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Abstract

Consider a Credit Default Swap (CDS) as defined in Brigo and Alfonsi (2004),
and suppose that the interest rates and default intensity are modeled by correlated
CIR++ stochastic processes. Our goal is to compute numerically the CDS rate Rf .
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1 Credit Default Swaps

A credit default swap (CDS) is a contract ensuring protection against default. This contract
is specified by a number of parameters. Let us start by assigning a maturity T .

Consider two companies “A” and “B” who agree on following: if a third reference
company “C” defaults at time τ < T, “B” pays to “A” a ceratin cash amount Z, supposed
to be deterministic in our model, at the default time τ itself. This cash amount is a
“protection” for “A” in case “C” defaults. In exchange for this protection, company “A”
agrees to pay periodically to “B” a fixed amount “Rf”, referred as the CDS rate. Payments
occur at times T = {T1, ..., Tn}, αi = Ti − Ti−1, T0 = 0, Tn = T, fixed in advance at time
t = 0 up to default time τ if this occurs before maturity T , or until maturity T if no
defaults occurs. With these notations we may write the CDS discounted value seen from
“B” at time t as

1τ>t



D(t, τ)(τ − Tβ(τ)−1)Rf1τ<T +
n
∑

i=β(t)

D(t, Ti)αiRf1τ>Ti
−D(t, τ)Z1τ<T



 , (1)

where for any s ∈ [0, T ], β(s) ∈ {1, ..., n} and Tβ(s) is the first date of T1, ..., Tn following t.
The stochastic discount factor at time t for maturity T is denoted by D(t, T ) = B(t)/B(T ),

where Bt = exp
(

∫ t
0 rudu

)

denotes the bank-account numeraire, r being the instantaneous
short interest rate.

We denote by CDS(t, T , T, Rf , Z) the price at time t of the above CDS, and by Pt the
random variable in (1). We will compute the CDS price at time t, according to risk-neutral
valuation (Bielecki and Rutkowski (2002)):

CDS(t, T , T, Rf , Z) = 1τ>tE {Pt| Ft ∨ σ ({τ < u}, u ≤ t)} , (2)

where Ft is the basic filtration without default, typically representing the information flow
of interest rate, intensities and possibly other default-free quantities, and E denotes the
risk-neutral expectation in the enlarged probability space supporting τ .

As Z is given, Rf must be set to the value that makes the CDS fair at time t, i.e. Rf

is such that CDS(t, T , T, Rf , Z) = 0. This explains why Rf is called "the CDS rate."
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1.1 CIR++ model

Consider the Cox-Ingersoll-Ross (1985) process

dxαt = k(θ − xαt )dt+ σ
√

xαt dWt, (3)

where the parameter vector is α = (k, θ, σ, xα0 ), with k, θ, σ, xα0 positive deterministic con-
stants. The condition

2kθ > σ2

ensures that the origin is inaccesible to the process xα, so that the process xα remains
positive. We can now define the CIR++ model, consisting of the following extension of (3)

rt = xαt + ϕ(t;α), t ≥ 0, (4)

with
ϕ(t;α) = f(0, t) − fCIR(0, t;α),

where f(0, t), which is a function integrable on closed intevals, will be defined later, and

fCIR(0, t;α) = 2k θ
exp{th} − 1

2h+ (k + h)(exp{th} − 1)

+ x0
4h2 exp{th}

[2h+ (k + h)(exp{th} − 1)]2
,

with h =
√
k2 + 2σ2.

1.2 CIR++ short-rate model

We suppose that the short-rate rt is defined by Eq. (4). Denote by f instantaneous forward
rates, i.e. f(t, T ) = −∂ lnP (t, T )/∂T.

Denote by PM(0, T ) the price of the T -maturity market zero-coupon; in what follows
the superscript "M" stands for "market". The initial market zero-coupon interest-rate curve
T → PM(0, T ) is automatically calibrated by our model if we set ϕ(t;α) = ϕCIR(t;α), where

ϕCIR(t;α) = fM(0, t) − fCIR(0, t;α).

