get a
stochastic jump intensity while keeping the same marginal laws. These models involve a
non-linear SDE with jumps. The first contribution of this paper is to prove the existence
and uniqueness of such processes. This is made by means of an interacting particle system,
whose convergence rate towards the non-linear SDE is analyzed. Second, this approach
provides a powerful way to compute pathwise expectations with the SLI model: we show
that the computational cost is roughly the same as a crude Monte-Carlo algorithm for
standard SDEs.
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1 Introduction

In equity modeling, a major concern is to get a model that fits option data. It is well-known
from the work of Dupire (1994) that basically European options can be exactly calibrated
by using local volatility models σ(t, x). However, local volatility models are known to have
some inadequacy to describe real markets. To get richer dynamics, Stochastic Local Volatility
(SLV) models have been introduced (see Alexander and Nogueira (2004) or Piterbarg (2006))
and consider the following dynamics for the stock under a risk-neutral probability:

dSt = rStdt + f(Yt)η(t, St)StdWt,

where Yt is an adapted stochastic process. Typically, (Yt, t ≥ 0) is assumed to solve an
autonomous one dimensional SDE whose Brownian motion may be correlated with W . From
the work of Gyöngy (1986), we know that under mild assumptions, the following choice

η(t, x) =
σ(t, x)

√

E[f(Yt)2|St = x]

ensures that St has the same marginal laws as the local volatility model with σ(t, x), which
automatically gives the calibration to European option prices. This leads to the following
non-linear SDE

dSt = rStdt +
f(Yt)

√

E[f(Yt)2|St]
σ(t, St)StdWt.

Here, we stress that the law of (Yt, St) steps into the diffusion term. Unless for trivial choices
of Yt and despite some attempts (Abergel and Tachet (2010)), getting the existence and
uniqueness of solutions for this kind of SDE remains an open problem. Also, from a numerical
perspective, the simulation of SLV models is not easy, precisely because of the computation
of the conditional expectation.
In this paper, we propose to tackle a very analogous problem arising in credit risk modeling. In
all the paper, we will work under a risk-neutral probabilistic filtered space (Ω, (Ft)t≥0, F ,P).
As usual, Ft is the σ-field describing all the events that can occur before time t and F
describes all the events. We consider M ∈ N∗ defaultable entities (for example, M = 125 for
the iTraxx). We assume that all the recovery rates are deterministic and equal to 1 − LGD

for all the firms within the basket. The loss process (Lt, t ≥ 0) is given by

Lt =
LGD

M
Xt, ∀t ≥ 0

where Xt is the number of defaults up to time t. Clearly, X takes values in LM := {0, . . . , M}.
Thanks to the assumption of deterministic recovery rates, and under the assumption of de-
terministic short interest rates, it is well known that CDO tranche prices only depend on the
marginal laws of the loss process (see for example Remark 3.2.1 in Alfonsi (2011)). Let us
assume then for a while that we have found marginal laws (P (Xt = k), k ∈ LM )t∈[0,T ] which
perfectly fit CDO tranche prices up to maturity T > 0. Then, under some mild assumptions,
we know from Schönbucher (2005) that there exists a non-homogeneous Markov chain with
only unit increments which exactly matches these marginal laws. Somehow, this result plays
the same role for the loss as Dupire’s result for the stock.
The loss model obtained with a non-homogeneous unit-increasing Markov chain is known
in the literature as local intensity model. It is fully described by the local intensity λ :
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R+ × LM → R+, which gives the instantaneous rate of having one more default in the basket.
In the sequel, we will assume that the local intensity λ : R+ × LM → R+ has been calibrated
to market data and perfectly matches Index and CDO tranche prices. We make the following
assumptions:

• ∀x ∈ LM , t ∈ R 7→ λ(t, x) is a càdlàg function,

• ∀t ≥ 0, λ(t, M) = 0.

In particular, we have λ = maxx∈LM
supt∈[0,T ] λ(t, x) < ∞. In this setting, the instantaneous

jump rate at time t from x to x + 1 is given by λ(t−, x). Thus, the local intensity model
corresponds to a time-inhomogeneous Markov chain making unit jumps with this rate.
One may like however get richer dynamics than the ones given by the local intensity model.
Then, we can proceed in the same way as for the stochastic volatility models. Let us consider
(Yt)t≥0 a general (Ft)-adapted càdlàg real process, a function f : R → R+ and a function
η : R+ × LM → R+ satisfying the same assumptions as λ. We assume that the default
counting process (Xt, t ≥ 0) has jumps of size 1 with the rate

η(t−, Xt−)f(Yt−).

By analogy with the equity, we name this kind of model a Stochastic Local Intensity (SLI)
model. Then, it is known (see Cont and Minca (2013)) that the local intensity model with
the Local Intensity (LI) η(t−, x)E[f(Yt−)|Xt− = x] has the same marginal laws as Xt. Thus,
the SLI model will be automatically calibrated to CDO tranche prices if one takes:

∀t > 0, x ∈ LM , η(t−, x) =
λ(t−, x)

E[f(Yt−)|Xt− = x]
.

This approach has been used in the literature by Arnsdorf and Halperin (2008), and in a
slightly different way by Lopatin and Misirpashaev (2008). However, up to our knowledge
there is no proof in the literature of the existence nor uniqueness of such a dynamics.
The first scope of this paper is to solve this problem. At this stage, we need to make our
framework precise. We assume through the paper that:

f : R 7→ R is continuous, s.t. ∀x ∈ R, 0 < f ≤ f(x) ≤ f < ∞. (1.1)

In the following, λf denotes λ f . We assume that the probability space (Ω, F ,P) contains a
standard Brownian motion (Wt, t ≥ 0), a sequence of independent uniform random variables
(Uk)k∈N, and a sequence (En)n∈N of independent exponential random variables with param-

eter λf
f . We set T k =

∑k
n=1 En for k ∈ N∗. The random variables (T k, Uk)k∈N∗ will enable

us to define a non homogeneous Poisson point process with jump intensity η(t−, Xt−)f(Yt−).
We are interested in studying the following two problems in which we assume that Yt is a
process with values either in N (discrete case) or in R (continuous case). In the discrete case,
we are interested in finding a predictable process (Xt, Yt)t≥0 such that


























Xt = x0 +
∑

k,T k≤t 1{
Uk≤ f

λf

f(Y
T k−

)λ(T k−,X
T k−

)

E[f(Y
T k−

)|X
T k−

]

}

Y0 = y0, and for each k ≥ 0, (Yt, t ∈ [Tk, Tk+1)) is a continuous time Markov chain

with transition rate µXt
ij = µ

XTk
ij .

(1.2)
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For the sake of simplicity, we consider in the discrete setting that X and Y do not jump
together almost surely.
In the continuous case, the corresponding problem is to solve the following stochastic differ-
ential equation:















Xt = x0 +
∑

k,T k≤t 1{
Uk≤ f

λf

f(Y
T k−

)λ(T k−,X
T k−

)

E[f(Y
T k−

)|X
T k−

]

}

Yt = y0 +
∫ t

0 b(s, Xs, Ys)ds +
∫ t

0 σ(s, Xs, Ys)dWs +
∫ t

0 γ(s−, Xs−, Ys−)dXs,

(1.3)

for x0 ∈ LM , y0 ∈ R and given real functions b, σ and γ. This framework embeds in particu-
lar the dynamics suggested by Arnsdorf and Halperin (2008) and Lopatin and Misirpashaev
(2008). Under some rather mild hypotheses on µij , b, σ and γ, which will be specified in
the corresponding sections, we will show that the above two equations admit a unique solu-
tion. In the discrete case, we are able to show that the corresponding Fokker-Planck equation
has a unique solution. This can be achieved by writing the Fokker-Planck equation as an
ODE which can be studied directly. In the continuous case, this approach can hardly been
extended: the Fokker-Planck equation leads to a non trivial PDE. Instead, we solve this prob-
lem by introducing an interacting particle system. This technique is known to be powerful
for this type of non linear problems (see Sznitman (1991) or Méléard (1996)).
The second scope of this paper is to provide a way to compute prices under SLI models.
Indeed, interacting particle systems are not only theoretical tools to prove existence and
uniqueness results for such equations. They give a very smart way to simulate these
processes, therefore enabling us to run Monte-Carlo algorithms. This approach has been
used recently by Jourdain and Sbai (2012) for a model coupling and Index with its stock
components, and by Guyon and Henry-Labordère (2011) for Stochastic Local Volatility
models. For the Stochastic Local Intensity models considered in this work, the conditional
expectation is much simpler to handle. This enables us to get theoretical results on the
convergence and also simplifies the implementation. In fact, we show in our case under some
assumptions that the rate of convergence to estimate expectations is in O(1/Nα) for any
α < 1/2, where N is the number of particles. On our numerical experiments, we even
observe on several examples a convergence which is similar to the one of the Central Limit
Theorem, which is rather usual for Interacting Particle Systems. Besides, we show that we
can simulate the interacting particle system with a computational cost in O(DN), where D
is the number of time steps for the discretization of the SDE on Y . Thus, the computational
cost is roughly the same as a crude Monte-Carlo algorithm for standard SDEs with N
samples.

The paper is organized as follows. First, we study the case where Y has discrete values; this
framework enables us to settle the problem and solve it by rather elementary tools. This part
is independent from the rest of the paper. Second, by means of a particle system approach,
we investigate the case where Y is real valued jump diffusion. Finally, we carry out numerical
simulations highlighting the relevance of the particle system technique to compute pathwise
expectation of the Process (1.3).
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2 The SLI model when Y takes discrete values

The goal of this section is to prove the existence of a process (Xt, Yt)t≥0 satisfying (1.2). Unlike
the continuous case (1.3), we can get this result by elementary means, without resorting to
an interacting particle system. To do so, we write the Fokker-Planck equation associated to
the process (Xt, Yt)t≥0, which should be satisfied by P(Xt = i, Yt = j) for (i, j) ∈ LM × N.
We have

(E)























∂tp(t, i, j) =
∑

k 6=j µi
kjp(t, i, k) + 1{i≥1}

λ(t,i−1)
ϕp(t,i−1)f(j)p(t, i − 1, j)

−
(

λ(t,i)
ϕp(t,i)f(j)1{i≤M−1} − µi

jj

)

p(t, i, j)

p(0, i, j) = 0 ∀(i, j) 6= (x0, y0),
p(0, x0, y0) = 1.

where p is a function from R+ × LM × N to R and

ϕp(t, i) =

∑∞
j=0 f(j)p(t, i, j)
∑∞

j=0 p(t, i, j)
.

