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Premia 18

1 LIBOR market model

This part is based on [S05].

1.1 Swap

Let us consider a set of dates {T0, T1, ..., Tk} with 0 < T0 < T1 < ... < Tk <

T .
At time t, knowing the numeraires Bj(t) = B(t, Tj), the LIBOR rates are
defined by the formula

Lj(t) :=

(

Bj(t)

Bj+1(t)
− 1

)

.δ−1
j , T0 ≤ t ≤ Tj

with δj := Tj+1 − Tj (we then take a fixed δ). The value of a swap on those
rates with strike θ, start-date Ts and end-date Te is :

Swap(Ts, Te, θ) = (
e−1
∑

j=s

Bj+1(Ts)δj(Lj(Ts) − θ))+

1.2 LIBOR rates dynamics

In the LIBOR market model, LIBOR rates dynamics is given under the spot
measure by the formula :

dLi =
i
∑

j=m(t)

δLiLjγi.γj

1 + δLj

dt + Liγi.dW ∗

where γ is a k dimensional deterministic function and W ∗ is in an Rk valued
brownian motion.

The choice of γ is a calibration problem.
We here consider γ of the type

γi(t) = cg(Ti − t)ei

with c constant and :

g(s) = g∞ + (1 − g∞ + as)e−bs
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where a, b and g∞ are constants and ei R
k vectors.

The correlation matrix ρ = (ρi,j)i,j = (ei.ej)i,j , is taken equal to ρi,j =
exp(−φ|i − j|). We may reduce the problem’s dimension by principal com-
ponent analysis.

1.3 Swaptions

Using that formula, we can simulate the LIBOR rates by a log-Euler scheme
to price a european swaption (i.e an option on a swap) by Monte-Carlo
methods.

An approximate Black formula (based on the exact formula in the Swap
Model case) for european swaption with strike θ, start-date in {Tp, Tp+1, ..., Tq}
and end-date Tq+1 is:

Swaption ≃ Bp,q(t).(Sp,q(t).N(d+(t)) − θ.N(d−(t)))

d± =
ln(

Sp,q(t)
θ

)

σ.
√

Tp − t
±

σ.
√

Tp − t

2

(σB
p,q(t))2 =

q−1
∑

l,l′=p

vl(t).vl′(t).Ll(t).Ll′(t)

Sp,q(t)2

∫ Tp

t
γl(s)T .γl′(s)ds

vl =
δ.Bl+1

Bp,q

We aim to price the Bermudan version of the swaption.

2 Discrete optimal stopping

2.1 Framework

Let (Zi)0≤i≤k be a discrete non-negative random reward process with state
space R adapted to some fitration F = (Fi)0≤i≤k. For a fixed i, an F-
stopping time is called optimal stopping time in the discrete set of exercice
dates {i, ..., k}, if

Y ∗
i := sup

τ∈{i,...,k}
EiZτ =: EiZτ∗

i
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The process Y ∗ called the Snell envelope process is a supermartingale and
the supremum is taken over all F-stopping times τ with values in the set
{i, ..., k}.
The family (τ∗

i )0≤i≤k is called an optimal stopping family.

As a first simple example, we consider the die game :
A player is allowed to roll a die at most k times. At each turn, he has the
option to earn the face value of the die or to pursue the game.
If (Zi) represent the dice’s result at the ith attempt, then Y ∗

0 is the right
price for the game.

2.2 Application to finance

Consider L(t) a Rd valued random process on a finite time interval [0, T ]
adapted to a filtration (F(t))0≤t≤T and a set of dates T := {T0, ..., Tn} with
0 ≤ T0 < T1 < ... < Tn ≤ T .
An option issued at time t = 0 to obtain a cash flow CTτ

:= C(Tτ , L(Tτ ))
at date Tτ ∈ T chosen by the option holder is called a Bermudan style
derivative.
With respect to a pricing mesure P connected with some pricing numeraire
B, the value of the Bermudan derivative at t = 0 is

V (0) := B(0) sup
τ∈{0,...,n}

EF(t=0) CTτ

B(Tτ )

where the supremum argument is taken over all F-stopping times with Tτ

in the set {Ti, ..., Tk}.