Consider a given discrete set of zero-coupon prices

P (0, 0) = 1, P (0, t1), ..., P (0, tn),

with tn = T. The function t → fM(0, t), defined on [0, T ], is piecewise constant and such
that

e−

∫

ti

0
fM (0,u)du = P (0, ti), 1 ≤ i ≤ n.

Thus, for 1 ≤ i ≤ n
fM(0, t) = const. = fi, t ∈]ti−1, ti].
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1.3 CIR++ intensity model

For the default intensity model of a default time τ , consider a similar approach and set:

λt = yβt + ψ(t; β), t ≥ 0, (5)

where

dyβt = κ(µ− yβt )dt+ ν
√

yβt dZt, (6)

β = (κ, µ, ν, yβ0 ). The short-interest rate and intensity processes are allowed to be correlated,
by assuming that the driving Brownian motions W and Z are instantaneously correlated
according to

dWt dZt = ρ dt.

Here again the function ψ(t; β) = ψCIR(t; β), with

ψCIR(t; β) = γM(0, t) − gCIR(0, t; β),

where gCIR(0, t; β) is defined as in Section 1.1. Given an initial discrete set of CDS rates

Rf (0, t1), ..., Rf (0, tm),

with tm = T , we can compute the function t → γM(0, t), which is piecewise linear, and

such that, if we denote by RγM

f (0, t) the CDS rate (correspondint to maturity t) computed
using the intensity γM , we have

RγM

f (0, ti) = Rf (0, ti), 1 ≤ i ≤ n.

With this choice for λ, in the credit derivatives world we have formulae that are analo-
gous to the ones for the interest-rate derivatives products. Thus, the risk-neutral survival
probability is

E(1τ>t) = E(e−

∫

t

0
λ(u)du) (7)

2 Pricing CDS

2.1 Pricing CDS when r and τ are independent, in a determin-
istic intensity model

Suppose that the default time τ admits the (deterministic) intensity function γ (also called
hazard rate), i.e. the hazard function Γ is given by Γ(T ) =

∫ T
0 γ(u)du.

When interest rates and default time are independent Eq. (2) writes (see Brigo and
Alfonsi (2004)):

CDS(t, T , T, Rf , Z) = Rf

∫ T

t
P (t, u)(u− Tβ(u)−1)γ(u)e−

∫

u

t
γ(s)dsdu (8)

+Rf

n
∑

i=β(t)

P (t, Ti)αie
−

∫

Ti

t
γ(s)ds (9)

−Z
∫ T

t
P (t, u)γ(u)e−

∫

u

t
γ(s)dsdu. (10)
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where P (t, u) denotes the price of the u-maturity zero-coupon starting from t.

2.2 Pricing CDS when r and τ are correlated

When interest rates and default intensity are correlated, the first ideea is to simulate
trajectories of the correlated process r and λ, and to use then Monte Carlo techniques
to compute the expectation in Eq. (2). We implement also a second method, based on
an analytical approximation for some credit derivatives terms involving correlated CIR
processes.

2.3 Simulating λ and r

Explicit scheme for simulating a CIR process For a discretization t0 = 0 < t1 <
... < tn = T, of the interval [0, T ], consider the scheme (called Explicit(0), see Alfonsi
(2005))

x̂αti+1
=

[(

1 − k

2
(ti+1 − ti)

)

√

x̂αti − σ(Wti+1
−Wti)

2(1 − k
2
(ti+1 − ti))

]2

+

(

kθ − σ2

4

)

(ti+1 − ti). (11)

Simulating correlated CIR processes We write Z as Zt = ρWt +
√

1 − ρ2W ′

t , where
W ′

t is a Brownian motion independent of W, and we obtain the increments of (W,Z)
between ti and ti+1 through simulation of the increments of W, and W ′; these increments
are independent, centered Gaussian variables with variance ∆i = ti+1 − ti.

