Forward variance dynamics :

Bergomi’s model revisited

S. M. OULD ALY

February 18, 2016

Premia 18

1 Preliminaries

Most of what is presented here is taken from [I] and [2].

A variance swap with maturity T is a contract which pays out the realized variance
of the logarithmic total returns up to T less a strike called the variance swap rate Vi |
determined in such a way that the contract has zero value today.

The annualized realized variance of a stock price process S for the period [0, 7] with

business days 0 =ty < ... < t,, = T is usually defined as

2
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The constant d denotes the number of trading days per year and is usually fixed to 252

so that % ~ % We assume the market is arbitrage-free and prices of traded instruments

are represented as conditional expectations with respect to an equivalent pricing measure

Q. A standard result gives that as sup;,_, ,, |[t; — ti—1| —> 0, we have

.....
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when (S;);>0 is a continuous semimartingale.
Denote by V/7, the price at time ¢ of a variance swap with maturity 7" < oo. It is
given under Q by
V! = B2 [RVT] = EZ [(log S)r].

We define the forward variance curve (£7)7sq as
& =0V, T>t>0.

Note that, if we assume that S follows a diffusion process, dS; = u;Sidt + 0,S;dW;

with a general stochastic volatility process, o, the forward variance is given by
& =B (7).
It can be seen as the forward instantaneous variance for date T, observed at t. In particular
=07 Vt>0.

The current price of a variance swap, V,I', is given in terms of the forward variances

as .
V= (log )i+ | gdu

The models used in practice are based on diffusion dynamics where forward variance

curves are given as a functional of a finite-dimensional Markov-process:

where the function G and the m-dimensional Markov-process 7 satisfy some consistency
condition, which essentially ensures that for every fixed maturity 7" > 0, the forward

variance (&!)i<7 is a martingale.
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2 The model

Assume that a set of settlement dates is given
To<Ti<..<T,<...

and referred to as the tenor structure (we use especially the tenor structure of the VIX
futures, but it can be generalized to any tenor structure). Consider an underlying asset
whose price S is modeled as a stochastic process (S;);>o on a filtered probability space
(Q, F,{Fi}i>0,Q) , where {F;},;>0 represents the history of the market.

We first specify the dynamics of the forward variance using a log normal specification
which allows analytical pricing of European-type VIX derivatives. The dynamics of the

forward variance under Q is assumed to be
T T T; W%E Tiy2
¢ = ¢lewre' =5 B@)" < T and T €]T,_,T))] (2.1)
where 2! is defined as

rl = Z 6, e Fn(T=1 /Ot e_””(t_s)dW: (2.2)
n
The Brownian motions W™ are correlated with correlation coefficients p; ;. The initial
values of forward &I are inputs of the model, deduced from the curve of variance-swap
prices.

The number of factors introduced in this dynamics is the number of degrees of freedom
that will be available to calibrate S&P’s smiles, therefore a single-factor model would not
be precise enough. On the other hand, the computation time in a Monte-Carlo method
increases proportionally to the number of factors, therefore a two-factor model offers a
good quality/time ratio. Anyway, all the following formulas do not depend on the number
of factors.

The parameters of the dynamics (2.2), ;, 6; and p; ;, are chosen and will not be cali-
brated to market data, because they are not directly involved in the pricing of volatility
derivatives. We follow here the approach of Bergomi [?], where he proposes some param-
eter sets which can be chosen. For example, in the case of 2 factors, Bergomi proposed

to set ,}1 in the order of a few months, which corresponds to k1 ~ 8, %2 in the order of a



few years: Ky /=~ 0.3. The curve w is a deterministic function of T. It is a scale factor for
the volatility of ¢ and it allows to control the term structure of the volatility of volatility

by calibrating VIX futures and options.

2.1 The VIX Index

The VIX Futures maturing at time 7" quotes the expected volatility for the next 30 days.
So VIX? represents 30-day S&P 500 variance swap rate, it is given under the risk neutral

measure by

I
VIXp = w}zg [5RVT7T+5 ,

(2.3)

where § = % and RVTTH0 = RYOT+ _ RVOT In terms of the forward variance curve,

the VIX is given by

1 T+ 1 T+6 Ty WIQL Tu\2
VIXp =[5 [ e =[5 [ e

where 7, = 3,51 Tiluqr,_, 7). Note that Tiy —T; =0

We are only interested in maturities on which VIX is traded. This corresponds to

the special (typically useful) case where T' = T; for some ¢ = 1,..., n. Denote by
VIX, :=VIXy,. Assumed that w is Borel measurable and locally bounded. We have