If we manage to prove that the Fokker-Planck equation admits a unique solution p such that

∀i, j ∈ LM × N, ∀t ≥ 0, p(t, i, j) ≥ 0, (2.1)

∀t ≥ 0
M
∑

i=0

∞
∑

j=0

p(t, i, j) = 1, (2.2)

then we will get that the law of a process (Xt, Yt)t≥0 satisfying (1.2) is unique. Besides, we
will also get the existence of such a process. It is easy to check that a continuous Markov
chain (Xt, Yt)t≥0 starting from (x0, y0) with transition rate matrix

µ̃(i1,j1),(i2,j2)(t) = 1j1=j2 (1i2=i1+1 − 1i2=i1)
f(j1)λ(t, i1)

ϕp(t, i1)
+ 1i1=i2µi1

j1j2
, i1, i2 ∈ LM , j1, j2 ∈ N,

where p is the solution of (E) satisfies (1.2). In fact, the Fokker-Planck equation of this process























∂tq(t, i, j) =
∑

k 6=j µi
kjq(t, i, k) + 1{i≥1}

λ(t,i−1)
ϕp(t,i−1)f(j)q(t, i − 1, j)

−
(

λ(t,i)
ϕp(t,i)f(j)1{i≤M−1} − µi

jj

)

q(t, i, j)

q(0, i, j) = 0 ∀(i, j) 6= (x0, y0),
q(0, x0, y0) = 1.

is linear and clearly solved by p, which gives q ≡ p.

2.1 Assumptions and notations

In this part, we assume that the transition rates satisfy the following hypothesis.

Hypothesis 1 The intensity matrices (µk
ij)i,j≥0 for k ∈ LM satisfy the following conditions:

• ∀k ∈ LM , ∀i, j ∈ N × N such that i 6= j µk
ij ≥ 0,

• ∀k ∈ LM , ∀i ∈ N µk
ii ≤ 0,
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• ∀k ∈ LM , ∀i ∈ N
∑∞

j=0 µk
ij = 0 (then

∑∞
j=0,j 6=i µk

ij = −µk
ii).

Moreover, we assume ∀k ∈ LM , supi∈N |µk
ii| < ∞.

We also introduce specific notations used in the discrete case.

Definition 1 (Definition of E, E+ and E∗
+). Let E denote the set of real sequences indexed

by i ∈ LM and j ∈ N:
E := {u = (ui

j)0≤i≤M,0≤j : ui
j ∈ R},

we also introduce

E+ := {u = (ui
j)0≤i≤M,0≤j : ui

j ∈ R+} and E∗
+ := {u = (ui

j)0≤i≤M,0≤j : ui
j ∈ R∗

+}.

For u ∈ E, we set |u| =
∑M

i=0

∑∞
j=0 |ui

j |.

2.2 Solving the Fokker-Planck equation

To be more concise, we rewrite the Fokker-Planck Equation (E) and Conditions (2.1) − (2.2)
by using a sequence of functions. Let P := (P i

j )0≤i≤M,j≥0 denote a sequence such that each

P i
j is a function from R+ to R. Solving (E) under Constraints (2.1) − (2.2) boils down to

solving

(E ′)

{

P ′(t) = Ψ(t, P (t)),

P (0) = P0

under the constraints ∀t ≥ 0, P (t) ≥ 0 and |P (t)| = 1. The sequence P0 is such that (P0)i
j = 0

for (i, j) 6= (x0, y0) and (P0)x0
y0

= 1. Ψ is an application from R+ × E+ → E given by

(Ψ(t, x))i
j =

∑

k≥0

µi
kjxi

k + 1{i≥1}
λ(t, i − 1)

ϕ(x, i − 1)
f(j)xi−1

j − 1{i≤M−1}

(

λ(t, i)

ϕ(x, i)
f(j)

)

xi
j

where ϕ(x, i) :=

∑∞

l=0
f(l)xi

l
∑∞

l=0
xi

l

.

Remark 2. Ψ is defined without ambiguity on E∗
+. When x ∈ E+, difficulties may arise

when for some fixed i, xi
j = 0 ∀j. In this case, we still have lim

z∈E∗
+,z→x

zi
j

ϕ(z, i)
= 0 since

f ≤ ϕ(z, i) ≤ f for z ∈ E∗
+. Thus, we can extend Ψ by continuity on E+.

We aim at solving (E) in the set of summable sequences (compatible with Condition (2.2))
and get the following result.

Theorem 3. Equation (E ′) admits a unique solution on R+ satisfying ∀t ≥ 0, P (t) ≥ 0 and
|P (t)| = 1.

To do so, we first focus on the following differential equation :

(E ′′)

{

P ′(t) = Ψ(t, (P (t))+),

P (0) = P0.
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The positive part appearing in (E ′′) enables us to consider an equation without constraint
(Ψ is now evaluated on the right domain). As we will see in the proof of Proposition 4, the
function Ψ+(t, x) 7−→ Ψ(t, x+) is globally Lipschitz and the Cauchy-Lipschitz Theorem can
be applied to (E ′′) directly (which is not the case for (E ′)).

Proposition 4. Equation (E ′′) admits a unique solution on R+. Moreover, the solution
satisfies ∀t ≥ 0, P (t) ≥ 0 and |P (t)| = 1.

Proof of Theorem 3. Solving (E ′′) is equivalent to solving (E ′) under the constraints ∀t ≥
0, P (t) ≥ 0 and |P (t)| = 1. Indeed, the unique solution P of (E ′′) clearly solves (E ′), and
any solution Q of (E ′) such that ∀t ≥ 0, Q(t) ≥ 0 and |Q(t)| = 1 also solves (E ′′) and thus
coincides with P . �

Proof of Proposition 4. The proof of this proposition consists in first showing the Lipschitz
property which gives the existence and uniqueness of P and then proving that ∀t ≥ 0, P (t) ≥ 0
and |P (t)| = 1. This proof is postponed to Appendix A. �

Remark 5. If we consider that X and Y may jump together, we have to specify the probability
law πi

kj of the jump of Y when X jumps from i − 1 to i. The Fokker-Planck equation of the
process becomes























∂tp(t, i, j) =
∑

k 6=j µi
kjp(t, i, k) + 1{i≥1}

λ(t,i−1)
ϕp(t,i−1)

∑

k f(k)πi
kjp(t, i − 1, k)

−
(

λ(t,i)
ϕp(t,i)f(j)1{i≤M−1} − µi

jj

)

p(t, i, j)

p(0, i, j) = 0 ∀(i, j) 6= (x0, y0),
p(0, x0, y0) = 1,

and we can show the existence and uniqueness of solutions by repeating the same arguments.
The particular case πi

kj = 1k=j which excludes common jumps sends back Equation (E).

3 The SLI model when Y is real valued.

3.1 Setting and main results

We are interested in proving the existence of a process (Xt, Yt)t solving the stochastic dif-
ferential equation (1.3). More precisely, we will consider the following stochastic differential
equation,















Xt = X0 +
∑

k,T k≤t 1{
Uk≤ f

λf

f(Y
T k−

)λ(T k−,X
T k−

)

E[f(Y
T k−

)|X
T k−

]

}

Yt = Y0 +
∫ t

0 b(s, Xs, Ys)ds +
∫ t

0 σ(s, Xs, Ys)dWs +
∫ t

0 γ(s−, Xs−, Ys−)dXs,

(3.1)

with (possibly) random initial condition (X0, Y0) such that E[|Y0|m] < ∞ for any m ∈ N. We
will denote in the sequel Linit the probability law of (X0, Y0) under P. To get existence and
uniqueness results for (3.1), we will make the following assumption on the coefficients.

Hypothesis 2 1. The functions b, σ, γ : R+ × LM × R → R are measurable, with sub-
linear growth with respect to y:

∀T > 0, ∃CT > 0, ∀t ∈ [0, T ], x ∈ LM , y ∈ R, |b(t, x, y)|+|σ(t, x, y)|+|γ(t, x, y)| ≤ CT (1+|y|).
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2. The functions b(t, x, y) and σ(t, x, y) are such that for any x ∈ LM , y0 ∈ R, there exists
a unique strong solution for the SDE

Yt = y0 +

∫ t

0
b(s, x, Ys)ds +

∫ t

0
σ(s, x, Ys)dWs, t ≥ 0.

This property holds if we assume for example that:

∀T > 0, ∃CT > 0, ∀t ∈ [0, T ], x ∈ LM ,

{

|b(t, x, y) − b(t, x, y′)| ≤ CT |y − y′|
|σ(t, x, y) − σ(t, x, y′)| ≤ CT

√

|y − y′|.

3. For any x ∈ LM , (t, y) 7→ γ(t, x, y) is càdlàg with respect to t and continuous with
respect to y, i.e. γ(t, x, y) = lims>t,s→t,z→y γ(s, x, z) and lims<t,s→t,z→y γ(s, x, z) exists
ans is denoted by γ(t−, x, y).

To prove the strong existence and uniqueness of a process (X, Y ) solving (3.1), we will first
need to prove a weak existence and uniqueness result. To do so, we introduce the Martin-
gale Problem associated with (3.1). We denote by D([0, T ],R) the set of càdlàg real valued
functions and consider:

E = {(x(t), y(t))t∈[0,T ], s.t. y ∈ D([0, T ],R) and x is a nondecr. càdlàg function with values in LM }.