2.4 Gaussian dependence mapping

For u ∈ [t, T ], denote by

MCIR++

1 (u) , E
[

λu exp
{

−
∫ u

t
(rs + λs)ds

}]

MCIR++

2 (u) , E
[

exp
{

−
∫ u

t
(rs + λs)ds

}]

.

When λ and r are independent, the value of the CDS at time t can be written as (see
[BrAlf]):

CDS(t, T , T, Rf , Z) = Rf

∫ T

t
MCIR++

1 (u)(u− Tβ(u)−1)du (12)

+ Rf

n
∑

i=β(t)

αiM
CIR++

2 (Ti) (13)

− Z
∫ T

t
MCIR++

1 (u)du. (14)
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If, for t ≤ u ≤ T , we know to compute MCIR++

1 (u) and MCIR++

2 (u), then using (12), (13)
and (14) we can compute the CDS value. Indeed, knowing MCIR++

1 (u), for t ≤ u ≤ T , we
can compute numerically the integrals in (12) and (14).

How about the computation of MCIR++

1 (u) and MCIR++

2 (u)? Looking closely at this
problem one find that these expectations can be trustworthy approximated not only when
λ and r are independent, but also when λ and r are correlated. Thus, in the general case

ρ 6= 0 we will approximate the CDS value using (12)-(14).
We present now the approximation formulae to compute MCIR++

1 (u) and MCIR++

2 (u).

2.4.1 Preliminaries

Because rs = xαs + ϕ(s;α) and λs = yβs + ψ(s; β) we have

MCIR++

1 (u) = e−

∫

u

t
(ϕ(s;α)+ψ(s;β))ds

(

ψ(u; β)E
[

exp
{

−
∫ u

t
(xαs + yβs )ds

}]

(15)

+ E
[

yβu exp
{

−
∫ u

t
(xαs + yβs )ds

}])

,

MCIR++

2 (u) = e−

∫

u

t
(ϕ(s;α)+ψ(s;β))dsE

[

exp
{

−
∫ u

t
(xαs + yβs )ds

}]

.

Denoting by

MCIR

1 (u) , E
[

yβu exp
{

−
∫ u

t
(xαs + yβs )ds

}]

MCIR

2 (u) , E
[

exp
{

−
∫ u

t
(xαs + yβs )ds

}]

,

we have that

MCIR++

1 (u) = e−

∫

u

t
(ϕ(s;α)+ψ(s;β))ds [ψ(u; β)MCIR

2 (u) +MCIR

1 (u)]

MCIR++

2 (u) = e−

∫

u

t
(ϕ(s;α)+ψ(s;β))dsMCIR

2 (u).

The ideea is to “map” the two-dimensional CIR dynamics in an analogous tractable
two-dimensional Gaussian dynamics that preserve as much as possible of the original CIR
structure, and then do calculations in the Gaussian model. Recall that the CIR process
and the Vasicek process for interest rate give both affine models. The first one is more
convenient because it ensures positive values while the second one is more analytically
tractable. Indeed, in our two-dimensional CIR model we have no formula for MCIR

1 (u) and
MCIR

2 (u) for ρ 6= 0, while in the two-dimensional Vasicek case one can easily derive such
formulae (see below).

2.4.2 Mapping a CIR dynamic in a Vasicek one

Let xα be the CIR process defined in (3)

dxαs = k(θ − xαs )ds+ σ
√
xαs dWs, xαt = x0, t ≤ s ≤ T,
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and let xαT ,V be the following Vasicek process

dxαT ,V
s = k(θ − xαT ,V

s )ds+ σαT ,V dWs, xαT ,V
t = x0, t ≤ s ≤ T,

where σαT ,V , the volatility of the Vasicek process, is computed solving the equation

E

[

exp

{

−
∫ T

t
xαT ,V
s ds

}]

= E

[

exp

{

−
∫ T

t
xαs ds

}]

.

