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Abstract

We explain how a carefully chosen scheme can lead to competitive Monte Carlo
algorithm for the computation of the price of Asian options. We give evidence of the
efficiency of these algorithms with a mathematical study of the rate of convergence
and a numerical comparison with some existing methods. Key Words: Asian

option, Monte Carlo methods, Numerical methods, Diffusion process.

1 Introduction

Monte Carlo methods are known to be useful when the state dimension is large. This
is widely true but we will give here an example of a small dimension problem coming
from finance where a Monte Carlo (helped by a variance reduction technique) can be
more efficient than other known methods.
This example is based on the price of an Asian option (see subsection 2.1). This
problem is known to be computationally hard and a lot of literature deals with this
problem: using either analytic methods ([7], [6]), numerical methods based on the
partial differential equation associated ([3], [5], [9], [12]) or Monte Carlo methods ([10]).
The originality of this work is to propose (and to give precise results) new time schemes
approximation for the integral of the Black & Scholes model: this point is really a source
of concern when using Monte Carlo methods as noted by Madan, Fu and Wang ([6], page
14). We will show that, when we use a suitable scheme and variance reduction, a Monte
Carlo method can be more competitive than other methods under some circumstances.
In order to get precise and complete numerical results, we have undertaken extensive
comparisons with most of the other known methods : Forward Shooting Grid ([2]),
Hull and White ([8]), Finite Difference and already quoted Monte Carlo methods.
For moderate precision 10−2, tree methods (FSG and Hull and White) are the most
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efficient. But, surprisingly, really large precision (10−4) can only be reached by Monte
Carlo method with relatively large time step (∼ 1 month).
This article is organized in the following way: we first introduce the mathematical
context, then we present the Monte Carlo schemes in sections 1-2, section 3 contains
the proof of their convergence in the Lp spaces and section 4 quickly describes the
variance reduction method used in this article. The end of the paper is devoted to
numerical tests and comparisons.

2 Mathematical Context

2.1 Financial Background

To describe the price of an asset at time t, we use the Black and Scholes model with a
risky asset (a share of price St at time t) and a no-risk asset (whose price is S0

t at time
t). The price St is given by the following stochastic differential equation

dSt = St(µdt + σdBt),

where µ and σ are two positive constants and (Bt) is a standard Brownian motion.
The price of the no-risk asset satisfies the ordinary differential equation

dS0
t = rS0

t dt.

As usual, we introduce the process Wt = Bt + µ−r
σ t which is a Brownian motion under

an adapted probability, called the neutral risk probability and denoted by P. Thus, the
risky asset satisfies a new stochastic differential equation

dSt = St(rdt + σdWt),

whose solution is

St = ST0 exp (σWt −
σ2

2
t+ rt).

ST0 is the price of the asset at the beginning of the modeling.
Asian options (or options on average) is the general name for a class of options whose
payoff depends of the mean of the price of the risky asset on a given period. Thus, the
price of an Asian option with maturity T can be written:

V (t, S,A) = e−r(T−t)Ef (St, AS(T0, t)) .

where

AS(T0, t) =
1

t− T0

∫ t

T0

Sudu.
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From now on, we choose T0 = 0, with no lost of generality. The function f depends of
the type of the options

• For a call with fixed strike: f(s, a) = (a−K)+

• For a put with fixed strike: f(s, a) = (K − a)+

• For a call with floating strike: f(s, a) = (s− a)+

• For a put with floating strike: f(s, a) = (a− s)+

2.2 Practical Schemes

If we want to use Monte Carlo methods to compute a price, we have to simulate the
average of St, therefore we need to approximate an integral. Here, it is not necessary
to approximate St because it can be exactly simulated. With this aim in view, the
interval [0, T ] will be divided into N steps. The step size will be noted h = T/N , and
we define the times tk = kT/N = kh.

