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Premia 18

The double exponential jump model, initiated by Steven KOU (see [1]), is an
exponential Levy model, which is a compromise between reality and tractability.
It gives an explanation of the two empirical phenomena which received much
attention in financial markets : the asymmetric leptokurtic feature and the
volatility smile. It permits to obtain analytical solutions to the prices of many
derivatives : European call and put options; interest rate derivatives, such as
swaptions, caps, floors, and bond options; as well as path-dependant options,
such as perpetual American options, barrier, and lookback options .

1 The model

The behaviour of the asset price, S, under the risk neutral probability is mod-
eled as followed :
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Where W is a standard brownian motion, N is a poisson process with rate A,
the constants p and o > 0 are drift and volatility of the diffusion part and the
jump sizes {Y7,Ys,...} are i.i.d random variables with a common asymmetric
double exponential distribution, of density :

Sy (y) = pme™ "V ys0p + qnae™V L, 0 (1.2)

where p,q > 0 are constants, p+¢ =1, n; > 1 and 172 > 0.
The random processes (W;);>0, (IVi)1>0, and random variables {Y7,Y5,...} are
independant. Furthermore we have p = r — A\ with:

P qnz2
=+ == -1 1.3
. m—1 mn+1 (1:3)



7?7 pages 2

The condition on g hold in order to obtain (e_rt5t>t20 is a martingale. The
caracteristic exponent G of log (S;) (i.e. E [e?1°8(51)] = eCG()t) is defined as :

1 1 P qnz
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The equation G(x) = « has exactly four roots (see [2]) : S1,a, B2.a5 —03.a5
—B4,a, Where

0< Bla<Boa<o0, 0<pB54<pBia<0. (1.4)

2 European call and put

Let us define some special functions (see pp. 1094 and 1099 in[1]):
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Hho(z) = V21 0(—x)
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Hh,(z) = Hhy,—1(y)dy = — (t—x)"e " =dt Yn>0
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where ® is the standard normal cumulative distribution. Then we have :
nHh,(x) = Hhy—o(x) — xHhyp—1(x) VYn>1
And Vn > —1:
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Introduce the following notation : For any given probability P, define :
¢(M707A,p7U17U2§GaT) :]P[ZT > a’] (25)

where Zp = ut + oWy + Zivzfl Y; and Y has a double exponential distribution
with density as in ( 1.2), and N is a poisson process with rate A. Theorem B.1.
in [1] gives us :
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where
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n!
Using theorem 2, in [1], we know that the price of european call at inception

and with maturity T is :

1 ~ e~ ~ K 1 K
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The put price can be obtain by using the call-put parity.

3 Finite time horizon american put option

Let EuP(v,t) be the price of a european put option with initial stock price v and
maturity ¢, PV [S; < K] the probability that the stock price at ¢ is below K with
initial stock price v, z =1 — e "7, B3 = B3.r/z Ba = Bsr)zy Cp = B3Ba(1 +12)
(see ((1.4)), Dg =n2(1+ B3)(1 + B4), vo = vo(t) € (0, K) the unique solution to
the equation

CsK = Dy (vo + BuP(vo,1)) = (Cs — D) Ke ""P* [$, < K] (3.6)
and
Bs
A= 0 (B = (L Ba) [vo + BuP (oo, 0)] + Ke " TP (S, < K]} >0,
4 — M3
Ba
B=3 = B {B1K — (1+ B3) [vo + EuP(vo, t)] + Ke™"TP™ [S; < K]} >0,
3~ M4

Then the price of a finite-horizon american put option with maturity ¢ and strike
K can be approximated by 1(Sp,t) which is given by (see g3 in [3])

b(o,1) EuP(v,t) + Av™" + Bv™P4, if v >
v,t) = .
K —w, if v<1
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4 Lookback option

The price of a lookback floating strike put option is given by :

E {e‘rT (max {M, max St} — ST>}
0<t<T

E {erT (max {M, max St})] - S0
0<t<T

where M > Sy is a fixed constant representing the prefixed maximum at time
0. The Laplace transform of the lookback put, using notations in 1.4, is given
by (see theorem 1 in [3])

—+00 B1,a+r—1 B2,a+r—1
/ e *TLP(T)dT = So4a <SO) +SOBO‘ (SO) + M__ S Ya >0
0

LP(T)

Co \M C, \ M a+r o«
where

Aa _ (771 - 61,a+r)ﬁ2,a+r

ﬁl,a-&-r -1
B _ (ﬂ27a+7’ - nl)ﬁl,a—&-r
527a+7‘ -1

Co = (a+71)m(B2atr — Bra+r)

The put price is obtained by using an inversion of the Laplace transform. The
call option price follows just by symmetry. For the lookback fixed strike, when
we have M > max(Sp, K) for the put or m < min(Sp, K) for the call, we get
similar results to those for floatings.

