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1 Introduction

The characteristic feature of the multigrid methods is a rapid rate of conver-
gence. The convergence speed does not deteriorate when the discretisation is
refined whereas classical iterative methods slow down for decreasing grid size.
This unfavourable property of basic iterative methods is due to the inabil-
ity of the methods to quickly dampen the low frequency components of the
error. However, the high frequency components tend to be quickly damped
and this smoothing property of classical iterative methods is exploited by the
multigrid algorithm.

The basic idea of the multigrid algorithms is to compute on a sequence
of a nested grids. The principle is to approximate the low frequency com-
ponents of the error on coarser grids. The high frequency components are
reduced withing a small number of iterations with a basic method on a finer
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grid. Therefore, the computation proceeds on a grid until the error becomes
smooth and the rate of convergence slows, at which point the computation
is transferred to a coarser grid. When the error has been reduced on the
coarser grid, the solution on the finer grid is corrected using interpolated
values from the coarser grid. This two grid method is applied recursively to
obtain a multigrid method.

1.1 Multigrid method for stationary problems

The iteration consists of a "smoothing step" and a "coarse grid correction"
involving a sequence of coarser grids (cf [2]). We assume that there are l > 1
grids with grid spacing h, 2h, , 4h, , . . . , , Lh = 2l−1h and denote the linear
discrete problem by

Lhuh = fh. (1)

The multigrid iteration (V-cycle) at level l for solving 1 is defined by the
following recursive procedure:

vh ← V h(vh, fh)

1. Relax m1 times on Lhuh = fh with a given initial guess vh.

2. If Ωh is the coarsest grid then go to step 4.

Else
f 2h ← I2h

h (fh − Lhvh).
v2h ← 0.

v2h ← V 2h(v2h, f 2h)

3. Correct vh ← vh + Ih
2hv2h.

4. Relax m2 times on Lhuh = fh with initial guess vh.

where Ih
2h is the linear interpolation operator and I2h

h the restriction op-
erator.

The V-cycle is just one of a family of multigrid cycling schemes. The
entire family is called the µ-cycle method and is defined recursively by the
following:

vh ←Mµh(vh, fh)

1. Relax m1 times on Lhuh = fh with a given initial guess vh.
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2. If Ωh is the coarsest grid then go to step 4.

Else
f 2h ← I2h

h (fh − Lhvh).
v2h ← 0.

v2h ← V 2h(v2h, f 2h) µ times

3. Correct vh ← vh + Ih
2hv2h.

4. Relax m2 times on Lhuh = fh with initial guess vh.

In practice, only µ = 1 (which gives the V -cycle) and µ = 2 are used.
Multigrid basic cycling schemes start with relaxations on the fine grid,

then proceed to coarser levels to reduce smooth error components. Yet, it
is perhaps better to start on coarser levels and proceed to finer grids only
when sufficiently good approximation to the solution of the original equation
have been achieved. In effect, we are thus led to using nested iteration again,
but this time on the multigrid scheme itself. This yields the so-called full
multigrid (FMG) cycling scheme. The algorithm has the following form:

vh ← FMGh(fh)

1. If Ωh = coarsest grid, set vh ← 0 and go to step 3.

Else
f 2h ← I2h

h (fh),
v2h ← FMG2h(f 2h).

2. Correct vh ← Ih
2hv2h.

3. vh ← V h(vh, fh) m0 times.

The basic aim of FMG is to guarantee a good initial guess for level h

before any processing is done there.

1.2 Multigrid method for parabolic equations

A linear parabolic problem is given by

∂u

∂t
+ Lu = f

together with initial and boundary conditions. Assume that different levels
of discretizations are given characterized by a spatial grid size h. In addition
there are time steps δt. A simple discretization is the implicit formula

uh(t)− uh(t− δt)

δt
+ Lh(t)uh(t) = fh(t). (2)
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The conventional approach is to solve the equation 2 time step by time step:
uh(t) is computed from uh(t + δt), then uh(t + δt) from uh(t) etc.

