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Abstract: The 2-dimensional Fourier Cosine expansion methods (in short,
2D − COS methods) for pricing rainbow options is introduced by Ruijter and
Oosterlee (2012), we will apply this method for pricing European and Bermudan
rainbow options under the 2-dimensional Merton’s jump-diffusion model and
implement the algorithm in PREMIA.
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1 The Model and products

In this work, we will price the European and Bermudan type arithmetic
basket call option with the two underlying assets and the payoff function is
given as

((S1
T + S2

T )/2 − K)+,

where K is the strike and the underlying asset prices S1
t and S2

t follow the
Merton’s jump-diffusion process as follows

dSi
t = (r − λκi)S

i
tt + Si

tσidZi
t + (eJi − 1)Si

tdqt, i = 1, 2, (1.1)

with κi := E[eJi − 1], qt a Poisson process with mean arrival rate λ, and J =
(J1, J2) bivariate normally distributed jumps, with mean µJ = [µJ

1 , µJ
2 ]′ and

covariance matrix
∑J

ij = σJ
i σJ

j ρJ
ij . The log-processes Xi

t := log Si
t read as

dXi
t = (r − λκi −

1

2
σ2

i )dt + σidZi
t + Jidqt. (1.2)

The characteristic function reads as ϕ(u|x) = eix′uϕlevy(u), with

ϕlevy(u) = exp(iµ′u −
1

2
u′

∑

u) exp

(

λ∆t(exp(iµ′Ju −
1

2
u′

∑J

u) − 1)

)

,

(1.3)
where µi = (r − λκi − 1

2
σ2

i )∆t and
∑

ji = σiσjρij∆t.
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2 European rainbow options

In this section, we the sketch main idea of the 2D−COS formula for approx-
imating discounted expected payoffs of basket option with 2 underlying assets.
This method is an extension of the one dimensional Fourier-Cosine method for
option pricing by Fang and Oosterlee (2008) [1].

Let (Ω, F , P ) be a probability space, T > 0 be a finite terminal time, and
F = (FS)0≤s≤T be a filtration satisfying the usual conditions. The process
Xt = (X1

t , X2
t ) denotes a 2D stochastic process on the filtered probability space

(Ω, F , P ), representing the log-asset prices. We assume that the bivariate char-
acteristic function of the stochastic process is known, which is the case, for
example, for affine jump-diffusions [?]. The value of a European rainbow op-
tion, with payoff function g(·), is given by the risk-neutral option valuation
formula

v(t0, x) = e−r∆t
E

t0,x[g(XT )] = e−r∆t

∫∫

R2

g(y)f(y|x)dy. (2.1)

Here, x = (x1, x2) is the current state, f(y1, y2|x1, x2) is the conditional density
function, r is the risk-free rate, and time to expiration is denoted by ∆t := T −t0.
In the derivation of the COS formula, we distinguish three different approxi-
mation steps.

Step 1. We assume that the integrand is integrable, which is common for
the problems we deal with. Because of that, we can, for given x, truncate the
infinite integration ranges to some domain [a1, b1] × [a2, b2] ⊂ R

2 without losing
significant accuracy, This gives the multidimensional Fourier cosine expansion
formulation

v1(t0, x) = e−r∆t

∫ b2

a2

∫ b1

a1

g(y)f(y|x)dy1dy2 (2.2)

= e−r∆t

∫ b2

a2

∫ b1

a1

g(y)
+∞
∑

k1=0

′

+∞
∑

k2=0

′Ak1,k2
(x)

cos

(

k1π
y1 − a1

b1 − a1

)

cos

(

k2π
y2 − a2

b2 − a2

)

dy1dy2.

The notation vi is used for the different approximations of v and keeps track of
the numerical errors that set in from each step. For final approximations we also
use the "hat" notation, like v̂, ĉ, etc. In the second line in (2.2), the conditional
density is replaced by its Fourier cosine expansion in y on [a1, b1]× [a2, b2], with
series coefficients Ak1,k2

(x) defined by

Ak1,k2
(x) :=

2

b1 − a1

2

b2 − a2

∫ b2

a2

∫ b1

a1

f(y|x) cos

(

k1π
y1 − a1

b1 − a1

)

cos

(

k2π
y2 − a2

b2 − a2

)

dy1dy2.

