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Abstract. In the paper, we propose two new efficient methods for pricing barrier
option in wide classes of Lévy processes with/without regime switching. Both methods
are based on the numerical Laplace transform inversion formulae and the Fast Wiener-
Hopf factorization method developed in Kudryavtsev and Levendorskǐi (Finance Stoch.
13: 531–562, 2009). The first method uses the Gaver-Stehfest algorithm, the second
one – the Post-Widder formula. We prove the advantage of the new methods in terms
of accuracy and convergence by using Monte-Carlo simulations.

1. Introduction

. In recent years more and more attention has been given to stochastic models of fi-
nancial markets which depart from the traditional Black-Scholes model. Nowadays, a
battery of models is available. One of the well-accepted models are jump diffusions or,
more generally, Lévy processes. We concentrate on the one-dimensional case. For an
introduction on these models applied to finance, we refer to Cont and Tankov (2004).

Regime switching Lévy models have already enjoyed much success in interpreting the
behavior of a number of economic and financial series in a concise, yet parsimonious way.
A Lévy process is used as the instrument that models the financial market, where the
parameters of this Lévy process are allowed to depend on the state of an unobserved
Markov chain that lives in continuous time. The state space may represent general
financial market trends and/or other economic factors (also called “states of the world”
or “regimes”).

By now, there exist several large groups of relatively universal numerical methods for
pricing of American and barrier options under Lévy driven financial models. Option
valuation under Lèvy processes without/with regime-switching has been dealt with by
a host of researchers, therefore, an exhaustive list is virtually impossible. We describe
main groups of methods and several publications for each group, where the reader can
find further references.

Key words and phrases. Lévy processes, barrier options, regime switching models, Wiener-Hopf fac-
torization, Laplace transform, numerical methods, numerical transform inversion.
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1.1. Monte Carlo methods. Monte Carlo methods perform well for pricing of barrier
options in jump-diffusion models when activity of jumps is finite because one can con-
trol the behavior of the process between the jump times, when the log-price follows a
Browning bridge process (for details see Metwally and Atiya (2002), or Cont and Tankov
(2004)). In the infinite activity case, the Monte Carlo methods are much less accurate
and more time consuming. Evaluation of American option prices by Monte Carlo simula-
tion faces additional difficulties: it involves the computation of conditional expectations
– see, e.g., Longstaff and Schwartz (2001). In the case of a regime switching model, one
should combine the methods with Markov chain Monte Carlo simulations. An overview
of Monte Carlo based methods for option pricing can be found in Glasserman (2003),
Broadie and Detemple (2004), and Lemieux (2009). Generally, Monte Carlo methods
consume much more time than other numerical methods.

1.2. Semi-analytical numerical methods. Methods of the second large group deal
with analytical solution to the option pricing problem. The methods start with the
reduction to a boundary problem for the generalization of the Black-Scholes equation
(backward Kolmogorov equation); in the case of American options, a free boundary
problem arises. Boyarchenko and Levendorskǐi (1999, 2002) derived the equation for
the price of a derivative security in the sense of the theory of generalized functions.
Later, Cont and Voltchkova (2005) (see also Cont and Tankov (2004)) expressed prices of
European and barrier options in terms of solutions of partial integro-differential equations
(PIDEs) that involve, in addition to a (possibly degenerate) second-order differential
operator, a nonlocal integral term. In a regime switching framework a system of one-
dimensional PIDEs has to be solved in- stead (see e.g. Chourdakis (2005)).

Theory of pseudo-differential operators (PDO) extends the notion of a differential op-
erator and is widely used to solve integro-differential equations. The essential idea is
that a differential operator with constant coefficients can be represented as a compo-
sition of a Fourier transform, multiplication by a polynomial function, and an inverse
Fourier transform. Moreover, the PDO technique based on the Fourier transfrom and
the operator form of the Wiener-Hopf method is much more powerful than the technique
based on the study of the kernel of the PIDE. This was the reason the theory of PDO
was invented in the first place – see, e.g., Eskin (1973) and Hörmander (1985).

The straightforward idea to apply the PDO theory in the context of option pricing has
been systematically pursued in a series of publications summarized in two monographs
Boyarchenko and Levendorskǐi (2002, 2007), and developed further in subsequent papers.
In particular, Boyarchenko and Levendorskǐi (2009) calculated the prices of American
options in regime switching Lévy models. However, the general formulas for the prices
involve the double Fourier inversion (and one more integration needed to calculate the
factor in the Wiener-Hopf factorization formula), and hence it is difficult to implement
them in practice depart from the particular cases of explicit formulas for the factors. See
also Jiang and Pistorius (2008).

If the characteristic exponent of the underlying Lévy process is rational, the basic
examples being the Brownian motion, Kou’s model and its generalization constructed
and studied in Levendorskǐi (2004) (later, this model was used under the name Hyper-
Exponential Jump-Diffusion model (HEJD)), the Wiener-Hopf factors can be derived ex-
plicitly. For a special case of diffusions with embedded exponentially distributed jumps,
or more generally, for HEJD, Levendorskǐi (2004) provides the reduction to a series of
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linear algebraic systems (and the solution of an equation with a monotone function on
each time step), which makes the numerical procedure very fast and efficient.

In the case of processes with rational characteristic exponents, Laplace transform
methods may be applied as well. First, one finds the Laplace transform of the value
function of a given option with respect to the time to maturity. In Lipton (2002), Kou
and Wang (2003), Sepp (2004), and in a number of other papers, e.g., Avram et al. (2002)
and Asmussen et al. (2004), the Laplace transform is derived from the distribution of the
first passage time; the distribution is calculated applying the Wiener-Hopf factorization
method in the form used in probability. See also Kyprianou and Pistorius (2003), Alili
and Kyprianou (2005). Once the Laplace transform is calculated, one uses a suitable
numerical Laplace inversion algorithm to recover the option price. In other cases, one
can approximate the initial process by Kou’s model or by an HEJD, and then use the
Laplace transform method (see e.g. Jeannin and Pistorius (2009), Crosby et al (2008)).

However, the problem of the inversion of the Laplace transform is non-trivial from the
computational point of view. There exist many different methods of numerical Laplace
inversion, but some procedures, such as popular in computational finance the Gaver-
Stehfest algorithm, usually require high precision. Notice that the latter is based on the
Post-Widder inversion formula, which involves differentiation instead of integration.

We refer the reader to Abate and Whitt (2006) for a description of a general frame-
work for numerical Laplace inversion that contains the optimized version of the one-
dimensional Gaver-Stehfest method. Notice that Sepp (2004), Crosby et al (2008) found
that the choice of 12-14 terms in the Gaver-Stehfest formula may result in satisfactory
accuracy for the case of Kou and HEJD models, respectively. In this case, the standard
double precision gives reasonable results.

However, often one must use high precision arithmetic, at least 50 significant digits,
better, 100, according to Alex Lipton (lecture at the 2008 Bachelier Congress). The
necessity of using high precision arithmetic decreases the computational speed of Laplace
transform methods in option pricing considerably.

Another feature that often slows down the calculations is the fact that the values of
the Laplace transform must first be found at several (at least a dozen) different points.
Apart from a few cases where transform function is given by an explicit formula, the
calculation of these values is time consuming.

Finally, when one uses a Laplace transform method to calculate the value function of
an option, one must perform numerical Laplace inversion (as described above) separately
for each initial spot price of the underlying.

1.3. Numerical methods. The next large group deals with numerical methods for the
generalized Black-Scholes equation. There are four main approaches for solving PIDE:
multinomial trees, finite difference schemes, Galerkin methods and numerical Wiener-
Hopf factorization methods.

Amin (1993) constructed a family of Markov chain approximations of jump-diffusion
models. Multinomial trees can be considered as special cases of explicit finite differ-
ence schemes. The main advantage of the method is simplicity of implementation; the
drawbacks are inaccurate representation of the jumps and slow convergence.

Galerkin methods are based on the variational formulation of PIDE. While implemen-
tation of finite difference methods requires only a moderate programming knowledge,
Galerkin methods use specialized toolboxes. Finite difference schemes use less memory
than Galerkin methods, since there is no overhead for managing grids, but a refinement
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of the grid is more difficult. A complicated wavelet Galerkin method for pricing Amer-
ican options under exponential Lévy processes is constructed in Matache et al. (2005).
A general drawback of variational methods is that, for processes of finite variation, the
convergence can be proved in the Hs–norm only, where s < 1/2; hence, the convergence
in C–norm is not guaranteed.

In a finite difference scheme, derivatives are replaced by finite differences. In the
presence of jumps, one needs to discretize the integral term as well. Finite difference
schemes were applied to pricing barrier options in Cont and Voltchkova (2005), and
to pricing American options in Carr and Hirsa (2003), Hirsa and Madan (2003) and
Levendorskǐi et al. (2006). Wang et al (2007) calculate prices of American options using
the penalty method and a finite difference scheme.

