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1 Preliminaries

A real Lévy process X is characterized by its generating triplet (γ, σ2, ν). Where
(γ, σ) ∈ R × R

+, and ν is a Radon measure satisfying
∫

R

(
1 ∧ x2

)
ν(dx) < ∞

By Lévy-Itô decomposition X can be written in this form

Xt = γt + σBt + X l
t + lim

ǫ↓0
X̃ǫ

t (1.1)

With

X l
t =

∫

|x|>1,s∈[0,t]

xJX(dx × ds) ≡

|∆Xs|≥1∑

0≤s≤t

∆Xs

X̃ǫ
t =

∫

ǫ≤|x|≤1,s∈[0,t]

x(JX(dx × ds) − ν(dx)dt)

≡

∫

ǫ≤|x|≤1,s∈[0,t]

xJ̃X(dx × ds)

≡

ǫ≤|∆Xs|<1∑

0≤s≤t

∆Xs − t

∫

ǫ≤|x|≤1

xν(dx)

Where J is a Poisson measure on R×[0, ∞) with rate ν(dx)dt and B is a standard
Brownian motion. In Lévy-Khinchine representation X, we characterize X by
its characteristic function. That means

EeiuXt = etϕ(u) ∀u ∈ R

1
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where ϕ is given by

ϕ(u) = iγu −
σ2u2

2
+

∫

R

(eiux − 1 − iux1|x|≤1)ν(dx) (1.2)

For any ǫ ∈ (0, 1) we define the process Rǫ by

Rǫ
t = −X̃ǫ

t + lim
δ↓0

X̃δ
t (1.3)

and Xǫ by

Xǫ
t = γt + σBt + X l

t + X̃ǫ
t (1.4)

Then

Xt = Xǫ
t + R

ǫ
t (1.5)

We set

Mt = sup
0≤s≤t

Xs

M
ǫ,X
t = sup

0≤s≤t

Xǫ
s

m
ǫ,X
t = inf

0≤s≤t
Xǫ

s

M̂ ǫ
t = sup

0≤s≤t

(Xǫ
s + σǫWs)

Where W is a standard Brownian motion independent of X, and σ(ǫ) =
√∫

|x|<ǫ
x2ν(dx).

2 Simulation method

We focus on the simulation of a lookback option with maturity T , where the
Levy process is infinite activity without Brownian part. Our goal is to simulate
MT . In fact we can not simulate MT , we will then approximated by M ǫ

T or

(̂M)ǫ
T . This introduces a bias. Denote by J the Poisson measure on R × [0, ∞)
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of intensity ν(dx)dt, then for t ≥ 0, we have

Xǫ
t = Xt − Rǫ

t

= γt +

∫

|x|>1,s∈[0,t]

xJX(dx × ds) +

∫

ǫ≤|x|≤1,s∈[0,t]

xJX(dx × ds)

=

(
γ −

∫

ǫ≤|x|≤1

xν(dx)

)
t +

∫

|x|>ǫ,s∈[0,t]

xJX(dx × ds)

=

(
γ −

∫

ǫ≤|x|≤1

xν(dx)

)
t +

∫

x>ǫ,s∈[0,t]

xJX(dx × ds)

+

∫

x<−ǫ,s∈[0,t]

xJX(dx × ds)

= γǫ
0t +

N+

t∑

i=1

Y +
i −

N−

t∑

i=1

Y −
i

Where γǫ
0 = γ −

∫
ǫ≤|x|≤1

xν(dx), the r.v.
(
Y +

i

)
i≥1

are i.i.d. with common law

ν+
ǫ (dx)

ν(ǫ,+∞) , the r.v.
(
Y −

i

)
i≥1

are i.i.d. with common law
ν−

ǫ (−dx)
ν(−∞,ǫ) . The measures

ν+
ǫ and ν−

ǫ correspond respectively to ν restricted on (0, +∞) and on (−∞, 0).
The process Xǫ is a compound Poisson process. So to simulate M ǫ

T , it suffices to
simulate the instants of jump of Xǫ and the corresponding jump. The random

variable (̂M)ǫ
T must be approximated by its discrete version in the case of look-

back options. The number of discretization points in this case is greater than in
the case of classic jump-diffusion model. The Probem that arises is because the
numbers of jumps on [0, T ] is relatively large, how to quickly simulate the size
of the jumps. The simulation of the instants of jump is relatively simple, we will
focus on simulation of jumps, including

(
Y +

i

)
i≥1

. Simulation of
(
Y −

i

)
i≥1

will be

identical. Let λǫ
+ = ν(ǫ, ∞). The cumulative distribution function of Y +

1 cannot
be determined explicitly, and hence the inverse distribution function either. So
one way to simulate Y +

1 is to use a rejection method. This is time consuming,
especially since it will make on average λǫ

+T simulations. The alternative is to
make a discrete inversion of the cdf, F+, of Y +

1 . We have, for all x > ǫ

F+(x) =
1

λǫ
+

∫ x

ǫ

ν(dx)