In the above equation, expectations on both sides are analytically known, being bond price
formulae for Vasicek and CIR models respectively. Then

σαT ,V = k

√

√

√

√2
log(P CIR(t, T ;xα)) + θ(T − t) − (θ − xt)g(k, T − t)

(T − t) − 2g(k, T − t) + g(2k, T − t)
,

with g(a, s) = (1 − e−as)/a.

2.4.3 Gaussian dependence mapping approximation

Recall our two CIR processes xα and yβ

dxαs = k(θ − xαs )ds+ σ
√
xαs dWs,

dyβs = κ(µ− yβs )ds+ ν
√

yβs dZs,

with dWs dZs = ρ ds, and consider the corresponding Vasicek processes xαT ,V and yβT ,V

dxαT ,V
s = k(θ − xαT ,V

s )ds+ σαT ,V dWs,

dyβT ,V
s = κ(µ− yβT ,V

s )ds+ νβT ,V dZs,

constructed as in Section 2.4.2.
We adopt the following approximations:

MCIR

2 (u) , E
[

exp
{

−
∫ u

t
(xαs + yβs )ds

}]

(16)

≈ E
[

exp
{

−
∫ u

t
(xαu,V

s + yβu,V
s )ds

}]

(17)

MCIR

1 (u) , E
[

yβu exp
{

−
∫ u

t
(xαs + yβs )ds

}]

(18)

≈ E
[

yβu,V
u exp

{

−
∫ u

t
(xαu,V

s + yβu,V
s )ds

}]

+ ∆u (19)

where

∆u , E
[

exp
{

−
∫ u

t
xαs ds

}]

E
[

yβu exp
{

−
∫ u

t
yβs ds

}]

− E
[

exp
{

−
∫ u

t
xαu,V
s ds

}]

E
[

yβu,V
u exp

{

−
∫ u

t
yβu,V
s ds

}]

= P CIR(t, u;xα)

[(

−∂P CIR

∂u
(t, u; yβ)

)

−MV

3 (u)

]

, (20)
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where MV

3 (u) is defined in (23).
Put

MV

1 (u) , E
[

yβu,V
u exp

{

−
∫ u

t
(xαu,V

s + yβu,V
s )ds

}]

(21)

MV

2 (u) , E
[

exp
{

−
∫ u

t
(xαu,V

s + yβu,V
s )ds

}]

(22)

MV

3 (u) , E
[

yβu,V
u exp

{

−
∫ u

t
yβu,V
s ds

}]

(23)

Then, from (18)-(19) and (16)-(17), we have

MCIR

1 (u) ≈ MV

1 (u) + ∆u (24)

MCIR

2 (u) ≈ MV

2 (u). (25)

At this point we can say that the work is completely done, because, for 0 ≤ u ≤ T ,
MV

1 (u), MV

2 (u) and MV

3 (u) have known analytical expressions, as indicated in what follows.

2.4.4 Computing MV

1 (u), MV

2 (u) and MV

3 (u)

Let xαT ,V and yβT ,V be two Vasicek processes as follows

dxαT ,V
s = k(θ − xαT ,V

s )ds+ σvdWs,

dyβT ,V
s = κ(µ− yβT ,V

s )ds+ νvdZs,

defined for t ≤ u ≤ T , with dWs dZs = ρ ds. Lemmas 3.1 and 3.2 from [BrAlf] imply the
following formulae.