Construction of any finite difference scheme involves discretization in space and time,
truncation of large jumps and approximation of small jumps. Truncation of large jumps
is necessary because an infinite sum cannot be calculated; approximation of small jumps
is needed when Lévy measure diverges at zero. The result is a linear system that needs to
be solved at each time step, starting from payoff function. In the general case, solution
of the system on each time step by a linear solver requires O(m2) operations (m is
a number of space points), which is too time consuming. In Carr and Hirsa (2003),
Hirsa and Madan (2003), and Cont and Voltchkova (2005) the integral part is computed
using the solution from the previous time step, while the differential term is treated
implicitly. This leads to the explicit-implicit scheme, with tridiagonal system which can
be solved in O(m lnm) operations. Levendorskǐi et al. (2006) use the implicit scheme
and the iteration method at each time step. The methods in Carr and Hirsa (2003),
Hirsa and Madan (2003) and Levendorskǐi et al. (2006) are applicable to processes of
infinite activity and finite variation; the part of the infinitesimal generator corresponding
to small jumps is approximated by a differential operator of first order (additional drift
component). Cont and Voltchkova (2005) use an approximation by a differential operator
of second order (additional diffusion component). The discretization scheme for PIDE
in Albanese and Kuznetsov (2003) is applicable to models for which the spectrum of the
infinitesimal generator can be computed in analytically closed form.

In Kudryavtsev and Levendorskǐi (2009) the fast and accurate numerical method for
pricing barrier option under wide classes of Lévy processes was developed. The Fast
Wiener-Hopf method (FWH-method) constructed in the paper is based on an efficient
approximation of the Wiener-Hopf factors in the exact formula for the solution and Fast
Fourier Transform algorithm. Apart from finite difference schemes where the application
of the metohd entails a detailed analysis of the underlying Lévy model, the FWH-method
deals with the characteristic exponent of the process.

The method starts with time discretization, which can interpreted as Carr’s random-
ization Carr (1998). A sequence of stationary boundary problems for a PDO on the line
results. Problems of the sequence are solved by using Wiener-Hopf approach. At the
next step, the inverse of the operator that solves the boundary problem must be approx-
imated depart from the finite difference schemes where an approximation of the infini-
tesimal generator is used. Generally, an approximation of the inverse can be expected to
perform better. Kudryavtsev and Levendorskǐi (2009) demonstrate the advantage of the
FWH-method over finite difference schemes in terms of accuracy and convergence using
Monte-Carlo simulations.
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Kudryavtsev (2010a,b) generalized the framework of the FWH-method to the case
of American options, and extended it to pricing barrier options under regime switching
Lévy models.

Under the main property of a regime switching model, to take various economical
factors into consideration in modelling, the state space of the driving Markov chain is
inevitably large. As a consequence, the computational complexity involved in option
valuation becomes a serious issue. Comparing the numerical methods described above,
one is tempted to conclude that the FWH-method should be preferred as rather simple,
fairly fast and accurate method. Thus we have chosen to generalize the FWH-method
to the case of regime switching Lévy models. Moreover, we suggest the improvement of
the method which should significantly reduce the computational complexity.

1.4. Enhanced FWH-methods. In the present paper, we introduce two enhanced
FWH-methods based on the numerical Laplace transform inversion. The methods de-
veloped in the paper can be applied to pricing barrier option under wide classes of Lévy
processes with/without regime switching; in the following publications, we will apply
these methods to American options.

The idea behind our approach is to transform the problem to a space where the solution
is relatively easy to obtain by using the Fast Wiener-Hopf factorization method. Apart
from particular cases where Laplace transform is given by an explicit expression, the
methods developed in the paper can be applicable for the general case. The Laplace
transform maps the generalized Black- Scholes equation with the appropriate boundary
conditions into the one-dimentional problem on the half-line parametrically dependent
on the transform parameter.

In our first approach, we solve the problems obtained by using the FWH-method at
real positive values of the transform parameter specified by the Gaver-Stehfest algorithm.
Then option prices are computed via the numerical inversion formula.

The second new approach is based on the Post-Widder formula; we find out the nth
derivative of the transformed function at the certain transform parameter value by using
an iterative procedure which is nothing but Carr’s randomization in the FWH-method.
We repeat the procedure several times for different values of n and apply the convergence
acceleration algorithm of Abate and Whitt (1995).

After straightforward modifications the both methods are applicable to the regime
switching case.

The rest of the paper is organized as follows: in Section 2 we list the necessary facts
of the theory of Lévy processes and regime switching models. Section 3 reviews Fast
Wiener-Hopf factorization method developed in Kudryavtsev and Levendorskǐi (2009),
and introduces two enhanced FWH-methods based on the numerical Laplace transform
inversion. In Section 4 we generalize the FWH-methods to the case of regime switching
Lévy models for pricing barrier options. In Section 5, we produce numerical examples,
and compare the results obtained by different methods; Section 6 concludes.

2. Lévy processes and the regime structure

2.1. Lévy processes: general definitions. A Lévy process is a stochastically continu-
ous process with stationary independent increments (for general definitions, see e.g. Sato
(1999)). A Lévy process may have a Gaussian component and/or pure jump component.
The latter is characterized by the density of jumps, which is called the Lévy density. We
denote it by F (dy). A Lévy process Xt can be completely specified by its characteristic
exponent, ψ, definable from the equality E[eiξX(t)] = e−tψ(ξ) (we confine ourselves to
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the one-dimensional case). The characteristic exponent is given by the Lévy-Khintchine
formula:

(2.1) ψ(ξ) =
σ2

2
ξ2 − iµξ +

∫ +∞

−∞
(1 − eiξy + iξy1|y|≤1)F (dy),

where σ2 ≥ 0 is the variance of the Gaussian component, and the Lévy measure F (dy)
satisfies

(2.2)
∫

R\{0}
min{1, y2}F (dy) < +∞.

Assume that under a risk-neutral measure chosen by the market, the stock has the
dynamics St = eXt . Then we must have E[eXt ] < +∞, and, therefore, ψ must admit the
analytic continuation into a strip Im ξ ∈ (−1, 0) and continuous continuation into the
closed strip Im ξ ∈ [−1, 0]. Further, if the riskless rate, r, is constant, and the stock does
not pay dividends, then the discounted price process must be a martingale. Equivalently,
the following condition (the EMM-requirement) must hold

(2.3) r + ψ(−i) = 0,

which can be used to express µ via the other parameters of the Lévy process:

(2.4) µ = r −
σ2

2
+

∫ +∞

−∞
(1 − ey + y1|y|≤1)F (dy).

The infinitesimal generator of X, denote it L, is an integro-differential operator which
acts as follows:

(2.5) Lu(x) =
σ2

2
u′′(x) + µu′(x) +

∫ +∞

−∞
(u(x+ y) − u(x) − y1|y|≤1u

′(x))F (dy).

The infinitesimal generator L also can be represented as a pseudo-differential operator
(PDO) with the symbol −ψ(ξ): L = −ψ(D). Recall that a PDO A = a(D) acts as
follows:

(2.6) Au(x) = (2π)−1
∫ +∞

−∞
eixξa(ξ)û(ξ)dξ,

where û is the Fourier transform of a function u:

û(ξ) =
∫ +∞

−∞
e−ixξu(x)dx.

Note that the inverse Fourier transform in (2.6) is defined in the classical sense only
if the symbol a(ξ) and function û(ξ) are sufficiently nice. In general, one defines the
(inverse) Fourier transform by duality.

2.2. Regular Lévy processes of exponential type. Loosely speaking, a Lévy pro-
cess X is called a Regular Lévy Process of Exponential type (RLPE) if its Lévy density
has a polynomial singularity at the origin and decays exponentially at the infinity (see
Boyarchenko and Levendorskǐi (2002)). An almost equivalent definition is: the charac-
teristic exponent is analytic in a strip Im ξ ∈ (λ−, λ+), λ− < −1 < 0 < λ+, continuous
up to the boundary of the strip, and admits the representation

(2.7) ψ(ξ) = −iµξ + φ(ξ),
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where φ(ξ) stabilizes to a positively homogeneous function at the infinity:

(2.8) φ(ξ) ∼ c±|ξ|ν , as Re ξ → ±∞, in the strip Im ξ ∈ (λ−, λ+),

where c± > 0. “Almost" means that the majority of classes of Lévy processes used in
empirical studies of financial markets satisfy conditions of both definitions. These classes
are: Brownian motion, Kou’s model (Kou (2002)), Hyperbolic processes (Eberlein and
Keller (1995), Eberlein at all (1998)), Normal Inverse Gaussian processes and their gen-
eralization (Barndorff-Nielsen (1998) and Barndorff-Nielsen and Levendorskǐi (2001)),
and extended Koponen’s family. Koponen (1995) introduced a symmetric version; Bo-
yarchenko and Levendorskǐi (1999, 2000), gave a non-symmetric generalization; later a
subclass of this model appeared under the name CGMY–model in Carr et al. (2002),
and Boyarchenko and Levendorskǐi (2002) used the name KoBoL family. The important
exception is Variance Gamma Processes (VGP; see, e.g., Madan et al. (1998)). VGP sat-
isfy the conditions of the first definition but not the second one, since the characteristic
exponent behaves like const · ln |ξ|, as ξ → ∞.