The standard scheme We introduce three schemes to estimate YT =
∫ T

0 Sudu.
Since we are able to simulate St at a given t, the integral can be approached by Riemann
sums:

Yr,n
T = h

n−1∑
k=0

Stk . (1)

For example, if M denote the number of drawing in the Monte Carlo method, an
approximation of the price at maturity of a fixed strike Asian call is given by

e−rT

M

M∑
j=1

(
h

T

n−1∑
k=0

Stk −K

)
+

.

Note that the time complexity of this algorithm is O
( 1
NM

)
(this is true for every kind

of Monte Carlo methods) and that it involves two kinds of errors: the Monte Carlo
error and the time step error. The Monte Carlo error is of order σ√

M
and the time step

error is harder to evaluate (see proposition 3.3).
The scheme (1) can be interpreted as the second variable in the Euler approximation
for the following stochastic differential equation

dUt = B(Ut)dt+ Σ(Ut)dWt with Ut =
[
St
Yt

]
, B(Ut) =

[
rSt
St

]
and Σ(Ut) =

[
σ(St)

0

]
Higher accuracy schemes One way to obtain higher accuracy for the integral ap-
proximation is to remark that in L2, the closest random variable to

( 1
T

∫ T
0 Ssds−K

)
+

when the (Stk , k = 0, . . . , N) are known is given by:

E
((

1
T

∫ T

0
Sudu−K

)
+

∣∣∣∣ Bh) , (2)
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with Bh is the σ-field generated by the (Stk , k = 0, . . . , N). Of course, it is theoretically
impossible to compute explicitly this conditional expectation (it is certainly harder than
to obtain an explicit formula for V ). But, since the conditional law of Wu with respect
to Bh for u ∈ [tk, tk+1] is given by

L(Wu |Wtk = x, Wtk+1 = y) = N
(
tk+1 − u

h
x+

u− tk
h

y,
(tk+1 − u)(u− tk)

h

)
, (3)

one can in principle compute(
E
(

1
T

∫ T

0
Sudu

∣∣∣∣ Bh)−K)
+

=
(

1
T

∫ T

0
E
(
Su

∣∣∣∣ Bh) du −K)
+

(4)

as a function of (Wtk , k = 0, . . . , N). Jensen inequality proves that (4) is smaller
than (2), but we will see that (2) is already a really good approximation of YT (see
proposition 3.3). Using the law described by (3), we get

E
[

1
T

∫ T

0
Sudu

∣∣∣∣ Bh]
=

1
T

n−1∑
k=0

∫ tk+1

tk

e(r−σ
2
2 )ueσ

tk+1−u
h

Wtk
+σ u−tk

h
Wtk+1+σ2

2
(tk+1−u)(u−tk)

h du

=
1
T

n−1∑
k=0

∫ tk+1

tk

eσ
u−tk
h

(Wtk+1−Wtk
)−σ

2
2

(u−tk)2

h
+rueσWtk

−σ
2
2 tkdu

In Monte Carlo simulation, this approximation is used in a double loop (in times and
in the number of simulation), so it is really necessary to simplify this formula. Hence,
a formal Taylor expansion can be done with h small, which leads to a more practical
scheme:

Ye,n
T =

h
T

n−1∑
k=0

Stk

(
1 +

rh
2

+ σ
Wtk+1 −Wtk

2

)
. (5)

Remark 2.1. Note that this scheme is equivalent to the well known trapezoidal me-
thod. We will prove that,

E

(
Y e,n
T − 1

T

n−1∑
k=0

h
Stk + Stk+1

2

)2

= O

(
1
n3

)
.

So, since the rate of convergence of (5) is in 1/n (see proposition 3.3), the error above
is negligible.