1 T; w xTi _ Yy xTi 2
VIX; = \// o Eue™ Tfl 2 Tfl) du=1/g:(2), (2.4)

where Z has the standard normal distribution and the function g; is defined as

Tipr @2 (u)
ai( 5/ uer @(W="3" gy (2.5)

and
wi(u) = wy \VE(zrt)2. (2.6)

K3

Using (2.4), we can evaluate any given European-like claim on VIX;, with pay-off

function f, as

L
2

EF(VIX) = [ f(/g(a)
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We can also express the prices of VIX options in terms of Calls and Puts on VIX2, by using
the following useful representation, which is valid for any twice-differentiable function G
and for any k € Rt

G(X?) = G(k) + G'(k) ) + / (K K dK + / G"(K)(K — X?),dK

This gives in particular the price of Calls and Put on VIX in terms of Calls and Puts on
VIX? by extending this formula to the functions  — (y/z — k), and z — (k —\/Z)4

1

o ]

E(VIX;, — k), = —E(VIX;?> — k? —/ E(VIX?> — K),dK 2.7

( )Jr Qk ( )+ 2 4K\/? ( )+ ( )
1 k? )

E(k—VIX;), = %E(l@ —VIX?), +/ 4K\/_ E(K - VIX®) dK (2.8)

and by call-put parity, one can express the VIX future price in terms of calls and puts on
VIX?2. For every k > 0, we have

k+EVIX? /k E(K - VIX;*), dK /oo E(VIX? — K),dK
2Vk 0 4KVK k 4KVK

In particular, for k = EVIX?, we have

E(VIX;) = (2.9)

EVIX B(K — VIX®),dK >~ E(VIX;? - K).dK
E(VIX, :M]EVJX?—/ i )+ —/ i 2 (210
( ) " Jo 4KVK EVIX? 4KVK (2.10)

Note that EVIX? = + meéOdu
Now, the prices of Calls and Puts on VIX; are given by the next proposition

Proposition 2.1. If the function w; is positive, then for any nonnegative strike K, the

price of a call on VIX? with strike K is given by
E(VIX?— 5/ N (<2 (K) + @i(w))du — KN(—25(K)) (2.11)

and the price of a Put on VIX;* with strike K is given by

E(K — VIX?), = KN(=(K)) - ; TiTi“ EUN(2H(K) — @(u))du  (2.12)



where N denotes the standard normal cumulative distribution function and z; is defined

as

Proof

We can write

()

2(K) = inf{z eR ‘ a(z) > K} — g 1K)

E(VIX? - K); = E(g:(2) - K)lg 25k

o0 e 2y
= (z) — K)———
/ oy 90— F)

2 _ az(u)
1 rTiva e %*Iwi(“)*szx
= = 0 du — KN(=z/ (K
5/ so/zm = (—2(K)

_ ;fTT* N (=21 (K) + @i(u))du — KN (=2 (K)) O

2.2 Specifying w;

We assume that w; takes only two values within interval |T;, T;,1]. We will show that in

addition to modeling the positive skew observed in the VIX options, we can calibrate,

exactly, VIX future as well as "at least" one Put option by maturity.

Assumption 2.2. The function w; is decreasing and does not take more than two values

over the time interval |T;, T;4].

Denote by L; the point where it changes its value. The curve w; can then be parametrized

as follows :

where f; € [0, 1].

Under this assumption, F i takes the form

1 (Tig1 gy _
where m; 1= 5[5 §fdu, v; =

¢ Blc?
VIX? =my |(1—5,)e" D72 4 595775 ]

1 (Tit1 ug
5 du : T;
——=i——— and the random variable Z; := +$T?+l
mg E(mTiJrl )2 @
T.

has the standard normal distribution.
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The price of any VIX future contract is then given as a function of the triplet (v;, 5, ¢;)-
This is given as function of calls and puts on VIX? by using proposition 2.12 and the
equalities (2.7), (2.8) and (2.9). Noting that, with this special parametrization of the
function @;, the price of call on VIX,* with strike K is given by

E(VIX® = K)+ = m; [(1 = %) N (=2 (K) + ) + %N (=2 (K) + 5iG;)] = KN(=2{(K))
(2.14)
and the price of put on VIX,? with strike K is given by