Example 2.1. The characteristic exponent of a pure jump KoBoL process (a.k.a. CGMY
model) of order ν ∈ (0, 2), ν 6= 1 is given by

(2.9) ψ(ξ) = −iµξ + cΓ(−ν)[λν+ − (λ+ + iξ)ν + (−λ−)ν − (−λ− − iξ)ν ],

where c > 0, µ ∈ R, and λ− < −1 < 0 < λ+.
Note that Boyarchenko and Levendorskǐi (2000, 2002) consider a more general version

with c± instead of c, as well as the case ν = 1 and cases of different exponents ν±.
If ν ≥ 1 or µ = 0, then the order of the KoBoL process equals to the order of the
infinitesimal generator as PDO, but if ν < 1 and µ 6= 0, then the order of the process is
ν, and the order of the PDO −L = ψ(D) is 1.

Example 2.2. If Lévy density is given by exponential functions on negative and positive
axis:

F (dy) = 1(−∞;0)(y)c+λ+e
λ+ydy + 1(0;+∞)(y)c−(−λ−)eλ−

y,

where c± ≥ 0 and λ− < −1 < 0 < λ+, then we obtain Kou model. The characteristic
exponent of the process is of the form

(2.10) ψ(ξ) =
σ2

2
ξ2 − iµξ +

ic+ξ

λ+ + iξ
+

ic−ξ

λ− + iξ
.

The version with one-sided jumps is due to Das and Foresi (1996), the two-sided version
was introduced in Duffie, Pan and Singleton (2000), see also Kou (2002).

2.3. The Wiener-Hopf factorization. There are several forms of the Wiener-Hopf
factorization. The Wiener-Hopf factorization formula used in probability reads:

(2.11) E[eiξXT ] = E[eiξX̄T ]E[eiξXT ], ∀ ξ ∈ R,
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where T ∼ Exp q, and X̄t = sup0≤s≤tXs and X t = inf0≤s≤tXs are the supremum and
infimum processes. Introducing the notation

φ+
q (ξ) = qE

[∫ ∞

0
e−qteiξX̄tdt

]

= E
[

eiξX̄T

]

,(2.12)

φ−
q (ξ) = qE

[∫ ∞

0
e−qteiξXtdt

]

= E
[

eiξXT

]

(2.13)

we can write (2.11) as

(2.14)
q

q + ψ(ξ)
= φ+

q (ξ)φ−
q (ξ).

Equation (2.14) is a special case of the Wiener-Hopf factorization of the symbol of a
PDO. In applications to Lévy processes, the symbol is q/(q + ψ(ξ)), and the PDO is
Eq := q/(q−L) = q(q+ψ(D))−1: the normalized resolvent of the process Xt or, using the
terminology of Boyarchenko and Levendorskǐi (2005, 2006, 2007), the expected present
value operator (EPV–operator) of the process Xt. The name is due to the observation
that, for a stream g(Xt),

Eqg(x) = E
[∫ +∞

0
qe−qtg(Xt)dt | X0 = x

]

.

Introduce the following operators:

(2.15) E±
q := φ±

q (D),

which also admit interpretation as the EPV–operators under supremum and infimum
processes. One of the basic observations in the theory of PDO is that the product of
symbols corresponds to the product of operators. In our case, it follows from (2.14) that

(2.16) Eq = E+
q E−

q = E−
q E+

q

as operators in appropriate function spaces.
For a wide class of Lévy models E and E± admit interpretation as expectation opera-

tors:

Eqg(x) =
∫ +∞

−∞
g(x+ y)Pq(y)dy, E±

q g(x) =
∫ +∞

−∞
g(x+ y)P±

q (y)dy,

where Pq(y), P±
q (y) are certain probability densities with

P±
q (y) = 0, ∀ ± y < 0.

Moreover, characteristic functions of the distributions Pq(y) and P±
q (y) are

q(q + ψ(ξ))−1 and φ±
q (ξ), respectively.

2.4. The regime switching Lévy process. Let I = {1, 2, . . . , d} be the space of all
financial market states. Consider a continuous-time Markov chain Zt, taking values in I.
Denote the generator of Zt with the transition rate matrix Λ = (λkj), where k, j belong
to I. Notice that the off-diagonal elements of Λ must be non-negative and the diagonal
elements must satisfy λkk = −

∑

j 6=k λkj.
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Recall, given that the process Zt starts in a state k at time t1, it has made the transition
to some other state j at time t2 with probability given by

P (Zt2 = j|Zt1 = k) = {exp((t2 − t1)Λ)}kj.

We will assume that the underlying asset price takes the form St = S0e
Xt , where the

log-price process Xt will be constructed from a collection of Lévy processes, as follows.
Consider a collection of independent Lévy processes Xk, k ∈ I. Given that Zt = k, we

assume that the joint stock price process St follows a one-dimensional exponential Lévy
process with characteristic exponent ψk. The drift terms µk of each state are assumed
prefixed by the EMM-requirement ψk(−i) + r = 0, where r > 0 is a riskless rate. The
increments of the log-price process will switch between the d Lévy processes, depending
on the state Zt. Thus, this modeling assumption can be written as

(2.17) dXt = dXZt

t .

The infinitesimal generator of the process Xt (see e.g. Chourdakis (2005)), conditional
on X0 = x and Z0 = j is equal to

(2.18) Lf(x, j) = (λjj + Lj)f(x, j) +
d

∑

k 6=j

λjkf(x, k),

where Lj is the generator of the process Xj
t .

2.5. The system of the generalized Black-Scholes equations. The price of any
derivative contract, V (t,Xt), will satisfy the Feynman-Kac formula, that is to say

(2.19) (∂t + L− r)V (t, x) = 0,

where x denotes the (normalized) log-price, t denotes the time, and L is the infinitesimal
generator (under risk-neutral measure).

For the sake of brevity, consider the down-and-out put option without rebate, with
strike K, maturity T and barrier H < K, on a non-dividend paying stock St. Therefore,
for the one-state Lévy process Xt = ln(St/H) with the generator (2.5), the derivative
price, V (t,Xt), will satisfy the following partial integro-differential equation (or more
general pseudo-differential equation) with the appropriate initial and boundary condi-
tions. See details in Boyarchenko and Levendorskǐi (2002); and Cont and Tankov (2004).

(∂t + L− r)V (t, x) = 0, t < T, x > 0,(2.20)

V (T, x) = (K −Hex)+, x > 0(2.21)

V (t, x) = 0, t ≤ T, x ≤ 0,(2.22)

where a+ = max{a, 0}. In addition, V must be bounded.
If the characteristic exponent ψ is sufficiently regular (e.g. Xt belongs to the class of

RLPE), then the general technique of the theory of PDO can be applied to show that a
bounded solution, which is continuous on suppV ⊂ (−∞, T ) × (0,+∞), is unique – see,
e.g., Kudryavtsev and Levendorskǐi (2006).

In a regime switching setting we will have to deal with the conditional (on the regime
j) option values V (t, x, j). Under the regime switching structure, a system of PIDEs will
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have to be solved.

(∂t + λjj + Lj − r)V (t, x, j) +
d

∑

k 6=j

λjkV (t, x, k) = 0, t < T, x > 0,(2.23)

V (T, x, j) = (K −Hex)+, x > 0,(2.24)

V (t, x, j) = 0, t ≤ T, x ≤ 0.(2.25)

Here, Lj represents the infinitesimal generator of the jth Lévy process. It is possible
to apply any of the usual finite-difference schemes to this system of PIDEs to solve the
problem. However, as discussed earlier, it faces difficulties due to the non-local integral
terms. Instead, we develop the enhanced versions of the Fast Wiener-Hopf factorization
algorithm (see Kudryavtsev and Levendorskǐi (2009)) which are applicable to pricing
barrier options under regime switching Lévy models.

3. Laplace transform in the context of the FWH-method

3.1. Numerical Laplace transform inversion: an overview. The Laplace trans-
form is one of the classical methods for solving partial (integro)-differential equations
which maps the problem to a space where the solution is relatively easy to obtain. The
corresponding solution is referred to as the solution in the Laplace domain. In our case,
the original function can not be retrieved analytically via computing the Bromwich’s
integral. Hence, the numerical inversion is needed.

