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Abstract

We consider the partial differential equation proposed by Rogers and Shi in [2] and
explain the main difficulties encountered when applying standard numerical schemes
on this PDE as such. We then propose a scheme which is able to produce very
quickly (in less than one second on a PC equipped with a 1 GHz Intel Pentium III
microprocessor) accurate results (at least 5 digits of precision). We compare our
approach with the schemes proposed in the litterature.
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1 Introduction

In this article, we would like to explain why standard techniques do not yield accurate
results for the solution of the partial differential equation ruling the price of an Asian
option (see [2]):







∂f

∂t
+
σ2ξ2

2

∂2f

∂ξ2
−

(

1

T
+ rξ

)

∂f

∂ξ
= 0,

f(T, ξ) = φ(ξ).
(1)

where ξ ≥ 0 and the expression of φ depends on the payoff of the option (see Section 2
for details). We will focus on numerical methods based on this PDE. Let us also mention
some Monte Carlo approaches (see [?]) or some methods based on analytical or semi-
analytical solutions (see [?, ?]). Many approximations have also been derived (see [1]). The
advantage of the PDE approach is that it is generally faster than Monte Carlo methods,
and than it gives the results for all initial prices S0 (and even for all strikes K or all
maturities T in some cases). The drawback is usually that the numerical methods are
more complicated to implement for PDE, but we give here a numerical scheme which is
really simple to code. This scheme has been implemented in the software PREMIA (see
routine fd_fixedasian_rodgershi2.c in [?]) and the source code is therefore available on the
internet.
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2 The model

We adopt the standard Black and Scholes model (see [?]) with a risky asset whose price
at time t is St and a no-risk asset whose price at time t is S0

t , such that :

dSt = St(µdt+ σdBt),

dS0
t = rS0

t dt.

The process Bt is a standard Brownian motion defined on a probability space (Ω,F ,Ft, lQ),
and µ, r (the interest rate), σ > 0 (the volatility) are three constants. We introduce the
stochastic process Wt = Bt + µ−r

σ
t. Under the neutral risk probability IP, we know that

St/S
0
t is a martingale and that Wt is a Brownian motion. The process St is solution of

the following stochastic differential equation under IP:

dSt = St(r dt+ σdWt).

We are interesting in computing the price of an Asian option with maturity T , which
means that the option payoff g(S,A) depends on the price ST of the risky asset and on
the mean AT of the price St:

At =
1

t

∫ t

0
Su du.

The price at time t is given by:

V (t, St, At) = e−r(T −t)IE(g(ST , AT )|Ft).

One can check by standard arguments and using the fact that e−rtV (t, St, At) is a IP-
martingale that V is solution of the following PDE (see [?]):







∂V

∂t
+
σ2S2

2

∂2V

∂S2
+ rS

∂V

∂S
+

1

t
(S −A)

∂V

∂A
− rV = 0,

V (T, S,A) = g(S,A).
(2)

The PDE (2) is difficult to solve as such since the parabolic operator is degenerated in the
A-variable (see [?]).

However, as remarked by Rogers and Shi in [2], for fixed strike call (g(S,A) = (A−K)+)
or fixed strike put (g(S,A) = (K−A)+), it is possible to reduce (2) to the PDE (1). Indeed,
if f is solution of (1) with φ(ξ) = max(−ξ, 0) = ξ− (resp. φ(ξ) = max(ξ, 0) = ξ+), then

V (t, S,A) = Sf

(

t,
K − tA/T

S

)

(3)

is solution of (2) with g(S,A) = (A−K)+ (resp. g(S,A) = (K−A)+). This reduction of (2)
to (1) is also possible for floating strike call (g(S,A) = (S −A)+) (resp. for floating strike

put (g(S,A) = (A−S)+)) by setting V (t, S,A) = Sf
(

t,− tA
T S

)

and φ(ξ) = (1 + ξ)− (resp.

φ(ξ) = (1 + ξ)+). For a derivation of an equation similar to (1) using an interpretation of
Asian options as options on a traded account, see [?].

Notice that PDE (2) is more general since the reduction to (1) is only possible for
specific payoffs. Moreover, one can also notice that solving (2) for different maturities T
does not imply to recompute the whole solution, contrary to (1). In the following, we
focus on computing numerical solutions to (1) for a call:

φ(ξ) = ξ−. (4)

Notice that the solution with φ(ξ) = ξ+ (put) can be then obtained by the call-put parity:

Price of the put(t = 0, S0) = Price of the call(t = 0, S0) − e−rT

(

S0

rT

(

erT − 1
)

−K

)

.
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3 The numerical scheme

The question we want to address is the following. When one wants to compute the solution
of the classical Black-Scholes equation:







∂P

∂t
+
σ2S2

2

∂2P

∂S2
+ rS

∂P

∂S
− rP = 0,

P (T, S) = ψ(S).
(5)

a simple finite difference scheme leads to very satisfactory result.

reference value centered scheme
for the advection operator

σ = 0.3, I = 100, N = 1000 7.3076 7.295

σ = 0.3, I = 600, N = 1000 7.3076 7.3043

σ = 0.3, I = 600, N = 500 7.3076 7.3041

σ = 0.3, I = 1000, N = 200 7.3076 7.3059

σ = 0.05, I = 600, N = 500 1.6970 1.783

Figure 1: Results obtained with a finite element scheme, or, equivalently, a centered scheme
for the advection operator. The numbers I and N denote respectively the number of space
steps and the number of time steps. Values of other parameters: S0 = 100, K = 100,
r = 0.02, T = 1. Table from [?].

