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Stein’s method and Zero Transformation for
CDOs tranche pricing
Céline Labart – 27 janvier 2009

Premia 17

The following note on Stein’s method and Zero Transformation for
CDOs tranche pricing is based on the papers [El karoui and Jiao(2008)] and
[El Karoui et al.(2008)El Karoui, Jiao, and Kurtz].

1 CDOs tranche pricing

We consider a synthetic CDO with some given maturity T . This is based
upon N CDS with nominals Nj, j = 1, . . . , N of maturity T . We denote by
Rj the recovery rate for credit j and by Mj = (1 − Rj)Nj the corresponding
loss given default.

For the N names in the collateral pool, we consider the associated default
times τ1, . . . , τN defined on a common probability space (Ω, G,P).

The critical issue for CDO pricing is to compute the value E(L(t) − K)+,
where L(t) is the portfolio aggregate loss on the credit portfolio at time t:

L(t) =
N
∑

j=1

Mj1{τj≤t} =
N
∑

j=1

(1 − Rj)Nj1{τj≤t}

which is a pure jump process. This distribution depends on the joint dis-
tribution of the default times τ1, . . . , τN modelised by a classical factor ap-
proach and Copula functions.

1.1 Factor approach

In the following, we only consider reduced-form models of default times
defined by

τi = inf
{

u ∈ R
+,

∫ u

0
hi(v)dv ≥ − log(Ui)

}

, (Hτ )

where the hi are deterministic and continuous positive functions, the Ui are
some uniform random variables.

We denote F1, . . . , FN the marginal distribution functions. From (Hτ ),
we get

Fi(t) = P(τi ≤ t) = 1 − exp
(

−
∫ t

0
hi(v)dv

)

.
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1.2 Correlation between the default times

In order to value a CDO, we have to define the correlation between the
default events τ1, . . . , τN . We will assume that conditionnally on a risk factor
V , the default indicators of the names are independent. Suppose in addition
that Ri’s are random variables mutually independent, then (L(t) − k)+ is
a function of a sum of conditionally independent random variables and its
expectation can be deduced in two steps.

1. We compute the conditional expectation H(V ) := E((L(t) − K)+|V ),

2. We compute E(L(t) − K)+ =
∫

R
H(v)pV (v)dv, where pV (v) is the

probability density of V .

To describe the default correlation structure in the factor model framework,
we need to specify the conditional distribution of each default τi. We denote

p
i|V
t = P(τi ≤ t|V ).

Example 1 (Gaussian Copula). We consider a standard Gaussian random
variable V , and we define the Gaussian vector (X1, . . . , Xn) by

Xi = ρV +
√

1 − ρ2Vi

where Vi are independent (∀i, j, Vi ⊥ Vj and ∀i, Vi ⊥ V ) standard Gaussian
random variables. The uniform random variable Ui appearing in (Hτ ) is
defined by Ui := 1− N (Xi) where N is the cumulative distribution function
of a standard Gaussian variable. We get

p
i|V
t = N

(N −1(Fi(t)) − ρV
√

1 − ρ2

)

.

with Fi(t) = 1 − exp
(

−
∫ t

0 hi(v)dv
)

.

2 Stein’s method and Zero Transformation

We define the default correlation by using the factor model where the de-
fault events are supposed to be conditionally independent given a common
factor V . Hence, conditionally on V , the cumulative loss L(t) can be written
as a sum of independent random variables. The sum of independent ran-
dom variables may converge to Gauss or Poisson distributions. The Poisson
approximation is known to be robust for small probabilities in the approx-
imation of binomial laws. One usually asserts that the normal distribution
remains robust when np ≥ 10. If np is small, the binomial law approaches
a Poisson law. In our case, the size of the portfolio is fixed : n ∼ 125. On
the other hand, in the credit context, the default probabilities p(V ) take
values in (0, 1) according to the explicit form w.r.t. the factor V . Hence we
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may encounter both cases. Stein’s method is an efficient tool to estimate
the approximation errors in the limit theorem problems. By combining
Stein’smethod and the zero bias transformation, [El karoui and Jiao(2008)]
provide first order correction terms for both Gauss and Poisson approxima-
tions. We present their main results in the following sections.