Proof. This result can be obtained using a Taylor expansion:

1
T

n−1∑
k=0

h
Stk + Stk+1

2
=

1
T

n−1∑
k=0

hStk
2

(eσ(Wtk+1−Wtk
)−σ

2
2 h+rh + 1)

=
1
T

n−1∑
k=0

hStk
2

(2 + σ(Wtk+1 −Wtk) + rh) + . . .
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which is exactly the scheme (5). The term of order σ2h and the quadratic variation
of σ(Wtk+1 −Wtk) cancel each other out, so we does not retain it. The mathematical
proof of this remark is the same as proposition 3.3.

Our last scheme is quite similar. As the Brownian motion is a Gaussian process,∫ T
0 Wudu has a normal density w.r.t. the Lebesgues measure on R and can easily be

simulated. Hence,

YT =
1
T

∫ T

0
Sudu

=
1
T

n−1∑
k=0

Stk

∫ tk+1

tk

eσ(Wu−Wtk
)−σ

2
2 (u−tk)+r(u−tk)du.

So, using a Taylor expansion again, we obtain the scheme:

Yp,n
T =

1
T

n−1∑
k=0

Stk

(
h +

rh2

2
+ σ

∫ tk+1

tk

(Wu −Wtk)du
)
. (6)

Remark 2.2. In practice, to simulate this scheme, we have, at each time step, to
simulate Wtk+1 knowing Wtk and (

∫ tk+1
tk

Wudu | Wtk ,Wtk+1). For the second random
variable we use the law (2) and for the first one the fact that (Wtk+1 − Wtk , k =
0, . . . , N − 1) are Gaussian i.i.d. variables.

Remark 2.3. This scheme can be generalized easily to a higher class of diffusion pro-
cess. Let St be a diffusion with a drift b(St) and a diffusion term σ(St), and Yt =

∫
Stdt.

One can use the Euler scheme Snt to simulate St and

Y n
T =

n−1∑
k=0

Sntk

(
h+

∫ tk+1

tk

(Sns − Sntk)ds
)
.

Note that when the diffusion St can be directly simulated, the following scheme is
sufficient

Y n
T =

n−1∑
k=0

Stk

(
h+

∫ tk+1

tk

(Sns − Stk)ds
)
,

We can show that the weak convergence holds at the rate 1/n3/2.

We will now prove some results on the speed of convergence of these 3 schemes. The
weak convergence can be obtained for the scheme (1) (at the rate 1/n) and (6) (at the
rate 1/n3/2) under a weak assumption on f using Malliavin calculus and techniques
developed by Bally and Talay ([1]). We refer to [13] for a complete proof of these
convergence results.
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3 Convergence in the Lp spaces

In this section, we are interested by the strong convergence of the schemes. In Lp, one
can only have some upper bound of the rate of convergence, but the precise expansion
can only be obtained in the particular case p = 2.
Let us start with two well known but important results.

Proposition 3.1. For a Black and Scholes diffusion,

E|St − Ss|2q ≤ Cq|t− s|q

This proposition is available for any diffusion with Lipschitz coefficient (see [11]).
The following will also be useful (see [4] chapter 3 for a proof):

Lemma 3.1. Let Zt = Z0 +
∫ t

0 AsdWs +
∫ t

0 Bsds where Bs is a vector in Rn, As a
matrix in Rn×d, and Wt a d dimensional Brownian motion. (Zt is an Itô process so A
and B are adapted,

∫
|As|ds < +∞ and E

∫
B2
sds < +∞).

Then, Zt satisfies

E|Zt|p ≤ E|Z0|p + C

∫ t

0
E(|Zs|p + |As|p + |Bs|p)ds

We can now obtain precise results for the rate of convergence of our schemes.