On the other hand, when one uses a simple finite difference scheme on (1), one obtains
very bad results, especially when the volatility σ is small (see Figure 1). These bad results

are due to the fact that when ξ is close to zero, the advective term
(

1
T

+ rξ
)

is larger than

the diffusion term σ2ξ2

2 .
What we propose to solve this problem is to use a characteristic method (based on the

solution of dx
dt

= 1/T ), to get rid of the term 1
T

. This means that we perform the change
of variable:

g(t, x) = f(t, x− t/T ). (6)

One can easily show that g is solution of:







∂g

∂t
+
σ2(x− t/T )2

2

∂2g

∂x2
− r (x− t/T )

∂g

∂x
= 0,

g(T, x) = φ(x− 1) = (1 − x)+.
(7)

Remark 1. One could also think to completely get rid of the adective terme by solving
dx
dt

= rx + 1/T and therefore by considering h(t, y) = f
(

t, 1
rT

(

yert − 1
)

)

. Following the

same method as explained below, one can then obtain very accurate result on a geometric
mesh (see [?] for the details).

The PDE satisfied by g is such that when the advective term r (x− t/T ) is small, the

diffusion term
σ2(x− t/T )2

2
is also small. The drawback of this change of variable is that

the advective and diffusion terms now depend on time: this means that, once the problem
is discretized, the matrices are computed and inverted at each time step.

The fact that (see [2]) ∀ξ ≤ 0,

f(t, ξ) =
1

rT
(1 − e−r(T −t)) − ξe−r(T −t) (8)
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yields for g that ∀x ≤ t/T ,

g(t, x) =
1

rT
(1 − e−r(T −t)) − (x− t/T )e−r(T −t). (9)

To discretize (7), we use a Crank-Nicolson time scheme, with a uniform time step
δt = T/N (N denotes the number of timesteps). We want to use the fact that g is
analytically known on x ≤ t/T (see Formula (9)). Therefore, in order that the mesh
properly discretizes the border x = t/T , we also use N space steps to discretize the space
interval (0, 1) (see Figure ??). The space step is therefore δx = 1/N . We then complete
the mesh be adding J intervals on the right hand side of x = 1, so that x ∈ (0, xmax) with
xmax = (N + J)δx.

Notice that at time tn = nδt, the number of unknowns is (N + J − n). This means
that the size of the matrices we build depend on the timestep.

Since the mesh is uniform, it is really easy to discretize the operators involving deriva-
tives of x. What we use is the following equation on g, equivalent to (7):







∂g

∂t
+
σ2

2

∂

∂x

(

(x− t/T )2 ∂g

∂x

)

− (r + σ2) (x− t/T )
∂g

∂x
= 0,

g(T, x) = φ(x− 1) = (1 − x)+.
(10)

so that one can use the following approximations:

∂

∂x

(

(x− t/T )2 ∂g

∂x

)

(t, xi) ≃

1

δx

(

(xi+0.5 − t/T )2 g(t, xi+1) − g(t, xi)

δx
− (xi−0.5 − t/T )2 g(t, xi) − g(t, xi−1)

δx

)

,

(x− t/T )
∂g

∂x
(t, xi) ≃

1

2

(

(xi+0.5 − t/T )
g(t, xi+1) − g(t, xi)

δx
+ (xi−0.5 − t/T )

g(t, xi) − g(t, xi−1)

δx

)

.

with xi = i δx and xi+0.5 = (i+ 0.5) δx. The matrices obtained are tridiagonal, so that
they can be inverted with LU method with linear complexity.

As far as boundary conditions are concerned, we use a Dirichlet boundary condition
on x = t/T using (9) and a “artificial” zero Neumann boundary condition on x = xmax.

Finally, we use interpolation of degree 3 in space to compute the price, and of degree 2
in space to compute the delta. This quantities are given by (see formula (3)):

price = S0f

(

0,
K

S0

)

= S0g

(

0,
K

S0

)

, (11)

delta = f

(

0,
K

S0

)

−
K

S0

∂f

∂x

(

0,
K

S0

)

= g

(

0,
K

S0

)

−
K

S0

∂g

∂x

(

0,
K

S0

)

. (12)

We would like to emphasize that our numerical scheme:

• can handle negative or zero interest rate r, which is important if one takes into
account some dividend rate d (since in this case, r is replaced by r− d and formulas
(11) and (12) for price and delta are multiplied by e−dT ),

• can also handle the case of (t, S)-dependent interest rate r and volatility σ.
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4 Some numerical results

All the numerical results presented and the computational times have been obtained with
a program written in C and run on a PC equipped with a 1 GHz Intel Pentium III
microprocessor.