E(K — VIX?)y = KN(=2/(K)) = m; [(1 = %)N (2] (K) = G) + 7N (2 (K) = 5iG)]
(2.15)
Prices of VIX futures and options are then given by explicit formulas in terms of
parameters 7;, 5; and (.
We will study the particular case of VIX future and Put prices. First, to simplify the

notation, denote
2 B2
TAL [(1 T } 7

for (¢, 5,¢) € [0,1] x [0,1] x RT. Also, let

Furx(,6,0) =B\V)7C and - pi(v, 8,0) = B(k —/V)74),,

the prices of VIX future and Put on VIX with strike k& respectively.
The next result gives more information about the function giving the price of VIX
future and put in terms of the parameters v, § and . The proof can be found in the

appendix

Proposition 2.3. The functions pr and Fyrx are differentiable and their first partial

derivatives are given by

® OcFvix(7,8,0)=— Iy 4K1/§ [mi(1 = 7)N'(z] (K) = ¢) + miyBN' (2 (K) — BC)] dK,
o 0sFyvix(7,8,¢) = —miwy [5° N'(2 (K) — BC) e

o 0, Fyrx(7,8.C) = m; [§° [N(2(K) — BC) — N (2 (K) — ()] 125

2*(k2)— / 2¥(k2)— /
o Opp(7,8,€) = —mi(1 = 7) 77O SIUIE gy, o L0700 IGUUOK

24/ 9i(K+¢) 2¢/9i(K+B¢)’



zf(k?)—B¢ KN'(K)dK
o Ospuly.5.C) = —miGy LT Jraon

27 (k)¢ N'(K)dK s 25 (k?)—Bw  N'(K)dK

° ypk(%@o =My |0 Qm vJ—oeo 24/ gi(K+Bw)

In particular, we have
1. O,Fyvix and OsFyrx are negative.
2. 0,Fyix, Ocpr and Ogpy, are positive.

3. If k < \/my, then O,py, is negative.

3 Calibrating v, § and ¢

A model cannot be used in practise without a reliable and reasonably quick calibration
scheme. We therefore describe here how the model can be calibrated using the "explicit
dependence" between VIX futures and options prices and the model parameters v, 5 and

¢ for each maturity T;, given by proposition 2.3.

Data

Assume that we observe the Variance-Swap market prices for all maturities. We deduce
the initial variance curve (I')7so from the market prices of Variance-Swap.

Let us also assume that we observe the VIX future price and a series of Put options
on VIX, for each maturity 7;. Obviously, we will not pretend to be able to calibrate
VIX futures and all European options on VIX, nevertheless we will show that for each
maturity we can calibrate "exactly" both VIX future price and one Put by leaving free the
parameter v along some interval. This parameter, left free, will serve to calibrate other

options and/or to reproduce the VIX skew.

Phase 1: Calibrating VIX future

The hedging of VIX options is typically done with trading in VIX futures contracts, we

want the model to reproduce the VIX futures prices for each maturity 7;.
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Let’s denote by F the market price of VIX future for some maturity 7; and denote

1
Tip1-T;

condition :

fgf“ &du. Note that F and m must satisfy the following (no-arbitrage)

by m =

F < {m.

The calibration problem of the VIX future is to find a triplet (v, 5, () € [0, 1] x [0, 1] x
R, such that

Fyix(v,6,¢) = F.

In what follows, we will show that for every (v, () belonging to some subset of [0, 1] x R,
there exists a unique § € [0, 1], such that Fy;x(v,3,() = F.

By Proposition 2.3, we know that for (v, ¢) € [0, 1] xR, the function 5 — Fyrx (7, 5, ()
is continuous, decreasing over [0, 1]. It is then bijective from [0, 1] to

Fyix(v,6=1,0), Fvix(v,8 =0, C)] (Note that V#0¢ and V1< are lognormales)

Now, it becomes clear that if the pair (v,() is such that Fy;x(v,1,{) < F and
Fyix(7,0,¢) > F, then there exists 8 € [0, 1] such that Fy;x(v,5,() = F.

So, for v > 0, consider the function ( — Fy7x(7,0,(). From Proposition 2.3, we
know that it is continuous and decreasing over R* satisfying Fyx (7,0, = 0) = /m7y
and lim¢_,o Fyrx(7,0,¢) = 0. It allows us to define the fuction

2 —

_ F B
Cr iy €10, E) — Cr(7) == Fvrx(7,0,.) 1(F) (3.1)
This function, Q_“ 7, is continuous, increasing over |0, %2) and satisfies

{ C_F(O):C_Fa

where
Gr = 2 /log () (3.2)

2

QO - {w, gel ) xrr

Denote

Cele mn} | (33

It is easy to check that for every (v,{) € Qp, we have Fy;x(7,1,{) < F and
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Fyix(7,0,¢) > F. This means that the mapping

Br (1, €Qr — Br(7,0) = Frix(v,.,¢) " (F) (3-4)

is well defined. In particular, for every (v, () € Qp, we have Fy;x (v, Br(7,(),¢) = F O

Phase 2: Calibrating VIX Put

As mentioned above, we choose to calibrate one Put option for each maturity 7T;. Denote
by P the market price of this option and by K| its strike. Here we will try to find a family
of pairs (v, () € Qp, such that

Do (7, Br(7,€),¢) = P.