(2.3)
∑′

in (2.2) means that the first term of the summation has half weight. We
interchange summation and integration and define

Vk1,k2
(T ) :=

2

b1 − a1

2

b2 − a2

∫ b2

a2

∫ b1

a1

g(y) cos

(

k1π
y1 − a1

b1 − a1

)

cos

(

k2π
y2 − a2

b2 − a2

)

dy1dy2,

(2.4)



?? pages 3

which are the Fourier cosine series coefficients of v(T, y) = g(y) on [a1, b1] ×
[a2, b2].

Step 2. Truncation of the series summations gives

v2(t0, x) =
b1 − a1

2

b2 − a2

2
e−r∆t

N1−1
∑

k1=0

′

N2−1
∑

k2=0

′Ak1,k2
(x)Vk1,k2

(T ). (2.5)

Step 3. Next, the coefficients Ak1,k2
(x) are approximated by

Fk1,k2
(x) :=

2

b1 − a1

2

b2 − a2

∫∫

R2

f(y|x) cos

(

k1π
y1 − a1

b1 − a1

)

cos

(

k2π
y2 − a2

b2 − a2

)

dy1dy2.

(2.6)
The 2D-COS formula is based on the following goniometric relation [?]:

2 cos(α) cos(β) = cos(α + β) + cos(α − β). (2.7)

With this we obtain

2Fk1,k2
(x) = F +

k1,k2
(x) + F −

k1,k2
(x), (2.8)

where

F ±
k1,k2

(x) :=
2

b1 − a1

2

b2 − a2

∫∫

R2

f(y|x) cos

(

k1π
y1 − a1

b1 − a1

± k2π
y2 − a2

b2 − a2

)

dy1dy2.

(2.9)
Now, the coefficients F ±

k1,k2
(x) can be calculated by

F ±
k1,k2

(x) (2.10)

= 2

b1−a1

2

b2−a2
Re

( ∫∫

R2

f(y|x) exp

(

ik1π
y1

b1 − a1

± ik2π
y2

b2 − a2

)

dy

exp

(

−ik1π
a1

b1 − a1

∓ ik2π
a2

b2 − a2

) )

= 2

b1−a1

2

b2−a2
Re

(

ϕ
( k1π

b1 − a1

, ±
k2π

b2 − a2

∣

∣x
)

exp
(

− ik1π
a1

b1 − a1

∓ ik2π
a2

b2 − a2

))

= 2

b1−a1

2

b2−a2
Re

(

ϕlevy

( k1π

b1 − a1

, ±
k2π

b2 − a2

)

exp
(

ik1π
x1 − a1

b1 − a1

± ik2π
x2 − a2

b2 − a2

))

.

Re(.) denotes taking the real part of the input argument. ϕ(., .|x) is the bivariate
conditional characteristic function of XT , given Xt0

= x [?]:

ϕ(u|x) = E
[

eiu·XT
∣

∣Ft0

]

=

∫∫

R2

eiu·yf(y|x)dy. (2.11)

Examples of these characteristic functions can be found in section 6. The last
equality in (2.10) holds particularly for Lévy processes, for which ϕlevy(u1, u2) :=
ϕ(u1, u2|0, 0). Inserting (2.10) into (2.5) gives us the 2D-COS formula for ap-
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proximation of v(t0, x):

v̂(t0, x) :=
b1 − a1

2

b2 − a2

2
e−r∆t

N1−1
∑

k1=0

′

N2−1
∑

k2=0

′ 1

2

[

F +

k1,k2
(x) + F −

k1,k2
(x)

]

Vk1,k2
(T )

(2.12)

= e−r∆t

N1−1
∑

k1=0

′

N2−1
∑

k2=0

′ 1

2

[

Re
(

ϕlevy

( k1π

b1 − a1

, +
k2π

b2 − a2

)

exp
(

ik1π
x1 − a1

b1 − a1

+ ik2π
x2 − a2

b2 − a2

))

+Re
(

ϕlevy

( k1π

b1 − a1

, −
k2π

b2 − a2

)

exp
(

ik1π
x1 − a1

b1 − a1

− ik2π
x2 − a2

b2 − a2

))]

Vk1,k2
(T ).

