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1 Introduction

The following method proposed by [!] deals with an efficient particle method for com-
puting the price of a stochastic volatility model.
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2 Theoretical framework

We consider the following local stochastic volatility model

dSt = TStdt + StO'(t, St)atth

where a is a stochastic process. From Dupire, this model is exactly calibrated to market
smiles if we have

U%V(tv S) = Gz(ta S)E[(Z?‘St = S]'

where oy represents the Dupire local volatility. The volatility function depends on the
joint PDF p(t,s,a) of (s, at)

[ p(t,s,a")da’
t,s) = (t 1
olt,s) =owv( S\/f p(t,s,a’)da’ (1)

3 Particle method

Let us introduce this method by considering the following McKean SDE
dXt = b(t, Xt, Pt)dt + O'(t, Xt, Pt)th, Pt == LCLU)(Xt)

The simulation of such an equation consists of replacing the law P; by the empirical
distribution

1 M
= M Z 5X;;,]W
i=1



where (XZ’M)lgig M are the solutions to the RM dimensional linear SDE
ax;™ = ot XpM PMdt + o(t, XPM PM AW,
Law(Xi™M) = Py

where (W%)1<;<n are M independent Brownian motions and P} is a random measure on
R. We get

1

i 1 I i j
dxiM = Vi S oo, xpM, xPMdt + m
j=1

M
S ot xpM xPMaw
j=1

From (Snitzman, 1991), we know that if at t = 0 Xé’M are independent r.v., then as M
tends to infinity, for any fixed ¢ > 0, (XZ’M)lgiS M are asymptotically independent and
their empirical measure P} converges in distribution to the true measure P;.

4 Numerical algorithm

4.1 Particle method to compute E[a?|S; = 5]
We approximate E[a?|S; = s] by EP: [a2]S; = s
f(a/)ZpM (t7 5, a/)
[ pa(t, s, a)da’
_ S5 — )
S (s =)

We use a regularizing kernel d; p/(-) that converges to the Dirac function as M tends to
infinity. It is natural to choose

EFY [62]S, = 5] =

1 T
0 = K
1 (7) e v <ht,M>

where K is a fixed, symmetric kernel with a bandwitdh h; 5 tending to 0 as M tends to
infinity. For example we can choose K(z) = \/%e_%‘ﬁ, K(z)=2(1- 2?)?L{|z/<1} Or an

indicator function K () = 1|;<1}- Using this method, we approximate o(t, s) defined in
(1) by

Eij\i; 5(S§’M - s) '
Y M (ap™y2e(8,M — s)

om(t,s) = ULV(taS)\J (2)

4.2 Simulation scheme

We consider the following dynamics of the Heston SLV model expressed in terms of
independent Brownian motions:

dSy = rSydt + o(t, S1)Si/ar (papdWy +\/1 - p2,dW7),
day = k(T — az)dt + y/agdW}
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where W7 and W are independent Brownian motions. We discretize [0,7] on a regular
grid of size N, with step size A = % An Euler scheme gives the following approximation

Siv1j =Sij + i A+ oar(ti, si5)8i\/ (ar) 4 VAZ, s05 = So,

ais1j =i  + ay(ti, @i j) A+ ay(ti, ai)VAZy, ag; = ao,
for j =1,---,M and i = 0,--- ,N and op(¢,s) is given by (2). Z, = Z; and Z, =
prwZ1 + /(1 — p2,)Z> where Z; and Z, are two independent standard normal variables.
5 Numerical experiments

We test the algorithm on a Call option with payoff e "7 (St — K), with the following
parameters, for different maturities and strikes :

(rlsof ao [ m [ 3 [ poo |
0] 1]0.0945 | 1.05 | 0.95 [ -0.315 |

We use N = 100 times steps and M = 5000 particles and the local volatility oy is
given by

orv(t,x) = 0.01 +0.1e7%/% + 0.01¢.

(XKT] 2 [ 8 |
0.7 || 0.300711 | 0.310436
0.9 || 0.107903 | 0.152974
1.1 || 0.005151 | 0.053920
1.3 || 0.000345 | 0.021565
1.5 || 0.000227 | 0.012228
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