The map (7, ¢) — pr, (7, Br (7, (), ¢) is neither monotonic in 7, nor in ¢ because of S,
then we cannot obtain its inverse easily. To address this problem, we proceed as follows.
By using proposition 2.3 and in the same way as before we can define

§ (ko — P)? _

Cp oy €0, =) = Cp(7) = pie(7,0,)7(P) (3.5)

(P::O)Z)

In particular, (p is continuous, increasing over [0, and satisfies

{ C_P(O) = (p, B

lim7_><P—£o>2 Cp(7) = Fo0.

where
(p = sup {C > 0; [P’BS(\/E@_%,/{JO, g) < P} (3.6)
and ; , . ,
Pps(S, k,0) = —SN <_1°g%)_2) + kN (W) .
Denote
2= {0022 6 GV (B o)
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We can define the map

Bp + (1.¢) € Up— Bp(7,C) = pro (7, Q) (P) (3.7)

Now to solve the "double" calibration problem of the parameters v, § and ( to F and
P, it suffices to find (v, () € Qp N Qp such that

The proof of the next theorem can be found in the appendix.

Theorem 3.1. Assume (, < (r (where (p is defined by (3.6) and Cr by (3.2)), then there
w such that for every v € [v*, %2), there exists ¢, = (* (7, ko, F, P) > 0
such that Br(v,¢) = Bp(7,¢).

exists y* <

Remark 3.1. With all market data that we have dealt with, the condition (, < (r is
satisfied for ky = F'. For general case, we note that
Cp Cr

G < Cr <= omp(ky) < > < orup(ko) < >

where oryp(k) = Pps(F, ko,.)” " (P). Since "in practice", the implied volatility of VIX
options are increasing with respect to the strike, then if kg is such that oy p(k) < %F,

so the condition is still satisfied if kg is replaced by k < k.

Remark 3.2. Thanks to the monotonicity properties of all the functions we have defined,
the calculation of v* and (, are made by using a "special" binary search algorithm. This

algorithm will be detailed in the appendix ( see Remark 77).

Phase 3: Calibrating v

We can do without this calibration step if we only want to fit the future price and the
B e [ ),

m ’m

Put price by choosing any value of v between v* and %2 Noting that
Otherwise, we can calibrate the VIX skew or another Put option on VIX.

By proposition 3.1, we know that by choosing any value of v in [y*, %2), we can find
a couple (3., (,) such that the model price of VIX future and Put on VIX with strike kg

coincides with their market prices. There is therefore a possibility to calibrate v to match
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another VIX future contract. Here we choose to calibrate with the aim to reproduce the
skew of VIX at kg. i.e the slope of the Put implied volatility of VIX at the point k.

In practice, the skew, at some point k, is measured as the difference of the implied
volatilities of 95% and 105% strike. Now to compute the "skew" from the market data on
VIX, we choose ki: the nearest strike to kg, on which the VIX put is available and we
approximate the skew by the difference of the implied volatility of ky and k;.

This step of calibration reduces to finding v such that

P, —-P

akpk:o (ry’ /BF(77 <'y); C’Y) = m

The calibration is thus reduced to minimizing

k(2) 7 1,2 7 1.2 2 2 F2
m m

Remark 3.3. By differentiating the Black-Scholes formula giving the price of Put with
strike ko with respect to the strike, we can express Oypy,in terms of the skew and the

implied volatility of P at the point kg as

8kE(K A /V’Yv,@P(’77Cv)vC7>+

2
k
Foy_%yvix®0)p

log (7.~ 5 i . . . - .
p— and oy rx (ko) is the implied volatility of the Put on VIX with

strike ky. We can then synthesize E;1;>y;x by observing continuously the price of Put
P, the future price of VIX and the skew.

= N(—dg) + Sz X kO\/iN/(_d2)v

k=ko

where dy =

4 The dynamics of the underlying asset

Until now, we have only addressed issues concerning the modelling of the forward variance
curve. But, once the dynamics of forward variance has been specified, we obtain the (risk

neutral) dynamics of the underlying asset (S;)¢>0 as

ds
?tt = Tdt + \/ggdwtsy (41)
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where r is the annualized risk-free interest rate and & is given by (2.1) as
+ Ty “’tQJE Tiy2
§ =& ewn TR e, T
and for t < T, z] is defined in (2.2) as
ol =30, e / L= gy
- 0

d(WS X",
dt

The number of factors has been discussed in the beginning of this work, it corresponds to

The Brownian motion W is correlated with the factors X", denote by p° =

the number of degrees of freedom that will be available to fit many different smile shapes.