Proposition 3.2. With the above notations, there exist three non decreasing maps
K1(T ), K2(T ), K3(T ) such that,(

E

(
sup
t∈[0,T ]

|Y r,n
t − Yt|2q

)) 1
2q

≤ K1(T )
n

(7)

(
E

(
sup
t∈[0,T ]

|Y e,n
t − Yt|2q

)) 1
2q

≤ K2(T )
n

(8)

(
E

(
sup
t∈[0,T ]

|Y p,n
t − Yt|2q

)) 1
2q

≤ K3(T )
n3/2 (9)

Proof. Let us begin with the inequality (7). If we note εt = Y r,n
t − Yt, one has

∀t ∈ [tk, tk+1] εt = εtk +
∫ t

tk

(Ss − Stk)ds

= εtk +
∫ t

tk

(t− u)rSudu+
∫ t

tk

(t− u)σSudWu

So, the lemma 3.1 implies that

∀t ∈ [tk, tk+1] E|εt|2q ≤ (E|εtK |
2q + h2q+1) +

∫ t

tk

E|εs|2qds.
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Applying Gronwall’s lemma, we get that

E|εtk+1 |
2q ≤ (E|εtK |

2q + h2q+1)eh

Since xn+1 ≤ axn + b implies xn ≤ anx0 + nen(a−1)b for a ≥ 1, we have

E|εtk |
2q ≤ Ch2q

We conclude with the inequality of Burkholder-Davis-Gundy. We use the same kind of
arguments for the two other schemes writing them as:

Yt − Y e,n
t = Ytk − Y

e,n
tk

+
∫ t

tk

∫ s

tk

r(Su − Stk)duds+
∫ t

tk

∫ s

tk

σ(Su −
h

2
Stk)dWuds

= Ytk − Y
e,n
tk

+
∫ t

tk

r(t− u)(Su − Stk)du+
∫ t

tk

σ((t− u)Su −
h

2
Stk)dWu

and,

Yt − Y p,n
t = Ytk − Y

p,n
tk

+
∫ t

tk

∫ s

tk

r(Su − Stk)duds+
∫ t

tk

∫ s

tk

σ(Su − Stk)dWuds

= Ytk − Y
e,n
tk

+
∫ t

tk

r(t− u)(Su − Stk)du+
∫ t

tk

σ(t− u)(Su − Stk)dWu.

From this point, it is easy to get the inequalities (8) and (9).

These inequalities give an upper bound for the rate of convergence, but we can obtain
more precise results. Moreover, if we study the L2 convergence, we can obtain an
expansion, and this proves the exact rate of convergence.

Proposition 3.3. With the above notations and assumptions, it holds that√
E
[

1
T

∫ T

0
Sudu− E

(
1
T

∫ T

0
Sudu | Bh

)]2

=
σ

n

√
e(σ2+2r)T − 1
12(σ2 + 2r)

+O

(
1

n
√
n

)
(10)√

E
[

1
T

∫ T

0
Sudu− Y e,n

T

]2

=
σ

n

√
e(σ2+2r)T − 1
12(σ2 + 2r)

+O

(
1

n
√
n

)
(11)√

E
[

1
T

∫ T

0
Sudu− Y r,n

T

]2

=
K2

n
+O

(
1

n
√
n

)
where K2 ≥ σ

√
e(σ2+2r)T − 1
12(σ2 + 2r)

(12)√
E
[

1
T

∫ T

0
Sudu− Y p,n

T

]2

=
1

n
√
n

√
Tσ4 e

(σ2+2r)T − 1
12(σ2 + 2r)

+O

(
1
n2

)
. (13)

Remark that the same rate of convergence occurs in equations (10) and (11), and
futhermore the first term in the expansion is the same. It implies that we did not lose
anything by approximating the conditional expectation with the scheme (5).
If we are interested in the strong convergence, it seems that the most efficient scheme
is the last one. We also remark that the schemes (1) and (5) have the same rate of
convergence and that the first terms in the expansions are quite similar.
The proof of these 4 equalities are similar and we will treat only the last one.



?? pages 8

Proof of (13) Let us note Au,tk = eσ(Wu−Wtk
)−σ

2
2 (u−tk)+r(u−tk) − 1 − r(u − tk) −

σ(Wu −Wtk). Then we get,

E
[

1
T

∫ T

0
Sudu− Y p,n

T

]2

=
2
T 2

∑
0≤j<i≤N−1

∫ ti+1

ti

dv

∫ tj+1

tj

du E(Av,tiAu,tjStiStj )

+
2
T 2

N−1∑
k=0

∫ tk+1

tk

dv

∫ u

tk

du E(Au,tkAv,tkS
2
tk

).