This path space is endowed with the usual Skorokhod topology for càdlàg processes, and with
the associated Borelian σ-algebra. We denote by P(E) the set of probability measures on E.
We are looking for a probability measure Q ∈ P(E) such that Linit is the probability law of
(X0, Y0) under Q and, for any φ ∈ C0,2(R2,R),

φ(Xt, Yt) − φ(X0, Y0)−
∫ t

0

{λ(u, Xu)f(Yu)

E
Q

[f(Yu)|Xu]
[φ(Xu + 1, Yu + γ(u, Xu, Yu)) − φ(Xu, Yu)]

+b(u, Xu, Yu)∂yφ(Xu, Yu) +
1

2
σ2(u, Xu, Yu)∂2

yφ(Xu, Yu)
}

du (3.2)

is a martingale with respect to the filtration Ft = σ((Xu, Yu), u ≤ t) satisfying the usual
conditions. Here, Xt and Yt stand for the coordinate applications:

Xt : E → LM

(x, y) 7→ x(t)
and Yt : E → R

(x, y) 7→ y(t),

and E
Q

denotes the expectation under the probability measure Q ∈ P(E). Similarly, for any
Q ∈ P(E), we denote by EQ the expectation under the probability measure Q while E

simply denotes the expectation under the original probability measure P.

The following Theorem is the main result of the paper.

Theorem 6. We assume that Hypothesis 2 holds and consider a F0-measurable initial con-
dition (X0, Y0) such that ∀m ∈ N,E[|Y0|m] < ∞. Then, there exists a unique probability
measure Q ∈ P(E) solving the Martingale Problem (3.2). Besides, there exists a unique
strong solution (Xt, Yt)t≥0 to Equation (3.1).
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To prove Theorem 6, we need the following basic result on standard SDEs with jumps. This
is an easy consequence of Hypothesis 2 since between two jumps we have pathwise uniqueness
of the corresponding SDE.

Proposition 7. For Q ∈ P(E), we set for t ∈ [0, T ], x ∈ LM

ϕQ(t, x) =
EQ[f(Yt)1{Xt=x}]

Q(Xt = x)
, when Q(Xt = x) > 0 and ϕQ(t, x) = f otherwise.

Let Hypothesis 2 hold. Then, for any (x0, y0) ∈ LM ×R, there exists a unique strong solution
(Xt, Yt)t∈[0,T ] to the following SDE with jumps:















Xt = x0 +
∑

k,T k≤t 1{
Uk≤ f

λf

f(Y
T k−

)λ(T k−,X
T k−

)

ϕQ(T k−,X
T k−

)

}

Yt = y0 +
∫ t

0 b(s, Xs, Ys)ds +
∫ t

0 σ(s, Xs, Ys)dWs +
∫ t

0 γ(s−, Xs−, Ys−)dXs.

(3.3)

Proof of Theorem 6. The proof of Theorem 6 is split in three main steps.

• First, we show the existence of a probability measure Q ∈ P(E) solving the Martingale
Problem (3.2). This result is obtained by considering the associated interacting particle
system: we show that each particle converges in law, and that any probability measure
in the support of the limiting law solves the Martingale Problem. This is done in
Section 3.3.

• Second, we show the uniqueness of the probability measure Q ∈ P(E) solving (3.2).
To do so, we introduce a function Ψ : P(E) → P(E) defined as follows. Let (X0, Y0)
be a random variable distributed according to Linit under P. Then, we know from
Proposition 7 that there exists a unique process (XQ

t , Y Q
t )t∈[0,T ] solving



















XQ
t = X0 +

∑

k,T k≤t 1{

Uk≤ f

λf

f(Y
Q

T k−
)λ(T k−,X

Q

T k−
)

ϕQ(T k−,X
Q

T k−
)

}

Y Q
t = Y0 +

∫ t
0 b(s, XQ

s , Y Q
s )ds +

∫ t
0 σ(s, XQ

s , Y Q
s )dWs +

∫ t
0 γ(s−, XQ

s−, Y Q
s−)dXQ

s ,

(3.4)
and we define

Ψ(Q) = law((XQ
t , Y Q

t )t∈[0,T ]) ∈ P(E).

As we will see in Section 3.4, Ψ (or more precisely Ψ iterated k-times) is a contraction
mapping for the variation norm. Combining this result with the following Lemma gives
the uniqueness of the probability measure solving (3.2).

Lemma 8. Let Q ∈ P(E). We have Ψ(Q) = Q if and only if Q solves the Martingale

Problem (3.2). In this case, (XQ
t , Y Q

t )t∈[0,T ] solves Equation (3.1).

• Then, the existence and uniqueness of Q satisfying Ψ(Q) = Q and Lemma 8 au-
tomatically give the strong existence and uniqueness of (X, Y ) satisfying (3.1) since
we necessarily have E[f(YT k−)|XT k−] = E

Q
[f(YT k−)|XT k−] and thus (Xt, Yt)t∈[0,T ] =

(XQ
t , Y Q

t )t∈[0,T ].

�
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Proof of Lemma 8. The direct implication is clear since Ψ(Q) = Q gives that E[f(Y Q
t )|XQ

t ] =

ϕQ(t, XQ
t ). Thus, (XQ

t , Y Q
t )t∈[0,T ] solves (3.1) and in particular Q solves the Martingale

Problem (3.2).
Conversely, let us assume that Q solves the Martingale Problem (3.2). We know from Proposi-

tion 7 that strong uniqueness holds for the SDE (XQ
t , Y Q

t )t∈[0,T ]. From Lepeltier and Marchal
(1976, Theorem II13), we know that strong uniqueness implies weak uniqueness, which pre-
cisely gives Ψ(Q) = Q since Q solves the Martingale Problem (3.2) and therefore the Mar-

tingale problem associated with (3.4). In particular, we have E[f(Y Q
t )|XQ

t ] = ϕQ(t, XQ
t ), and

(XQ
t , Y Q

t )t∈[0,T ] solves (3.1). �

3.2 The interacting particle system

First, let us explain how to obtain the interacting particle system intuitively. To do so, let
us assume for a while that we can construct N independent copies (Xi, Y i) of the non linear
Equation (3.1). Then, we can approximate the conditional expectation E[f(Y i

t−)|Xi
t−] by

N−1∑N
j=1 1{Xj

t−=Xi
t−}f(Y j

t−)

N−1
∑N

i=1 1{Xj
t−=Xi

t−}
.

This estimator can be seen as a particular case of the Nadaraya-Watson estimator (see Härdle
(1991, Section 5.5.1)) when X is a discrete random variable and the kernel bandwidth goes
to 0. The key point is that this estimation only depends on the whole sample, but no longer
depends on the law of (Xi

t−, Y i
t−). The interacting particle system precisely corresponds to

the dynamics using this approximation.
Now, we set up in details the particle system related to the Martingale Problem (3.2). We
assume that the probability space (Ω, F ,P) carries all the random variables used below. Let
N denote the number of particles, (Xi

0, Y i
0 ), i ∈ N are independent random variables following

the law Linit under P, and (W i
t , t ≥ 0), i ∈ N are independent standard Brownian motions. We

build an interacting particle system ((Xi,N
t , Y i,N

t ), t ≥ 0)1≤i≤N with the following features.

For i = 1, . . . , N , (Xi,N
t , t ≥ 0) is a Poisson process with intensity:

λ(t−, Xi,N
t− )f(Y i,N

t− )
∑N

j=1 1{Xj,N
t− =Xi,N

t− }
∑N

j=1 f(Y j,N
t− )1{Xj,N

t− =Xi,N
t− }

, (3.5)

and Y i,N
t solves the following equation:

Y i,N
t = Y i

0 +

∫ t

0
b(s, Xi,N

s , Y i,N
s )ds +

∫ t

0
σ(s, Xi,N

s , Y i,N
s )dW i

s +

∫ t

0
γ(s−, Xi,N

s− , Y i,N
s− )dXi,N

s .

(3.6)

In fact, we can give an explicit construction of this particle system, which will be useful
later and we explain now. Let us consider (U i,k)i,k∈N∗ a sequence of independent uniform
variables on [0, 1] and (Ei,k)i,k∈N∗ a sequence of independent exponential random variables

with parameter λf
f . These variables are independent, and independent of the previously



12

defined Brownian motions. We define the times

T i,k =
k
∑

l=1

Ei,l,

and we can order (T i,k, i = 1, . . . , N, k ≥ 1), such that 0 < T i1,k1 < · · · < T il,kl < . . . almost
surely.
Up to the first jump of Xi,N , Y i,N

t is defined as the unique strong solution of

Y i,N
t = Y i

0 +

∫ t

0
b(s, Xi

0, Y i,N
s )ds +

∫ t

0
σ(s, Xi

0, Y i,N
s )dW i

s .

At time τ = T il,kl , the process Xil,N makes a jump of size 1 if

U il,kl ≤ f

λf

λ(τ−, Xil,N
τ− )f(Y il,N

τ− )
∑N

j=1 1{Xj,N
τ− =X

il,N

τ− }
∑N

j=1 f(Y j,N
τ− )1{Xj,N

τ− =X
il,N

τ− }
,

and does not jump otherwise. If a jump occurs, we set Y il,N
τ = Y il,N

τ− + γ(τ−, Xil,N
τ− , Y il,N

τ− )

and, up to the next jump of Xil,N , we define Y il,N
t as the unique strong solution of

Y il,N
t = Y il,N

τ +

∫ t

τ
b(s, Xil,N

τ , Y il,N
s )ds +

∫ t

τ
σ(s, Xil,N

τ , Y il,N
s )dW i

s , t ≥ τ.

3.3 Existence of a solution to (3.2)

We follow the analysis carried out by Méléard (1996), pages 69 and 70. We denote by
µN = 1

N

∑N
i=1 δ

(Xi,N
t ,Y i,N

t )t∈[0,T ]
the empirical measure given by the particle system. It is a

random variable taking values in P(E). We denote by πN ∈ P(P(E)) the probability law of
µN . For π ∈ P(P(E)), we denote by

I(π) =

∫

P(E)
µπ(dµ) ∈ P(E),

the mean of π. Let F : E → R be a bounded function which is continuous with respect to
the Skorokhod topology. It induces an application P(E) → R — still denoted by F with an
abuse of notation — such that

F (µ) =

∫

E
F (z)µ(dz).

