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1 Introduction

“Top-down" models for portfolio credit derivatives have been introduced as an alternative to
the market standard copula model, that would avoid its most important shortcomings - namely
its static character which prevents any model-based assessment of hedging strategies and its
proven inability to calibrate to the market values of CDO spreads - while allowing for analytical
tractability. Top down models correspond to a “reduced form" of the portfolio loss dynamics,
as a jump process whose intensity λt represents the (conditional) rate of occurrence of the next
default and whose jump sizes represent losses given default.

In the aim of calibrating such models in [3], we first asses the information contained in
market data. We show a “mimicking theorem" for point processes which states that the marginal
distributions of a loss process L with arbitrary stochastic intensity λ can be matched using a
Markovian point process L̃ (the Markovian projection of L) with (effective) intensity

λeff(t, l) = EQ[λt|Lt− = l, F0]. (1)

The relation between λ and λeff is analogous to the relation between instantaneous and local
volatility in diffusion models (see Dupire [6]).

Regarding our application, this implies that values of credit derivatives such as CDOs (and
more generally any derivative whose payoff depends continuously on the aggregate loss LT of
the portfolio on a fixed grid of dates), depends in any top down model on the intensity λ only
through the effective default intensity λeff(., .).

1.1 Forward equations for expected tranche notionals

Being able to mimick the marginal distribution of the loss processes using a Markovian model
allows for considerable simplification of pricing and calibration algorithms. First, for a Marko-
vian jump process the transition probabilities can be computed by solving a Fokker Planck
equation. In the sequel, we consider a constant loss given default δ, so if we denote by
Nt the number of defaults in the portfolio, we have Lt = δNt. The transition probabilities
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qj(0, T ) = Q(NT = j|F0) also solve the Fokker-Planck equation corresponding to the effective
intensity: for T ≥ 0,

dq0

dT
(0, T ) = −λeff(T, 0)q0(0, T )

dqj

dT
(0, T ) = −λeff(T, j)qj(0, T ) + λeff(T, j − 1)qj−1(0, T ) (2)

dqn

dT
(0, T ) = λeff(T, n − 1)qn−1(0, T ) with initial conditions

qj(0, 0) = 1{N0=j} ∀j = 1, . . . , n.

Moreover, by analogy with the Dupire equation for diffusion models [6], one can show that the
expected tranche notional P (T, K) can be obtained by solving a (single) forward equation [4]:

∂P (T, K)

∂T
− P (T, K − δ)λk(T ) + λk−1(T )P (T, K)

+
k−2∑
j=1

[λj+1(T ) − 2λj(T ) + λj−1(T )] P (T, j) = 0 (3)

where λk(T ) = λeff(T, kδ). This is a bidiagonal system of ODEs which can be solved efficiently
in order to compute the expected tranche notionals (and thus the values of CDO tranches)
given the local intensity function λeff(., .) without Monte Carlo simulation.

2 Calibration

Having stated these results, we proceed to solving the ill-posed problem of calibrating to the
market spreads the effective default intensity associated to the loss process. We formalize this
problem in terms of the minimization of relative entropy with respect to the law of a prior
loss process under calibration constraints. We are given the spreads for the I tranches of the
portfolio, at m maturities. The payment dates are denoted (tj , j = 1, . . . , J). At t = 0 we
observe the tranche spreads (S0(Ki, Ki+1, Tk), i = 1, . . . , I − 1, k = 1, . . . , m) and the upfront
fee (U0(K1, Tk), k = 1, . . . , m) for equity tranches.

Problem 1 (Calibration via relative entropy minimization). Given a prior loss process with
law Q0, find a loss process with law Qλ and default intensity (λt)t∈[0,T ∗] which minimizes

inf
Qλ∈M

EQ0 [
dQλ

dQ0
ln

dQλ

dQ0
] under EQλ

[Hi,k|F0] = 0, i = 0, . . . , I − 1, k = 1, . . . , m (4)
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where,

Hik = S0(Ki, Ki+1, Tk)
∑

tj≤Tk

B(0, tj)(tj − tj−1)[(Ki+1 − L(tj))+ − (Ki − L(tj))+]

+
∑

tj≤Tk

B(0, tj)[(Ki+1 − L(tj))+ − (Ki − L(tj))+ − (Ki+1 − L(tj−1))+ + (Ki − L(tj−1))+) ] (5)

H0k = K1U0(K1, Tk) + f
∑

tj≤Tk

B(0, tj)(tj − tj−1)[(K1 − L(tj))+]

+
∑

tj≤Tk

B(0, tj)[(K1 − L(tj))+ − (K1 − L(tj−1))+)) ]. (6)

The primal problem (Problem 1) is an infinite-dimensional constrained optimization prob-
lem whose solution does not seem obvious. A key advantage of using the relative entropy as a
calibration criterion is that it can be computed explicitly in the case of point processes. The
constrained optimization problem (4) can then be simplified by introducing Lagrange multipli-
ers and using convex duality methods [5, 7].

