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Abstract :

In this paper, we present a new variance reduction technique for Monte Carlo

methods. By an elementary version of Girsanov theorem, we introduce a drift

term in a price computation. Afterwards, the basic idea is to use a truncated

version of the Robbins-Monro (RM) algorithms to find the optimal drift that

reduces the variance. We proved that for a large class of payoff functions,

this version of RM algorithms converges a.s. to the optimal drift. Then, we

illustrate the method by applications to options pricing.

1 Introduction

Premia 18

Monte carlo methods are used for pricing and hedging complex financial
products especially when the number of the assets involved is large. In such
a case, variance reduction methods are often needed in order to improve ef-
ficiency. In this paper we present importance sampling methods based on
Girsanov transformation following [10]. The basic idea is to use a Robbins-
Monro (RM) algorithm to optimize the choice of the drift in the Girsanov
transformation. The RM algorithm is a stochastic approximation method
which allows to estimate asymptotically the zeros of a function given as an
expectation. Although its rate of convergence is C/

√
n in general, the RM

algorithm is very easy to implement in general. Newton [8] proved that for
a large class of problems of options pricing in continuous time, importance
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sampling can lead to a zero-variance estimator through a stochastic change
of drift. However, determining the optimal drift requires knowing the option
price in advance. This approach is therefore based on using approximations
of the option price to find approximations of the optimal drift. We use a
different approach: we restrict ourselves to deterministic change of drift.
In the next section we present the mathematical context of our method
and introduce briefly the importance sampling technique based on Girsanov
transformation (following [10]). In section 3, we first introduce the RM al-
gorithms in a general framework and then present the Chen’s method which
enable us to prove our main result. The last part of the work is devoted to
numerical tests and practical considerations . A brief presentation of the RM
algorithm using Chen’s truncation method is given in the appendix (see also
[3]).

2 Mathematical Context

2.1 Financial background

For more simplicity we use the Black and Scholes model to describe the price
of an asset. However, our method can be used in a more general setting as
pathdependent options or in stochastic volatility model. The price of the
risky asset St is supposed to follow a stochastic diffusion equation under the
neutral risk probability :

dSt = St(rdt + σdWt), S0 = x,

which solution is given by

St = x exp

(

(r − σ2

2
)t + σWt

)

.

S0 is the price of the asset at time 0. Obviously we can simulate this asset
at dates 0 < T1 < · · · < Tm = T using the exact representation

STi
= STi−1

exp

(

(r − σ2

2
)(Ti − Ti−1) + σ

√

Ti − Ti−1Zi

)

, (1)

where Z1, . . . , Zm are independent gaussian random variables with mean 0
and variance 1. We restrict attention to simulations driven by a sequence
of independent normal variables, since we can recover this case when the
normal variables are correlated through a linear transformation. If we want
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to price an option which payoff is given by f(ST1 , . . . , STm
) we thus have to

evaluate
V0 = E[e−rT f(ST1 , . . . , STm

)]. (2)

Using (1), V0 can be rewritted as

V0 = E[G(Z1, . . . , Zm)] , (3)

where G is a function which can be computed and Z = (Z1, . . . , Zm) ∼
N (0, Im) .
In what follows, the objective is to evaluate (3) using an importance sampling
procedure.

2.2 Importance sampling

We change the law of Z = (Z1, . . . , Zm) adding a drift vector µ = (µ1, . . . , µm).
An elementary version of Girsanov theorem applied to 3 leads to the following
representation of V0 :

V0 = E(α(µ)) , (4)

with
α(µ) = G(Z + µ)e(−µ·Z− 1

2
‖µ‖2) , (5)

where ‖x‖ denotes the Euclidean norm of a vector x ∈ R
m. The authors

in [10] give an importance sampling procedure to minimize the variance of
α(µ) or equivalently to minimize E(α2(µ)) with respect to µ. This method
reduces the contribution of the linear part of the “log-payoff” to the variance
by sampling along a direction µ̂ which is solution of the fixed-point problem :
∇ log G(µ) = µ.
In this paper, we use a RM algorithm which enables us to assess the “opti-
mal sampling direction” µ∗ that minimizes the variance of α(µ), µ ∈ R

m or
equivalently :

H(µ) = E(α2(µ)). (6)

The following result is important.