Since πN is by definition the probability law of µN , we have by using Fubini’s Theo-
rem E(F (µN )) =

∫

P(E) F (µ)πN (dµ) =
∫

E F (z)I(πN )(dz). On the other hand, we have

F (µN ) = 1
N

∑N
i=1 F ((Xi,N

t , Y i,N
t )t∈[0,T ]). By symmetry, (Xi,N

t , Y i,N
t )t∈[0,T ] has the same law

as (X1,N
t , Y 1,N

t )t∈[0,T ] and we get that:

E[F ((X1,N
t , Y 1,N

t )t∈[0,T ])] =

∫

E
F (z)I(πN )(dz). (3.7)

Lemma 9. The sequence (πN )N is tight.
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The proof of Lemma 9 is postponed to Appendix C. Now, we can consider a subsequence
πNk which converges weakly to π∞ ∈ P(P(E)). Let q ∈ N∗, 0 ≤ s1 ≤ · · · ≤ sq ≤ s ≤ t,

φ ∈ C0,2
b (R2,R) and g1, . . . , gq ∈ Cb(R

2,R) be bounded functions with bounded derivatives
for φ. We set for Q ∈ P(E),

F (Q) =EQ

[(

φ(Xt, Yt) − φ(Xs, Ys) −
∫ t

s

{λ(u, Xu)f(Yu)

EQ[f(Yu)|Xu]
(φ(Xu + 1, Yu + γ(u, Xu, Yu)) − φ(Xu, Yu))

+ b(u, Xu, Yu)∂yφ(Xu, Yu) +
1

2
σ2(u, Xu, Yu)∂2

yφ(Xu, Yu)
}

du
)

q
∏

l=1

gl(Xsq , Ysq )
]

(3.8)

We have to check that Q 7→ F (Q) is continuous with respect to Q for the weak convergence.
Since f is continuous by Assumption (1.1), we first notice that when Qn converges weakly
to Q, EQn [f(Yt)|Xt = x] converges to EQ[f(Yt)|Xt = x] when Q(Xt = x) > 0, unless for an
at most countable set of times t depending on Q. Then, following Méléard (1996), it comes
out that if s, t, s1, . . . , sq are taken outside a countable set depending on π∞, F is π∞-a.s.
continuous. In this case, we have:

E[F (µNk)2] →
k→+∞

∫

P(E)
F (Q)2π∞(dQ).

By definition of µN , we have:

F (µN ) =
1

N

N
∑

i=1

[

(M i,N
t − M i,N

s )
q
∏

l=1

gl(X
i,N
sq

, Y i,N
sq

)
]

, where

M i,N
t = φ(Xi,N

t , Y i,N
t ) −

∫ t

0

{

b(u, Xi,N
u , Y i,N

u )∂yφ(Xi,N
u , Y i,N

u ) +
1

2
σ2(u, Xi,N

u , Y i,N
u )∂2

yφ(Xi,N
u , Y i,N

u )

+
λ(u, Xi,N

u )f(Y i,N
u )

∑N
j=1 1{Xj,N

u =Xi,N
u }

∑N
j=1 f(Y j,N

u )1{Xj,N
u =Xi,N

u }
[φ(Xi,N

u + 1, Y i,N
u + γ(u, Xi,N

u , Y i,N
u )) − φ(Xi,N

u , Y i,N
u )]

}

du.

We observe now that [M i,N , M j,N ]t = 0 for i 6= j since, by construction these martingales do
not jump together and 〈W i, W j〉t = 0. Therefore, we get that:

E[F (µN )2] =
1

N
E
[

(M1,N
t − M1,N

s )2
q
∏

l=1

gl(X
1,N
sq

, Y 1,N
sq

)2
]

≤ C/N,

thanks to the boundedness assumption made on functions gl and φ. It comes out that F (Q) =
0, π∞(dQ) almost surely. This holds in fact for any function F given by (3.8), provided that
s, t, s1, . . . , sq are taken outside a countable set depending on π∞. Since the process (Xt, Yt) is
càdlàg, this is sufficient to show that any measure in the support of π∞ solves the Martingale
Problem (3.2). In particular, we get the following result.

Proposition 10. There exists a measure Q ∈ P(E) solving the Martingale Problem (3.2).

3.4 Uniqueness of a solution to (3.2)

Let Q ∈ P(E) denote a probability measure solving the Martingale Problem (3.2). We know
that such a probability exists thanks to Proposition 10. We want to show that it is indeed
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unique. To do so, we consider another probability Q ∈ P(E) and study the total variation
distance VT (Ψ(Q) − Ψ(Q)) between Q and Q over E. For t ∈ [0, T ], Q,Q ∈ P(E), we denote
by Q

∣

∣

[0,t]
and Q

∣

∣

[0,t]
their restriction to the paths on the time interval [0, t]. We also set

Vt(Q − Q) the total variation distance between Q
∣

∣

[0,t]
and Q

∣

∣

[0,t]
.

Lemma 11. Let τ := inf{t ≥ 0, XQ
t 6= XQ

t } denote the first time when XQ and XQ do not
jump together. We have

VT (Ψ(Q) − Ψ(Q)) ≤ 2P(τ ≤ T ).

Proof. Let us recall that for any signed measure η on E, the total variation of η is given by

V (η) = η+(E) + η−(E),

where η = η+ − η− is the Hahn-Jordan decomposition of η. Besides, we clearly have

1

2
V (η) ≤ Ṽ (η) ≤ V (η), (3.9)

where Ṽ (η) = sup{|η(A)|, A ⊂ E measurable}.
We have for any measurable set A of E,

P((XQ
t , Y Q

t )t∈[0,T ] 6= (XQ
t , Y Q

t )t∈[0,T ])

≥ P((XQ
t , Y Q

t )t∈[0,T ] ∈ A, (XQ
t , Y Q

t )t∈[0,T ] 6∈ A)

= P((XQ
t , Y Q

t )t∈[0,T ] ∈ A) − P((XQ
t , Y Q

t )t∈[0,T ] ∈ A, (XQ
t , Y Q

t )t∈[0,T ] ∈ A)

≥ P((XQ
t , Y Q

t )t∈[0,T ] ∈ A) − P((XQ
t , Y Q

t )t∈[0,T ] ∈ A).

By taking the supremum over A, we get

P((XQ
t , Y Q

t )t∈[0,T ] 6= (XQ
t , Y Q

t )t∈[0,T ]) ≥ ṼT (Ψ(Q) − Ψ(Q)). (3.10)

Since {τ > T} = {(XQ
t )t∈[0,T ] = (XQ

t )t∈[0,T ]} = {(XQ
t , Y Q

t )t∈[0,T ] = (XQ
t , Y Q

t )t∈[0,T ]}, it
remains to combine (3.9) and (3.10) to end the proof. �

Let Nt denote the number of jumps of the process XQ − XQ before time t. We have

Nt =
∑

s≤t

1
{|∆XQ

s −∆XQ
s |>0}

,

=
∑

k≥0,Tk≤t

1
{ f

λf
min(λQ(T k− ),λQ(T k− ))≤Uk≤ f

λf
max(λQ(T k− ),λQ(T k− ))}

where λQ0(t) =
λ(t,X

Q0
t )f(Y

Q0
t )

ϕQ0 (t,X
Q0
t )

for all probability measure Q0. Nt is a Cox process with

intensity λf
f |λQ(t) − λQ(t)|. Then, Mt := Nt − ∫ t

0
λf
f |λQ(s) − λQ(s)|ds is a martingale. Up to

time τ , we have (XQ
t , Y Q

t ) = (XQ
t , Y Q

t ), and we get that the process

Mt∧τ = 1{τ≤t} −
∫ t

0
1{τ>s}λ(s, XQ

s )f(Y Q
s )

∣

∣

∣

∣

∣

∣

1

ϕQ(s, XQ
s )

− 1

ϕQ(s, XQ
s )

∣

∣

∣

∣

∣

∣

ds
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is a martingale. In particular, we have

dP(τ ≤ t)

dt
= E



1{τ>t}λ(t, XQ
t )f(Y Q

t )

∣

∣

∣

∣

∣

∣

1

ϕQ(t, XQ
t )

− 1

ϕQ(t, XQ
t )

∣

∣

∣

∣

∣

∣





≤ λf

f2 E
[

|ϕQ(t, XQ
t ) − ϕQ(t, XQ

t )|
]

.

Now, let us observe that

ϕQ(t, x) − ϕQ(t, x) =
E
Q

[f(Yt)1{Xt=x}] − EQ[f(Yt)1{Xt=x}]

Q(Xt = x)

+
EQ[f(Yt)|Xt = x]

Q(Xt = x)
[Q(Xt = x) − Q(Xt = x)].

Thus, we get that

|ϕQ(t, x) − ϕQ(t, x)| ≤ 1

Q(Xt = x)

(

|E
Q

[f(Yt)1{Xt=x}] − EQ[f(Yt)1{Xt=x}]|

+ f |Q(Xt = x) − Q(Xt = x)|
)

,

and therefore (we use here that Q is invariant, and is the law of (XQ
t , Y Q

t )t≥0)

E[|ϕQ(t, XQ
t ) − ϕQ(t, XQ

t )|] ≤
∑

x∈LM

|E
Q

[f(Yt)1{Xt=x}] − EQ[f(Yt)1{Xt=x}]|

+ f |Q(Xt = x) − Q(Xt = x)|
≤2fVt(Ψ(Q) − Ψ(Q)).

To check the last inequality, one has to observe that for a simple nonnegative function f(y) =
∑n

i=1 fi1{Ai}, where Ai ⊂ R are Borel sets, we have |E
Q

[f(Yt)1{Xt=x}] −EQ[f(Yt)1{Xt=x}]| ≤
∑n

i=1 fi|Q(Xt = x, Yt ∈ Ai) − Q(Xt = x, Yt ∈ Ai)| ≤ fVt(Q − Q). By passing to the limit,
this property holds for any bounded measurable (hence continuous) function f .
To sum up, we have for t ∈ [0, T ],

VT (Ψ(Q) − Ψ(Q)) ≤ 2P(τ ≤ T ) ≤ 4
λ f

2

f2

∫ T

0
Vs(Q − Q)ds ≤ 4

λ f
2

f2 TVT (Q − Q),

since V0(Ψ(Q) − Ψ(Q)) = 0 and s 7→ Vs(Q − Q) is nondecreasing. Let us recall that the set
of bounded countably additive measures on E endowed with the total variation norm is a

Banach space. If 4λ f
2

f2 T < 1, we get by the Banach fixed point theorem that Ψ has a unique

fixed point that is necessarily Q. Otherwise, we get by iterating that:

VT (Ψ(k)(Q) − Ψ(k)(Q)) ≤ 4
λ f

2

f2

∫ T

0
Vs(Ψ(k−1)(Q) − Ψ(k−1)(Q))ds ≤

[

4λ f
2

f2 T

]k

k!
VT (Q − Q).

