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The following method computes the price of convertible bonds with call protection. It is
based on the paper [2], which is a follow-up paper to [1].

Premia 18

1 Introduction

A convertible bond pays coupons from time 0 until a terminal payoff

1{ζ=τ<T }l(τ, Sτ ) + 1{θ=τ}h(θ, Sθ) + 1{ζ=T }g(ST ) (1)

occurs at the minimum ζ = τ ∧ θ of two [0, T ]-valued stopping times θ and τ . Here the put

time τ and the call time θ are [0, T ]-valued stopping times under the control of the holder
and the issuer of the bond respectively, and

• g(ST ) corresponds to a terminal payoff that is paid by the issuer to the holder at time
T if the contract was not exercised before the maturity time T ;

• l(τ, Sτ ), respectively h(θ, Sθ), corresponds to an early put payoff, respectively early call

payoff, that is paid by the issuer to the holder of the claim in the event of early termi-
nation of the contract at the initiative of the holder, respectively issuer.

Convertible bond call times θ are subjects to constraints, called called protections, prevent-
ing the issuer from calling the bond on certain random time intervals. From the mathematical
point of view, the study of such products leads to doubly reflected backward stochastic differ-
ential equations with an upper barrier which is only active on random time intervals (called
RIBSDE in the literature).

2 The Model

For the numerical experiments, we consider the local drift and volatility model of a non-
negative underlying process S:

dSt = St(b(t, St)dt + σ(t, St)dWt), S0 = x

1
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where W is a standard univariate Brownian motion, and

b(t, S) = r − q + ηγ0

(

S0

S

)α

, σ(t, S) = σ.

r is the riskless short interest rate, q is the equity dividend yield, γ0

(

S0

S

)α
represents the local

defaults intensity of the firm issuing the bond, and η(≤ 1) is a real constant which represents
the fractional loss on S in case of a default of the firm issuing the bond.
Concerning the payoff function defined in (1), we set

l(t, St) = l(St) = P ∨ St, h(t, St) = h(St) = C ∨ St, g(ST ) = N ∨ ST = ξ.

for non-negative constants P ≤ N ≤ C.
The convertible bond continuously pays coupons c(t, St)dt, from time 0 onwards, until the
terminal payoff (1) is paid at time τ ∧ θ. Accounting for credit risk and recovery on the bond
upon default, one assumes the following form of the coupon rate function c

c(t, S) = c + γ0

(

S0

S

)α

((1 − η)S ∨ R),

where c is the nominal coupon rate function and R is the nominal recovery on the bond upon

default.
Call times θ are modelized by a non-decreasing sequence (θn)n of stopping times, which
represent times of switching of call protection. We assume that issuer calls are forbidden on
the even time intervals [θ2l, θ2l+1).

We finally denote by βt = e−
∫ t

0
µ(s,Ss)ds a risk-neutral credit risk adjusted discount factor,

where µ(t, S) = r + γ0

(

S0

S

)α
.

3 Link with BSDEs

By application of [1], pricing convertible bond can be linked to the following reflected
BSDE

ΠT = g(ST ), and for all t ∈ [0, T ]
{

−dΠt = (c(t, St) − µ(t, St)Πt)dt + dAt − ∆tσ(t, St)StdWt

Lt ≤ Πt ≤ Ut, (Πt − Lt)dA+
t = (Ut− − Πt−)dA−

t = 0.

to be solved in (Π, ∆, A) in the ’usual spaces’ of square integrable processes. The upper bar-
rier Ut is defined by Ut = 1{lt is even}∞ + 1{lt is odd}h(St) with lt s.t. θlt ≤ t < θlt+1, and

the lower barrier Lt = l(St). Π represents the price of the convertible bond, and ∆ represents
the derivative of the price w.r.t. the asset value.