With the multidimensional-COS formula, calculation of the option’s Greeks is
straightforward, as explained for the 1D case in [1].

Remark 1. Cosine terms facilitate the usage of the characteristic function.
Fourier sine expansions may also be used; however, their coefficients decrease
at a lower rate for the payoff functions discussed, and because of this the cosine
series are preferred. Alternative basis functions, like certain wavelet basis func-
tions, may represent another interesting research direction for option pricing,
but this is not yet known and is part of future research.

If the characteristic function is not available directly or not known analyti-
cally, it may be approximated. Local volatility models, for example, typically do
not yield analytic functions ϕ, but recent research in [?] proposes a second-order
approximation formula, so that an approximate characteristic function may be
derived.

3 Bermudan rainbow options

We generalize the 2D − COS method to pricing Bermudan rainbow options
with a 2D underlying log-asset price process, Xt = (X1

t , X2
t ), that is in the class

of Lévy processes. A Bermudan option can be exercised at a fixed set of M
early-exercise times t0 < t1 < ...tM = T , with ∆t := tm+1 − tm. The payoff
function is denoted by g(·). The problem is solved backwards in time, with



















v(tM, x) = g(x),

c(tm−1, x) = e−r∆t
E[v(tm, Xtm

)|Xtm−1
= x],

v(tm−1, x) = max[g(x, c(tm−1, x)], 2 ≤ m ≤ M,

v(t0, x0) = c(t0, x0),
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Function c(tm−1, x) is called the continuation value and is approximated by the
2D-COS formula

ĉ(tm−1, x) :=
b1 − a1

2

b2 − a2

2
e−r∆t

N1−1
∑

k1=0

′

N2−1
∑

k2=0

′ 1

2

[

F +

k1,k2
(x)+F −

k1,k2
(x)

]

Vk1,k2
(tm).

(3.1)
The Fourier coefficients of the value function in (3.1) are given by

Vk1,k2
(tm) :=

2

b1 − a1

2

b2 − a2

∫ b2

a2

∫ b1

a1

v(tm, y) cos

(

k1π
y1 − a1

b1 − a1

)

cos

(

k2π
y2 − a2

b2 − a2

)

dy1dy2.

(3.2)
The option function is now approximated by v̂(tm−1, x) := max[g(x), ĉ(tm−1, x)].

3.1 Recursion formula for coefficients Vk1,k2
(tm)

In this section, a recursive algorithm for recovering the coefficients Vk1,k2
(tm),

backwards in time, is derived.

In the coefficients Vk1,k2
(tM), the terminal condition v(tM, y) = g(y) ap-

pears. Some payoff functions provide analytic solutions to these coefficients in
(3.2); otherwise they can be approximated, as explained in Section 3.2.

For the coefficients that are used to approximate the continuation valued at
times t0, ..., tM−2, the value function, v(tm, y) = max[g(y), c(tm, y)], appears
in the terms Vk1,k2

(tm) and we need to find an optimal policy for all state
values y ∈ [a1, b1] × [a2, b2] into rectangular subdomains Cq and Gp, so that
approximately for all states y ∈ Cq it is optimal to continue and for all y ∈ Gp

it is optimal to exercise the option. We can split the integral in the definition
of Vk1,k2

into different parts:

Vk1,k2
(tm) =

2

b1 − a1

2

b2 − a2

∑

p

∫∫

Gp

g(y) cos

(

k1π
y1 − a1

b1 − a1

)

cos

(

k2π
y2 − a2

b2 − a2

)

dy

+
2

b1 − a1

2

b2 − a2

∑

q

∫∫

Cq

c(tm, y) cos

(

k1π
y1 − a1

b1 − a1

)

cos

(

k2π
y2 − a2

b2 − a2

)

dy

:=
∑

p

Gk1,k2
(Gp) +

∑

q

Ck1,k2
(tm, Cq) (m 6= 0, M). (3.3)

We approximate the terms Ck1,k2
(tM−1, [zq, zq+1] × [wq, wq+1]) in (3.3), where

the variables zq, zq+1, wq, and wq+1 denote the corner points of the rectangular
continuation region Cq. For the integrand of the terms Ck1,k2

we again apply
the 2D Fourier cosine expansion by inserting the COS formula for c(tM−1, y),
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i.e., (3.1). The approximation reads as

