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Abstract

In this note we will present the important results of [1]. These results can be used to valuate
European options in models where the log price of the underlying asset is a process with independent
increments.

1 Introduction

Let
(

Ω,F = (Ft)t≥0
,P
)

be a probability space. We consider an underlying asset price given by Stk
=

S0 exp(Xtk
) for k = {0, . . . , N}, where t0, . . . , tN are the trading dates and the process X is a process

with independent increments. We will write k instead of tk in the sequel. Denote by H the payoff of the
option with underlying asset S, the Variance-Optimal pricing and hedging problem consist in finding an
initial endowment V0 ∈ R and an optimal strategy ϕ = (ϕk)1≤k≤N

which minimizes

E
(

V N

T −H
)2

with V N

T = V0 +

N
∑

k=1

ϕk∆Stk
. (1.1)

The reason of such framework is explained in [1]. We will introduce some definitions and assumptions
used which will be used in the sequel. For more details see [1].

Definition 1.1 We say that S satisfies the non-degeneracy condition (ND) if there exists a constant
δ ∈]0, 1[ such that

(E [∆Sk/Fk−1])
2
≤ δE

[

(∆Sk)
2
/Fk−1

]

,

P a.s. for k = 1, . . . , N .

Definition 1.2 We define the discrete cumulant generating function as

m : D × {0, . . . , N} → C with m(z, k) = Eez∆Xk ,

where D = {z ∈ C, E exp (z∆XN ) < ∞}.

Assumption I S satisfies the non-degeneracy condition.

Assumption II 1. ∆Xk is never deterministic for any k = 01, . . . , N .

2. 2 ∈ D.
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2 Discrete Föllmer-Schweizer Decomposition

In this section we will derive discrete Föllmer-Schweizer decomposition for some kind of payoffs. More
details can be found in [1].

Proposition 2.1 Under Assumption II, let z ∈ D fixed, such that 2Re(z) ∈ D. Then H(z) = Sz

N
admits

a discrete Föllmer-Schweizer decomposition











H(z)n = H(z)0 +

n
∑

k=1

ξ(z)k∆Sk + L(z)n

H(z)N = H(z) = Sz

N ,

where

H(z)n = h(z, n)Sz

n, ∀n ∈ {0, . . . , N}

ξ(z)n = g(z, n)h(z, n)Sz−1
n−1, ∀n ∈ {1, . . . , N}

L(z)n = H(z)n −H(z)0 −

n
∑

k=1

ξ(z)k∆Sk, ∀n ∈ {0, . . . , N},

and g(z, n), h(z, n) are defined by

h(z, n) =

N
∏

i=n+1

(m(z, i)− g(z, i)(m(1, i)− 1))

g(z, n) =
m(z + 1, n)−m(1, n)m(z, n)

m(2, n)−m(1, n)2

Consider now that

H = f(SN ), with f(s) =

∫

C

szΠ(dz),

where Π is a finite complex measure in the sense of Rudin [2], Section 6.1. For examples we have

(s−K)+ − s =
1

2πi
∈R+iB

R−iB
sz

K1−z

z(z − 1)
dz, for arbitrary 0 < R < 1, s > 0, K > 0

(K − s)+ =
1

2πi
∈R+iB

R−iB
sz

K1−z

z(z − 1)
dz, for arbitrary R < 0, s > 0, K > 0

Set I0 = suppΠ ∩ R.

Assumption III 1. I0 is compact.

2. 2I0 ⊂ D.

Proposition 2.2 We suppose the validity of Assumptions II and III. Any contingent claim H = f(SN )
admits the real discrete Föllmer-Schweizer decomposition given by











Hn = H0 +

n
∑

k=1

ξHk ∆Sk + LH

n

HN = H

2



where

Hn =

∫

C

H(z)nΠ(dz)

ξHn =

∫

C

ξ(z)nΠ(dz)

LH

n =

∫

C

L(z)nΠ(dz) = Hn −H0 −
n
∑

k=1

ξHk ∆Sk.

The processes (Hn), (ξ
H
n ) and (LH

n ) are real-valued.

The fundamental result of [1] is given by the following Theorem.

Theorem 2.3 We suppose the validity of Assumptions II and III. Let H = f(SN ). A solution to the
optimal problem (1.1) is given by (V ∗

0 , ϕ
∗) with V ∗

0 = H0 and ϕ∗ is determined by

ϕ∗
n = ξHn + λn

(

Hn−1 −H0 −

n−1
∑

i=1

ϕ∗
i∆Si

)

,

where

λn =
1

Sn−1

m(1, n)− 1

m(2, n)− 2m(1, n) + 1
.

Moreover the solution is unique (up to a null set).
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