4 Different clauses on call times

In this Section we present different causes on call times. The asset S is discretized in n
time steps with an Euler Scheme

Sn
i+1 = Sn

i (1 + b(ti, Sn
ti

)h + σ(ti, Sn
ti

)(Wti+1
− Wti

), Sn
0 = x,

where h := T
n

and ti = ih, for all i = 0, · · · , n.
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4.1 No call protection

One considers the case of no call protection, i.e. the issuer can call the bond at any time
between 0 and the maturity T . (θ1 = 0, θ2 = T ). In this case, the discounted price process
βΠ of the bond is given by

βtΠt = essinfθ∈Tt
esssupτ∈Tt

Et

{

∫ ζ

t
βscsds + βζ(1{τ≤θ,τ<T }l(Sτ ) + 1{θ<τ}h(Sθ) + 1{τ=θ=T }ξ)

}

where ζ = τ ∧θ, βt = exp−
∫ t

0
µ(s,Ss)ds and Tt represents the set of stopping times taking values

in [t, T ].
The simulation scheme is done in two steps: first, we compute the continuation value com-
puted by iteration on the values (backward estimates): vj

n = g(Sj
n) for j = 1 · · · M , and for

i = n − 1 · · · 0 for j = 1 · · · M ,

vj
i = min

(

h(Sj
i ), max

(

l(Sj
i ), e−µ

j

i
h
E

j
i (vi+1 + hci+1)

))

.

The conditional expectations are computed by non-linear regression of (vj
i+1 + hcj

i+1)j=1···M

against (Sj
i )1≤j≤M .

Then, we recover the put and call regions and optimal put and call policies:

Ep = {(i, Sj
i ); vj

i = l(Sj
i )}, τj = inf{i ∈ {0, · · · , n}; Sj ∈ Ep} ∧ n

Ec = {(i, Sj
i ); vj

i = h(Sj
i )}, θj = inf{i ∈ {0, · · · , n}; Sj ∈ Ec} ∧ n.

We then have the following policy iteration estimates (forward estimates) for the option price
at time 0, with ζj = τ j ∧ θj .

ṽ0 =
1

M

M
∑

j=1

βj
i c(Sj

i ) + βj

ζj

(

1{ζj=τ j<n}l(Sj
τj

) + 1{θj<τ j}h(Sj

θj ) + 1{ζj=n}g(Sj
n)

)

.

4.2 Standard Call protection

We consider the case where the issuer can call the bond on [θ1, T ], where

θ1 = inf{t ∈ R+ : St ≥ S} ∧ T.

for some trigger level S > S0.
The simulation scheme is the following : given a stochastically generated mesh (Sj

i )0≤j≤M
0≤i≤n

and setting

θj
1 = inf{i ∈ {0, · · · , n} : Sj

i ≥ S} ∧ n,

a simulation algorithm for estimating the price at the points (ti, S
t
j

i

)0≤i≤n,0≤j≤M writes as

follows : un = vn = g and then do, for i = n − 1, · · · , 0, j = 0, · · · , M

• vj
i = min

(

h(Sj
i ), max(l(Sj

i ), e−µ
j

i
h
E

j
i (vi+1 + hci+1))

)

,
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• If i ≥ vj
1, uj

i = vj
i , else

uj
i = max

(

l(Sj
i ), e−µ

j

i
h
E

j
i (ui+1 + hci+1)

)

.

vj
i is the no call protection price of the previous section.

We can recover from the protection pricing function u above the following estimates of the
protection put region and of the optimal protection put policy

Ẽp = {(i, Sj
i ) : uj

i = l(Sj
i )}, τ̃ j = inf{i ∈ {0, · · · , θj

1} : Sj
i ∈ Ẽp} ∧ n.

One then have the following policy iteration estimate for the option price at time 0, with
ζj = τ̃ j ∧ θj

1

ũ0 =
1

M

M
∑

j=1







h
ζ̃j

∑

i=1

βj
i c(Sj

i ) + βj

ζ̃j

(

1
{τ̃j<θ

j
1
}
l(Sj

τ̃ j ) + 1
{θ

j
1
≤τ̃ j}

vj

θ
j
1

)







.

4.3 Path dependent Call Protection

Given S > 0 and a fixed increasing sequence of monitoring times I = {T0 = 0, T1, · · · , TN =
T} (pratically includes in set of discretization times i ∗ h, i = 0, · · · , n), let (Ht)t∈[0,T ] stands

for the number of consecutive monitoring dates TIs with STI
≥ S from time t backwards. In

particular, at any given time t, one has Ht = 0 is S is smaller than S at the last monitoring
date before t. We still consider a call protection for t ≥ θ1, but we define

θ1 = inf{t ∈ R+ : Ht ≥ l} ∧ T

The lifting time of the call protection θ1 is thus given as the first time, capped at T , that St

has been ≥ S at the last l monitoring dates.