Defining Zi =
CTi

B(Ti)
, Y ∗

0 gives the price of the Bermudan option.

Remarks :
- We here consider the case where the exercise dates Ti and the rates end
dates Ti conincide, and we will denote them by Ti from now on.
- In some cases, the Bermudan version of a derivated may be trivialy priced.
For example, for a call with log-normal underlying, choosing the last exer-
cice date to exercise is always optimal. The hump shape of the European
prices as a function of maturity shows that there is some interest in com-
puting optimal exercice dates for Bermudan derivatives. This is the case in
particular for swaptions in the LIBOR market model and basket put with
log-normal underlying.
We also must keep in mind that the Bermudan derivative is more expensive
that all European derivatives with maturities T0, T1 ... Tn because one can
choose arbitrairement the exercice date.



?? pages 5

3 Methods

3.1 Backward dynamic programming

This is the canonical method to solve discrete optimal stopping problems.
The Snell envelope is constructed as follows :
We have trivially Y ∗

k = Zk, and for 0 ≤ j < k we have Y ∗
j = max(Zj , EF(j)

Y ∗
j+1).

An optimal stopping family is represented by :
τ∗

i = inf{j, i ≤ j ≤ k : Y ∗
j ≤ Zj}

The 2 following methods are respectively described in [AND99] & [KOL05].
The 3 following methods correspond of the chapter 5 of [SCH05] : Pricing
of Bermudan Style Libor Derivatives.

3.2 Andersen algorithm

This method is described in [A99] and [S05]. We aim to find an optimal
exercice frontier for the payoff : (H(Ti))0≤i≤k.

This frontier is found by backward programming using Monte-Carlo sim-
ulations.

This method is exact in dimension 1 and gives good results in multi-dimensional
cases such as Bermudan swaption.

We can save time searching for a H with less degrees of freedom, for in-
stance a piecewise affine H.

We propose 4 alternative strategies (H is computed in respect with the
strategy):
strategy 1 : exercice if Zi > H(Ti)
strategy 2 : exercice if Zi > H(Ti) and Zi > BE(Ti)
strategy 3 : exercice if Zi > H(Ti) + BE(Ti)
strategy 4 : exercice if Zi > H(Ti) and Zi > NE(Ti)
strategy 5 : exercice if Zi > H(Ti) + NE(Ti)
where, BE(Ti) denotes the most expensive of all european derivates at time
Ti and maturities Tj , i ≤ j ≤ k and NE(Ti) is the value of the european
derivative with maturity Ti+1 at time Ti
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Strategies 1 & 2 are mentionned in [A99]. We can find for instance strategies
1, 2 & 3 in [S05] and all strategies in [SS03].

3.3 Kolodko & Schoenmakers iterative construction of the

optimal Bermudan stopping time

This method is described [KS05] and [S05].
A one step improvement upon a given family of stopping times
Considering a family of integer valued stopping indexes (τi)0≤i≤k, let us de-
fine :

Ỹi := max
p:i≤p≤k

EF(i)Zτp

Let us consider a new family of integer valued stopping indexes :

τ̂i := inf{j : i ≤ j ≤ k, Ỹj ≤ Zτj
}

and the process Ŷi := EF(i)
Zτ̂i

.
Then, we have Yi ≤ Ỹi ≤ Ŷi ≤ Y ∗

i , 0 ≤ i ≤ k. See Th 3.1 in [KS05].

Iterative construction of the optimal stopping time and the Snell envelope process

Let us start with the family τ
(0)
i ≡ i and define the sequence τ (n) by

τ (n+1) = τ̂ (n).
Then, the process Y

(m)
i := EFiZT

τ
(m)
i

converges to the Snell envelope (and

Y
(m)

0 to the price). See Th 4.2 in [KS05]. In fact Y
(m)

i equals Y ∗
i as m ≥ k−i.