We will define a positive real A in order to have ν(A, +∞) very small, in order
of 10−16 for example (that is what we choose in our simulations). We suppose
then that the r.v. Y +

1 is in [ǫ, A]. Set for any k ∈ {0, . . . , n}

xk = k
A − ǫ

n
+ ǫ

yk =
F+(tk)

F+(A)
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Where n is the number of the discretization points on [ǫ, A]. Note that y0 = 0.
How do we compute (F+(xk))1≤k≤n? Notice that for any k ∈ {1, . . . , n}, we
have

F+(xk) =

k∑

j=1

(F+(xj) − F+(xj−1))

with

(F+(xj) − F+(xj−1)) =

∫ tj

tj−1

ν(dx)

Depending on the Lévy measure, we will define some approximation method for
the integrale

∫ tj

tj−1
ν(dx). We define the function G+ by, for any y ∈ [0, 1]

G+(y) = x

where x is the unique real satisfying F+(x)
F+(A) = y. Let y ∈ [0, 1], to compute

G+(y), we use the following method. We have to find first the integer k > 1
satifying yk−1 ≤ y < yk. Then we have

yF+(A) = yk−1 +

∫ G+(y)

xk−1

ν(dy)

We must approximate the above integrale depending on G+(y), and express the
latter as a function of y. We will call G+, the discrete inverse function of F+.
When n and A are going to the infinity, we the inverse function of F+. For our
simulations, we suppose that Y +

1 is equal in distribution to G+(U), where U is
a uniform r.v. on [0, 1]. We will use as control variate, eXǫ

T . its expected value
is known with an error whoch we can control.

3 Estimation of the inverse cdf of the jumps

We will, for some popular models, estimate the function G+. The models that
we consider in this section are VG, CGMY and NIG. Our method can work for
any other model.

3.1 The Variance-Gamma case

Let G be a gamma process with de parameters (µ, κ) ∈ R
∗
+ × R

∗
+ (see [5]),

satisfying G0 = 0 and for any t ≥ 0 and h > 0, Gt+h − Gt have a gamma

distribution with parameters
(

h µ2

κ
, κ

µ

)
. In fact in financial applications µ = 1,

and the process (WGt
)t≥0 is a VG processus VG with parameter (θ, σ, κ). Its

characteristic exponent is given by

ϕ(u) = log

((
1 − iθκu +

σ2

2
κu2

)− 1
κ

)
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The process (WGt
)t≥0, can be defined by its Lévy measure ν. Indeed

ν(dx) = C
e−Mx

x
1x>0dx + C

e−G|x|

|x|
1x<0dx

Where

C =
1

κ

M =
1

σ

√
2

κ
+

θ2

σ2
−

θ

σ2

G =
1

σ

√
2

κ
+

θ2

σ2
+

θ

σ2

This is a particular case of the CGMY process (by taking Y = 0, see [3]). The
pad of Y +

1 is then

f+(x) =
C

λǫ
+

e−Mx

x
, x > ǫ

Then for any x > ǫ

F+(x) =
C

λǫ
+

∫ x

ǫ

e−My

y
dy

Hence

F+(xk) − F+(xk−1) =
C

λǫ
+

∫ xk

xk−1

e−My

y
dy

We approximate this integrale by

C

λǫ
+

e−Mxk−1

∫ xk

xk−1

dy

y
dy =

C

λǫ
+

e−Mxk−1 log

(
xk

xk−1

)

Then the function G+ satisfy

yF+(A) = yk−1 +
C

λǫ
+

∫ G+(y)

xk−1

e−My

y
dy

As previously the above integrale is approximated by

C

λǫ
+

e−Mxk−1 log

(
G+(y)

xk−1

)

Hence G+(y) can be approximated by

xk−1 exp

[
λǫ

+

C
(yF+(A) − yk−1) e−Mxk−1

]
(3.6)

In the VG model MT is approximated by M ǫ
T . In the table 3.1, we observe the

convergence of our method with respect to ǫ. Note that the errors are relative,
and we mean by “true” price that obtained by [Becker(2008)].
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ǫ price Monte Carlo error total error
10−1 7.076 0.05% 24.7%
10−2 9.347 0.08% 0.50%
10−3 9.401 0.08% 0.04%

Table 3.1: Approximation of the continuous call lookback price in VG model.
Les parameters are : S0 = 100, r = 0.0548, δ = 0, T = 0.40504, S+ = 100,
θ = −0.2859, κ = 0.2505, σ = 0.1927 and n = 1000000. The “true” call price is
9.39827.