Recall that popular in computational finance the Gaver-Stehfest algorithm for invert-
ing Laplace transforms is related to the Post-Widder inversion formula. If f(τ) is a func-
tion of a nonnegative real variable τ and the Laplace transform f̃(λ) =

∫ ∞
0 e−λτf(τ) dτ

is known, the approximate Post-Widder formula for f(τ) can be written as

f(τ) = lim
N→∞

fN(τ);(3.1)

fN(τ) :=
(−1)N

N !

(

N + 1

τ

)N+1

f̃ (N)
(

N + 1

τ

)

,(3.2)

where f̃ (N)(λ) – Nth derivative of the Laplace transform f̃ at λ. It is well known that the
convergence fN(τ) to f(τ) as N → ∞ is slow (of order N−1), so acceleration is needed.
In order to enhance the accuracy, Abate and Whitt (1995) use a linear combination of
the terms, i.e.,

fN,m(τ) =
m

∑

k=1

w(k,m)fNk(τ),(3.3)

w(k,m) = (−1)m−k km

k!(m− k)!
.(3.4)

In this case, convergence fN,m(τ) to f(τ) is of order N−m.
The methods of numerical Laplace inversion that fit the framework of Abate-Whitt

(2006) have the following general feature: the approximate formula for f(τ) can be
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written as

(3.5) f(τ) ≈
1

τ

N
∑

k=1

ωk · f̃
(

αk
τ

)

, 0 < τ < ∞,

where N is a positive integer and αk, ωk are certain constants that are called the nodes
and the weights, respectively. They depend on N , but not on f or on τ . In particular,
the inversion formula of the Gaver-Stehfest method can written in the form (3.5) with

N = 2n;(3.6)

αk = k ln(2)(3.7)

ωk :=
(−1)n+k ln(2)

n!

min{k,n}
∑

j=[(k+1)/2)]

jn+1Cj
nC

j
2jC

k−j
j ,(3.8)

where [x] is the greatest integer less than or equal to x and CK
L = L!

(L−K)!K!
are the

binomial coefficients. Because of the binomial coefficients in the weights, the Gaver-
Stehfest algorithm tends to require high system precision in order to yield good accuracy
in the calculations.

From Abate and Valko (2004), we conclude that the required system precision is about
2.2n, when the parameter is n. The precision requirement is driven by the coefficients
ωk in (3.8). Such a high level of precision is not required for the computation of the
transform f̃ . In particular, for n = 7 standard double precision gives reasonable results.
Since constants ωk do not depend on τ they can be tabulated for the values of n that
are commonly used in computational finance (e.g., 6 or 7).

3.2. The Fast Wiener-Hopf factorization method. We briefly review the frame-
work proposed by Kudryavtsev and Levendorskǐi (2009). The main contribution of the
FWH–method is an efficient numerical realization of EPV-operators E , E+ and E−.

Recall that we consider the procedure for approximations of the Wiener-Hopf factors
for the symbol q/(q + ψ(ξ) with ψ being characteristic exponent of RLPE of order
ν ∈ (0; 2] and exponential type [λ−;λ+]. The first ingredient is the reduction of the
factorization problems to symbols of order 0, which stabilize at infinity to some constant.
Introduce functions

Λ−(ξ) = λ
ν+/2
+ (λ+ + iξ)−ν+/2;(3.9)

Λ+(ξ) = (−λ−)ν−
/2(−λ− − iξ)−ν

−
/2;(3.10)

Φ(ξ) = q
(

(q + ψ(ξ))Λ+(ξ)Λ−(ξ)
)−1

.(3.11)

Choices of ν+ and ν− depend on properties of ψ, hence on order ν (see (2.7)–(2.8)) and
drift µ. See details in Kudryavtsev and Levendorskǐi (2009). First, approximate Φ by a
periodic function with a large period 2π/h, which is the length of the truncated region
in the frequency domain, then approximate the latter by a partial sum of the Fourier
series, and, finally, use the factorization of the latter instead of the exact one.
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Explicit formulas for approximations of φ± have the following form. For small positive
h and large even M , set

bhk =
h

2π

∫ π/h

−π/h
ln Φ(ξ)e−iξkhdξ, k 6= 0,

b+
h,M(ξ) =

M/2
∑

k=1

bhk(exp(iξkh) − 1), b−
h,M(ξ) =

−1
∑

k=−M/2+1

bhk(exp(iξkh) − 1);

Φ±(ξ) ≈ exp(b±
h,M(ξ)), φ±

q (ξ) = Λ±(ξ)Φ±(ξ).

Approximants for EPV-operators can be efficiently computed by using the Fast Fourier
Transform (FFT) for real-valued functions. Consider the algorithm of the discrete Fourier
transform (DFT) defined by

(3.12) Gl = DFT [g](l) =
M−1
∑

k=0

gke
2πikl/M , l = 0, ...,M − 1.

The formula for the inverse DFT which recovers the set of gk’s exactly from Gl’s is:

(3.13) gk = iDFT [G](k) =
1

M

M−1
∑

l=0

Gle
−2πikl/M , k = 0, ...,M − 1.

In our case, the data consist of a real-valued array {gk}
M
k=0. The resulting transform

satisfies GM−l = Ḡl. Since this complex-valued array has real values G0 and GM/2, and
M/2−1 other independent complex values G1, ..., GM/2−1, then it has the same “degrees
of freedom” as the original real data set. In this case, it is efficient to use FFT algorithm
for real-valued functions (see Press, W. et al (1992) for technical details). To distinguish
DFT of real functions we will use notation RDFT.

Fix the space step h > 0 and number of the space pointsM = 2m. Define the partitions
of the normalized log-price domain [−Mh

2
; Mh

2
) by points xk = −Mh

2
+kh, k = 0, ...,M−1,

and the frequency domain [−π
h
; π
h
] by points ξl = 2πl

hM
, l = −M/2, ...,M/2. Then the

Fourier transform of a function g on the real line can be approximated as follows:

ĝ(ξl) ≈ heiπlRDFT [g](l), l = 0, ...,M/2.

Here and below, z denotes the complex conjugate of z. Using the notation p(ξ) =
q(q + ψ(ξ))−1, we can approximate Eq:

(3.14) (Eqg)(xk) ≈ iRDFT [p. ∗RDFT [g]](k), k = 0, ...,M − 1.

Here and below, .∗ is the element-wise multiplication of arrays that represent the func-
tions. Further, we define

(3.15) bhk ≈ iRDFT [ln Φ](k); p±(ξl) = Λ±(ξl) exp(b±
h,M(ξl)), l = −M/2, ..., 0.

The action of the EPV-operator E±
q is approximated as follows:

(3.16) (E±
q g)(xk) = iRDFT [ p±. ∗RDFT [g]](k), k = 0, ...,M − 1.



EFFICIENT PRICING OPTIONS UNDER REGIME SWITCHING 13

3.3. The Gaver-Stehfest algoritm and the FWH-method. In our study we will
apply the Laplace transform to solve the problems for PIDE (2.20) and the system of
PIDEs (2.23). We start with a Lévy model without regime switching and solve the
corresponding problem for pricing barrier options in the Laplace domain at real positive
values of the transform parameter specified by the Gaver-Stehfest algorithm.

We introduce a new variable τ = T − t. With a new function v(τ, x) = V (T − τ, x)
the problem (2.20)-(2.22) turns into

(∂τ + r − L)v(τ, x) = 0, τ > 0, x > 0,(3.17)

v(0, x) = (K −Hex)+, x > 0(3.18)

v(τ, x) = 0, τ ≥ 0, x ≤ 0.(3.19)

The Laplace transform of v(τ, x) with respect to the time variable is defined by

ṽ(λ, x) :=
∫ ∞

0
e−λτv(τ, x) dτ,

where λ is a transform variable with positive real part, Reλ > 0. To be specific, in
subsequent study we assume that λ ∈ R+. The standard rules yield

∂τv(τ, x) 7→ λṽ(λ, x) − v(0, x), Lv(τ, x) 7→ Lṽ(λ, x).

Applying Laplace transform to (3.17), we obtain that ṽ(λ, x) satisfies the following equa-
tion:

(3.20) (λ+ r − L)ṽ(λ, x) = (K −Hex)+, x > 0,

subject to the corresponding transformed boundary condition

(3.21) ṽ(λ, x) = 0, x ≤ 0.

Given n, we can use the Gaver-Stehfest inversion formula for ṽ(λ, x) provided that the
solutions to the problem (3.20),(3.21) are found at λ = k ln 2/τ , k = 1, . . . , N (see
(3.5)–(3.8)).