Proposition 2.1. If E(G2a(Z)) < ∞, with a > 1, then H is twice differen-
tiable in R

m and there exists a unique µ∗ ∈ R
m such that :

H(µ∗) = min
µ∈Rm

H(µ). (7)

Proof Using a change of variables and the Girsanov theorem, we obtain

H(µ) = E

[

G2(Z)e−µ·Z+ 1
2

‖µ‖2

]

. (8)
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Suppose that ‖µ‖ ≤ K where K is a non negative constant. With the
notation
g(µ, z) = (µ − z)G2(z)e−µ·z+ 1

2
‖µ‖2

, we have
∫

|g(µ, z)|e− 1
2

‖z‖2

dz ≤ e
K

2

2

∫

(K + ‖z‖)eK‖z‖e−(1− 1
a

) 1
2

‖z‖2

G2(z)e− 1
2a

‖z‖2

dz.

By Cauchy-Schwarz inequality, we can write

∫

|g(µ, z)|e− 1
2

‖z‖2

dz ≤ e
K

2

2

(

∫

(K+‖z‖)e
aK

a−1
‖z‖e− 1

2
‖z‖2

dz

)1− 1
a

(

∫

G2a(z)e− 1
2

‖z‖2

dz

)
1
a

dz.

Since E(G2a(Z)) < ∞, it is not difficult to see that H is differentiable and
that

∇H(µ) = E

[

(µ − Z)G2(Z)e−µ·Z+ 1
2

‖µ‖2

]

. (∗)

In addition, one can prove that H is twice differentiable and that

HessH(µ) = E

[(

Im + (µ − Z)(µ − Z)T

)

G2(Z)e−µ·Z+ 1
2

‖µ‖2

]

, (∗∗)

where HessH(·) denotes the hessian matrix of H and Im the identity matrix
of size m. From (∗∗), we conclude that H is strictly convex on R

m since

∀u ∈ R
m−{0}, uT HessH(µ)u = E

[(

‖u‖2+(u·(µ−Z))2

)

G2(Z)e−µ·Z+ 1
2

‖µ‖2

]

> 0.

To end this proof, it’s sufficient to show that lim‖µ‖→+∞ H(µ) = +∞. Using
Jensen inequality, it follows that

log H(µ) ≥ E

(

2 log G(Z)1G>0 − µZ +
1

2
‖µ‖2

)

= 2E(log G(Z)1G>0) +
1

2
‖µ‖2.

Therefore, if P(G(Z) > 0) 6= 0, then lim‖µ‖→+∞ H(µ) = +∞.
As a consequence of the proposition above, µ∗ minimizing H is the unique
solution of

∇H(µ) = 0 , (9)

and the idea is to make use of a RM algorithm to solve equation (9).

3 Robbins-Monro algorithms

We begin this section by a short presentation of the Robbins-Monro algo-
rithms.
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3.1 General framework

The RM algorithms have the form

Xn+1 = Xn − γn+1F (Xn, Zn+1) (10)

where Zn is drawn from a given distribution m(dx).
The initial condition is any admissible value for X0. This algorithm solves
the equation

E[F (µ, Z)] = 0

where E denotes the expectation under m(dx). If we consider the mean field

h(µ) = E[F (µ, Z)], µ ∈ R
m,

we can rewrite (10) as

Xn+1 = Xn − γn+1h(Xn) + γn+1ǫn+1 (11)

with
ǫn+1 = h(Xn) − F (Xn, Zn+1).

The ǫn can be seen as random errors made when evaluating h(Xn). Let us
write Yn+1 for the value of F (Xn, Zn+1). Xn and Yn are random vectors in R

m.
Let Fn = σ{Xk, Yk, k ≤ n} be the σ-algebra generated by Xk, Yk k ≤ n.
Clearly we can write

E[Yn+1/Fn] = h(Xn).