Since Av,ti is independent of Fti , it follows that

E(Av,tiAu,tjStiStj ) = e(σ2+r)tj+rti(er(v−ti) − 1− r(v − ti))

(e(r+σ2)(u−ti) − 1− (r + σ2)(u− ti)).

With a normalization of the variable in the integrand we get,

2
T 2

∑
0≤j<i≤N−1

∫ ti+1

ti

dv

∫ tj+1

tj

du E(Av,tiAu,tjStiStj )

=
2
T 2

 ∑
0≤j<i≤N−1

e(σ2+r)tj+rti

h2
∫ 1

0
dv

∫ 1

0
du

(erhv − 1− rhv)(e(r+σ2)(hu) − 1− (r + σ2)hu).

It is clear that

( ∑
0≤j<i≤N−1

e(σ2+r)tj+rti

)
= O( 1

h2 ), which leads to

2
T 2

∑
0≤j<i≤N−1

∫ ti+1

ti

dv

∫ tj+1

tj

du E(Av,tiAu,tjStiStj ) = O(h4).

We use the same method for the second term,

E(Au,tkAv,tkS
2
tk

)

= e(σ2+2r)tk
(
− (1 + r(u− tk))(er(v−tk) − 1− r(v − tk))

+ er(u−tk)(e(σ2+r)(v−tk) − 1− (r + σ2)(v − tk)) + σ2(v − tk)(er(v−tk) − 1)
)
.

Consequently,

2
T 2

N−1∑
k=0

∫ tk+1

tk

dv

∫ u

tk

du E(Au,tkAv,tkS
2
tk

)

=
2
T 2

(
N−1∑
k=0

e(σ2+2r)tk

)
h2
∫ 1

0
du

∫ u

0
dv(

σ4h2v2

2
+O(h3))

= h3σ
4e(σ2+2r)T − 1
12(σ2 + 2r)

.
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4 Variance Reduction

To increase the efficiency of the Monte Carlo simulation a variance reduction method
can be used. We follow the method developed by Kemna and Vorst [10]. It consists
in approximating 1

T

∫ T
0 Sudu by exp

(
1
T

∫ T
0 log(Su)du

)
. We can expect that these two

random variables are similar since r and σ are not too large.
The random variable Z ′ = 1

T

∫ T
0 log(Su)du obviously has a normal law, and so we can

compute explicitly

E(e−rT (exp(Z ′)−K)+).

As a consequence, we can choose the random variable Z defined by

Z = e−rT (xe(r−σ
2
2 )T2 + σ

T

R T
0 Wudu −K)+,

as our control variable.
Note that the control variable has to be computed with the path of the Brownian
motion already simulated. Consequently, each control variable has to be adapted to
the schemes. So, we retain the same approximation for

∫ T
0 Wudu as for

∫ T
0 Sudu:

For (1) Zr,nT = e−rT (xe
(r−σ

2
2 )T2 + σ

T

n−1P
k=0

hWtk −K)+

For (5) Ze,nT = e−rT (xe
(r−σ

2
2 )T2 + σ

T

n−1P
k=0

h
2 (Wtk

+Wtk+1 )
−K)+

For (6) Zp,nT = e−rT (xe
(r−σ

2
2 )T2 + σ

T

n−1P
k=0

R tk+1
tk

Wudu
−K)+

Note that, as it is explained in remark 2.2, when we use the scheme (6), we simulate

at each step Wtk+1 then (
∫ tk+1
tk

Wudu | Wtk ,Wtk+1). By writing
n−1∑
k=0

∫ tk+1
tk

Wudu in the

last equation above, we intend the mean of the generated variables.
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