When k is large enough,

[

4 λ f
2

f2 T

]k

k! < 1 and Ψ(k) is a contraction mapping. Thus, Ψ(k) has a
unique fixed point that is necessarily Q.



16

This concludes the proof of Theorem 6. Besides, using the notations of Section 3.3, we get
that any convergent subsequence of πN should converge to δ

Q
(dQ). This gives the weak

convergence of πN towards δ
Q

(dQ). By (3.7), we get that any particle converges in law

towards Q.

Remark 12. This proof, as well as the one given for Theorem 3 in a discrete setting, crucially
relies on the assumption (1.1) that f is bounded below and above. However, from a financial
point of view, this assumption already gives a wide range of dynamics and implies that the
correction factor between the SLI and the LI model f(Yt)

E[f(Yt)|Xt] remains bounded. From a
numerical point of view, this assumption is also important to get an upper bound for the time
complexity of sampling the particle system (see (4.5)).

3.5 Convergence speed towards Q

Now that we have proved that each particle converges to the invariant probability measure,
we are interested in characterizing the speed of convergence of the interacting particle system
towards this measure. This question is of practical importance, since one would like to use
the following approximation

E
Q

[F ((Xt, Yt)t∈[0,T ])] ≈ 1

N

N
∑

i=1

F ((Xi,N
t , Y i,N

t )t∈[0,T ]), (3.11)

and have an estimate of the error involved.
First, we need to introduce some additional notations. We consider the same particle sys-
tem (Xi,N

t , Y i,N
t )t≥0 as in Section 3.2, constructed with the random variables T i,k, U i,k

and (W i
t , t ≥ 0). With these variables, for all i in {1, · · · , N}, we construct the processes

(X̄i
t , Ȳ i

t )t≥0 as the unique solution of



















X̄i
t = X̄i

0 +
∑

k,T i,k≤t 1{

U i,k≤ f

λf

f(Ȳ i

T i,k−
)λ(T i,k−,X̄i

T i,k−
)

ϕQ(T i,k−,X̄i

T i,k−
)

}

Ȳ i
t = Ȳ i

0 +
∫ t

0 b(s, X̄i
s, Ȳ i

s )ds +
∫ t

0 σ(s, X̄i
s, Ȳ i

s )dW i
s +

∫ t
0 γ(s−, X̄i

s−, Ȳ i
s−)dX̄i

s.

(3.12)

Remark 13. By construction, the law of (X̄i
t , Ȳ i

t )t≥0 is the invariant probability law Q for all
i in {1, · · · , N}, since Ψ(Q) = Q. Since the process (X̄i

t , Ȳ i
t )t≥0 is built with the same random

variables as (Xi,N
t , Y i,N

t )t≥0, the difference between (Xi,N
t , Y i,N

t )t≥0 and (X̄i
t , Ȳ i

t )t∈[0,T ] lies in
the computation of the conditional expectation.

By using the same argument as in Lemma 11, we have:

VT (L((X1,N
t , Y 1,N

t )t∈[0,T ]) − Q) ≤ 2P((X1,N
t , Y 1,N

t )t∈[0,T ] 6= (X̄1
t , Ȳ 1

t )t∈[0,T ]) = 2P(τ1 ≤ T ),

where τ1 = inf{t ≥ 0, X̄1
t 6= X1,N

t }. We also set for i = 2, . . . , N , τ i = inf{t ≥ 0, X̄i
t 6= Xi,N

t }.

Proposition 14. Let us assume that Linit is such that P(X0 = x) > 0 for any x ∈ LM .
Then, there is a constant K > 0 such that

P(τ1 ≤ T ) ≤ K√
N

.
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Proof. By construction, the processes X̄1 and X1,N may become different at the times T 1,k if

U1,k ≤ f

λf

λ(T 1,k−,X̄1

T 1,k−
)f(Ȳ 1

T 1,k−
)

ϕQ(T 1,k−,X̄1

T 1,k−
)

and U1,k >
f

λf

λ(T 1,k−,X1,N

T 1,k−
)f(Y 1,N

T 1,k−
)

∑N

j=1
f(Y

j,N

T 1,k−
)1

{X
j,N

T 1,k−
=X

1,N

T 1,k−
}

∑N

j=1
1

{X
j,N

T 1,k−
=X

1,N

T 1,k−
}

, or conversely.

Thus, 1{τ1≤t} − ∫ t
0 1{τ1>s}

f

λf

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

λ(s,X̄1
s )f(Ȳ 1

s )

ϕQ(s,X̄1
s )

− λ(s,X1,N
s )f(Y 1,N

s )
∑N

j=1
f(Y

j,N
s )1

{X
j,N
s =X

1,N
s }

∑N

j=1
1

{X
j,N
s =X

1,N
s }

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ds is a martingale and

we have

P(τ1 ≤ T ) =
f

λf
E















∫ T

0
1{τ1>t}

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

λ(t, X̄1
t )f(Ȳ 1

t )

ϕQ(t, X̄1
t )

− λ(t, X1,N
t )f(Y 1,N

t )
∑N

j=1
f(Y j,N

t )1
{X

j,N
t

=X
1,N
t

}
∑N

j=1
1

{X
j,N
t

=X
1,N
t

}

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

dt















.

Let us observe that on {τ1 > t}, we have (X̄1
t , Ȳ 1

t ) = (X1,N
t , Y 1,N

t ). Therefore,

P(τ1 ≤ T ) ≤ fE





∫ T

0
1{τ1>t}

∣

∣

∣

∣

∣

∣

1

ϕQ(t, X̄1
t )

−
1 +

∑N
j=2 1{Xj,N

t =X̄1
t }

f(Y 1,N
t ) +

∑N
j=2 f(Y j,N

t )1{Xj,N
t =X̄1

t }

∣

∣

∣

∣

∣

∣

dt



 .(3.13)

Now, we study

∣

∣

∣

∣

∣

∣

1

ϕQ(t,x)
−

1+
∑N

j=2
1

{X
j,N
t

=x}

f(Y 1,N
t )+

∑N

j=2
f(Y j,N

t )1
{X

j,N
t

=x}

∣

∣

∣

∣

∣

∣

for x ∈ LM , and set

q̄t(x) = Q(Xt = x).

When q̄t(x) > 0, we have

∣

∣

∣

∣

∣

∣

1

ϕQ(t, x)
−

1 +
∑N

j=2 1{Xj,N
t =x}

f(Y 1,N
t ) +

∑N
j=2 f(Y j,N

t )1{Xj,N
t =x}

∣

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∣

q̄t(x) − 1
N

(

1 +
∑N

j=2 1{Xj,N
t =x}

)

E
Q

[f(Yt)1{Xt=x}]

∣

∣

∣

∣

∣

∣

+
1

fE
Q

[f(Yt)1{Xt=x}]

∣

∣

∣

∣

∣

∣

E
Q

[f(Yt)1{Xt=x}] − 1

N



f(Y 1,N
t ) +

N
∑

j=2

f(Y j,N
t )1{Xj,N

t =x}





∣

∣

∣

∣

∣

∣

≤ 1

f q̄t(x)

∣

∣

∣

∣

∣

∣

q̄t(x) − 1

N



1 +
N
∑

j=2

1{Xj,N
t =x}





∣

∣

∣

∣

∣

∣

+
1

f2q̄t(x)

∣

∣

∣

∣

∣

∣

E
Q

[f(Yt)1{Xt=x}] − 1

N



f(Y 1,N
t ) +

N
∑

j=2

f(Y j,N
t )1{Xj,N

t =x}





∣

∣

∣

∣

∣

∣

.
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We analyze these two terms in a similar manner. We introduce (X̄N+1
t , Ȳ N+1

t )t∈[0,T ] another

copy of (X̄1
t , Ȳ 1

t )t∈[0,T ], which is independent from all other existing processes. We have:

∣

∣

∣

∣

∣

∣

q̄t(x) − 1

N



1 +
N
∑

j=2

1{Xj,N
t =x}





∣

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∣

q̄t(x) − 1

N

N+1
∑

j=2

1{X̄j
t =x}

∣

∣

∣

∣

∣

∣

+
1

N

∣

∣

∣

∣

∣

∣

N
∑

j=2

1{X̄j
t =x} − 1{Xj,N

t =x}

∣

∣

∣

∣

∣

∣

+
1

N

≤
∣

∣

∣

∣

∣

∣

q̄t(x) − 1

N

N+1
∑

j=2

1{X̄j
t =x}

∣

∣

∣

∣

∣

∣

+
1

N

N
∑

j=2

1{τj≤t} +
1

N
, (3.14)

since X̄j
t and Xj,N

t may be different only on {τ j ≤ t}. Similarly, we have

∣

∣

∣

∣

∣

∣

E
Q

[f(Yt)1{Xt=x}] − 1

N



f(Y 1,N
t ) +

N
∑

j=2

f(Y j,N
t )1{Xj,N

t =x}





∣

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∣

E
Q

[f(Yt)1{Xt=x}] − 1

N

N+1
∑

j=2

f(Ȳ j
t )1{X̄j

t =x}

∣

∣

∣

∣

∣

∣

+
f

N

N
∑

j=2

1{τ j≤t} +
f

N
. (3.15)

We introduce

A(x) =
1

q̄t(x)





∣

∣

∣

∣

∣

∣

q̄t(x) − 1

N

N+1
∑

j=2

1{X̄j
t =x}

∣

∣

∣

∣

∣

∣

+
1

f

∣

∣

∣

∣

∣

∣

E
Q

[f(Yt)1{Xt=x}] − 1

N

N+1
∑

j=2

f(Ȳ j
t )1{X̄j

t =x}

∣

∣

∣

∣

∣

∣



 .