2.1 First order Gaussian correction of conditional Losses

We recall the explicit form of the corrector term in the particular case
of the call function. For more details on the general case, we refer to
[El karoui and Jiao(2008), Theorem 3.1].

Theorem 1. Let X1, · · · , Xn be independent zero-mean r.v. such that E[X4
i ]

exists. Let W = X1 + · · · + Xn and σ2
W = Var[W ]. Then, the Gaussian

approximation NσW
((x − k)+) of E[(W − k)+] has corrector

CP =
µ(3)

6σ2
W

kNσW
(k)

where µ(3) =
∑n

i=1 E[X3
i ], Nσ(x) is the density function of the distribution

N (0, σ2) and Nσ(h) := 1√
2πσ

∫

R
h(u) exp

(

− u2

2σ2

)

du. The corrected approxi-

mation error is bounded by

∣

∣

∣E[(W − k)+] − NσW
((x − k)+) − CP

∣

∣

∣ ≤ α(k, X1, · · · , Xn)

where α depends on k and on the moments of Xi up to fourth order.

2.2 First order Poisson correction of conditional Losses

We recall the explicit form of the corrector term in the particular case
of the call function. For more details on the general case, we refer to
[El karoui and Jiao(2008), Theorem 4.2].

Theorem 2. Let Y1, · · · , Yn be independent r.v. taking non-negative integer

values such that E[Y 3
i ] exists. Let W = Y1 + · · · + Yn with expectation

λW = E[W ] and variance σ2
W = Var[W ]. Then, the Poisson approximation

PλW
((x − k)+) of E[(W − k)+] has corrector

CP =
(σ2

W − λW )e−λW

2

(

(k − ⌊k⌋)
λ

⌊k⌋
W

⌊k⌋!
+ (⌊k⌋ − k + 1)

λ
⌊k⌋−1
W

(⌊k⌋ − 1)!

)

.

where PλW
(h) = E[h(Λ)] with Λ ∼ P(λ). The corrected approximation error

is bounded by

∣

∣

∣E[(W − k)+] − PλW
((x − k)+) − CP

∣

∣

∣ ≤ β(k, Y1, · · · , Yn)

where β depends on k and on the moments of Yi up to third order.
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3 Application to the computation of the condi-

tional loss

We now combine the Gauss and Poisson approximations proposed above
to calculate the conditional expectations. We want to approximate

E[(L(t) − K)+|V ] = E[(
N
∑

j=1

Nj(1 − Rj)1{τj≤t} − K)+|V ].

If the Rj are stochastic, we can only use the Gaussian approximation. Since
the summand variables in the Poisson approximation take integers values,
the recovery rates Ri’s are limited to be identical or proportional constants.
Let us first deal with the case of deterministic recovery rates.

3.1 Gaussian approximation with deterministic recovery

rates

To apply Theorem 1, we first need to centralize the summand variables.
We define ξj := Nj(1 − Rj)1{τj≤t} and µV

j and σV
j denote its conditional

expectation and standard deviation (w.r.t. V ) respectively. Let Xj :=
ξj − µV

j and W =
∑N

j=1 Xj . Clearly, W is of mean zero and its variance

is (σV
W )2 =

∑N
j=1(σV

j )2. Moreover, we have µV
j = Nj(1 − Rj)p

j|V
t and

σV
j = Nj(1 − Rj)

√

p
j|V
t (1 − p

j|V
t ). Then

E[(L(t) − K)+|V ] = E[(W − KV )+|V ],

where KV = K −
∑N

j=1 µV
j . Theorem 1 yields

E[(L(t) − K)+|V ] ∼ NσW
((x − KV )+) +

1

6σ2
W

N
∑

i=1

E[X3
j |V ]KV NσW

(KV ),

(1)

where E[X3
j |V ] = N3

j (1 − Rj)3p
j|V
t (1 − p

j|V
t )(1 − 2p

j|V
t ).