Set q = λ + r and denote by 1[0,+∞)(x) the indicator function of [0,+∞). A gen-
eral class of boundary problems that contains the problem (3.20)-(3.21) was studied in
Boyarchenko and Levendorskǐi (2002) and Levendorskǐi (2004b). It was shown that the
unique bounded solution is given by

(3.22) ṽ(λ, x) =
1

q
E−
q 1[0,+∞)(x)E+

q (K −Hex)+.

Now, the Fast Wiener-Hopf factorization method [38] can be applied. Since the approx-
imate expressions for the Wiener-Hopf factors φ±

q (ξ) are available (see 3.15), one can
calculate ṽ(λ, x) quite easily using formulas (3.16).

It follows, that the computational complexity of the developed algorithm (as well as
the FWH-method) is O(NM lnM), where M is a number of points in the log-price
space; in the case of the FWH-method, M denotes the number of time steps. The
Gaver-Stehfest algorithm produces rapid convergence results already using N = 10 − 14
depart from the FWH-method with N being of order 400− 800. Hence, the new method
is computationally much faster (often, dozen of times faster) than the original FWH-
method constructed in Kudryavtsev and Levendorskǐi (2009).
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Our new method enjoys an additional appealing feature: it produces a set of option
prices at different spot levels. Notice that in the case of the known Laplace transform
methods, one must perform numerical Laplace inversion separately for each initial spot
price of the underlying.

Our new algorithm provides increasing accuracy as n in the Gaver-Stehfest inversion
formula increases. However, if n > 7 good accuracy results can be achieved only using a
multi-precision computational environment.

The method based on the Post-Widder formula (see the next subsection) achieves
similar performance to the method proposed here; however, the former method does not
require high precision.

3.4. The Post-Widder formula or Carr’s randomization. In this subsection, we
propose the second new approach to pricing barrier options which involves the numerical
Laplace transform inversion formulas (3.3), (3.4). Recall that we are looking for the
solution v(τ, x) to the problem (3.17)-(3.19) at τ = T .

Applying the Laplace transform to the corresponding PIDE, we consider the problem
(3.20), (3.21) in the Laplace domain, once again. As a basis for the Gaver-Stehfest
algorithm, it was established a discrete analog of the Post-Widder formula (3.1) involving
finite differences to approximate Nth derivative of the transformed function. In fact, for
performing numerical inversion we need to find ∂Nλ ṽ(λ, x).

We have, on differentiating both sides of the equations (3.20),(3.21) with respect to λ:

(λ+ r − L)∂λṽ(λ, x) = −ṽ(λ, x), x > 0,(3.23)

∂λṽ(λ, x) = 0, x ≤ 0.(3.24)

Repeating this procedure, for all k = 1, 2, ..., N , we obtain a sequence of the following
problems

(λ+ r − L)∂kλṽ(λ, x) = −k∂k−1
λ ṽ(λ, x), x > 0,(3.25)

∂λṽ(λ, x) = 0, x ≤ h.(3.26)

Fix an integer N > 1, and set ∆τ = T/(N + 1), λ = 1/∆τ . Then we introduce the
following functions:

v0(x) = (K −Hex)+;(3.27)

vk+1(x) =
(−1)k

k!

(

1

∆t

)k+1

∂kλṽ
(

1

∆τ
, x

)

, k = 0, ..., N.(3.28)

It follows that

(3.29) ∂kλṽ
(

1

∆τ
, x

)

= (−1)kk!(∆τ)k+1vk+1(x), k = 0, ..., N.

Substituting expressions 1/∆τ for λ and (3.29) for ∂kλṽ
(

1
∆τ
, x

)

into (3.25)-(3.26), sim-

plifying and eliminating the multipliers from the final set of equations, one finds for
k = 1, ..., N + 1:

(q − L)vk(x) =
1

∆τ
vk−1(x), x > 0,(3.30)

vk(x) = 0, x ≤ 0,(3.31)

where q = r + 1/∆τ .
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The sequence vk(x), k = 1, 2, ..., N + 1, is determined recurrently by means of the
problem (3.30), (3.31) at each step k. It follows from Boyarchenko and Levendorskǐi
(2002) that the unique bounded solution to the problem (3.30), (3.31) is given by

(3.32) vk =
1

q∆τ
E−
q 1[0,+∞)E

+
q vk−1.

Once again, the Fast Wiener-Hopf factorization method [38] can be applied. Moreover,
approximate formulas for E+

q , E
−
q (3.16) are needed at the first and last steps only. At all

intermediate steps, the exact analytic expression q/(q+ψ(ξ) is used (see (3.14)). Indeed,
for k = 1, 2, . . . , N + 1, define

(3.33) wk = 1[0;+∞)E
+
q vk−1.

Then

(3.34) vk = (q∆τ)−1E−
q wk(x).

Using the Wiener-Hopf factorization formula (2.16), we obtain that

(3.35) wk = (q∆τ)−11[0;+∞)Eqwk−1.

Finally, we take into account the Post-Widder formula (3.1)-(3.2). As a result, we
conjecture that the solution vN+1(x) to our problem converges to the unknown solution
v(T, x) of the problem (3.17)-(3.19), as N gets arbitrarily large with T held fixed.

Unfortunately, the Post-Widder formula provide a very poor approximation (of order
N−1). See details in Subsection 3.1. For example, v1000(x) may yield an estimate to
v(T, x) with only two or three digits of accuracy. To achieve a good approximation, a
convergence acceleration algorithm is required for the sequence vN(x). A good candidate
is the summation formula (3.3)-(3.4) (see Abate and Witt (1995)). We start with the
choice N = 10 and m = 3, and increase them if necessary.

Given parameters N and m in (3.3)-(3.4), the computational complexity of the devel-
oped algorithm is O(N0M lnM), where M is a number of points in the log-price space,

and N0 = (N+1)(m+1)m
2

.
The new enhanced FWH-method based on the Post-Widder formula produces rapid

convergence results already using N = 10 and m = 3. Hence, the new method is
computationally much faster than the original FWH-method developed in Kudryavtsev
and Levendorskǐi (2009).

The second new method achieves similar performance to the first one constructed in
the previous Subsection. Our new algorithm provides increasing accuracy as N and m
in the formula (3.3) increase. At the same time, the method does not require a multi-
precision arithmetic.

Remark 3.1. Notice that our value vk(x) is also the approximation for the solution
v(k∆τ, x) to the problem (3.17)-(3.19) which arises when time is discretized and the
derivative ∂τv(k∆τ, x) in (3.17) is replaced with the finite difference (1/∆τ)(v(k∆τ, x)−
v((k − 1)∆τ, x)).

The notion of discretizing time while leaving space continuous is known in the numer-
ical methods literature as the method of horizontal lines or Rothe’s method (see Rothe
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(1930)). Carr’s randomization procedure Carr (1998) indicates an alternative interpre-
tation of the approximation induced by our procedure. Notice that Carr’s randomization
was successfully applied to the valuation of (single and double) barrier options in a num-
ber of works.

Remark 3.2. As a result, we conjecture that Carr’s approximation to the value of a
finite-lived barrier option with bounded continuous terminal payoff function always con-
verges to the actual value for a wide class of Lévy processes. Moreover, we provide the
order of the convergence.

Notice that the detailed probability-theoretical proof of the convergence of the Carr’s
randomization procedure for barrier options in Lévy-driven models is given by M.Boyarchenko
(2008).

4. Pricing barrier options under regime switching Lévy models

In the present secton, we generalize the framework proposed by Kudryavtsev and
Levendorskǐi (2009), and extend it to regime switching Lévy models. Recall that we
consider the down-and-out put option without rebate, with strike K, maturity T and
barrier H < K, on a non-dividend paying stock eXt , where Xt is defined by (2.17).

Regime states can either be visible or hidden from market participants. We assume
that the states are visible, and the initial state is given a priori.

In a regime switching setting we will have to keep track of the conditional (on the
regime j) option values V (t, x, j). It follows from Subsection 2.5 that under the regime
switching structure, a problem of pricing down-and-out barrier options can be reduced
to the problem (2.23)–(2.25).