Now, thanks to lognormal form of the instantaneous variance, we can use the very
robust approximations we obtain in [2] for the prices of the European options under this
model. We can specify the correlations p° to match the specified skew and to calibrate
the ATM implied volatility

4.1 One Factor Case : Time Dependent Scott Model

In this section we consider a generalization of the model proposed by Scott 1987. Within

this model, the dynamics of the underlying is given by the SDE

{ = (1, VWY, o)

dV; = =bVdt + wordW), d(WS,WV), = pidt,

where f2(t,v) = mye’, m, p and o are deterministic functions of time. Assume w, o > 0.
Assume also that V = 0 (Otherwise, we replace m; by my o™ and V by V — Vo).
Denote px(t,&;w) := E €. Then we have

ox(LEW) ~ Pt & w) = e (“i(—mun(t)é”)
n=1

Then we have

Y = ox [2]
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Furthermore, if we denote by px(t, z;w) = P(X; € dx), then we have

1 (et ()2

pX(t,x;w) ~ 20 (1) (1 + Z g)Hn(l"f‘Ml(t))) (43)

27w(t)

where the H,,’s are the Hermite polynomials.
This gives the following approximation for the prices of European options.
Denote by C': (t, K;w) := E(e** — K),. Then, we have
4

Ot K:w) ~ Cys(K,v)+ 5_1\[/ (db) (Z 5" H,(~dy)) (4.4)

where Cps(K,v) = N(dy) — KN(dy), with dy = 20la? g, = sy =

23:—V5+Z4, 22:V4+23, 21:—V3+22, ZOZV2+21:V1.

The v’s are given by: v(t) = [¢ mds and

2 t s
n(t) = %/ ms/ ole P dyds,
n(t) = 1/1+f/ mT/ ms/ b(r+s=2u) dudsdT——/ mT/ ps0sv/mse T dsdr,
2

w
V3(t) = ”3(@7 V4(t) = ”4(0 + 8(/0 mT/O PsO0s+/ mse_b(T_s)d5d7-> )
w2 t T 2 w2 t T 2
vs(t) = 4</ mT/ psas\/mse_b(T_s)dsdT> , vg(t) = 8(/ mT/ psas\/mse_b(T_s)dsdT) .
0 0 0 0

1I\IO'CQ that V] —Vy+ V3 —UVy+ Vs — Vg = 0.
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where

p(t) = / msds + — / ms/ 27260 dy s,
t T

pa(t) = pa(t) + 7/ mT/ ms/ UQe_b(TJrS_Q“)dudsdT— f/ mT/ psTsv/mse T dsdr,
pus(t) = —— mT/ P50 s/ M€ —b(r—s dsdr—i——/ mT/ PsTs\/ Mg (= S)/ PuC N/ M, dudsdr

Z/ m, / PO/ b(T_S)ds) dT+f/ mT/ ms/ ole T2 gy dsdr,

o w b(T+s—2u) b(T—S) 2
pa(t) = T mT ms ole” dudsdT—i-— mT psas ds) dr
—I-Z/ mT/ psasx/mse_b(“s)/ puau\/ﬁududsdT
0 0 S

4.2 Multi-factor case : Bergomi’s model

In this section we consider a N-dimensional model of the form

Lo —rdt+ f(t, V.. V)W, (45)
dV* = (an(t) — Kk, V) dt + o, () dW., dWS, W™, = pSdt, n =1, ..., N, '
where d(W™, W™); = ppmdt =0, Vm,n < N and the function f is defined by
N
f2(ta‘/1a7VN(t) = My €Xp (wZ‘/Z’L> (46)
Assume for all n,m < N, p,,,,, = 0. Then we have
1 _ (wtn)? ) T+ (t)
27r1/(t) Ve v(t)

where the H,,’s are the Hermite polynomials.
In particular, if we set C(t, k;w) := E (eX’/ — K)+, we obtain

6 4

C(t,K:w) ~ Cps(S. K, u)+(z_:2un)SN(d1)+\f/;N’(d2)(;) %Hn(—dg)), (4.8)
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and Cps(S, K,v) = SN(d;) — KN(dy), with d;
n=0, ...,4, 2, =0 (1)

where v := 24, (T) and

Vz(T) = M2(T) - N1(T)a Vs(T) = M3

& —rn(t=5) Jg ,
1) = a0+ 5 (L2 [ [ ol -as)