The following theorem is proved in [6] or [5].

Theorem 1. Under the following hypothesis

(H1) ∃µ∗ ∈ R
m, h(µ∗) = 0, ∀µ ∈ R

m µ 6= µ∗ (µ − µ∗) · h(µ) > 0, (12)

(H2)
∑

n

γn = +∞ and
∑

n

γ2
n < +∞, (13)

(H3) E[‖Yn+1‖2/Fn] < K(1 + ‖Xn‖2) a.s., (14)

the sequence of random vectors (Xn)n≥0 converges almost surely to µ∗.

One can find some other convergence hypothesis of the RM algorithms
in [9]. Some papers are devoted to the convergence properties of these
algorithms see e.g. [2] and [4].
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3.2 Application to variance reduction

In our case (see (∗)), the mean field h is given by

h(x) = E

[

(x − Z)G2(Z)e−x·Z+ 1
2

‖x‖2

]

, (15)

where Z is dawn from the gaussian law N (0, Im). By Proposition 2.1, it
exists a unique µ∗ ∈ R

m which makes zero the function h. Now, consider the
following expression for Yn+1 :

Yn+1 = (Xn − Zn+1)G
2(Zn+1)e

−Xn·Zn+1+ 1
2

‖Xn‖2

, (16)

where (Zn)n≥0 is a sequence of i.i.d. gaussian vectors following the law of Z.
Since Xn is Fn-mesurable and Zn+1 is independent of Fn, it is easy to see
that

E[Yn+1/Fn] = h(Xn).

Therefore hypothesis (H1) of the theorem above is satisfied. On the contrary,
hypothesis (H3) can not be satisfied. Obviously this fact is due to the ex-
ponential form of Yn+1 (see (16)). Hence the most difficult point to check is
that Xn does not tend to infinity. To deal with this particular point, we use
a technique introduced by H.F. Chen in [4] (see also [3]) using projections
to get convergence.

3.3 Truncation method

To describe the method, first fix x1 6= x2 in R
m and choose a constant M > 0

as indicated in the appendix. Let (Zn)n≥0 be a sequence of independent
random vectors drawn from the distribution of Z. Let (Un)n≥0 be an arbitrary
deterministic increasing sequence of positive numbers tending to infinity with
U0 > M .
Define for n ≥ 0,

Xn+1 =







Xn − γn+1Yn+1 if ‖Xn − γn+1Yn+1‖ ≤ Uσ(n),

x∗
n otherwise

(17)

σ(n) =
n−1
∑

k=0

1‖Xk−γk+1Yk+1‖>Uσ(k)
, σ(0) = 0, (18)

σ(n) is the number of projections done after n iterations.

x∗
n =







x1 if σ(n) is even,

x2 if σ(n) is odd,
(19)
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with (γn)n≥0 a sequence of positive numbers satisfying

∑

n≥0

γn = +∞ and
∑

n≥0

γ2
n < +∞. (20)

Remark 3.1. In our numerical tests we use γn = α
β+n

, α, β > 0. The
problem of the “best choice” of the coefficients α and β is rather delicate.
From a numerical point of view, this choice seems to be linked to the values
of the model parameters. We propose in the last section an empirical way
that to choose efficiently these coefficients.

Remark 3.2. The constant M above has no significant effect on the numer-
ical convergence of the algorithm. In our numerical tests M values are in the
inteval [10, 100] with no effect on the convergence properties of the algorithm.
At time n, x∗

n may be a function of the past values of the algorithm. For
example a randomly chosen former points.

The following lemma allows us to apply the result of Chen to our setings.

Lemma 1. 1) It exists a twice continuously differentiable function v : R
m → R,

such that :
v(x∗) = 0, lim‖x‖→∞ v(x) = +∞

and ∀ x 6= x∗ v(x) > 0, h(x) · ∇v(x) > 0.