This is a random function which is independent from (X̄1
t , Ȳ 1

t )t≥0. From (3.13), (3.14)
and (3.15), we obtain by observing that τ j and τ1 have the same law under P:

P(τ1 ≤ T ) ≤
∫ T

0
E[A(X̄1

t )] +

(

1 +
f

f

)(

1

N
E

[

1

q̄t(X̄1
t )

]

+ E

[

1

q̄t(X̄1
t )

1τ2≤t

])

dt. (3.16)

First, we observe that E[ 1
q̄t(X̄1

t )
] =

∑

x, s.t. q̄t(x)>0
q̄t(x)
q̄t(x) ≤ M + 1. Thanks to the independence

of A(x) and X̄1
t , E[A(X̄1

t )|X̄1
t = x] = E[A(x)]. On the one hand, we have:

E
[∣

∣

∣q̄t(x) − 1
N

(

∑N+1
j=2 1{X̄j

t =x}

)∣

∣

∣

]

≤
√

E

[

(

q̄t(x) − 1
N (
∑N+1

j=2 1{X̄j
t =x})

)2
]

=

√
q̄t(x)(1−q̄t(x))√

N
.

On the other hand, we have similarly that:

E





∣

∣

∣

∣

∣

∣

E
Q

[f(Yt)1{Xt=x}] − 1

N





N+1
∑

j=2

f(Ȳ j
t )1{X̄j

t =x}





∣

∣

∣

∣

∣

∣





≤

√

√

√

√

√

√

E









E
Q

[f(Yt)1{Xt=x}] − 1

N

N+1
∑

j=2

f(Ȳ j
t )1{X̄j

t =x})





2





≤
√

1

N
E
Q

(1{Xt=x}f2(Yt)) ≤

√

f
2

N
q̄t(x).

Finally, we obtain that:

E[A(x)] ≤
(

1 +
f

f

)

1
√

q̄t(x)
√

N
.
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By using the tower property of the conditional expectation, we get:

E[A(X̄1
t )] ≤

(

1 +
f

f

) √
M + 1√

N
,

since we have
∑

x∈LM

√

q̄t(x) ≤
√

M + 1 by the Cauchy-Schwarz inequality. From (3.16)

P(τ1 ≤ T ) ≤
(

1 +
f

f

)(√
M + 1√

N
+

M + 1

N
+

∫ T

0
E

[

1

q̄t(X̄1
t )

1τ2≤t

]

dt

)

. (3.17)

So far, we have not used the assumption q̄0(x) = P(X0 = x) > 0 for any x ∈ LM . Since the

jump intensity is bounded by λf
f , we necessarily have q̄t(x) ≥ e

− λf
f

T
q̄0(x), for t ∈ [0, T ]. Thus,

there exists a constant C > 0 (depending on T and Linit) such that 1
q̄t(x) ≤ C for t ∈ [0, T ],

x ∈ LM . Since τ2 and τ1 have the same law under P, this gives

P(τ1 ≤ T ) ≤
(

1 +
f

f

)(√
M + 1√

N
+

M + 1

N
+ C

∫ T

0
P(τ1 ≤ t)dt

)

, (3.18)

and we easily conclude by Gronwall’s lemma. �

Now, we can have an estimate of the accuracy given by the approximation (3.11). We assume
that F : E → R is a bounded measurable function. Then, we know by the central limit
theorem that

√
N

(

1

N

N
∑

i=1

F ((X̄i
t , Ȳ i

t )t∈[0,T ]) − E
Q

[F ((Xt, Yt)t∈[0,T ])]

)

→
law

N (0, σ2),

where σ2 is the variance of F ((Xt, Yt)t∈[0,T ]) under Q.
Since F is bounded by a constant K > 0, we have by Proposition 14

JN := Nα

∣

∣

∣

∣

∣

1

N

N
∑

i=1

F ((X̄i
t , Ȳ i

t )t∈[0,T ]) − 1

N

N
∑

i=1

F ((Xi,N
t , Y i,N

t )t∈[0,T ])

∣

∣

∣

∣

∣

≤ K

N1−α

N
∑

i=1

1{τ i≤T },

which converges for the L1-norm to 0 when N → +∞ for α < 1/2. Combining both results,
we finally get a lower estimate of the convergence rate.

Corollary 15. Under the assumptions of Proposition 14, we have for any bounded measurable
function F : E → R and any 0 < α < 1/2,

SN := Nα

∣

∣

∣

∣

∣

1

N

N
∑

i=1

F ((Xi,N
t , Y i,N

t )t∈[0,T ]) − E
Q

[F ((Xt, Yt)t∈[0,T ])]

∣

∣

∣

∣

∣

→ 0 in probability.

Proof. We deduce from the CLT that for all α < 1
2 ,

IN := Nα
∣

∣

∣

1
N

∑N
i=1 F ((X̄i

t , Ȳ i
t )t∈[0,T ]) − E

Q
[F ((Xt, Yt)t∈[0,T ])]

∣

∣

∣ converges in

probability to 0. Since SN ≤ IN + JN , we get that for any ε > 0,
P(SN > ε) ≤ P(IN + JN > ε) ≤ P(IN > ε

2) + P(JN > ε
2), which gives the result. �
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Remark 16. To prove Proposition 14, we have assumed that P(X0 = x) > 0 for any x ∈ LM .
In fact, the same proof would work if we assumed that there existed x0 ∈ LM such that
P(X0 ≥ x0) = 1 and P(X0 = x) > 0 for any x ≥ x0.
However, in practice, it would have been nice to treat the case P(X0 = x0) = 1 for some
x0 ∈ LM , since we know at the beginning how many firms have already defaulted. Heuristically

from (3.17), we may hope to have for large N that E

[

1
q̄t(X̄1

t )
1τ2≤t

]

≤ CP(τ1 ≤ t) since X̄1

and τ2 are asymptotically independent, E

[

1
q̄t(X̄1

t )

]

≤ M + 1, and τ2 and τ1 have the same

law. This would be enough to conclude. Unfortunately, despite our investigations, we have
not been able to prove this formally. However, we still observe a convergence speed of 1/

√
N

when X0 = 0 on our numerical experiments (Section 4).

4 Numerical results

In this section, we illustrate the theoretical results obtained in the previous sections. Let us
recall that the local intensity (LI) model is a Markov chain with unit jumps occurring with
the rate λ(t−, x) and that the SLI model is given by equation (1.3). First, we highlight that
the LI and SLI models have the same marginal distributions but different laws as processes.
Second, we study the convergence of the interacting particle system and obtain numerical
simulations showing a central limit theorem.
For our numerical experiments we consider two different models for the process Y described
below and we assume that the local intensity λ and the function f are given by

λ(t, x) = λ̄

(

1 − x

M

)

,

f(x) = (x ∨ f) ∧ f,

where λ̄, f and f are fixed positive parameters such that f ≤ f , and the number of defaultable
entities M will be taken equal to M = 125 from now on. With this parametrization, we have
f = sup f and f = inf f . This choice of λ(t, x) corresponds to M independent default times

with intensity λ̄
M . We also assume that there is no default at the beginning, i.e. X0 = 0.

1. In the framework proposed by Lopatin and Misirpashaev (2008), the process Y is a
continuous process satisfying a CIR type SDE

dYt = κ(λ(t, Xt−) − Yt) + σ
√

YtdWt, (4.1)

where κ, σ > 0. To sample such a process, we use the second-order discretization scheme
for the CIR diffusion given in Alfonsi (2010).

2. In the framework of Arnsdorf and Halperin (2008), the process Y is no more continuous
and may jump when a new default occurs. The process Y solves the following SDE

dYt = −aYt log(Yt)dt + σYtdWt + γYt−dXt, (4.2)

where a, σ > 0 and γ ≥ 0. Remember that X only has positive jumps. For discretization
purposes, note that between two jump times of X, log(Y ) solves the following Ornstein
Uhlenbeck SDE

dZt = (−aZt +
1

2
σ2)dt + σdWt.
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Even though we could have sampled exactly in this particular case the Gaussian incre-
ments of Z, we discretize Y using the Euler scheme on Z in our simulation since we
would make this choice for more general SDEs on Y .

The LI model can be simulated very easily using a standard Monte–Carlo approach as it is
sufficient to know how to sample a Poisson process with intensity λ; we do not need any
interacting particle system.

4.1 Practical implementation of the particle system

Discretization of Y . For simplicity in this paragraph, we drop the superscript N and write
(Xi, Y i) instead of (Xi,N , Y i,N ) to denote the state of the ith particle. The process Y i has
a continuous part and may jump only when Xi jumps. We consider a regular time grid of
[0, T ] with step size h = T

D : sk = kh, 0 ≤ k ≤ D. Assume we have already discretized Y i up
to time sk, the discretization of Y i at time sk+1 is built in the following way:

• If the process Xi does not jump between time sk and time sk+1 we use the increment
of a standard discretization scheme.

• If the process Xi jumps at time s with sk < s < sk+1, we proceed in three steps: apply
the previous case between times sk and s, then integrate the jump at time s and finally
apply the previous case again between time s and sk+1.

This scheme ensures all the Y i are at least discretized on the regular grid {s0, s1, . . . , sD}.

Computational complexity. Studying the complexity is of prime importance when
proposing a numerical algorithm. First, let us consider a naive algorithm that calculates
the conditional expectation at each proposed jump dates. The expected number of possible

jumps is NT λ̄f̄
f and the cost of computing

Dj
t

N j
t

, with Dj
t =

N
∑

l=1

f(Y l
t−)1{Xl

t−=j} and N j
t =

N
∑

l=1

1{Xl
t−=j} j = 0, . . . , M (4.3)

is O(N). On the other hand, there are D discretization times at which we recalculate the
values of each Y i, which requires O(DN) operations. The overall complexity of the naive

algorithm is thus O(ND + N2T λ̄f̄
f ).

The complexity of the interacting particle system approach can be well improved if during
the algorithm we keep track of the values of Dj

t and N j
t . Let t be the last proposed jump

time of the particle system and t′ denote the next possible jump time. If some ticks of the
regular grid lie in [t, t′), we set t as the last discretization date in this interval and recompute
vectors (Dj

t )j and (N j
t )j using Equation (4.3). This happens D times and can be done with

O(M + N) operations (see Algorithm 1). Then, (Dj
t )j and (N j

t )j can be easily updated at
time t′ as follows.

Case 1: If the proposed jump at time t′ is not accepted, there is nothing to compute:

Dj
t′ = Dj

t and N j
t′ = N j

t .
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Case 2: Otherwise, let I denote the index of the particle jumping at time t′, we use















Dj
t′ = Dj

t − f(Y I
t ); Dj+1

t′ = Dj+1
t + f(Y I

t′ ) if j = XI
t ,

N j
t′ = N j

t − 1; N j+1
t′ = N j+1

t + 1 if j = XI
t ,

N j
t′ = N j

t ; Dj
t′ = Dj

t otherwise.

