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1 Introduction

The following method proposed by [1] deals with an efficient Monte Carlo scheme
for simulating the stochastic volatility model of Heston enhanced by a non-parametric
local volatility component.
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2 Theoretical framework

We consider the following local stochastic volatility model

d
575 =rdt+ o(t, S;)(Vy)dWY,
¢

AV, = a,(t, V;)dt + b, (¢, V;)dW},
AWEAW? = pyydt,

where 7 denotes the risk-free interest rate, p,, is the correlation between the corre-
sponding Brownian motions, o(t, S;) is the local volatility component, ¢)(V}) controls
the stochastic volatility, parameters a,(t,V;) and b,(¢,V;) determine the drift and
diffusion of the variance process respectively. In the following, we consider

(V) =V,
av(tv V;f) = I{(U - V;f)a
bu(t, Vi) = 1/ Vi

where x controls the speed of mean reversion, ¥ controls a long-term mean and ~
determines the volatility of the process V;.
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To be able to calibrate market smiles exactly, the volatility o is given by the following
equality

O-%V (tv K)

5 = Epunis = K]

where o denotes the Dupire’s local volatility.

3 Numerical algorithm

3.1 Computation of E[¢*(V})|S; = K]

Suppose that at a given time ¢;, 7 = 1,--- , N we have M pairs of Monte Carlo
realizations (s;1,vi1), -, (Siam,viar). By grouping the pairs of realizations into
bundles [b; 1, b 2], |bi2, bis), -+ 5 ]big, big1], we get

ER?(Vi,)|Si = sij] ~ B[ (Vi)| S, €]bik, ik,
E[w2<‘/tz) {Stie]bi7k,bi,k+1]}]
P(St, €]bik, bigr1])

~Y

for s; ; €]bik, big+1]-
If we build the [ bins such that each bin contains the same number of Monte
Carlo paths, we get

ﬁ Z]]Vil ¢2(Uiyj)ﬂ'{si,je]bi,kabi,k+l]}
P(Sy; €]bik, bikr1])

! 9
~ > A (viy)

J€Ti K

E[*(Vi,)

Sty = Sij] ~

where % represents the probability to be in the kth bin and J;x = {jlsi; €
1k, bi k1] }. We summarize the method:
For each step t;, i =1,--- N

1. Generate M pairs of observations (s; ;,¥*(v;;)), j=1,--+, M.

2. Order the elements 5, ; : 5,7 < --- <3, ) and apply the same permutation on
(%’,1, T ,Uz',M)-

3. Determine the boundary of the [ bins |b; x, b; k+1], K = 1,-- -, [ in the following
way

bix =5i1, bigy1 =SiN, bix = Sik—v)ymy, k=2, L

4. For the kth bin approximate the conditional expectation by

[
St, €]bik, bigr1]] ~ i Z ¢2(Ui,j)

JETik

E[*(Vi,)
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3.2 Simulation scheme

First, we recall the dynamics of the Heston SLV model expressed in terms of
independent Brownian motions:

aggtt = rdt + ot St)\/;t (pdetU t mdﬁ/f") ’

AV, = k(T — V,)dt + y\/V,dW}

where W* and W* are independent Brownian motions. Following the scheme pro-
posed in [, Section 3.3], we discretize [0,7] on a regular grid of size N, with step
size A = % We get

Vit1,j NC(A)Xz(CL Alti, Ui,j));

1, v
Tipry =i+ A = 567 (b, wig)ui A + <

G(ts, i) (Vig1,; — KOA + v jc1)

+ 1 \/52(tz‘7 i 0i ALy,
where @;; = In(s;;), p1 = (1 —p2,)"?, 1 = kA — 1 and
2

(A = Z?(l ey =

4kT 4rerA

E2h A(t,z) = m%

x%(d, z) represents a noncentral chi-squared distribution with d degrees of freedom
and non-centrality parameter x, and

oty (ti, si;)

[‘/tz‘stz = Si,j]'

6'2<ti,$7;7j) = O'Q(ti,exi’j) = E

4 Numerical experiments

We test the algorithm on a Call option with payoff e™*(Sy — K), with the
following parameters, for different maturities and strikes :

[rlso]l w [ & [ 7 | pow |
0] 1]0.0945 ] 1.05 [ 0.95 | -0.315 |

We use [ = 20 bins, N = 100 times steps and M = 10°> Monte Carlo simulations
and the local volatility oy is given by

oy (t,z) = 0.01 + 0.1e7%/% 4 0.01t.

[KT] 2 \ 8

0.7 1 0.300028 | 0.309048
0.9 || 0.103869 | 0.154880
1.1 ][ 0.004426 | 0.059615
1.3 || 0.000046 | 0.019109
1.5 || 0.000002 | 0.005046
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