2) Let G be a function verifying |G(z)| ≤ b(1 + ec·z) with b > 0 and c ∈ R
m,

then we can choose the sequence Un such that

lim
n→+∞

∑

k≤n

γ2
k+1E[‖Yk+1‖2/Fk] < +∞ a.s.

Proof Let v(x) = ‖x − x∗‖2. By Propositon 2.1, the function H
defined by

H(x) = E[G2(Z)e−x·Z+ 1
2

‖x‖2

]

is strictly convex and its gradient is given by

h = E[(x − Z)G2(Z)e−x·Z+ 1
2

‖x‖2

].

Thus
∀ u 6= y ∈ R

m H(y) − H(u) > (y − u) · h(u),

and for y = µ∗ we have

∀ u 6= µ∗ H(u) − H(µ∗) < ∇v(u) · h(u) .
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As ∀ u ∈ R
m, H(µ∗) < H(u), the first part of the lemma is proved.

To prove the last part, first observe that Xn is Fn-mesurable and Zn+1 is
independent of Fn. Then we have

E[‖Yn+1‖2/Fn] = s2(Xn)

with
s2(x) = E[‖x − Z‖2G4(Z)e−2x·Z+‖x‖2

].

It follows that

s2(x) ≤ Cte‖x‖2

(

‖x‖2
E(e(4c−2x)·Z) + E(‖Z‖2e(4c−2x)·Z)

)

= Cte‖x‖2

(

‖x‖2e2‖2c−x‖2

+ (m + 2‖2c − x‖2)e2‖2c−x‖2

)

≤ Ct(1 + ‖x‖2)e5‖x‖2

.

Using equations (17-20), we get

‖Xn‖ ≤ max(Uσ(n), ‖x∗
n‖) ≤ Un, for n sufficiently large.

Finally
s2(Xn) ≤ CtU2

ne5U2
n .

We conclude the proof by choosing the sequence Un such that
∑

n

γ2
nU2

ne5U2
n < + ∞ .

Remark 3.3. The sequence Un must increase sufficiently slow to cancel the
explosion behaviour of the algorithm without modifying the mean field h. It’s

choice is not difficult. For example, the sequence Un =
√

1
6

ln n + U0, n ≥ 1
is suitable.

Theorem 2. In the framework of Lemma 1, the algorithm Xn defined by
(17) converges a.s. to the unique solution of the equation h(x) = 0, x ∈ R

m

and the number of truncations σ(n) is bounded.

Proof First, set down ǫn+1 = h(Xn) − Yn+1, n ≥ 0 and define
Mn =

∑n−1
i=0 γi+1ǫi+1 for n ≥ 1. The sequence (Mn)n≥1 is a Fn-martingale

and its brackets process < M > is given by

< M >n =
n−1
∑

i=0

γ2
i+1E

[

‖ǫi+1‖2/Fi

]

=
n−1
∑

i=0

γ2
i+1E[‖Yi+1‖2/Fi] −

n−1
∑

i=0

γ2
i+1‖h(Xi)‖2

≤
n−1
∑

i=0

γ2
i+1E[‖Yi+1‖2/Fi].
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Using Lemma 1, we have choosen the sequence (Un) such that

lim
n→+∞

< M >n ≤
+∞
∑

n=0

γ2
n+1E[‖Yn+1‖2/Fn] a.s.

≤ C
∑

n

γ2
nU2

ne5U2
n

< + ∞ ,

where C > 0. Therefore the martingale Mn converges a.s. and in L2 (see
[7] or [1]). The Kronecker’s lemma (see for example [11] p.117) implies
that lim γn+1‖

∑n−1
i=0 ǫi+1‖ = 0 a.s.. Chen, Guo and Gao proved in [3]

that assuming the first part of Lemma 1 holds, one just need the additional
assumption lim γn+1‖

∑n−1
i=0 ǫi+1‖ = 0 a.s. in order to obtain the convergence

of the algorithm. Theorem 2 is then a consequence of Theorem 3 (see
Appendix or [3]).