Vs (T) =

Vg (T) =

(T) Y
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and the p’s are given by
]_ T (,()2 N T t w N T t
T —_= 7/ m3d8+ - / m / 2 s e*2l€n(tfs)d8_'_7 / m / an s e*lin(t*ﬁ)ds
pa(T) 5 ) 4;0 e onls) 2;0 ] an(s)
w? T N t 2
+7/ m /an s)e =) ds | dt,
o (X o
w N g T t
p(T) = m(T) -5 an/O mt/O o (8)y/mge " ds +
n=1
2

w2 N T t t

ZZpS/ mt/ ozn(s)/ on(r)y/medrds +
0 0 s

w

T t s
/ my / mg / o2 (r, x)e =2 drds
0 0 0

=1

3

2 N
>

=1

3

w2 N T t t

+= > / mt/ pian(s)\/ms/ O (8) e =) dsdt
2 tiJo 0 0
w N s [T t (b

pua(T) = ‘§an/0 mt/o () /mae” ) ds +

n=1

w2 N T t t

Y > (pg)z/ my an(s)\/mse_“"(t_s)/ o, (r)v/m,drds
n—1 0 0 s
wr N t s

+— Z/ mt/ my | o2 (s)e T2 dydsdt
2 —=Jo 0 0

w2 N T t t
+? > / mt/ P00 (s)\/Ms | am(s)e™ " dsdt,
n,m=1 0 0
w2 N T t S
pua(T) = —Z/ me | mg | o?(u)e T2 qudsdt
4 —=Jo 0 0
w2 N T + t
+ZZ(ps)2 my an(s)\/mse”’””(t’s)/ o, (u)v/m,duds
n—1 0 0 s
2

w? [T N ot
+Z/ my (Z/ pgan(s)\/mse“"(ts)d8> dt. (4.9)
0 0
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4.3 Application

We consider the dynamics of the underlying under the model proposed in section 1 :
— rdt +\/EdW?, (4.10)
where r is the annualized risk-free interest rate and & is given by (2.1) as
+ + T; thJE Tiy2
& =& e TRt ElT; T
and for ¢t < T, z! is defined in (2.2) as

t
e Sl

If we assume d(W"™, W™), = 0, ¥n # m, we obtain an approximation of the prices of
European options on S given by the previous formulas, by taking w = 1, m = §; and

a(t) = 01 e~ 2 Tin=t g (1) = e T ¢ €T}, Tiy], 1=1, ..., N. (4.11)

Some useful calculations

When m =m; €]T;,Tix1] and w = w;  €|T;, Ti11] we have

T
M m / _2””(t_s)d8dt

—2/4nT

M 6_2/‘€nTi+l T; 9 9 M-1 Tiv1 t 9 9 ¢
= Z m; / on(s)e* o ds + mz/ / o2 (s)e =9 dsdt
) 2f€n 0 i=0 1} 12

7=

M-1

14 e—QHnTi _ 6_2K/YLT1'+1 i—1 919 —9 T . €4finT7'+1 _ €4f‘§nTj
a,’ = m; wil,e "t
2K,

= 4Ky,

) 292 (1 — 672”"(Ti+17Ti))
a = myw;

n i’n ]K2
n

2
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t
my / ap(s)e (=9 ds
0

-1 e tnli _ g=knTit1 T M-1 Tiv1 ft ]
— m; / an(s)e?ds + Z mz/ / an(s dsdt
=0 Fon 0 =0 Lo T
M-1 —knT; —knTit1 =1 .. M-1 T. t
e "nti — eThntitl J+1 i+l _ _
= m; Z/ a(s)e™*ds + mz/ / vy (5)e ™ dsdt
20 Rn j=07T; i=0 T T
M—-1
- 1 G 124
=0
where
—knT; _ —knTip1 1—1 2 3knTji1 _ p3knTj
bl}i . e ndi e ndi wj 02 _anTj_‘—le ndj efndj
n = m; Z —— U, €
Kn 20 2 3Ky,
0 w? ) 1 — 36—2f'€n(Ti+1—Ti) + 26—3H7L(Ti+1—Ti)
bn’ = m; 7971 3
2 6r;
T t t
— 5
Co = [ e [ pi(s)on(s)vime s
M-1 e_K/nTi — e_ffnT'H»l T; g
— m; / P (8)on(s)y/mse ™ ds +
1=0 Fn 0
M-—1 Tit1 t
mi/ / p3(5)on(s)y/mee = dsdt
- T; T;
=0
M—1
o i, 24
- (Cn + cn )
=0
where
14 e—K/nTi —e RnTH-l i—1 T 2RnTj+1 _ 62RnTj
5T — . —Rndlj41
¢, = omy - anﬁ/ jwjibhe 1
n n
(1 _ e_ﬁn(Ti+1_Ti)>
24 S 0
Cn = My jWiln 92
/{:n
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Tn ! S ! —Kkm(t—s)
my pnan(s)\/ms am(s)e dsdt
0
- Tita m fnm t S
. pnan )/m am )ds dt
T;