Once again, we introduce a new variable τ = T − t. With new functions v(τ, x, j) =
V (T − τ, x, j) the problem (2.23)–(2.25) turns into

(∂τ − λjj + r − Lj)v(τ, x, j) −
d

∑

k 6=j

λjkv(τ, x, k) = 0, τ > 0, x > 0,(4.1)

v(0, x, j) = (K −Hex)+, x > 0,(4.2)

v(τ, x, j) = 0, τ ≥ 0, x ≤ 0.(4.3)

Set v0(x, j) = 1[0;+∞)(x)(K −Hex)+, qj = r + 1/∆τ − λjj, for j = 1, ..., d. We divide
[0, T ] into N time steps of length ∆τ = T/N , and we introduce a vector-function

Vs(x) =











vs(x, 1)
vs(x, 2)
...

vs(x, d)











,

where vs(x, j) is an approximation to the price of the barrier option at state j and time
τs = s∆τ , s = 1, 2, . . ..
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We discretize the time derivative, and find the vector-function Vs(x), s = 1, 2, . . ., as
a unique bounded solution to the boundary problem for the following system of PIDEs

(qj − Lj)v(τ, x, j) −
d

∑

k 6=j

λjkv(x, k) =
1

∆τ
vs−1(x, j), x > 0,(4.4)

vs(x, j) = 0, x ≤ 0,(4.5)

where j ranges over {1, 2, ..., d}. One can rewrite (4.4)-(4.5) as

(Q−1(Q− L̃) −Q−1Λ0)Vs(x) =
1

∆τ
Q−1Vs−1(x), x > h,(4.6)

Vk(x) = 0, x ≤ 0,(4.7)

where, in matrix notation

L̃ =











L1 0 0 ... 0
0 L2 0 ... 0

...
0 0 0 ... Ld











; Q =











q1 0 0 ... 0
0 q2 0 ... 0

...
0 0 0 ... qd











;

Λ0 =











0 λ12 λ13 ... λ1d

λ21 0 λ23 ... λ2d

...
λd1 λd2 λd3 ... 0











.

First, we factorize the operators Ej = qj/(qj − Lj) (see Subsection 2.3):

Ej = E−
j E+

j , j = 1, ..., d.

Then, we introduce the following operator, in matrix notation

(4.8) Ẽ =











E−
1 1[0;+∞)E

+
1 0 0 ... 0

0 E−
2 1[0;+∞)E

+
2 0 ... 0

...
0 0 0 ... E−

N1[0;+∞)E
+
N











Applying the operator Ẽ to both sides of (4.6), and taking into account the fact that
(3.32) solves the problem (3.30),(3.31), we have

(I − ẼQ−1Λ0)Vs(x) =
1

∆τ
Q−1ẼVs−1(x), x > 0,(4.9)

Vs(x) = 0, x ≤ 0.(4.10)

The system (4.9),(4.10) is easily solved by using the iteration method, with any accuracy.
Before stating our iterative procedure, we introduce some notations. By C0(R

+; Rd)
we denote the space of bounded, continuous functions from R+ to Rd that vanish at
+∞. Here R+ is the set of positive real numbers. The topology on C0(R

+; Rd) is defined
by the norm

(4.11) ||V ||0 = sup
x∈R+

||V (x)||,
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where || · || is the Euclidean norm. Note that (C0(R
+; Rd), || · ||) turns out to be a Banach

space.
Recall that the EPV-operators Eqj

and E±
qj

admit interpretation as expectation op-

erators (see details in Subsection 2.3). Therefore the mapping Ẽ defined by (4.8) is a
continuous operator on the space C0(R

+; Rd) with the norm ||Ẽ || = 1.
Then we can rewrite (4.9) as Vs = Φ(Vs), where

Φ(V ) = ẼQ−1Λ0V +
1

∆τ
Q−1ẼVs−1(x).

Clearly, Φ maps C0(R
+; Rd) into C0(R

+; Rd), and

Φ(V ) − Φ(U) = ẼQ−1Λ0(V − U), V, U ∈ C0(R
+; Rd).

With the right choice of ∆τ , ||ẼQ−1Λ0|| < 1, hence Φ is a contraction map, and we can
calculate the solution to (4.9),(4.10) using the iteration procedure, with any accuracy.
If ||Q−1Λ0|| is sufficiently small, then several iterations are enough to achieve a good
accuracy.

If a model with d regimes is used, we can write the recursive relationship as

V l
s (x) =

1

∆τ
Q−1ẼVs−1(x) + ẼQ−1Λ0V

l−1
s (x), x > 0,

where l is the iteration number, and V 0
s (x) = Vs−1(x).

After straightforward modifications, the methods developed in Subsection 3.3 and
Subsection 3.4 are applicable to barrier options under regime switching as well.

5. Numerical examples

In this section, we compare the performance of the new two methods and the original
FWH–method. In numerical examples, we implement the algorithms of the enhanced
FWH–methods described in Subsection 3.3 and in Subsection 3.4. We will refer to these
algorithms as the FWH&GS-method and FWH&PW-method, repectively.

5.1. Pricing options without regime switching. In Subsection 5.1, we will com-
pare the prices from the FWH&GS-method and the FWH&PW-method against prices
obtained by differnent numerical methods and reported in Kudryavtsev and Levendorskǐi
(2009).

We use Monte Carlo method (MC-method) and the accurate finite-difference scheme
of Kudryavtsev and Levendorskǐi (2006) (FDS-method) as the benchmarks. We also
compare the performance of the FWH&GS, FWH&PW-methods and the finite difference
scheme constructed in Cont and Voltchkova (2005) (CV-method). We will show the
advantage of the new methods in terms of speed over the original FWH-method.

We consider the down-and-out put option with strike K, barrier H and time to expiry
T . The option prices were calculated on a PC with characteristics Intel Core(TM)2 Due
CPU, 1.8GHz, RAM 1024Mb, under Windows Vista. Kudryavtsev and Levendorskǐi
(2009) used a PC with the same characteristics. The prices calculated by MC, FDS, CV-
methods we will use are the same as in Table 1 of [38]. For the Monte Carlo calculations
Kudryavtsev and Levendorskǐi (2009) used 500, 000 paths with time step = 0.00005.
The examples, which we analyze in detail below, are fairly representative.
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We consider KoBoL (CGMY) model of order ν ∈ (0, 1), with parameters σ = 0,
ν = 0.5, λ+ = 9, λ− = −8, c = 1. We choose instantaneous interest rate r = 0.072310,
time to expiry T = 0.5 year, strike price K = 100 and the barrier H = 90. In this case,
the drift parameter µ is approximately zero. The localization domain is (xmin;xmax)
with xmin = − ln 2 and xmax = ln 2; we check separately that if we increase the domain
two-fold, and the number of points 4-fold, the prices change by less than 0.0001.

Table 1, reports prices for down-and-out put options calculated by using Monte-
Carlo simulation, FDS, FWH, CV-methods, with very fine grids, and FWH&PW and
FWH&GS methods. The options are priced at five spot levels. ExtCV labels op-
tion prices obtained by linear extrapolation of prices Vh,N with h = 0.000005 and
h = 0.000002.

In Table 2, Panel A and Panel B, the sample mean values are compared with the prices
computed by FDS, FWH, CV-methods, FWH&PW and FWH&GS methods. The results
show a general agreement between the Monte Carlo simulation results and those com-
puted by FDS-method and the different versions of the FWH methods. The prices from
the FWH&PW and FWH&GS methods converge very fast and agree with MC-prices and
FDS-prices very well (see also Table 2, Panel D). We see that FWH&PW and FWH&GS
methods produce sufficiently good results in just several dozens of milliseconds.

Table 3, demonstrates the advantage of the new methods in terms of accuracy and
convergence in time over the original FWH-method.
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Table 1. KoBoL(CGMY) model without regime switching: option prices

A

MC FDS FWH CV
Spot Sample h = 0.0001 h = 0.001 h = 0.001 h = 0.0005 h = 0.000005 h = 0.000002 ExtCV
price mean N = 1600 N = 1600 N = 3200 N = 1600 N = 10000 N = 18000
S = 91 0.236500 0.235866 0.236168 0.236006 0.235750 0.218617 0.223599 0.226920
S = 101 0.569974 0.566907 0.567496 0.567361 0.567327 0.552174 0.556747 0.559795
S = 111 0.383990 0.384982 0.385661 0.385713 0.385599 0.377460 0.379963 0.381632
S = 121 0.209492 0.208093 0.208497 0.208543 0.208470 0.204459 0.205700 0.206528
S = 131 0.108359 0.107262 0.107554 0.107573 0.107519 0.105499 0.106115 0.106526
CPU-time
(sec) 25,000 97,300 0.842 1.669 1.84 26,000 116,000

B

MC FDS FWH&PW FWH&GS
Spot Sample h = 0.0001 h = 0.001 h = 0.001 h = 0.0005 h = 0.001 h = 0.0005
price mean N = 1600 N = 5 N = 10 N = 10 N = 14 N = 14
S = 91 0.236500 0.235866 0.235146 0.235774 0.235328 0.235850 0.235433
S = 101 0.569974 0.566907 0.568914 0.567482 0.567312 0.567368 0.567199
S = 111 0.383990 0.384982 0.385695 0.385778 0.385715 0.385705 0.385642
S = 121 0.209492 0.208093 0.208113 0.208503 0.208476 0.208576 0.208549
S = 131 0.108359 0.107262 0.107411 0.107560 0.107525 0.107642 0.107607
CPU-time
(sec) 25,000 97,300 0.016 0.031 0.078 0.047 0.094

KoBoL parameters: ν = 0.5, λ+ = 9, λ
−

= −8, c = 1, µ ≈ 0.
Option parameters: K = 100, H = 90, r = 0.072310, T = 0.5.
Algorithm parameters: h – space step, N – number of time steps (or the parameter of the FWH&PW
and FWH&GS methods), S – spot price.
Panel A: Down-and-out put prices calculated by using MC, FDS, FWH and CV methods.
Panel B: Down-and-out put prices calculated by using MC, FDS, FWH&PW and FWH&GS methods.