A simple way to understand this convergence is the fact that this methods is
in a way a non backward reformulation of backward dynamic programming.

Remarks :
- The efficiency of K & S’s algo is based on convergence’s speed. Indeed, the
cost is exponential in m. In practice, we won’t exceed m =2.

- Y
(1)

0 is the price with the strategy : exercice in Ti if the payoff is bigger
than all europeans with maturities Ti+1, ..., Tk (as in Andersen strategy 2).

3.4 Dual approach

This method is described [KS04] and [S05].rough upper bound
We first notice that

V (0) := B(0) sup
τ∈{0,...,n}

EF(τ) CTτ

B(Tτ )
≤ B(0)EF(0) sup

t∈{0,...,n}

CTt

B(Tt)
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Notice that in this formula, the first supremum argument is taken over all
F-stopping times with Tτ in the set {Ti, ..., Tk} and the second supremum
argument is taken simply over all {i, ..., k}.
This rough upper bound for the price can be easily computed by Monte-
Carlo simulation.
It would be the expected payoff of the Bermudan option for somebody who
could guess (as an oracle) the optimal exercice date.

tight upper bound
If Y is a lower estimator process of the Snell envelope, an upper estimator
is given by the formula Y

up
i = E supi≤j≤k(Zj −

∑j
i=1 Yi +

∑j
i=1 EFi−1Yi).

The closer Y is from Y ∗, the closer is Y up from Y ∗ as shown in [S05] or
[KS05].
So, the computation of Y

up
0 from Y given by Andersen’s or Kolodko &

Schoenmakers’ method gives a good tight upper approximation for the price.

As described in [SCH05], we simulate both an upper and a lower estimator
for Y up.
upper : Y

upup

i = E supi≤j≤k(Zj −
∑j

i=1 Yi +
∑j

i=1
1
K

∑K
q=1 ξi,q)

where ξi,q are K copies of Yi under the conditional measure P (Li−1, .).

lower : Y
uplow

i = E(Zĵmax
−
∑ĵmax

i=1 Yi +
∑ĵmax

i=1
1
K

∑K
q=1 ξi,q)

where ĵmax is an estimation of argmaxi≤j≤k(Zj−
∑j

i=1 Yi+
∑j

i=1
1
K

∑K
q=1 ξi, q)

computed during the simulation of Y
upup

i and the two collections of ξi,q are
simulated independently.

A computation of a combined estimator Y
up,α

0 = αY
upup

0 + (1 − α)Y uplow

0

for the upper estimator is described in [S05].

In order to compute a suitable α, we use linear regression, to search for
cu, cl, βu, βl minimizing

6
∑

i=2

(
log(Y upup

0 − < Y
up

0 >) − (log(cu) − βu log(2i))

log(Y upup

0 − < Y
up

0 >)
)2

6
∑

i=2

(
log(< Y

up
0 > −Y

uplow

0 ) − (log(cl) − βl log(2i))

log(< Y
up

0 > −Y
uplow

0 )
)2

where < Y
up

0 >= Y
up,α= 1

2
0 =

Y
upup

0 +Y
uplow

0
2 .

Let α = cl

cu+cl
.

We can simply get cu and cl as cu =< Y
upup

0 − < Y
up

0 >> and cl =<<

Y
up

0 > −Y
uplow

0 >.
Computing α in this way give good hopes that Y

up,α
0 by a tight estimator
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of Y
up

0 .
The time for a precise computation of this upper bound needs is bigger than
the one for Andersen or Kolodko & Schoenmakers’ methods for the lower
bounds but is reasonable.