T1+1 T; t T; t
T; 0 T; 0 T;

<Dl by D2+ DY+ D)

I
';'Mi

S

-1

I
Nagk

i

I
o

— e~ (T =Tj)

i—1 1
1,7 _ 1,2 S - )
Dn,m - bm Z pn,j V m]enw]
Jj=0

Kn

— e~ n(Tj1=T5)

KRn

i—1 1
20 320 S A ,
D, = by E P /T 0nw;
=0

3 e_ﬁrrLTi+1 _ e_K/nAi_HmTi e_"fnTH»l _ e_HnAi_K/nTi+1

3,1 _ S 2
Dn,m - pn,ienwimi - X
K;n("("/n - K:m) R
i—1 2 3emTjr1 _ 36mTy
Z _ﬁ92 o241 € e
20 2 3Km
2 3
471‘ pn 19 9 w@ %
Dnm - (_7)ml X
' 260 Km 2
_ o (kntEm)A; —26nA; _ En p,—(Kntrm)l; —knl\;
1 e ¢ . € fgme o € ¢ B A,eHmTi—(’in"‘Hm)Ai
i
Rn + Rm Rn — Rm Rm
Tt i ¥ 9 ts—2
E, = mt/ ms/ o2 (u)e 52 dydsdt
0 0 0
M-1
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Denote by
Ti+1 t S
E,., = / mi/ ms/ o2 (u)e 52 dydsdt
T; 0 0 ’
i—1 Ti+1 T S
— mZZ/ e “"t/ m;e ””S/ o2 (u)e*  dudsdt
=/ Ty o
Tiv1 ’ t s 9 9
+mi/ e " / ml-e’“"s/ o (w)e ™ dudsdt
T; T; 0 ’
e S w T s
+1 Jt1 J
— mZZ/ e‘“"t/ mje "* / +/ dsdt
/T Ty 0 T;
Tiv1 ¢ t T; S
—l—mi/ e i / mge” "° / +/ dsdt
T; T; 0 T;
i—1
_ (5 [
J=0
where
0,7 Tinn —Knt Ti+1 —KnS T y
EY = e "™ mje " + dsdt
T T 0 T
—knTj _ —knTj1 p—knTi _ —knTip1 J—1 AknTiv1 _ JArnT)
B m'e ntj e ntj e nti e nti 292w26—2nnTl+1€ ntl+ e*hn +
- J n*l
K, Kn = 4K,
e*/{nTi o efﬁnTz#l '92 2672nnTj+1 e?mnTjJrl o 635nTj ST e*l{nT]‘ o e*HnTjJrl
m; ;s —e
K 4K, 3Ky, Kn,
and
nd Tin1 —Knt t —KnS T s
En:/ e"/mie" /+ dsdt
T; T; 0 T;
26Ty _ =260 Ti41 —knTy _ p—knTig1\ i—1 AknTiy1 _ SAkpT
o e nta e nta _HnTie nta e nte 9 9 _QHnTl+1 ntl+ e n
= m,; 5 —e > Giuwre 1
Kn Kn 1=0 Kn
9 26—2.‘{”Ti+1 esﬁnTi+1 _ esﬁnTZ 4€3RnTZ e—l{nTi _ e—HnTi+1 €4HnTi e—2/~’u’nTi _ e—2l€nTi+1
+m;0; w; —

4k, 9k2 3kn K, K, 2K
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T t
/ " mt/ ms/ o2 (u)e " Hs=20 gy d s dt
0

0 0
M-—1 T t . )
= / my ms/ o2 (u)e 52 dydsdt
= /T T T;
where
onilt) == O, (wie Tt — ;e nTi)emnt £ >0, n=1, ,N.
Then
= —knT; nT A 7I€t t —KnS s4nu
E, = 9 (wje il — w; qe " Z/ "/mse "/e”dudsdt
1=0 T; T;
Denote by
L Tj+1 ¢ t S 4
EY = / mje " / mse_””s/ e " dudsdt
Ty T T
Then
o Tj11 ' T} s 4 t s 4
EY = / mje " / mse”“"s/ e "‘"“duds—l—/ mse’”"S/ e duds | dt
J J
e3rnTip1 _ o3knT) T e—rnTi _ o=rnTip e~ Ty _ o=rnTjt1
= m;y_ m 2 - 2 x +
— 12K2 4Kk2 Kn
26nTj41 _ 26075 —knT, —knTj41 2knT,
2 (€T e Sk Ty 3efin (4Ti—T5) e m—e ™y Arn T ti—e
m; 3 (e - oe ) 3 Te 3
24K 12k3 8K;