5.2. Pricing options with regime switching. In Subsection 5.2, we will compare
the prices from the FWH&PW-method and the original FWH-method against prices
obtained by MC-method, under the regime switching Lévy model assumption.

It is well known that the convergence of Monte Carlo estimators of quantities involv-
ing first passage is very slow. Hence, a large number of paths was needed to obtain a
convergence. For the Monte Carlo calculations we used 500, 000 paths with time step
= 0.00001. For simulating trajectories of the tempered stable (KoBoL) process we im-
plemented the code of J. Poirot and P. Tankov (www.math.jussieu.fr/ ∼ tankov/). The
program uses the algorithm in Madan and Yor (2005), see also Poirot and Tankov (2006).
We combine this method with Markov chain Monte Carlo simulations.

We consider again the down-and-out put option with strike K, barrier H and time to
expiry T . We choose instantaneous interest rate r = 0.04879, time to expiry T = 0.1
year, strike price K = 100 and the barrier H = 90.
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Table 2. KoBoL(CGMY) model without regime switching: relative errors

A

MC FDS FWH CV
Spot MC error h = 0.0001 h = 0.001 h = 0.001 h = 0.0005 h = 0.000005 h = 0.000002 ExtCV
price N = 1600 N = 1600 N = 3200 N = 1600 N = 10000 N = 18000
S = 91 1.3% -0.3% -0.1% -0.2% -0.3% -7.6% -5.5% -4.1%
S = 101 0.8% -0.5% -0.4% -0.5% -0.5% -3.1% -2.3% -1.8%
S = 111 1.0% 0.3% 0.4% 0.4% 0.4% -1.7% -1.0% -0.6%
S = 121 1.4% -0.7% -0.5% -0.5% -0.5% -2.4% -1.8% -1.4%
S = 131 1.9% -1.0% -0.7% -0.7% -0.8% -2.6% -2.1% -1.7%

B

MC FDS FWH&PW FWH&GS
Spot MC error h = 0.0001 h = 0.001 h = 0.001 h = 0.0005 h = 0.001 h = 0.0005
price N = 1600 N = 5 N = 10 N = 10 N = 14 N = 14
S = 91 1.3% -0.3% -0.6% -0.3% -0.5% -0.3% -0.5%
S = 101 0.8% -0.5% -0.2% -0.4% -0.5% -0.5% -0.5%
S = 111 1.0% 0.3% 0.4% 0.5% 0.4% 0.4% 0.4%
S = 121 1.4% -0.7% -0.7% -0.5% -0.5% -0.4% -0.4%
S = 131 1.9% -1.0% -0.9% -0.7% -0.8% -0.7% -0.7%

C

FWH CV
Spot price h = 0.001 h = 0.001 h = 0.0005 h = 0.000005 h = 0.000002 ExtCV

N = 1600 N = 3200 N = 1600 N = 10000 N = 18000
S = 91 0.1% 0.1% 0.0% -7.3% -5.2% -3.8%
S = 101 0.1% 0.1% 0.1% -2.6% -1.8% -1.3%
S = 111 0.2% 0.2% 0.2% -2.0% -1.3% -0.9%
S = 121 0.2% 0.2% 0.2% -1.7% -1.1% -0.8%
S = 131 0.3% 0.3% 0.2% -1.6% -1.1% -0.7%

D

FWH&PW FWH&GS
Spot h = 0.001 h = 0.001 h = 0.0005 h = 0.001 h = 0.0005
price N = 5 N = 10 N = 10 N = 14 N = 14
S = 91 -0.3% 0.0% -0.2% 0.0% -0.2%
S = 101 0.4% 0.1% 0.1% 0.1% 0.1%
S = 111 0.2% 0.2% 0.2% 0.2% 0.2%
S = 121 0.0% 0.2% 0.2% 0.2% 0.2%
S = 131 0.1% 0.3% 0.2% 0.4% 0.3%

KoBoL parameters: ν = 0.5, λ+ = 9, λ
−

= −8, c = 1, µ ≈ 0.
Option parameters: K = 100, H = 90, r = 0.072310, T = 0.5.
Algorithm parameters: h – space step, N – number of time steps (or the parameter of the FWH&PW
and FWH&GS methods), S – spot price.
Panel A: Relative errors w.r.t. MC (FDS, FWH and CV methods); MC errors indicate the ratio
between the half-width of the 95% confidence interval and the sample mean.
Panel B: Relative errors w.r.t. MC (FDS, FWH&PW and FWH&GS methods).
Panel C: Relative errors w.r.t. FDS (FWH and CV methods).
Panel D: Relative errors w.r.t. FDS (FWH and FWH&PW and FWH&GS method).
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Table 3. KoBoL(CGMY) model without regime switching: FWH,
FWH&PW and FWH&GS methods

A

FWH&PW FWH&GS FWH
Spot price N = 5 N = 10 N = 14 N = 400 N = 800 N = 1600 N = 3200 N = 6400
S = 91 0.235146 0.235774 0.235850 0.237139 0.236491 0.236168 0.236006 0.235926
S = 101 0.568914 0.567482 0.567368 0.568303 0.567766 0.567496 0.567361 0.567294
S = 111 0.385695 0.385778 0.385705 0.385349 0.385557 0.385661 0.385713 0.385739
S = 121 0.208113 0.208503 0.208576 0.208223 0.208406 0.208497 0.208543 0.208566
S = 131 0.107411 0.107560 0.107642 0.107439 0.107516 0.107554 0.107573 0.107583
CPU-time
(sec) 0.016 0.031 0.047 0.21 0.421 0.842 1.669 3.386

B

FWH&PW FWH&GS FWH
Spot price N = 5 N = 10 N = 14 N = 400 N = 800 N = 1600 N = 3200
S = 91 -0.33% -0.06% -0.03% 0.51% 0.24% 0.10% 0.03%
S = 101 0.29% 0.03% 0.01% 0.18% 0.08% 0.04% 0.01%
S = 111 -0.01% 0.01% -0.01% -0.10% -0.05% -0.02% -0.01%
S = 121 -0.22% -0.03% 0.00% -0.16% -0.08% -0.03% -0.01%
S = 131 -0.16% -0.02% 0.05% -0.13% -0.06% -0.03% -0.01%

C

FWH&PW FWH&GS FWH
Spot price N = 5 N = 10 N = 14 N = 400 N = 800 N = 1600 N = 3200 N = 6400
S = 91 0.234730 0.235328 0.235433 0.236720 0.236073 0.235750 0.235589 0.235508
S = 101 0.568745 0.567312 0.567199 0.568134 0.567596 0.567327 0.567192 0.567125
S = 111 0.385633 0.385715 0.385642 0.385287 0.385495 0.385599 0.385651 0.385677
S = 121 0.208086 0.208476 0.208549 0.208196 0.208379 0.208470 0.208516 0.208539
S = 131 0.107376 0.107525 0.107607 0.107403 0.107480 0.107519 0.107538 0.107548
CPU-time
(sec) 0.062 0.078 0.094 0.468 0.904 1.84 3.62 7.27

D

FWH&PW FWH&GS FWH
Spot price N = 5 N = 10 N = 14 N = 400 N = 800 N = 1600 N = 3200
S = 91 -0.33% -0.08% -0.03% 0.51% 0.24% 0.10% 0.03%
S = 101 0.29% 0.03% 0.01% 0.18% 0.08% 0.04% 0.01%
S = 111 -0.01% 0.01% -0.01% -0.10% -0.05% -0.02% -0.01%
S = 121 -0.22% -0.03% 0.00% -0.16% -0.08% -0.03% -0.01%
S = 131 -0.16% -0.02% 0.05% -0.13% -0.06% -0.03% -0.01%

KoBoL parameters: ν = 0.5, λ+ = 9, λ
−

= −8, c = 1, µ ≈ 0.
Option parameters: K = 100, H = 90, r = 0.072310, T = 0.5.
Algorithm parameters: h – space step, N – number of time steps (or the parameter of the FWH&PW
and FWH&GS methods), S – spot price.
Panel A: Down-and-out put prices calculated by using FWH and FWH&PW and FWH&GS methods;
h = 0.001.
Panel B: Relative errors for FWH and FWH&PW and FWH&GS methods with h = 0.001; the
benchmark – down-and-out put prices calculated by using FWH with h = 0.001, N = 6400.
Panel C: Down-and-out put prices calculated by using FWH and FWH&PW and FWH&GS methods;
h = 0.0005.
Panel D: Relative errors for FWH and FWH&PW and FWH&GS methods with h = 0.0005; the
benchmark – down-and-out put prices calculated by using FWH with h = 0.0005, N = 6400.
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Table 4. KoBoL(CGMY) model with regime switching: parameters

Parameters
State ν λ− λ+ c
Zt = 0 0.5 -7 9 1
Zt = 1 0.6 -11 8 1
Zt = 2 1.2 -10 12 1

The drift terms µj are prefixed by the EMM-requirement

Our example uses a three-state KoBoL (CGMY) model, with parameters presented in
Table 4. The rate matrix of the underlying Markov chain is given by

Λ =







−0.8 0.5 0.3
0.2 −0.7 0.5
0.2 0.4 −0.6





 .