1.3 Multigrid algorithm (FMGH) for solving Hamilton-
Jacobi-Bellman equations

In this part, we describe a multigrid algorithm based on the "Howard algo-
rithm" (policy iteration) [3] and the multigrid method [4] to solve Hamilton-
Jacobi-Bellman equations

min
u∈U

(Auv + Cu) = 0

where U is the set of admissible policies.
The domain Ω ⊂ IRn is approximated by a sequence of grids

Ω0 ⊂ . . . ⊂ Ωl . . .

with corresponding grid sizes

h0 > . . . > hl . . .

such that hl = hl−1

2
.

Then, on Ωh the difference equation approximating takes the form

min
u∈U

(Au
kv + Cu

k ) = 0

FMGH algorithm:

Let v0
0 and u0

0 be given, we define the sequences vn
k and un

k for 0 ≤ n ≤ n̄

and k ∈ IN by:
For 0 ≤ n ≤ n̄ ,

• un+1

k = N
µn+1

k (vn
k ) is an approximation of un

k of Argmin(Au
kvn

k + cu
k).

• vn+1

k =M
mn+1

k (un+1

k )vn
k approximated solution of A

un+1

k

k v + c
un+1

k

k = 0

Then, we get vn̄
k and un̄

k and

• u0
k+1 = IUk+1

k un̄
k

• v0
k+1 = Ik+1

k vn̄
k

where IUk+1

k : Uk → Uk+1 is an interpolation operator for control.
For a better understanding, we refer to Akian [1] for a detailed presenta-

tion.
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2 Multigrid for options pricing

2.1 Standard European option

I recall that the price of a European option in the Black and Scholes model
can be formulated in terms of the solution to a parabolic Partial Differential
Equation (cf. fd_doc.pdf).

To solve the PDE by multigrid method, we start by limiting the integra-
tion domain in space: the problem will be solved in a finite interval. The
domain of the problem is partitioned in space and in time, and the differen-
tial equation is replaced by a second-order finite difference approximation.
Then, the finite difference discretization requires the solution of a sequence
of discrete linear problem

Mhun
h = vn

h .

2.1.1 Multigrid for European options

At each time step, we have to solve a linear discrete problem.
To define completely the multigrid method, we have to chose the smoother,

the restriction operator and the the prolongation operator.
The smoother is the Gauss-Seidel method.
For the one-dimensional problem, the prolongation operator is denoted

Ih
2h. It takes coarse-grid vectors and produces fine-grid vectors according to

the rule Ih
2hv2h = vh where

vh
2j = v2h

j

vh
2j+1 = 1

2
(v2h

j + v2h
j+1), 0 ≤ j ≤ n

2
− 1.

The restriction operator is denoted I2h
h . The most obvious operator is

injection. It is defined by I2h
h vh = v2h, where

v2h
j = vh

2j.

For the two-dimensional problem, the prolongation operator may be de-
fined in a similar way. If we let Ih

2hv2h = vh, then the components of vh are
given by
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vh
2i,2j = v2h

ij ,

vh
2i+1,2j+1 = 1

2
(v2h

ij + v2h
i+1,j),

vh
2i,2j+1 = 1

2
(v2h

ij + vh
i,j+1),

vh
2i+1,2j+1 = 1

4
(v2h

ij + v2h
i+1,j + v2h

i,j+1 + v2h
i+1,j+1),

0 ≤ i, j ≤ n
2
− 1.

2.2 Standard American option

It is well known that the price of an american option can be expressed after
discretisation as a linear complementary problem:

at each time step n, we have to solve











MhXn
h ≥ Gn

h

Xn
h ≥ Φn

h

(MhXn
h −Gn

h, Xn
h − Φn

h) = 0

We solve this equation using the multigrid-Howard algorithm presented
in 1.3.
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