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Abstract

We present and analyze a numerical algorithm to solve BSDEs based on Picard’s itera-
tions and on a sequential control variate method. Its convergence is geometric. Moreover,
our algorithm provides a regular solution w.r.t. time and space.
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1 Introduction

This note is devoted to the study of a numerical algorithm to solve backward stochastic
differential equations (BSDEs hereafter) of the following type, where X ∈ R

d, Y ∈ R and
Z ∈ R

q

{

−dYt = f(t, Xt, Yt, Zt)dt − ZtdWt, YT = Φ(XT ),

Xt = x +
∫ t

0 b(s, Xs)ds +
∫ t

0 σ(s, Xs)dWs.
(1.1)

Several algorithms to solve BSDEs can be found in the literature. We refer to [9] for an
algorithm which solves the associated PDE with a finite difference approximation and to [3],
[8], [1] and [4] for algorithms based on the dynamic programming equation. Our algorithm
approximates the solution (Y, Z) of (1.1), by combining Picard’s iterations — we approxi-
mate (Y, Z) by the solutions of a sequence of linear BSDEs converging geometrically fast to
(Y, Z) (see [6] for more details)— and an adaptive control variate method. This technique is
used to approximate the solutions of linear PDEs, which can be written as expectations of
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functionals of Markov processes via Feynman-Kac’s formula. A control variate, changing at
each algorithm iteration, is used to reduce the variance of the simulations. The convergence
is also geometric (see [5] for more details). We present the algorithm in the following Section.
In Section 3, we state that the approximated solution provided by our algorithm converges
geometrically fast to (Y, Z) in a given norm, up to a function approximation error.

2 Description of the algorithm

Before presenting our algorithm, we recall that solving the BSDE (1.1) is equivalent to solving
the following semilinear PDE:

{

∂tu(t, x) + Lu(t, x) + f(t, x, u(t, x), (∂xuσ)(t, x)) = 0,

u(T, x) = Φ(x),
(2.1)

where L is defined by

L(t,x)u(t, x) =
1

2

∑

i,j

[σσ∗]ij(t, x)∂2
xixj

u(t, x) +
∑

i

bi(t, x)∂xi
u(t, x).

More precisely, we can write

(Yt, Zt) = (u(t, Xt), ∂xu(t, Xt)σ(t, Xt)), for all t ∈ [0, T ].

Our algorithm provides an approximated solution of PDE (2.1). Then, by simulating the dif-
fusion X through an Euler scheme, we deduce from the previous equality an approximation of
the solution of BSDE (1.1). More precisely, let uk (resp. (Y k, Zk)) denote the approximation
of u (resp. (Y, Z)) at step k, and let XN denote the approximation of X obtained with an N

time step Euler scheme. We write

(Y k
t , Zk

t ) = (uk(t, XN
t ), ∂xuk(t, XN

t )σ(t, XN
t )), for all t ∈ [0, T ]. (2.2)

The construction of uk is described below.

Initialization We begin with u0 ≡ 0.

Iteration k, Step 1 Assume that an approximated solution uk−1 of class C1,2 is avail-
able at stage k − 1, and that we are able to compute ∂xuk−1, ∂2

xuk−1, ∂tuk−1 point-
wise in [0, T ] × Rd. Following the idea of adaptive control variates, we write u(t, x)
as (u − uk−1)(t, x) + uk−1(t, x). Combining Ito’s formula applied to u(s, Xs) and
to uk(s, XN

s ) between t and T and the semilinear PDE (2.1) satisfied by u, we get
that the correction term ck := u − uk−1 is ck(t, x) = E[Φ(Xt,x

T ) − uk−1(T, X
N,t,x
T ) +

∫ T
t f

(

s, Xt,x
s , u(s, Xt,x

s ), (∂xuσ)(s, Xt,x
s )
)

+ (∂t + LN )uk−1(s, XN,t,x
s )ds|Gk−1].