The simulation scheme is the same as the one in case of standard call protection, except
for the definition of θj

1. Given a time mesh (ti)0≤i≤n refining the monitoring time grid I, we

generate a stochastic grid (Sj
i , Hj

i )1≤j≤M
0≤i≤n by an Euler scheme for S, using past values of S to

fill H. For all j = 1, · · · , M , we define

θj
1 = inf{i ∈ {0, · · · , n} : Hj

i ≥ l} ∧ n.

In the numerical experiments, we take TI+1 − TI =one day, l can varies from 1 to 180, if
the maturity T = 180/365 = 0.4932.

4.4 Highly Path Dependent Call Protection

Given an integer d s.t. l ≤ d ≤ n, let now (Ht)t≤T represents the vector of the indicator
functions od the events STI

≥ S at the last d monitoring dates preceding time t. We now
consider the case

θ1 = inf{t ∈ R+ : |Ht| ≥ l} ∧ T,

with |Ht| =
∑

1≤k≤d Hk
t , Hk

t represents the indicator function of the event STI
≥ S at the last

k monitoring dates before t. So θ1 represents the first time, capped at T , such that S ≥ S on
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at least l among the last d monitoring dates. (For l = 0, resp. l = d, we are back to the no
call protection case, resp. to the l consecutive monitoring dates call protection.)

To solve this system by simulation, given a time mesh (ti)0≤i≤n refining the tenor I, we

generate a stochastic grid (Sj
i , Hj

i )1≤j≤M
0≤i≤n in the obvious way, using past values of S to fill H.

Then, for all j = 1, · · · , M , we define

θj
1 = inf{i ∈ {0, · · · , n} : |Hj

i | ≥ l} ∧ n.

As above, the last part of the algorithm is the same as in the standard case.

4.5 Intermittent Standard Call Protection

We now come to truly intermittent protection with call payoff processes of the following
form, given a non-decreasing sequence [0, T ]-valued stopping times θ = (θl)l≥0, defined by
θ0 = 0 and for every l ≥ 0

θ2l+1 = inf{t > θ2l : St ≥ S} ∧ T, θ2l+2 = inf{t > θ2l+1 : St ≤ S} ∧ T.

Then, we have

Ut = Ωc
t∞ + Ωth(St),

with Ωt = 1{lt odd} for lt defined by θlt ≤ t < θlt+1. Ωt is of the form Ω(t, Xt) where X

represents (S, H) and Ω is a boolean function of X, so

Ut = U(Xt) = Ωc(t, Xt)∞ + Ω(t, Xt)h(St).

The simulation scheme works as follows: given a stochastically generated mesh (Xj
i )1≤j≤M

0≤i≤n ,
the generic simulation pricing scheme for estimating the price u writes ; un = g and for
i = n − 1, · · · , 0 for j = 1, · · · , M

uj
i = min

(

U(Xj
i ), max(l(Sj

i ), e−µ
j

i
h
E

j
i (ui+1 + hci+1))

)

.

The minimum in the above equation plays no role outside the support of Ωi, where Ui(x)
equals ∞.

5 Numerical experiments

The numerical data used by default are the following

P N C η σ r q γ0 α R

0 100 103 1 0.2 0.05 0 0.02 1.2 0

The number of trajectories of S which are used to compute the conditional expectations
are M = 104. The constant time step used for the discretization of S by the Euler scheme
is h = 6 hours. The conditional expectations are computed using regression methods, with a
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basis of 4 polynomials.

In the case of no call protection, the maturity by default is 125 days (i.e. 0.3425 years),
the nominal coupon rate c = 0, and the spot is 100.55.

In the other cases, the maturity by default is 180 days (i.e. 0.4932 years), the nominal
coupon is c = 14.4 (per year), (i.e. 1.2 per month).

In the standard call protection case, the trigger level S = 103.
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