Remark 3.4. There are many financial cases where the payoff function G
satisfies the condition |G(z)| ≤ b(1 + ec·z) of the theorem such as digital,
corridor, forward floor, payer swaption, etc,...

4 Examples and numerical tests

As noticed in Remark 3.1 the “best” choice of the steps sequence (γn)n≥0 in
the algorithm (17-20) is rather delicate. From a theoretical point of view it is
known (see [5] or [9]) that the best sequence must decrease towards 0 as 1

n
.

In our numerical tests we use γn = α
β+n

, α, β > 0. We observe that the choice
of β has no significant effect on the numerical convergence of the algorithm.
The most difficult point to check for numerical purposes is therefore to find
the values of the parameter α which lead to good convergence propperties.
We have represented the ratio of the classical Monte Carlo estimator’s stan-
dard deviation to the one of the Monte Carlo method with the optimal drift
computed by the method we proposed. We denoted this ratio by “StdRatio”.
We use β = 1 for all the numerical tests. We begin the presentation of the
results obtained by a one dimensional option pricing problem. Tables 4.1
and 4.2 present these results for european standard call and put. Of course
the pricing of these products is available in closed form, but it seems natural
for us to start the numerical tests with simple examples in order to measure
both gain on variance and accuracy on prices computation.
“RMPrice”, “CPrice” and “BSPrice” denote respectively the Monte Carlo
estimated price including our method (Monte Carlo + Importance sampling
+ RM algorithm), the classical Monte Carlo price and the Black and Scholes
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exact price of the option. We recall that “StdRatio” is the ratio of the classi-
cal Monte Carlo estimator standard deviation to the one of the Monte Carlo
using the optimal drift computed by our method.
On these simple examples the standard deviation error reduction is very sig-
nificant. For a put and a call that are out of the money, the gain factor
(StdRatio) could be high. Furthermore the prices computed by the Monte
Carlo method including the variance reduction method we propose are more
accurate than those obtained by a classical Monte Carlo method.
The numerical cost of this method is equivalent to the additional time spent
in generating the gaussian paths that are used to compute the optimal drift.
In all our tests this extra time does not exceed 25% of the CPU time spent in
the classical Monte Carlo computation. In fact we use at most 20% gaussian
paths in addition to those simulate for the standard Monte Carlo computa-
tion. The variance is reduced by a factor of at least 4. This reduction has
reached a factor of 625 in our examples. Obviously, this gain justify the extra
effort of computation.
Table 4.3 shows some results about the pricing of a european basket put on
10 or 20 assets. The results obtained are very interesting, since the reduction
of confidence interval length is about a factor of at least 2. This gain factor
may be “large” for options that are out of the money.

Table 4.1
Estimated Variance Reduction Ratio for the European Put

Parameters Importance sampling
α β σ strike
5. 1. 0.3 30
0.1 40
0.01 50
0.001 60
0.001 80
100. 0.1 40
1. 50
0.1 60

RMPrice BSPrice CPrice StdRatio
0.134 0.134 0.125 6.2
1.281 1.280 1.272 3.3
4.684 4.677 4.695 2.5
10.541 10.526 10.575 2.2
26.789 26.771 26.846 2.1
0.0042 0.0042 0.0039 18.7
0.965 0.964 0.962 3.1
7.310 7.305 7.327 2.5

All the results are based on a total of 50,000 runs. 40,000 runs for the Monte

Carlo method and 10,000 runs for the RM algorithm. The model parameters are:

S0 = 50, r = 0.05, and T = 1.0.
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Tableau 4.2
Estimated Variance Reduction Ratio for the European Call

Parameters Importance sampling
α β σ strike
0.01 1. 0.3 30
0.05 40
0.1 50
0.5 60
0.1 80
0.0006 0.1 30
0.001 40
0.01 50
0.07 60
5. 70

RMPrice BSPrice CPrice StdRatio
21.630 21.598 21.520 4.1
13.249 13.231 13.155 3.3
7.118 7.116 7.006 3.3
3.454 3.452 3.434 3.9
0.673 0.673 0.680 6.8
21.466 21.463 21.520 10.6
11.965 11.955 11.934 4.4
3.405 3.402 3.379 2.8
0.231 0.231 0.232 5.6
0.0035 0.0035 0.0042 25.