Table 5, reports prices for down-and-out put options calculated by using Monte-Carlo
simulation, FWH and FWH&PW methods. The options are priced for each intial state
at four spot levels.

In Table 6, the sample mean values are compared with the prices FWH and FWH&PW
methods. The prices from the FWH&PW and FWH methods converge very fast and
agree with each other and MC-prices very well. We see that FWH&PW method is several
times faster than the generalized version of the original FWH method.

6. Conclusion

In the paper, we propose two new fast and accurate methods for pricing barrier options
in wide classes of Lévy processes with/without regime switching. Both methods use the
numerical Laplace transform inversion formulae and the Fast Wiener-Hopf factorization
method developed in Kudryavtsev and Levendorskǐi (2009). The first method uses the
Gaver-Stehfest algorithm, the second one – the Post-Widder formula.

Using an accurate albeit relatively slow finite-difference algorithm developed in Leven-
dorskǐi et al (2006) and Monte Carlo simulations, we demonstrate the accuracy and fast
convergence of the two new methods. Numerical examples show that the new methods
are computationally much faster (often, dozen of times faster) than the original FWH-
method constructed in Kudryavtsev and Levendorskǐi (2009). Our new methods enjoy
an additional appealing feature: they produce a set of option prices at different spot
levels, simultaneously.

The method based on the Post-Widder formula achieves similar performance to the
method which uses the Gaver-Stehfest algorithm; however, the former method does not
require high precision.

We notice that Carr’s randomization procedure Carr (1998) indicates an alternative
interpretation of the approximation induced by our second method. As a result, we
conjecture that Carr’s approximation to the value of a finite-lived barrier option with
bounded continuous terminal payoff function always converges to the actual value for a
wide class of Lévy processes. Moreover, we provide the order of the convergence.
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Table 5. KoBoL(CGMY) model with regime switching: option prices

A

MC FWH FWH&PW
Spot Sample h = 0.001 h = 0.0005 h = 0.0005 h = 0.001 h = 0.0005 h = 0.0005
price mean N = 1600 N = 800 N = 1600 N = 5 N = 5 N = 10
S = 91 1.90584 1.89343 1.90033 1.89900 1.89333 1.89903 1.89769
S = 96 2.71715 2.71483 2.71577 2.71566 2.71484 2.71567 2.71557
S = 101 1.13496 1.13453 1.13294 1.13327 1.13384 1.13258 1.13344
S = 106 0.43446 0.43430 0.43381 0.43389 0.43422 0.43381 0.43395
CPU-time
(sec) 50,000 13.5 13.5 27 0.46 0.97 1.69

B

MC FWH FWH&PW
Spot Sample h = 0.001 h = 0.0005 h = 0.0005 h = 0.001 h = 0.0005 h = 0.0005
price mean N = 1600 N = 800 N = 1600 N = 5 N = 5 N = 10
S = 91 1.71527 1.70807 1.71423 1.71316 1.70812 1.71324 1.71223
S = 96 2.00268 2.00490 2.00562 2.00526 2.00561 2.00596 2.00507
S = 101 0.95907 0.96110 0.95971 0.95994 0.96080 0.95963 0.96008
S = 106 0.44501 0.44451 0.44385 0.44397 0.44424 0.44370 0.44402
CPU-time
(sec) 50,000 13.5 13.5 27 0.46 0.97 1.69

C

MC FWH FWH&PW
Spot Sample h = 0.001 h = 0.0005 h = 0.0005 h = 0.001 h = 0.0005 h = 0.0005
price mean N = 1600 N = 800 N = 1600 N = 5 N = 5 N = 10
S = 91 0.02342 0.02275 0.02254 0.02252 0.02273 0.02250 0.02250
S = 96 0.09026 0.09044 0.09022 0.09014 0.09030 0.09001 0.09006
S = 101 0.13541 0.13517 0.13491 0.13479 0.13485 0.13447 0.13465
S = 106 0.16480 0.16408 0.16375 0.16363 0.16373 0.16328 0.16347
CPU-time
(sec) 200,000 13.5 13.5 27 0.46 0.97 1.69

Option parameters: K = 100, H = 90, r = 0.04879, T = 0.1.
Algorithm parameters: h – space step, N – number of time steps in the FWH-method (or the
parameter in the FWH&PW-method), S – spot price.
Panel A: Option prices, the visible state Z0 = 0
Panel B: Option prices, the visible state Z0 = 1
Panel C: Option prices, the visible state Z0 = 2

We generalize the framework proposed by Kudryavtsev and Levendorskǐi (2009), and
extend it to regime switching Lévy models. We prove the advantage of the new methods
in terms of accuracy and convergence by using Monte-Carlo simulations.
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Table 6. KoBoL(CGMY) model with regime switching: relative errors

A

MC FWH FWH&PW
Spot MC error h = 0.001 h = 0.0005 h = 0.0005 h = 0.001 h = 0.0005 h = 0.0005
price N = 1600 N = 800 N = 1600 N = 5 N = 5 N = 10
S = 91 0.5% -0.7% -0.3% -0.4% -0.7% -0.4% -0.4%
S = 96 0.3% -0.1% -0.1% -0.1% -0.1% -0.1% -0.1%
S = 101 0.5% 0.0% -0.2% -0.1% -0.1% -0.2% -0.1%
S = 106 0.9% 0.0% -0.1% -0.1% -0.1% -0.2% -0.1%
CPU-time
(sec) 200,000 13.5 13.5 27 0.46 0.97 1.69

B

MC FWH FWH&PW
Spot MC error h = 0.001 h = 0.0005 h = 0.0005 h = 0.001 h = 0.0005 h = 0.0005
price N = 1600 N = 800 N = 1600 N = 5 N = 5 N = 10
S = 91 0.5% -0.4% -0.1% -0.1% -0.4% -0.1% -0.2%
S = 96 0.4% 0.1% 0.1% 0.1% 0.1% 0.2% 0.1%
S = 101 0.6% 0.2% 0.1% 0.1% 0.2% 0.1% 0.1%
S = 106 0.9% -0.1% -0.3% -0.2% -0.2% -0.3% -0.2%
CPU-time
(sec) 50,000 13.5 13.5 27 0.46 0.97 1.69

C

MC FWH FWH&PW
Spot MC error h = 0.001 h = 0.0005 h = 0.0005 h = 0.001 h = 0.0005 h = 0.0005
price N = 1600 N = 800 N = 1600 N = 5 N = 5 N = 10
S = 91 4.30% -2.9% -3.8% -3.9% -3.0% -3.9% -3.9%
S = 96 2.10% 0.2% 0.0% -0.1% 0.0% -0.3% -0.2%
S = 101 1.70% -0.2% -0.4% -0.5% -0.4% -0.7% -0.6%
S = 106 1.60% -0.4% -0.6% -0.7% -0.7% -0.9% -0.8%
CPU-time
(sec) 200,000 13.5 13.5 27 0.46 0.97 1.69

Relative errors w.r.t. MC; Option parameters: K = 100, H = 90, r = 0.04879, T = 0.1.
Algorithm parameters: h – space step, N – number of time steps in the FWH-method (or the
parameter in the FWH&PW-method), S – spot price.
Panel A: Relative errors w.r.t. MC, the visible state Z0 = 0
Panel B: Relative errors w.r.t. MC, the visible state Z0 = 1
Panel C: Relative errors w.r.t. MC, the visible state Z0 = 2
MC errors indicate the ratio between the half-width of the 95% confidence interval and the sample
mean.
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