Remark 1. As we will see a few lines below, uk−1 depends on several random variables.
Gk−1 is the filtration generated by the set of all random variables used to build uk−1. In
the above equation, we compute the expectation w.r.t. the law of X and XN and not to
the law of uk−1, which is Gk−1 measurable.
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The correction term ck cannot be used directly: we have to replace u and ∂xu (unknown
terms) appearing in f by uk−1 and ∂xuk−1, as suggested by the Picard contraction
principle. We should also replace the expectation by a Monte Carlo summation. Let
ck(t, x) denotes the following approximation of ck

1

M

M
∑

m=1

[(Φ − uk−1)(T, X
m,N
T )

+

∫ T

t
f
(

s, Xm,N
s , uk−1(s, Xm,N

s ), (∂xuk−1σ)(s, Xm,N
s )

)

+ (∂t + LN )uk−1(s, Xm,N
s )ds].

Iteration k, Step 2 Since the function ck approximates the error u − uk−1, we use it to
compute uk. We compute the value of ck + uk−1 on a grid of n random points (ti, xi)
of [0, T ] × [−a, a]d, and regularize it through a regular operator P :

uk(t, x) = P(uk−1 + ck)(t, x).

The operator P is built with kernel functions. It is regular (C1,2) and we can easily
differentiate it to get the derivatives of uk. For more details on P we refer to [7, Section
11.3].

Thanks to the regularity of the operator P, we have built an approximated solution uk regular
w.r.t. time and space. This is an advantage compared to the algorithms using the dynamic
programming equation, which only provide regular solutions w.r.t. the space variable but not
w.r.t. the time variable.

3 Convergence

We prove the convergence of our algorithm in the following norm, where V is a predictable
process V : Ω × [0, T ] × R

d.

‖V ‖2
µ,β := E[

∫ T

0

∫

Rd
eβs|Vs(x)|2e−µ|x|dxds].

This choice of norm is not harmless. For proving the convergence of the algorithm we combine
results on BSDEs stated in a norm leading to the integration w.r.t. eβsds (see [6]), and
results on the bounds for solutions of linear PDEs in weighted Sobolev spaces (leading to the
integration w.r.t. e−µ|x|dx), coming from [2]. The following Theorem states the convergence
of Y k − Y and Zk − Z in the ‖ · ‖2

µ,β norm. See [7, Chapter 13] for a proof of it.

Theorem 2. Assume that σ is uniformly elliptic, b ∈ C
1,2
b (bounded with bounded derivatives)

and σ ∈ C
1,3
b , ∂tσ ∈ C1

b in space. We also assume that f is a bounded Lipschitz function (with
Lipschitz parameter Lf ) and Φ ∈ C2+α

b . Then, there exists a constant K(T ) such that

‖Y − Y k‖2
µ,β + ‖Z − Zk‖2

µ,β ≤Sk + O(
1

N
), where Sk ≤ η1Sk−1 + ǫ1 and

η1 =
4(1 + T )L2

f

β
+ K(T )

(

h2
x + h2

t +
T (2a)d

nhthd
x

(1 + M−1h−2
x )

)

,

ǫ1 =
K(T )

N2h2
x

+ K(T )

(

h2
x +

T (2a)d

nhthd
x

h−2
x + e−µaad−1h−1

x + h−1
x e

− µ√
d

a

)

,
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where ht (resp. hx) denotes the bandwidth associated to the time (resp. space) kernel function.
Moreover, if (β, hx, ht, n, M, N, a) are chosen such that η1 is smaller than 1, it holds

lim sup
k

(

‖Y k − Y ‖2
µ,β + ‖Zk − Z‖2

µ,β

)

≤
K(T )

1 − η1
ǫ1 + O(

1

N
).

Remark 3. Looking at η1 and ǫ1, we can distinguish five different error terms : the dis-

cretisation error 1
N2h2

x
due to the Euler scheme, the contraction term

4(1+T )L2
f

β
corresponding

to the geometric convergence of Picard’s iterations, the Monte Carlo error 1
M

, the bound-

ary discontinuity error e−µaad−1h−1
x + h−1

x e
− µ√

d
a

and the error due to the estimator P, i.e.

h2
x + h2

t + T (2a)d

nhthd+2
x

, which corresponds to the squared bias and variance ensuing from the error

‖u − Pu‖2
L2 + ‖∂xu − ∂x(Pu)‖2

L2.

Remark 4. Using a sequential Monte Carlo method leads to an error of 1
M

only appearing in
the contraction term η1. Had we implemented a non adaptive method (i.e. using only Picard’s
iterations), M−1 would have appeared in ǫ1. This would have led us to choose a much larger
M , while practically M = 10 does the trick.
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