All the results are based on a total of 50,000 runs. 40,000 runs for the Monte

Carlo method and 10,000 runs for the RM algorithm. The model parameters are

S0 = 50, r = 0.05, and T = 1.0.
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Tableau 4.3
Estimated Variance Reduction Ratio for the European Basket Put

Parameters Importance sampling
n α β σ strike
10 100 1. 0.1 20

4. 30
0.1 40
0.01 50
0.01 60
0.02 70

20 5. 1. 20
0.5 30
0.05 40
0.01 50
0.01 60
0.001 70

10 1. 1. 0.2 20
0.05 30
0.01 40
0.01 50
0.002 60
0.001 70

RMPrice StdRatio
0.003 14.9
0.18 5.8
1.47 3.2
5.00 2.5
10.86 2.2
18.41 2.1
0.074 7.1
0.84 3.7
3.19 2.7
7.48 2.3
13.43 2.1
20.63 2.0
0.52 4.0
2.39 2.8
5.93 2.3
10.95 2.1
17.14 2.0
24.21 1.9

The number of assets involved is n. All the results use a total

of 1,000,000 gaussian paths including 100,000 paths for the drift

computation. The model parameters are S0 = 50, r = 0.05, and

T = 1.0. Volatility is flat at 10% or 20%.

We use respectively 900,000 and 100,000 simulation paths for Monte Carlo
computation and Robbins Monro algorithm in this example. In this partic-
ular case only 10% additional simulation effort leads to a variance reduction
with a factor of at least 4.
Table 4.4 displays values of an arithmetic asian put. As one can notice the
variance gain is greater than a factor of 4. It is well known that put options
variance is comparatively lower than call one since put payoff is bounded.
Then a variance reduction with a factor of 4 is not negligible in the case fo
a put.
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Our last examples deal with a stochastic volatility model, namely the
Hull-White stochastic volatility model (1987),

dSt = rStdt +
√

σtStdW 1
t ,

dσt = νσtdt + ζσtdW 2
t ,

where W 1 and W 2 are two correlated brownian motions with < W 1, W 2 >t = ρt.
In this model, St has a finite mean but an infinite variance. Using a linear
discretization of St by an Euler scheme, the variance is finite but increases
very quickly with the number of steps. To reduce this effect, we need to
truncate this variance. As in [10] we consider the following discretisation of
the model

STi+1
= STi

(1 + r∆t +
√

σi∆tZi),

σi+1 = min{c, σie
(ν− 1

2
ζ2)∆t+ζ

√
∆t(ρZi+

√
1−ρ2Zm+i)},

where c is a non-negative constant. The truncation has little impact on the
mean but makes estimated variances much more stable.

Tableau 4.4
Estimated Variance Reduction Ratio for the Asian Put

Parameters Importance Sampling
n α β σ strike
20 5 1. 0.1 45

1 50
0.05 55

20 6 1. 0.3 40
0.5 50
0.05 60

40 5 1. 0.1 45
1 50
0.05 55

40 4.5 1. 0.3 40
1. 50
0.05 60

RMPrice StdRatio
0.013 5.8
0.63 3.1
3.68 2.5
0.27 4.8
2.87 2.6
9.30 2.2
0.011 4.3
0.62 3.0
3.70 2.4
0.25 4.4
2.83 2.6
9.29 2.2

We use 1,000,000 paths for the Monte Carlo computation and

200,000 for the optimal drift computation. The option parameters

value are S0 = 50, r = 0.05, and T = 1.0,.