(4.4)

Algorithm 1 (The improved particle system algorithm with complexity O(DN).)

1: t = 0
2: ti = 0 for all i = 1 . . . N //Last discretization date for the particle i.
3: Sample (Xi, Y i) independently according to the initial law.
4: Set Dl = N l = 0 for 0 ≤ l ≤ M .
5: for i = 1 to N do //Calculate D and N . We can directly set N0 = N , D0 = Nf(Y0),

Dl = N l = 0 for 1 ≤ l ≤ M when the initial law is a Dirac mass at (0, Y0).
6: NXi

= NXi
+ 1, DXi

= DXi
+ f(Y i)

7: end for
8: sk = 0 //Last date on the regular grid.
9: while t ≤ T do

10: t′ = t+E
(

λ̄f̄
f N

)

//t′ is the proposal for the next jump in the whole particle system.

11: while t′ > sk + h do
12: sk = sk + h
13: for i = 1 to N do
14: Update the discretization of Y i from time ti to time sk.
15: ti = sk

16: end for
17: t = sk

18: Reinitialize Dl = N l = 0 for 0 ≤ l ≤ M .
19: for i = 1 to N do //Recalculate D and N.
20: NXi

= NXi
+ 1, DXi

= DXi
+ f(Y i)

21: end for
22: end while
23: I = uniform r.v. with values in {1, . . . , N} //Index of the particle which may jump.

24: R =
f

λ̄f̄
λ(t′, XI)f(Y I)NXI

DXI //Compute the acceptance ratio.
25: U = uniform r.v. in [0, 1]
26: if U < R then //We accept the jump.
27: NXI

= NXI − 1, DXI
= DXI − f(Y I)

28: Discretize Y I up to time t′.
29: Y I = Y I + γ(t′, XI , Y I)
30: XI = XI + 1
31: NXI

= NXI
+ 1, DXI

= DXI
+ f(Y I)

32: tI = t′

33: end if
34: t = t′

35: end while
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One update costs thus at most 4 simple operations, and the average number of update is

NT λ̄f̄
f . Thus, the overall cost of this new algorithm is

O

(

D(M + N) + NT
λ̄f̄

f

)

. (4.5)

For fixed model parameters, this complexity reduces to O(DN). This new algorithm has
a linear cost with respect to the number of particles. Thus, we managed to propose an
interacting particle algorithm with the same cost as a crude Monte–Carlo method for SDEs
since M is in practice fixed and much smaller than N . To give an idea, the CPU time needed
on our computer to sample the particle system for Figures 1(a) and 1(b) is 1.5 seconds while
the naive algorithm requires about 4 minutes.

4.2 Marginal distributions and pathwise expectations
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(a) SLI model for Y given
by (4.2) with T = 1, Y0 = 1, a =
1, σ = 0.3, γ = 1, λ̄ = 2.5.
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(b) SLI model for Y given
by (4.1) with T = 1, Y0 = 1, κ =
1, σ = 0.3, λ̄ = 2.5.
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(c) Binomial distribution func-
tion with parameters M , p =
1 − e−λ̄T/M .

Figure 1: Comparison of the marginal distributions of XT in the LI and SLI models. The
simulations use N = 50, 000 samples, D = 100 and f = 1/3, f = 3.

In Figure 1, we draw the probability distribution of XT for the SLI model. Since the LI
model corresponds to independent default times with intensity λ̄

M , the default distribution is
the Binomial law indicated on Figure 1(c). We observe that 50, 000 particles already gives a
very good match of the marginal laws.
Now, we would like to numerically check the difference between the pathwise distributions of
the SLI and LI models. To do so, we have computed in each model the length of the longest
interval during which X does not jump defined by

τ = sup{t ∈ [0, T ] : ∃u ∈ [0, T − t], Xu+t− = Xu}. (4.6)

We have computed in Table 1 several values of the cumulative distribution function of the
length of the longest interval without defaults both in the LI and SLI models. These quantities
differ sufficiently to be numerically convinced that these two distributions are different.

4.3 Convergence of the interacting particle system

When introducing the interacting particle system, we emphasized that it was not only a
theoretical tool but that it was also of practical interest as it satisfies a strong law of large
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P(τ ≤ T/4) P(τ ≤ T/8)

SLI model 0.1911 (± 0.0033) 0.0200 (± 0.0012)

LI model 0.1645 (± 0.0033) 0.0113 (± 0.0009)

Table 1: Some values of the distribution function of the length of the longest interval without
jumps for T = 2 and λ̄ = 2.5. The SLI model for Y is given by Equation (4.2) with
Y0 = 1, a = 1, σ = 0.3, γ = 3. The simulations use 50, 000 samples. The values between
braces correspond to twice the standard deviation of the estimator.

numbers. From a numerical point of view, the efficiency of the particle system depends on
the rate at which every particle converges to the invariant probability (see Section 3.5). In
that section, we proved that this convergence rate was faster than Nα for 0 < α < 1/2 where
N is the number of particles. Now, we study numerically this convergence on the example of
Asian option on the default counting process whose price is given by

P = E

(

1

T

∫ T

0
Xudu − K

)

+

This price P will be approximated using the corresponding particle system estimate PN ,
where N is the number of particles. We are interested in the limiting distribution of PN .
Because the process X has no continuous part and only makes jumps of size 1 and X0 = 0,
the pathwise integral can be rewritten

1

T

∫ T

0
Xudu = XT − 1

T

∑

t≤T s.t. Xt− 6=Xt

t,

and thus can be computed exactly (up to the simulation of X). This example requires to
sample the joint distribution of XT and the sum of the default times.
On Figure 2, we have plotted the distribution of PN after renormalizing and centering. We can
see that the limiting distribution looks very much like the Gaussian distribution in solid line.
Now, let us numerically study the rate of convergence. It is actually given by the decrease

rate of
√

Var(PN ) =
(

E(|PN − P |2)
)1/2

. From a practical point of view, we do not have access
to P , so we have approximated it by the empirical mean P̂ of the data set used to build the
histogram of Figure 2. Then, we have computed the linear regression of −1

2 logE(|PN − P̂ |2)
with respect to log(N) on our simulations of PN for N varying from 100 to 10, 000 with a
step size of 100, which gives a set of 100 data. The idea of the regression is to write

−1

2
logE(|PN − P̂ |2) = α log(N) + β + εN

and to minimize the series
∑

N ε2
N . The minimum is achieved for α = 0.5014, β = −0.1361

and the empirical variance of the sequence (εn) is equal to 10−4. This computation does not
allow us to determine if the rate of convergence is precisely

√
N , but indicates that it is close

to that. However, this result combined with Figure 2 suggests that a Central Limit Theorem
is likely to hold. We have observed numerically the same behaviour on many other payoff
functions.
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Figure 2: Centered and renormalised distribution of the estimator PN of the Asian option
price using the particle system when Y is given by Equation (4.1) with T = 2, Y0 = 1, a =
1, σ = 0.3, κ = 1, f = 1/3, f = 3 and N = 10000. The histogram was obtained using 10, 000
independent particle systems. The solid line represents the standard normal density function

5 Conclusion

Local intensity models are widespread for modelling the default counting process in credit risk.
Recently, more sophisticated models with a stochastic factor involved in the intensity have
been introduced in the literature. These stochastic local intensity models can be automatically
calibrated to CDO tranche prices by properly choosing the local part of the intensity. This
particular choice of the local intensity gives rise to a very specific family of SLI dynamics
for which we have investigated the existence and uniqueness of solutions. This theoretical
study has been carried out using particle systems, which turned out to be a clever tool for the
numerical simulation of such dynamics. We have proved that particle Monte-Carlo algorithms
based on this particle system approach almost surely converge. The theoretical study of the
convergence rate enabled us to prove that the almost sure convergence took place at a rate
faster that Nα for any 0 < α < 1/2. Obtaining a Central Limit Theorem type result for such
particle systems remains an open question, even though we could highlight such a behaviour in
all our simulations. Last, we have shown that the interacting particle system can be sampled
with a computational cost in O(ND), which is the same asymptotic cost as a Monte-Carlo
algorithm for standard SDEs.
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A Proof of Proposition 4

The scheme of the proof is the following:

• First, we prove that Ψ+ : t, x 7−→ Ψ(t, x+) is globally Lipschitz in x. Then, (E ′′) admits
a unique solution on R+.

• Second, we prove that the solution satisfies ∀t ≥ 0, P (t) ≥ 0 and |P (t)| = 1.

Step 1: Ψ+ is globally Lipschitz. Let us prove that for all (x, y) ∈ E × E there exists a
constant K such that |Ψ+(t, x) − Ψ+(t, y)| ≤ K|x − y|. We have

|Ψ+(t, x) − Ψ+(t, y)| =
∑

i∈LM

∑

j≥0

|(Ψ(t, x+))i
j − (Ψ(t, y+))i

j |.

Bounding this quantity boils down to bound
∑

i∈LM

∑

j≥0

(

(A1)i
j + 2f(j)λ(t, i)(A2)i

j

)

where

(A1)i
j := |

∑

k≥0

µi
kj((x

i
k)+ − (yi

k)+)|,

(A2)i
j :=

∣

∣

∣

∣

∣

∑∞
l=0(xi

l)+
∑∞

l=0 f(l)(xi
l)+

(xi
j)+ −

∑∞
l=0(yi

l)+
∑∞

l=0 f(l)(yi
l)+

(yi
j)+

∣

∣

∣

∣

∣

.

Bound for A1. We easily get from Hypothesis 1

∑

i∈LM

∑

j≥0

(A1)i
j ≤

∑

i∈LM

∑

k≥0

∑

j≥0

|µi
kj ||(xi

k)+ − (yi
k)+| =

∑

i∈LM

∑

k≥0

2|µi
kk||(xi

k)+ − (yi
k)+|

≤ 2 sup
i∈LM ,k∈N

|µi
kk||x − y|.