4 Implementation

4.1 Program structure

This C++ program is structured as follows.
In a mother class called LMM (for LIBOR market model) is given all the
information concerning the LIBOR rates : log-Euler Scheme and Black ap-
proximation formula.
Derived classes contain the algorithms used to find bermudan price approx-
imation as explained in this table.

class derived from contents

LMM - all information about rates :
LIBOR’s rates dynamic, Black formula

Y1 LMM K&S’s algo (1 iteration)

Y2 LMM K&S’s algo (2 iterations)

Andersen LMM Andersen’s algo

Andersenhat Andersen Andersen’s algo + 1 iteration of K&S’s algo

Y1up LMM upper estimator with K&S’s algo (1 iteration)

YAup Andersen upper estimator with Andersen’s algo

4.2 Simple and more refined versions

We wrote a simple version with γ equal to a constant using a 1-dimentional
coefficient σ and a low log-Euler scheme precision : ∆t = δ. In this simple
version both simulation of LIBOR’s rates dynamic and Black formula are
simpler and faster. So, all pricing algorithms terminate in under 1 minute
on a 2 GHz PC.
The simple version has the same parameters as Sonke Blunck’s program
(Premia 2005) : rates’ float initial value : 6 %, strike : 6 %, σ = 0.2, δ = 0.5
(6 months), swaption maturity : 1 year, swap maturity : 4 years.
We here give a table comparing our program’s results with S. Blunck ’s pro-
gram’s results.
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algorithm price estimator(SD)

Premia, S Blunck - Andersen (strategy 1) 157

Premia, S Blunck - Andersen (strategy 2) 157

our results :

rough lower estimator 123

rough upper estimator 198

Andersen (strategy 1) 157.0 (0.1)

Andersen (strategy 2) 157.0 (0.1)

K & S (1 iteration) 156.0 (0.1)

K & S (2 iterations) 156.7 (0.4)

upper estimator with Andersen’s algo 156.5 (1.7)

upper estimator with K & S’s algo 157.5 (1.2)

We also wrote a refined version (see An important remark) to show how
Kolodko & Schoenmakers’ method is better than Andersen’s in case the
information on rates is richer (OTM case, high multi-dimensional case) in
respect with [KS05].
We so can compare results of the refined version with the ones in [KS05].
We didn’t get very tight result because of the long time needed to compute
the results.
Refined version parameters : k = 40, δ = 0.25, Principal component analysis
: d = 10
c = 0.2, a = 1.5, b = 3.5, g∞ = 0.5, φ = 0.0413.

price in [KS05] (SD) price with our program (SD)

K & S’s algo (1 iteration) 104.2 (0.1) 104 (1.)

K & S’s algo (2 iterations) 110.5 (0.6) 112 (2.)

Andersen’s algo (strat 1) 102.8 (.6) 100 (1.5)

4.3 An important remark

We could have put the methods in the mother class and the information
on the model in a derived class. Then, it would have been easier to change
the model for instance pricing Bermudan basket put instead of Bermudan
swaption. Our choice has the advantage to show clearly how works each
method.
With our choice, changing the field of the mother class Libor in order to use
a simpler model or to price something else as Bermudan basket put or the
dice game remains quite easy.
Indeed, please note that the 2 versions (simple & refined) have very small
differenties. In fact, the parameter σ in the simple version is replaced by the
parameters a, b, c, φ, g∞ in the refined version. A matrix as a field is added
in class LMM and the rates dynamics and the Black formula are changed.
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The user may write a customised version quickly.

4.4 Basket put pricer

It is also quite easy to change the program into a basket put (on a log-normal
underlying) pricer by changing parameters, dynamics and Black formula (for
a basket put there is an approximation Black & Scholes formula given in
[BKS05]).
We wrote a basket put version and compared its results with [BKS05] and
other Premia programs.

algorithm price (SD)

in the paper [BKS05], lower 2.400 (0.005)

in the paper [BKS05], upper 2.406 (0.004)

Premia (Longstaff Schwarz) ≃ 2.40

Premia (LS Importance Sampling) ≃ 2.40

our results :

K & S’s algo (1 iteration) 2.361 (0.005)

K & S’s algo (2 iterations) 2.40 (< 0.01)

Andersen’s algo (strat 1) 2.403 (0.002)

upper estimator with Andersen’s algo 2.403 (0.003)

upper estimator with K & S’s algo 2.403 (0.002)
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