Through our simulation results we take c = 2, ν = 0, r = 0.05, S0 = 50,
T = 1, ρ = 0.5 et

√
σ0 = 0.1. The constant volatility case corresponds to
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ζ = 0 . The implementation of the method is not more difficult than it was in
the Black and Scholes model. Again we plot the ratio of the classical Monte
Carlo method’s standard deviation error to that of Monte Carlo using our
variance reduction method with respect to various values of α. The payoff
we consider is again that of a put option on the arithmetic mean

Ŝ =
1

m

m
∑

i=1

STi
.

Results are based on a total of 1,000,000 paths for the Monte Carlo compu-
tation and a total of 200,000 for the optimal drift computation. Again, we
can see through these examples that the confidence interval length reduction
is greater than a factor of 2.

5 Concluding remarks

The method we propose in this paper is very general. It can be used as soon
as a Monte Carlo method is feasible. In addition, it is easy to implement.
It does not require regularity conditions on the payoff function. It could
work both for path-dependent and path-independent products. In high di-
mensional problems, instead of choosing the steps sequence parameters ar-
bitrarily, one can use the same simulation paths to compute both prices and
variances in function of these parameters. The price which corresponds to
the smallest variance should give the best Monte Carlo estimation of the
real price needed. To the best of our knowledge, the use of Robbins Monro
algorithms in a Monte Carlo procedure in order to reduce variance is new.
The method proposed here can naturally be improved. For example, one
could need more stability of the algorithm relatively to the steps sequence
parameters.
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6 Appendix

We briefly present here the Chen’s projection method. For more details, one
can see [3].

6.1 The hypothesis

Let h : Rm → R be an unknown function. We suppose that h is continuous
and that h(x∗) = 0. Let (Xn)n be a sequence for approximating x∗ and
which is based on some measurements (Yn)n of a random observation. At
time (n+1), the regression function h is observed at Xn with a random error
ǫn+1 given by

Yn+1 = h(Xn) + ǫn+1, n ≥ 0. (21)

The authors in [3] make the following hypothesis

(A) lim 1
n
‖∑n−1

i=0 ǫi+1‖ = 0 p.s.,

(B) ∃ v : Rm → R, twice continuously differentiable such that

v(x∗) = 0, lim‖x‖→∞ v(x) = +∞

and v(x) > 0, h(x) · ∇v(x) > 0, ∀ x 6= x∗.

Remark 6.1. v is an arbitrary Lyapounov function satisfying hypothesis
(B). In our case, this function was given by v(x) = ‖x − x∗‖2.

Remark 6.2. Condition (A) is satisfied by a large class of random vector
such as ARMA processes. In addition, by Kronecker’s lemma if

∑n
i=1

1
i
ǫi

converges a.s. then condition (A) holds.

6.2 “Chen’s Projection” (see [3])

To make use of their method, the authors in [3] choose x1 6= x2 in R
m and

fix M > 0 such that :

max(v(x1), v(x2)) < min(M, inf(v(x); ‖x‖ > M)). (22)

Afterwards, they consider an increasing sequence (Un)n of positive numbers
tending to infinity with U0 > M + 8. Then they define for n = 1, 2, . . .

Xn+1 =







Xn − 1
n
Yn+1 if ‖Xn − 1

n
Yn+1‖ ≤ Uσ(n),

x∗
n otherwise,

(23)
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where

σ(n) =
∑n−1

k=0 1‖Xk− 1
k

Yk+1‖>Uσ(k)
, σ(1) = 0,

x∗
n =







x1 if σ(n) is even,

x2 otherwise .

Remark 6.3. Indeed, it is possible to find the constant M such that (22)
holds, since v(x) → +∞ when ‖x‖ → +∞.
This technique of projection makes the mean field h much more stable with-
out modifying it.

The following theorem is their main result and is very powerfull.

Theorem 3. Under hypothesis (A) and (B), the RM algorithm defined by (23)
converges a.s. to x∗ and the number of truncations σ(n) is bounded.

Remark 6.4. This result is proved in [3]. It is important to emphasize
that there is no a priori boundedness assumption imposed on Xn since the
sequence (Un)n≥0 is time varying and allowed to increase to infinity.
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