We have chosen the number of intervals J on x ≥ 1 in function of N , such that the
result does not change with larger J . We have found (see Figure 2) that the value

J = N/2

is sufficient to guaranty the fact that the price does not depend on the position of xmax.

J = 50 J = 100 J = 500 J = 1000

default values 1.697260346 1.696871955 1.696871955 1.696871955
T = 0.25 0.706693703 0.7066937038 0.7066937038 0.7066937038
N = 100 0.6668349075 0.6668349075 0.6668349075 0.6668349075
K = 110 94.30167983 0.002845743559 0.001516706587 0.001516706587

Figure 2: Comparison of the results for different values of J . Default values of parameters:
T = 1, σ = 0.05, r = 0.02, S0 = 100, K = 100, N = 1000.

We have also performed a rate of convergence analysis. We have found that both the

price and the delta values converge with a rate O
(

1
N2

)

. The fact that the delta converges

with the same rate than the price is quite surprising since the delta value (see formula (12))
contains derivative of g. Notice that a precision of 4 digits both for price and delta can
be obtained with N = 800, which corresponds to a time of computation of 0.4 s.

N = 100 N = 200 N = 400 N = 800

price .019144 .004697 .001168 .000291
delta .0018231 .0003120 .0000603 .0000128

Figure 3: Rate of convergence. Values of parameters: T = 1., σ = 0.05, r = 0.02,
S0 = 100, K = 100, J = N/2. We give the absolute error between the price and delta
obtained and the reference values (N = 20000): price= 1.697058, delta= 0.6334899.

Finally we give in Figure 4 a few comparisons of the results obtained with our method
and other methods. The prices displayed for our method are converged (the digits given
in Figure 4 do not change for larger N). We also indicate the number of time steps
N ≥ 300 needed to obtain at least the 5 digits of accuracy given. The computational time
is given in Figure 5. Notice that, as expected, the computational time is O(N2) (since
for N timesteps, we use 3N/2 space steps and the matrices can be inverted with linear
complexity).

The results from Zvan et al. comes from [?] (see Table 2 in [?]): the computational
time indicated in this paper was about 20 s on a DEC Alpha. The results from Večeř comes
from [?] and are obtained in a few seconds. The lower and upper bounds are obtained with
the Premia software following the method of Thompson (see [?, 1]): the computational
time is about 5 s on a PC equipped with a 1 GHz Intel Pentium III microprocessor.

One can see from this comparisons that our method is accurate both for small or large
volatilities. For any value of the parameters, one obtains at least 5 digits of precision in
less than one second. It seems also that our method is faster than the other, but this
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σ K Our method Zvan et al. Večeř Thompson (low) Thompson (up)

0.05 95 11.09409 (N = 300) 11.094 11.094 11.094094 11.094096
100 6.7943 (N = 1000) 6.793 6.795 6.794354 6.794465
105 2.7444 (N = 3000) 2.748 2.744 2.744406 2.744581

0.30 90 16.512 (N = 300) 16.514 16.516 16.512024 16.523720
100 10.209 (N = 300) 10.210 10.215 10.208724 10.214085
110 5.7304 (N = 1000) 5.729 5.736 5.728161 5.735488

Figure 4: Comparisons of the prices obtained with other methods. Values of parameters:
T = 1, r = 0.15, S0 = 100, J = N/2. For our method, we give the number of timestep
N ≥ 300 needed to obtain at least 5 digits of precision.

N computational time

300 0.05 s
1000 0.56 s
3000 5.2 s
6000 27 s

Figure 5: Computational times for our method for some N and J = N/2 (computations
made on a PC equipped with a 1 GHz Intel Pentium III).

would have to be checked carefully since it depends on the computers used. We can affirm
that it is at least faster than the method of Thompson (see [1]) based on approximations,
since we have tested both methods on the same computer.

We can also conclude from these experiments that, as expected, the accuracy is better
for strikes less than S0, as well as for large volatilities.

5 Conclusion

In conclusion, we have derived a very accurate and fast numerical method to solve the
Rodger-Shi PDE. We obtain, in less than one second (on a PC equipped with a 1 GHz
Intel Pentium III microprocessor), at least 5 digits of accuracy for σ = 0.05 and at least
5 digits of accuracy for σ = 0.30. Our method is easy to implement (see the code in the
software Premia [?]) and can handle (t, S)-dependent interest rates or volatilities. It also
works with null or negative interest rate, which is of interest if one takes into account some
dividend rate.
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