MV

1 (T ) = mB exp
{

−mA +
1

2
σ2
A

}

− ρ̄σAσB exp

{

−mA +
1 − ρ̄2

2
σ2
A

}

,

MV

2 (T ) = exp
{

−mA +
1

2
σ2
A

}

,

MV

3 (T ) = mB exp
{

−mdeg
A +

1

2
(σdegA )2

}

− ρ̄degσdegA σB exp

{

−mdeg
A +

1 − (ρ̄deg)2

2
(σdegA )2

}

,
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with

mA = (µ+ θ)(T − t) − [(θ − xt)g(k, T − t) + (µ− yt)g(κ, T − t)],

mB = µ− (µ− yt)e
−κ(T−t),

mdeg
A = µ(T − t) − (µ− yt)g(κ, T − t),

σ2
A =

(

νv
κ

)2

(T − t− 2g(κ, T − t) + g(2κ, T − t))

+
(

σv
k

)2

(T − t− 2g(k, T − t) + g(2k, T − t))

+
2ρσvνv
kκ

(T − t− g(κ, T − t) − g(k, T − t) + g(κ+ k, T − t)),

σ2
B = ν2

vg(2κ, T − t),

(σdegA )2 =
(

νv
κ

)2

(T − t− 2g(κ, T − t) + g(2κ, T − t)),

ρ̄ =
1

σAσB

[

ν2
v

κ
(g(κ, T − t) − g(2κ, T − t))

+
ρσvνv
k

(g(κ, T − t) − g(κ+ k, T − t))
]

,

ρ̄deg =
1

σdegA σB

[

ν2
v

κ
(g(κ, T − t) − g(2κ, T − t))

]

,

g(a, s) = (1 − e−as)/a.

See the computation tree in Figure 2.4.4.

3 Available numerical routines

3.1 Pricing defaultable bonds

We have to compute E(1τ>TP (0, T )).

3.1.1 Closed form formula (ρ = 0)

When r and λ are uncorrelated, we can use the closed form formulae for the zero-coupon
bond and the survival probabilies.

3.1.2 Monte Carlo technique

We simulate the correlated couple (rt, λt), over [0, T ], and compute the desired expectation.

3.2 Computing the CDS rate

Recall Eqs. (1) and (2). We have to compute

CDS(t, T , T, Rf , Z) = Et(Pt)
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Delta(u)

CdsRate

Discounted Fraction Fee Sum of Discounted Regular Fees Discounted Default Payment

M2 CIR++(u)M1 CIR++(u)

M1 CIR(u) M2 CIR(u)

1

1

2
2

Computing ths CDS Rate using Gaussian Mapping Approximation

Short Rate ZC CIR(u) Intensity partial ZC CIR(u) M3 V (u)

Intensity and Short Rate
Mapped Volatilities (u)

M1 V (u)

Bank Accounts (u)

Intensity Shift (u) 
Short Rate
Intensity (u)
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as a function of Rf , and then to choose the Rf that makes the CDS fair at time t, i.e.

CDS(t, T , T, Rf , Z) = 0.

3.2.1 Closed form formula (ρ = 0)

When r and λ are uncorrelated, the CDS price is written down in (8)-(10). Our model is
such constructed that it exactely match the zero-coupon prices and survival probabilities.
Thus in these equations we can directely use the market zero-coupon prices and survival
probabilities. Applying numerical integration we compute the integrals in (8) and (10),
and then completely evaluate the CDS rate Rf , which is such that CDS(t, T , T, Rf , Z) = 0.

3.2.2 Gaussian mapping analytical approximation

We use analytical formulae to approximate the expectations in (12)-(14) and apply nu-
merical integration to compute integrals in (12) and (14). Then Rf is chosed such that
CDS(0, T , T, Rf , Z) = 0.

3.2.3 Monte Carlo technique

To compute E(P0), we simulate the correlated couple (rt, λt), over [0, T ], and apply the
control variate technique to reduce the variance; the control variate we used is 1τ>T .

4 Implementation

The implementation is done in the C++ language. Some remarks concerning the numerical
algorithms are in order.

The numerical integrations are computed using Riemann summations and also Simp-
son’s Rule.

CIR++ processes are simulated using the Explicit(0) scheme from Alfonsi (2005).
We also use the C++ random number generator library writen by Robert Davies. This

library is freely available at the adress: http://www.robertnz.net/
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