Bound for A2. To bound it, we introduce ±
∑∞

l=0
(yi

l )+
∑∞

l=0
f(l)(xi

l
)+

(xi
j)+ and ±

∑∞

l=0
(yi

l )+
∑∞

l=0
f(l)(yi

l
)+

(xi
j)+ in

order to split (A2)i
j in three terms. Each of them is bounded in the following way

∣

∣

∣

∣

∣

∑∞
l=0(xi

l)+
∑∞

l=0 f(l)(xi
l)+

(xi
j)+ −

∑∞
l=0(yi

l)+
∑∞

l=0 f(l)(xi
l)+

(xi
j)+

∣

∣

∣

∣

∣

≤
(xi

j)+
∑∞

l=0 f(l)(xi
l)+

∞
∑

l=0

|(xi
l)+ − (yi

l)+|,
∣

∣

∣

∣

∣

∑∞
l=0(yi

l)+
∑∞

l=0 f(l)(xi
l)+

(xi
j)+ −

∑∞
l=0(yi

l)+
∑∞

l=0 f(l)(yi
l)+

(xi
j)+

∣

∣

∣

∣

∣

≤ f

f

(xi
j)+

∑∞
l=0 f(l)(xi

l)+

∞
∑

l=0

|(xi
l)+ − (yi

l)+|,
∣

∣

∣

∣

∣

∑∞
l=0(yi

l)+
∑∞

l=0 f(l)(yi
l)+

(xi
j)+ −

∑∞
l=0(yi

l)+
∑∞

l=0 f(l)(yi
l)+

(yi
j)+

∣

∣

∣

∣

∣

≤ 1

f
|(xi

j)+ − (yi
j)+|.

Then,
∑

i∈LM

∑

j≥0 f(j)λ(t, i)(A2)i
j ≤ λ(1 + 2f

f )|x − y|. Combining bounds on A1 and A2,

we get |Ψ+(t, x) − Ψ+(t, y)| ≤ K|x − y|, where K = 2 sup
i∈LM ,k∈N

|µi
kk| + 2λ

(

1 + 2
f

f

)

.

Step 2: the solution is positive with norm 1. Let P (t) denote the unique solution of
(E ′′).
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First, we prove that ∀t ∈ R+, ∀(i, j) ∈ LM × N, P i
j (t) ≥ 0.

P i
j (t) satisfies

{

(P i
j )′(t) =

∑

k 6=j µi
kj(P i

k(t))+ + 1{i≥1}
λ(t,i−1)f(j)

ϕ((P (t))+,i−1)(P i−1
j (t))+ −

(

λ(t,i)f(j)1{i≤M−1}

ϕ((P (t))+,i) − µi
jj

)

(P i
j (t))+,

P i
j (0) = δix0δjy0 .

We assume that there exists t ≥ 0 such that P i
j (t) < 0. We also introduce u := sup{s ≤ t :

P i
j (s) = 0}. Then, we integrate the above equation between u and t. We get

(P i
j )(t) =

∫ t

u

∑

k 6=j

µi
kj(P i

k(s))+ + 1{i≥1}
λ(s, i − 1)f(j)

ϕ((P (s))+, i − 1)
(P i−1

j (s))+ds.

The l.h.s. is strictly negative whereas the r.h.s. is non negative. Then, P i
j (t) ≥ 0 for all

t ∈ R+.
Second, we prove ∀t ∈ R+, |P (t)| = 1. Since P is non negative, (|P (t)|)′ =
∑

i∈LM

∑

j≥0(P i
j )′(t). Moreover,

∑

i∈LM

∑

j≥0(P i
j )′(t) = 0. Then, |P (t)| = |P (0)| = 1.

B Proof of E[supt∈[0,T ] |Y 1,N
t |p] < ∞

We assume that Y 1,N satisfies (3.6) and X1,N is a Poisson process with intensity (3.5). Then

|Y 1,N
t |p ≤ 4p−1

(

yp
0 +

∣

∣

∣

∣

∫ t

0
b(s, X1,N

s , Y 1,N
s )ds

∣

∣

∣

∣

p

+

∣

∣

∣

∣

∫ t

0
σ(s, X1,N

s , Y 1,N
s )dWs

∣

∣

∣

∣

p

+

∣

∣

∣

∣

∫ t

0
γ(s−, X1,N

s− , Y 1,N
s− )dX1,N

s

∣

∣

∣

∣

p)

≤ 4p−1

(

yp
0 + T p−1

∫ t

0

∣

∣

∣b(s, X1,N
s , Y 1,N

s )
∣

∣

∣

p
ds + sup

u≤t

∣

∣

∣

∣

∫ u

0
σ(s, X1,N

s , Y 1,N
s )dWs

∣

∣

∣

∣

p

+ Mp−1
∫ t

0
|γ(s−, X1,N

s− , Y 1,N
s− )|pdX1,N

s

)

,

since X1,N jumps at most M times. The r.h.s being increasing w.r.t t, we can replace in the
l.h.s. |Y 1,N

t |p by supu≤t |Y 1,N
u |p. Burkholder-Davis-Gundy inequality yields to

E

[∣

∣

∣

∣

∣

sup
u≤t

∫ u

0
σ(s, X1,N

s , Y 1,N
s )dWs

∣

∣

∣

∣

∣

p]

≤ CpT p/2−1E

[∫ t

0

∣

∣

∣σ(s, X1,N
s , Y 1,N

s )
∣

∣

∣

p
ds

]

.

On the other hand, E
[

∫ t
0 |γ(s−, X1,N

s− , Y 1,N
s− )|pdX1,N

s

]

≤ λf
f

∫ t
0 E

[

|γ(s−, X1,N
s− , Y 1,N

s− )|p
]

ds since

the jump intensity of X1,N is upper bounded by λf
f . Now since b, σ, and γ have a sub linear

growth with respect to y (see Hypothesis (2)), we get

E[sup
t≤T

|Y 1,N
t |p] ≤ C

(

∫ T

0
1 + E[sup

u≤s
|Y 1,N

u |p]ds

)

,

which gives the result by Gronwall’s lemma.
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C Proof of Lemma 9

The proof of this lemma is done in two steps. First, we claim that (πN )N is tight if and only
if the sequence ((X1,N

t , Y 1,N
t )t∈[0,T ])N is tight. To check this, we first notice that P(E) is a

Polish space. By Proposition 4.6 in Méléard (1996), (πN )N is tight if and only if (I(πN ))N

is tight. Then Prohorov’s Theorem (tightness is equivalent to sequential compactness) gives
with equation (3.7) the claim.
Now, we must show that ((X1,N

t , Y 1,N
t )t∈[0,T ])N is tight. We use Aldous’ criterion.

First, we have to check that, for any ε > 0, there exists a constant K such that
P(supt∈[0,T ] |X1,N

t | + |Y 1,N
t | > K) ≤ ε. This is trivial since X1,N

t is bounded and

E[supt∈[0,T ] |Y 1,N
t |] < ∞ (see Appendix B). Second, we have to check that for any ε > 0,

η > 0, there exist δ > 0 and n0 such that

sup
n≥n0

sup
τ1,τ2∈T[0,T ],τ1≤τ2≤τ1+δ

P(|(X1,N
τ2

, Y 1,N
τ2

) − (X1,N
τ1

, Y 1,N
τ1

)| > η) < ε,

where T[0,T ] denotes the set of stopping times taking values in [0, T ]. We take |(x, y)| =
max(|x|, |y|) and we assume without loss of generality that 0 < η < 1. For convenience, we

introduce νi,N
t =

∑∞
k=1 1{T i,k≤t}: this is a Poisson process with intensity λf

f . We distinguish

the two cases: ν1,N
τ2

≥ ν1,N
τ1

+ 1 (X1,N jumps in (τ1, τ2] ) and ν1,N
τ2

= ν1,N
τ1

(X1,N does not
jump in (τ1, τ2] ). We have:

P(|(X1,N
τ2

, Y 1,N
τ2

) − (X1,N
τ1

, Y 1,N
τ1

)| > η) ≤P
(

ν1,N
τ2

≥ ν1,N
τ1

+ 1
)

+ P
(

|Y 1,N
τ2

− Y 1,N
τ1

| > η, ν1,N
τ2

= ν1,N
τ1

)

:= P1 + P2.

Since P(ν1,N
τ2

> ν1,N
τ1

) ≤ E[ν1,N
τ2

− ν1,N
τ1

] = λf
f E[τ2 − τ1], we get P1 ≤ δ λf

f .

P2 is bounded by P(
∫ τ2

τ1
b(s, Xs, Ys)ds +

∫ τ2
τ1

σ(s, Xs, Ys)dWs > η). Using Markov’s inequality,
we get

P2 ≤ 1

η2
E

[

∣

∣

∣

∣

∫ τ2

τ1

b(s, X1,N
s , Y 1,N

s )ds +

∫ τ2

τ1

σ(s, X1,N
s , Y 1,N

s )dWs

∣

∣

∣

∣

2
]

.

Moreover

E

[

∣

∣

∣

∣

∫ τ2

τ1

b(s, X1,N
s , Y 1,N

s )ds +

∫ τ2

τ1

σ(s, X1,N
s , Y 1,N

s )dWs

∣

∣

∣

∣

2
]

≤ 2

(

E

[

∣

∣

∣

∣

∫ τ2

τ1

b(s, X1,N
s , Y 1,N

s )ds

∣

∣

∣

∣

2
]

+ E

[

∣

∣

∣

∣

∫ τ2

τ1

σ(s, X1,N
s , Y 1,N

s )dWs

∣

∣

∣

∣

2
])

.

On the one hand, we have
∣

∣

∣

∫ τ2
τ1

b(s, X1,N
s , Y 1,N

s )ds
∣

∣

∣

2
≤ δ

∫ τ2
τ1

C(1 + |Y 1,N
s |2)ds for some con-

stant C > 0 by Hypothesis 2. On the other hand, Burkholder-Davis-Gundy’s inequality gives

E
[

| ∫ τ2
τ1

σ(s, X1,N
s , Y 1,N

s )dWs|2
]

≤ CE
[

∫ τ2
τ1

1 + |Y 1,N
s |2ds

]

. Since E[supt≤T |Y 1,N
t |2] < ∞, we

get P2 ≤ C
η2 δ. Thus, combining the upper bounds on P1 and P2, Aldous’ criterion is satisfied

for δ := ε
λf
f

+ C
η2

.
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