Proposition 1 (Duality). The primal problem (4) is equivalent to

sup
µ∈Rm.I

inf
λ∈Λ

EQλ

[

∫ T

0
(λs ln

λs

γs
+ γs − λs)ds −

I−1∑
i=0

m∑
k=1

µi,kHik. (7)

The inner optimization problem

J(µ) = L(λ∗(µ), µ) = inf
λ∈Λ

L(λ, µ)

is an example of an intensity control problem [1, 2]: the optimal choice of the intensity of a
jump process in order to minimize a criterion of the type

EQλ

[

∫ T

0
ϕ(t, λt, Nt)dt +

J∑
j=1

Φj(Ltj
)], (8)

where tj , j = 1, . . . , J are the spread payment dates, ϕ(t, λt, Nt) is a running cost and Φj(L)
represents a “terminal" cost. In our case

ϕ(t, x, k) = x ln
x

g(t, k)
+ g(t, k) − x and Φj(L) =

I−1∑
i=1

Mij(Ki − L)+ , (9)

where

Mij = B(0, tj+1)
∑

Tk≥tj+1

(µik − µi−1,k)+

B(0, tj)
∑

Tk≥tj

[µik(−1 − ∆S(Ki, Ki+1, Tk)) − µi−1,k(1 − ∆S(Ki−1, Ki, Tk)], (10)

with ∆ = tj − tj−1 is the interval between payments and S(K0, K1, Tk) = f .
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The solution of an intensity control problem can be obtained using a dynamic programming
principle and is characterized in terms of a system of Hamilton-Jacobi equations [2, Ch. VII].
We will now use these properties to solve (8). Once the inner optimization/ intensity control
problem has been solved we have to solve the outer problem by optimizing J(µ) over the
Lagrange multipliers µ ∈ RmI : the corresponding optimal control λ∗ then yields precisely the
default intensity which calibrates the observations.

2.1 Hamilton Jacobi equations

Let us consider the case where J = 1 i.e a single time horizon is involved (the general case can
be treated similarly). The dual problem is then to minimize

inf
λ∈Λ

EQλ

[

∫ T

0
ϕ(t, λt, Nt)dt + Φ(T, LT )] (11)

where Φ(.) is of the form (9) (and thus depends on the Lagrange multipliers µ). The solution
of the stochastic control problem (7) can be obtained using dynamic programming methods
[1, 2]. The idea is to define a family of optimization problems indexed by the initial condition
(t, n),

V (t, Nt) = inf
λ∈Λ([t,T ])

EQλ

[

∫ T

t
(λs ln

λs

γs
+ γs − λs)ds + Φ(T, δNT ))|Ht] (12)

where δ = (1 − R)/n is the loss given a single default and Λ([t, T ]) is the set of restrictions
to [t, T ] of elements of Λ. The value function V (t, k) then solves the dynamic programming
equation [2]:

∂V

∂t
(t, k) + inf

λ≥0
{λ[V (t, k + 1) − V (t, k)] + λ ln

λ

g(t, k)
− λ + g(t, k)} = 0 (13)

for t ∈ [0, T ] and V (T, k) = Φ(T, kδ)). (14)

The value function of (11) is then given by V (0, 0) and the optimal intensity control is obtained
by maximizing over λ in the nonlinear term [2]

Proposition 2 (Value function). Consider a function Φ such that Φ(x) = 0 for x ≥ nδ. The
solution of (13)-(14) has the probabilistic representation

V (t, k) = − ln[1 +
n−k∑
j=0

Q0(NT = k + j|Nt = k)(e−Φ(T,(k+j)δ) − 1)]. (15)

2.2 Calibration algorithm

The above results lead to a non-parametric algorithm for recovering a market-implied portfolio
default intensity from CDO spreads. The algorithms consists of the following steps:

1. Solve the dynamic programming equations (13)–(14) for µ ∈ Rm.I to compute V (0, 0, µ).
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2. Solve the maximization problem

sup
µ∈Rm.I

V (0, 0, µ) +
m∑

k=1

µ0kU0(K1, Tk)

using a gradient–based method to obtain the Lagrange multipliers µ∗.

3. Compute the calibrated default intensity (optimal control) as follows:

λ∗(t, k) = γ(t, k)eV ∗(t,k)−V ∗(t,k+1). (16)

4. Compute the term structure of loss probabilities by solving the Fokker-Planck equations
(2).

5. The calibrated default intensity λ∗(., .) can then be used to compute CDO spreads for
different tranches, forward tranches, etc.: first we compute the expected tranche notionals
P (T, K) by solving the forward equation (3) and then use the expected trance notionals
to evaluate CDO tranche spreads, mark to market value, etc. In particular the calibrated
default intensity can be used to “fill the gaps" in the base correlation surface in an
arbitrage-free manner, by first computing the expected tranche loss for all strikes and
then computing the base correlation for that strike.

We use convex duality techniques to solve the problem: the dual problem is shown to be
an intensity control problem, characterized in terms of a Hamilton-Jacobi system of differential
equations which can be analytically solved using a change of variable. Given a set of observed
CDO tranche spreads, we have thus proposed a stable method to construct an implied intensity
process λeff (t, Lt) calibrated to the market spreads. The intensity of a new default depends
steeply on the number of defaults in the portfolio, which leads to contagion effects and clus-
tering in the occurrence of defaults. This is in accordance with properties observed in data
series.
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