3.2 Poisson approximation in the homogeneous case

Poisson approximation can only be used in the homogeneous case: Rj =
R and Nj = 1

N
for all j. In homogene condition, we get L(t) =

1−R
N

∑N
j=1 1{τj ≤t}, and

E[(L(t) − K)+|V ] =
1 − R

N
E[(W − m)+|V ],
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where W =
∑N

j=1 1{τj≤t} and m = KN/(1 − R). Theorem 2 yields

E[(L(t) − K)+|V ] ∼ PλV
W

((x − k)+) − CP ,

where PλV
W

((x − k)+) =
∑N

l=1
(λV

W
)l

l! e−λV
W (l − m)+ and λV

W =
∑N

j=1 p
j|V
t .

The correction for the Poisson approximation is

CP =
((σV

W )2 − λV
W )e−λV

W

2

(

(m − ⌊m⌋)
(λV

W )⌊m⌋

⌊m⌋!
+ (⌊m⌋ − m + 1)

(λV
W )⌊m⌋−1

(⌊m⌋ − 1)!

)

,

where (σV
W )2 = p

j|V
t (1 − p

j|V
t ).

3.3 Gaussian approximation with stochastic recovery rates

In such a case, we assume that Rj is independent of τj. We define
ξj := 1{τj ≤t} and µRj

, σ2
Rj

and γ3
Rj

are the first three centered mo-

ments of the r.v. Rj . We also define Xj = N−1(1 − Rj)ξj − µV
j where

µV
j = N−1(1 − µRj

)p
j|V
t . We introduce W =

∑N
j=1 Xj . As in the determin-

istic case, we get the approximation (1), where σW and E[X3
j |V ] depend on

the first three centered moments of the r.v. Rj. For more details, we refer
to [El Karoui et al.(2008)El Karoui, Jiao, and Kurtz, Section 3.3].

4 Practical Implementation

We recall that the computation of E((L(t) − K)+) is done in two steps:

1. We compute the conditional expectation H(V ) := E((L(t) − K)+|V ),

2. We compute E(L(t) − K)+ =
∫

R
H(v)pV (v)dv, where pV (v) is the

probability density of V .

4.1 Methodology

Practically, the methodology is the following

1. One choose a Copula, i.e. we fix the law of the risk factor V . We
denote Vinf and Vsup the numerical lower and upper bounds of V .
(For example, if V ∼ N (0, 1), we take Vinf = −6 and Vsup = 6).

2. For M values of v uniformly distributed on [Vinf , Vsup] (for example
M = 200), we compute H(v)pV (v) (See below for an explanation of
the computation of H(v)).

3. We use a Riemann summation to get an approximation of
∫

R
H(v)pV (v)dv.
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The computation of H(v) depends on the case we consider

• Inhomogeneous case (i.e. there exist i and j s.t. Rj 6= Ri (or Ni 6= Nj))
with deterministic recovery rates: we use the Gaussian approximation
of Section 3.1

• Homogeneous or inhomogeneous case with stochastic recovery rates:
we use the Gaussian approximation of Section 3.3

• Homogeneous case with deterministic recovery rates: we use either the
Gaussian approximation of Section 3.1 or the Poisson approximation of

Section 3.2 depending on the value of
∑N

j=1 p
j|v
t . We use the Gaussian

approximation when
∑N

j=1 p
j|v
t > 10, otherwise we use the Poisson

approximation.

4.2 Parameters with Nsp

When we load the Nsp software, we have to fill in the values of the pa-
rameters. The connection with our notations is the following

• Number of companies : N

• Intensity : hi function (default value hi(v) = 0.01). To use an inho-
mogeneous intensity, fill the file cdo_intensity.dat

• Nominals : Nj (if homogeneous, Nj = 1
N

, if not, fill the file
cdo_nominal.dat)

• Type of recovery : concerns Rj (default value Rj = R = 0.4). Other-
wise one can choose a random recovery.

Concerning the Copula, one can choose one type of the following table.

Type Parameters (example value)

Gaussian Correlation ρ (0.03)

Clayton θ (0.2)

NIG Correlation ρ (0.06), α (1.2), β (−0.2)

Student Correlation ρ (0.02), Degree of freedom t1 (5)

Double t Correlation ρ (0.03), Degree of freedom t1 (5), Degree of freedom t2 (7)
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