3.2 The CGMY case

It is a pure jump Lévy process (see [5]), with Lévy measure

ν(dx) = C
e−Mx

x1+Y
1x>0dx + C

e−G|x|

|x|1+Y
1x<0dx

Where C, G et M are positive, and Y ∈ (0, 2). When Y = 0, we get the
Variance-Gamma model. Its characteristic exponent is given by

ϕ(u) =





C

(
(M − iu) log

(
1 −

iu

M

)
+ (G + iu) log

(
1 +

iu

G

))
, si Y = 1

CΓ(−Y )

[
MY

((
1 −

iu

M

)Y

− 1 +
iuY

M

)
+ GY

((
1 +

iu

G

)Y

− 1 −
iuY

G

)]
, sinon

In the CGMY model, the pdf of Y +
1 is

f+(x) =
C

λǫ
+

e−Mx

x1+x
, x > ǫ

Then its cdf is

F+(x) =
C

λǫ
+

∫ x

ǫ

e−My

y1+Y
dy

Hence

F+(xk) − F+(xk−1) =
C

λǫ
+

∫ xk

xk−1

e−My

y
dy

Then we approximate F+(xk) − F+(xk−1) by

C

λǫ
+

e−Mxk−1

∫ xk

xk−1

y1+Y dy =
C

λǫ
+Y

e−Mxk−1

(
1

xY
k−1

−
1

xY
k

)

So G+ is solution of the equation

yF+(A) = yk−1 +
C

λǫ
+

∫ G+(y)

xk−1

e−My

y1+Y
dy
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ǫ prix erreur statistique erreur totale
10−1 14.212 0.07% 2.54%
10−2 13.903 0.07% 0.30%
10−3 13.868 0.07% 0.07%

Table 3.2: Approximation of the discrete put lookback price (where the number
of discretization points is N = 252) in CGMY model. The parameters are :
S0 = 100, r = 0.05, δ = 0.02, T = 1, S+ = 100, C = 4, G = 50, M = 60,
Y = 0.7 and n = 1000000. The “true” price is 13.8600.

We approximate the above integrale by

C

λǫ
+Y

e−Mxk−1

(
1

xY
k−1

−
1

(G+(y))Y

)

Hence G+(y) can be approximated by

[
1

xY
k−1

−
λǫ

+Y

C
eMxk−1 (yF+(A) − yk−1)

]− 1
Y

(3.7)

The r.v. MT is approximated by M̂ ǫ
T . In the table 3.2, we observe the conver-

gence of our method with respect to ǫ. The errors are relative, and we mean by
“true” price that obtained by [Feng-Linetsky(2009)].

3.3 The NIG case

Like the VG model, the NIG (Normal Inverse Gaussian) model (see [7]) is a
particular case of the hyperbolic models. It is charterized by four parameters :
α, β, δ and µ. Where 0 ≤ |β| ≤ α, δ > 0 and µ ∈ R. Its generating triplet are
(γ, 0, ν), where

γ = µ + 2
αδ

π

∫ 1

0

sinh(βx)K1(αx)

ν(dx) =
αδ

π|x|
K1(α|x|)eβxdx

with

Kλ (z) =
1

2

∫

R+

yλ−1 exp

(
−

1

2
z

(
y +

1

y

))
dy

In financial applications we set µ = 0. Then the NIG is represented by three
parameters : (α, β, δ). The cdf of Y +

1 ) is

f+(x) =
αδ

πx
K1(αx)eβx, x > ǫ
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And then its cdf is given by

F+(x) =
αδ

π

∫ x

ǫ

K1(αy)

y
eβydy

Therefore

F+(xk) − F+(xk−1) =
αδ

π

∫ xk

xk−1

K1(αy)

y
eβydy

To approximate the above integrale, we need to study the asymptotic behaviour
of K1. We have (see [1], formulas 9.7.2 et 9.8.7)

K1(x) ∼
x↓0

C

x
, for a given C>0

K1(x) ∼
x→+∞

√
π

2x
e−x

Hence the following approximation

αδ

π
xk−1K1(αxk−1)eβxk−1

∫ xk

xk−1

dy

y2
=

αδ

π
xk−1K1(αxk−1)eβxk−1

(
1

xk−1
−

1

xk

)

In NIG case G+ satisfy

yF+(A) = yk−1 +
αδ

π

∫ G+(y)

xk−1

K1(αy)

y
eβydy

So we approximate G+(y) by

(
1

xk−1
−

π

αδ

yF+(A) − yk−1

xk−1K1(αxk−1)
e−βxk−1

)−1

(3.8)

The Y −
1 case is treated is the same way, we only need to substitute β by −β.

In this model MT is approximated by M̂ ǫ
T . In the table 3.3, we observe the

convergence of our method with respect to ǫ. The errors are relative, and we

ǫ prix erreur statistique erreur totale
10−1 13.48 0.0% 10.33%
10−2 12.43 0.08% 1.74%
10−3 12.25 0.08% 0.31%

Table 3.3: Approximation of the discrete put lookback price (where the number
of discretization points is N = 252) in NIG model. The parameters are : S0 =
100, r = 0.05, δ = 0.02, T = 1, S+ = 100, α = 15, β = −5,δ̃ = 0.5 and
n = 1000000. The “true” price is 12.2224.

mean by “true” price that obtained by [Feng-Linetsky(2009)].
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