T t t
Epp = /Mmt/ pf:an(s)w/mse_”"(t_s)ds/ piam(s)\/mse_“m(t_s)dsdt
0
= / o mt/ pngn \/ s€ —tin (t— 5)ds/ me'm \/ s€ —tim (t=s det

1

i+l T; t T; t
- l/ [ ) [
0 T; 0 T;

" (FM + B2, + 2+ B

@

SIM

N
Il
o
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7?7 pages
where
1 6*(“n+ﬂm)Tz _ ef(lfn+/€m)Ti+1 . .
g — 7 7
Fn,m = my fn fm
2% _  Fi i
nm n,m fm
3.t _ £ 4
Fn,m - m,n fn
2, .2 S S — . _ ) _ )
i — ;W5 0n0mpy, i (1 — € Hrntrm)Ai g=2wnli _ o=2wmA
L 4Ky Km En + Km En — Km
with

i—1 e2nnTj+1 _ ezﬁnTj
i P . . S —finTj+1
fn T Z \% me]pn,jene 2
j:() KJn

e fnTiv1 <€(Hn—f<m)Ti+1 2l€n6(ﬁn_ﬁm)Ti 62NnTi—(ﬁn+nm)Ti+1>

i . S
= Ty /mipn,iwﬂn o
n

Kn — km K2 — K2, Kn + Km

=S ([ [ ([ Y

M_l§ Titr Py Tin S —Fkn(t—s) * s _

; Py oy (s)y/mse ds [ pon(s)y/msdsdt
i=0 j=0"Ti T; 0

M-1 .7, t s

/ " m; pion(s)\/mse’”"(t’s)ds/ P, (s)/msdsdt
= /. T 0
M_l . . . . ~ . ~ .

— (Grll,z 4 Gi,z 4 Gi,z 4 G;ll,z o Gi,z o Gi,z)
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where

with

eflfnTi _ efﬁnTz!kl

mi Gin 9o
"in
m gi,n gfé,n
m; Qé,n gfi,n
mzzwi2(9721<:01§,i>2 1 — 2¢ fnfi 4 3e=26nli _ Qp—3Kn il

. . Ai6_2HnAi
2/€n 2/4377,
i—1
S ~i7j
m; Y /My iwibn g1,
j=0
3
i1 (1 _ e*HnA)
i J 2/ .S \2p2 2
my g4,n Z g?,n + m; (pn,z) enwi 6r3
]:O n
i—1 26nTjr1 _ 2601
= Z\/m- S w00, e rnTiv1 o e
- 7Png 3 2%
=0 n
i—1 kn Ty KnT;
- S —knTj41
= Zw/m]pn’jwﬂne -
j=0 n
o S S 0 e_HnTH—l A, 1- e_HHAi
D mzpmiwz n v
Kn Rn
S 1 — e nh
= \/mi,omwﬂn
Rn
. e—/ﬂnTi _ e—l{nTi+1 e2l€nTj+1 _ €2I€nTj
_ J e—HnTjJrl +
- g2,n

Rn 2/€n
S . . . 2’€nTi+1 _ 2’€nTi i _"inAi

Fon 2K Ko,
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iy t t

Hypm = / mt/ an(s)e’“"(t’s)ds/ Ot (8)e " =9) st

0 0 0
M-

T t

Z/ . / s)e_”"(t_s)ds/ v ()™= dst
i=0 7Ti 0

M—1

>

Zo/:}lTl+l (/ +/ ></0Ti"'+/Ti...>dt

M-1 ' .
(HYi, + HZL, + H + Ht)
1=0
where
. 72(/‘Cn+l‘€m)Tl _ 72(5n+/{m)Tz‘+1 ) .
HY = m* ‘ hi hi
’ 2(Kn + Km)
HYLo = hiy, by
o = hl,, b
H4ui o Zw;lgiegn( . 6*2(%n+l€m)Ai 673HmAi _ 6*2(/‘€n+/’vm)Ai 673linAi _ 672(nn+nm)Ai
I 36Ky Km 2(Kp + Km) 26n — Km 2K — K,
+€*2(Nn+nm)Ai _ 63(I€n+lim)A2>
with
) 1 i—1 63KnTj+1 _ e?mnTj
XA — w282 —2knTj11
" Z 3K,
ﬁi o w; 92 e fmTit1 B e—QHnAi—HmTi N 6—3KnAi—ani+1
3kn (260 — Km)  (2Kn — Em) (B + Em)  3Rn(Kn + Km)
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