5 Barrier option

Since all eight types of barrier can be solved in similar way, we focus only on
the price Up and In Call option defined as followed

UIC =E [e—rT (ST - K)+ ]l{maXOStST StZH}] (57)

where H > S is the barrier level. For any given probability P, define ;
Y : = > > .
(:u70-7)‘>pa77177727a7b7T) P |:ZT = a’Orél%XTZt - b:| (5 8)

where Zp = ut + oWy + Zivztl Y; and Y has a double exponential distribution
with density as in ( 1.2), and N is a poisson process with rate A. Using formula
(3.1) and the result before remark 3.1 in [2], we get

o 1L (n = Bra) (P20 —m1)B
e oTp { max Z; > b} == <11’°‘2’°‘eb51,a + Mebﬁz,a)
/0 osi<r ' a \Mm(B2,a — P1,a) M (B2.a — P1.a)
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By Inverting the Laplace transform we get P [maxo<;<7 Z; > b, which is useful
for some types of barrier options. Let us now define some functions

1 o i
H;(a,b,c;n) := E/o e(%cz_b)tt”Jr?Hhi (cx/i—k \%) dt 1>-1,n>0

Aa = E {e_aTb]lX%:b}
= 4771 7/81’0‘ e*bﬁl,a + /8270‘ 77}1 e*bﬁz,a
62,(1 - 51,01 62,04 - 51,01
B, = E [efm”]lepb}

_ = Bra)Boa =) r eprn g
B M (B2.a — P1.a) le ‘ ]

where 7, = inf {¢ > 0; X; > b}.Hh functions are defined in g 2, and [ variables
in ( 1.4). For i > 1, under assumption that b > 0 and ¢ > —+/2b, we have

1
H;(a,b,c;n) = EHi_g(a, bye;n+1) — ; i—1(a,b,c;n+1) — % i—1(a,b,c;n)

By knowing H_1(a,b,c;n) and Hy(a,b, c;n), this recursive formula allows us to
determine all values of H;. Lemmas A.1 and A.2 in [2] give us

= [1 T2\ " (—n). 1)
H_l(a7b’c;n):€7ac7\/2a b 27() ( ;Lb> ZM’ a%o’nzo
par ] (—2\/2&%)

. 1 2 ny—n—1 . ) )
Hfl(aqb, ¢ TL) _ e—ac—\/2a b 27b ( /;b> Z Ln—i_l)jj’ a 7é 0,n<-—1
“ - (—2\/2a2b)

j=0 7!

@2n)! 1
H_1(0,b,¢;n) = n!(4b)"%7 n >

(a,b,e;m+1) — LH_l(a,b,c;n), b=-c",n>0

c
H n)=— H_
O(aabac7n) 2(n+1) 1 2(n+1)

Ananzoetb;«é%CQ

n 1.2\
n! b—3c a . [ .
Hy(a,b,c;n) = eS| E ( 2 ) (iH_l(a,b,c;zfl)f5H_1(a,b,c;z)), a>0
(b—§c2) °
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where (n); =n(n+1)...(n+j — 1), with convention (n), = 1.
We can now determine the exact expression of the Laplace transform of ¥ when
b >0 and a < b(see theorem 4.1 in [2])

+oo too
e TP | Zp > a, max Z; >b|dT = A, e TP [Zp > a — b]dT
0 0<t<T o

+oo
+Ba/ e TP [Zr + €7 > a—b|dT
0

o0
)\n
= (Ao +Ba)z = Ho <7h, Yoy fg;n)
n=0 ’
j—1

oo n
+ehom Z Z )T\TT: (AaPn,j + Baﬁn,]’) Z(Cﬂh)iHi (hy Yo, c5m)
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e 350
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where ¢ has an exponential law with rate 7;, matrix P and @ are as defined
in g2, and

ZQn( ), Phi:=Pyi1, 2<i<n+1
m+mn2

]Z
n—i j—i n—j+1
,.<"2> ("1) L 1<i<n
J—1 m + 12 m + 12

i(a)
2 b—a

c+:=m71+ﬁ, C_IZO'?’]Q—E, ’ya.—a—i—)\—l— 55 h=
o o 20

3

g

For to get numerically P [Zr > a, maxo<i<r Z; > b] for a given T, i find that
is better to inverse the right term in the first equality above, using some pro-
preties of the Laplace inversion. Note that P[Z7 > a — b] is given in g 2 and
P[Zr + &7 > a —b] is given in [2] (pp. 528, formula B.5) :

6(0771 +oo n+1

PI:ZT+§+ZQ:| = J\/; anzpnk(dfm) Iy, — 1(G_MT =M, =
n=1

6(07}2)2 I

0\/ 21T Z
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e
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The price of the UIC option is obtained by, thanks to Kou and Wang (see
theorem 2 in [3])

vic = SO\II (T’ + %0—2 - )‘570—7 )\7p7 7717772;10g <K> 710g <H> 7T>

So So
1 K H
7K€7TT\I! (T’ - 502 - Af,g,)\,p, 7)13772;10g <SO> 710g <SO> 7T>
where
~ p un iy ~ ~
=2 L A=MN14E), mi=m-1, @=mptl
Ay — (1+8&), m=m 2 = 12
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