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Premia 18

The following is based on [A]. Suppose that, for i = 0,...,n — 1, we have a martin-
gale (0})sepo,r, representing the discounted value at ¢ of the European option with
maturity 7; and discounted payoff 77%1 Suppose that we have the following Markov
functional forms

(1) 17’3" = fi,j(‘rTj) ) ]:0777'

J

Here () is a Markov process with values in R”. I.e., we have a closed formula (or
at least a closed form approximation) for the values of the n European options.
Now consider the Bermudan option given by the payoffs 171[ at the exercise times 7T}
fori=0,...,n—1. Let V; denote its discounted value at t. Then

(2) Vo = E(Vg,)

(3) Vp = sup VTZ.(T) , where VT,- (1) = E(vg | Fr,)

and Ty -1} denotes the set of stopping times with values in {i,...,n —1}. We
introduce the indicator function I(7}) which is one if exercising at 7; is optimal and
zero otherwise; hence

(4) 77 = inf{j=14,....,n—1;I(1;) =1}.
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Here 7 denotes the optimal stopping time in (3), i.e. Vi, = Vi (7). Now suppose
that I(T;) has the following Markov functional form:

(5) I(T) = b(vy,..., 05 ") = bilar,)

for some deterministic boolean functions EZ , b;. That is, we assume that the exercise
decision at T; depends only on the values at T; of the still-alive European component
options, and this dependance is expressed by b;. Of course, once that b; is chosen,
one obtains b; directly from (1).

Observe that, denoting EZ = (bi,...,by_1), the following definition motivated by (4)
and (5) yields an element of Ty ,—1y:

Ty = inf{j=14,....,n—1;0(xr;) =1} € T -1y -
Obviously, we find functional forms

%

7

= g;,(x1s .21, ) -
Hence, in view of (1), we obtain functional forms
75,

/UTTE- — ngz 77-’;1' (wTTgi) = ng (Q:Ti, e ’xTn—l) .
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This yields the following representation of F( VTZ.(T,;Z,) )

(6) B(Vi(r)) = E(vr. ) = B(Fy(er,...,vr,.,))

. i
i

Here we use definition (3) in the first step.

0.1 Monte Carlo approximation of 1}, provided the b, are
chosen

Suppose that, for our Markov process (x;), we are given M Monte Carlo samples

(7,...,2F ), wherem =0,..., M — 1. Then, based on (2), (3) and (6), we have

the following Monte Carlo approximation of the discounted present value Vi of our
Bermudan option:

M-1
Vo = 57 > Fp (e, .., 2% ).
m=0
0.2 Choice of the b;
Concerning the choice of the by,...,b,_1, we note first that one reasonably takes

bn—l (Un—l) = 1vn_1>0
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which states that the Bermudan option is exercised at the last exercise date T,,_
if and only if the lastEuropean component option (which is the only one being still
alive) is in-the-money.

Now the b; for i < n — 1 can be chosen (backward) iteratively via Monte Carlo
maximization over given parametric classes B; of the expected discounted value
E(Vz,) of the Bermudan option at time 7:

L—1
o ! !

bi = argbé%?x E(VTi(T(b,bi+1,...7bn,1))) = argbgllgx g Flobiisbn) (@1, -, 27, ) -

Here we use (6) in the second step and we consider L Monte Carlo paths independent

of those we use for the approximation of V{; one should take M >> L. An example

for the choice of the classes B; of boolean functions

B = {b"; H>0}, where 0% (v;, ..., vp_1) i== Lo>p -

Hence exercise takes place at T; if the payoff of the European option maturing at 7;
exceeds some barrier H. A second example is

B, = {gf{, H >0}, where EZH(Ui, e Une1) = Ly smax(Hvps 1 om 1) -

This second strategy is a refinement that also checks if at least one of the remaining
European options has a value exceeding the value of the present European option.
If this is the case, the strategy decides that exercise cannot be optimal — a reflection
of the fact that the Bermudan option can always be sold at the value of its most
expensive European component option.

Examples of well-known one-dimensional optimization algorithms include Golden
Section Search and Brent’s method.

0.3 Remarks

(1) One might call the general approach chosen here: Monte Carlo pricing of Markov
functional Bermudan options under the assumption that the optimal stopping time
is also Markov-functional.

(2) We give the precise definition of some of the functional forms used above:

bi(z) = bi(fii(@), ..., far4(x))

95 (@i oy Tpr) = inf{j=4,...,n—1;bi(z;) =1}
ng(xi, cos@p_1) = frr(x;), where T := 9 (iy ooy Tpt)

D
Here z,x;,...,2,-1 € R".



1 Numerical results: Bermudan swaption pricing
in the one-factor LIBOR Market Model

We fix a discrete tenor structure
0=To<Th<..<TowithTi1—-T,=0
and define the rightcontinuous function 7n(t) by
Towy-1 < t < Ty  inparticular n(7;) =i+1.

Denoting by P(t,T") the time ¢ price of a zero-coupon bond maturing at 7', we define
for i =0,...,e — 1 the forward LIBOR rates for the period [7;, Tis1]:

=0 (e — 1) e 0,7

P(tTit1)

The method presented in Section 1 will hence be applied for

D =¢ and x = (Li/\'];)iz(] -1 € R°.

.....

We assume forward measure dynamics of the following simple type:
dLi = NL.dW; .

This is equivalent to the following spot measure dynamics:
dLi = AL} (bi(t, L)dt + dWh) b, L) = 0A Z 2=

All simulations will be done under these spot measure dynamics. Recall that the
corresponding spot numeraire (/N;) satisfies

1:[1+5LJ

Let us consider a (payer) interest rate swap where fixed cashflows KJ paid at
Tsi1,---, T are swapped against floating LIBOR on a unit notional. We will
price the corresponding Bermudan swaption with n exercise dates T; = T,;, where
1=0,...,n— 1. Hence, the discounted payoff at T; is

o= (1-P@T) - KX PLT)) L T= T
‘ j=s+i+l +

Closed form approximations [corresponding to the f; ; needed in (1)] for European

swaption prices can be found e.g. in [AA, §5]. We consider the following parameter

values:

§ =05, Ly =006, K=0.06, L=10000, M = 50000 .
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The following table of prices corresponds to Table 1 in [A]. The letters E and B
correspond to Furopean (n = 1) and Bermudan (n = e — s).

We applied the first strategy presented in Section 1.2 for the choice of the b;. All
Monte Carlo simulations are based on a first-order log-Fuler discretization with time
step 0. Numbers in parenthesis denote the 95 % confidence interval.

In the European case, we also give the price obtained via the closed form approxi-

mation mentioned above.

T,=T.|7.| X [EorB| CF] MC |

1 4 1 0.2 E 122.0 || 120.9 (1.7)
2 4 1 0.2 E 111.4 || 109.3 (1.6)
3 4 1 0.2 E 66.1 65.8 (1.0)
1 4 1 0.2 B 157.1 (1.7)
2 5102 E | 1624 159.3 (2.3)
3 5102| E || 1284 127.8 (1.9)
4 502 E 718 | 711 (L1)
2 502] B 188.4 (2.3)
5 [10]015] E [ 253.6 [ 252.0 (34)
6 |10]015] B [ 2153 2148 (2.9)
7 10 | 0.15 E 169.0 || 168.3 (2.3)
8 [10]015| E | 116.7] 116.7 (1.6)
9 10 | 0.15 E 60.0 59.8 (0.8)
5 110]015| B 283.6 (3.3)
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