Ĉk1,k2
(tM−1, [zq, zq+1] × [wq, wq+1]) (3.4)

:=
2

b1 − a1

2

b2 − a2

∫ wq+1

wq

∫ zq+1

zq

ĉ(tM−1, y) cos

(

k1π
y1 − a1

b1 − a1

)

cos

(

k2π
y2 − a2

b2 − a2

)

dy1dy2

=

∫ wq+1

wq

∫ zq+1

zq

N1−1
∑

j1=0

′

N2−1
∑

j2=0

′e−r∆t 1

2

[

F +
j1,j2

(y) + F −
j1,j2

(y)
]

Vj1,j2
(tM ) cos

(

k1π
y1 − a1

b1 − a1

)

cos

(

k2π
y2 − a2

b2 − a2

)

dy1dy2

= Re

( N1−1
∑

j1=0

′

N2−1
∑

j2=0

′ 1

2
e−r∆tϕlevy

(

j1π

b1 − a1

, +
j2π

b2 − a2

)

Vj1,j2
(tM)M+

k1,j1
(zq, zq+1, a1, b1)M+

k2,j2
(wq, wq+1, a2, b2)

)

+ Re

( N1−1
∑

j1=0

′

N2−1
∑

j2=0

′ 1

2
e−r∆tϕlevy

(

j1π

b1 − a1

, −
j2π

b2 − a2

)

Vj1,j2
(tM)M+

k1,j1
(zq, zq+1, a1, b1)M+

k2,j2
(wq, wq+1, a2, b2)

)

where the elements of square-matrices M+ and M− are given by

M+
m,n(u1, u2, a, b) :=

2

b − a

∫ u2

u1

einπ
y−a

b−a cos

(

mπ
y − a

b − a

)

dy, (3.5)

M−
m,n(u1, u2, a, b) :=

2

b − a

∫ u2

u1

e−inπ
y−a

b−a cos

(

mπ
y − a

b − a

)

dy. (3.6)

We thus find

Ĉk1,k2
(tM−1, [zq, zq+1]×[wq, wq+1]) = Re





N1−1
∑

j1=0

′M+

k1,j1
(zq, zq+1, a1, b1)Aq

j1,k2



 ,

(3.7)
where

Aq
j1,k2

:=
∑N2−1

j2=0
′ 1

2
e−r∆tϕlevy

(

j1π
b1−a1

, + j2π
b2−a2

)

Vj1,j2
(tM)M+

k2,j2
(wq, wq+1, a2, b2)

+
∑N2−1

j2=0
′ 1

2
e−r∆tϕlevy

(

j1π
b1−a1

, − j2π
b2−a2

)

Vj1,j2
(tM)M−

k2,j2
(wq, wq+1, a2, b2).

(3.8)

The elements of (N1 × N2)-matrix Aq are calculated in a rowwise fashion. The
row-vector Aq

j1,. = {Aq
j1,k2

}N2−1

k2=0
can be written as two matrix-vector multipli-

cations:

Aq
j1,. = M+(wq, wq+1, a2, b2)wq+

j1,. + M−(wq, wq+1, a2, b2)wq−
j1,., (3.9)

where

w
q±
j1,. := {wq±

j1,j2
}N2−1

j2=0 , with wq±
j1,j2

:=
1

2
e−r∆tϕlevy

(

j1π

b1 − a1

, ±
j2π

b2 − a2

)

Vj1,j2
(tM).

(3.10)
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Then, the matrix Ĉk1,k2
is computed in a columnwise fashion. The column-

vector Ĉ,k2
= {Ĉk1,k2

}N1−1

k1=0
is calculated by one matrix-vector product,

Ĉ,k2
(tM−1, [zq, zq+1] × [wq, wq+1]) = Re

(

M+(zq, zq+1, a1, b1)Aq
.,k2

)

, (3.11)

with column-vector Aq
.,k2

= {Aq
j1,k2

}N1−1
j1=0 .

The coefficients Gk1,k2
([zp, zp+1] × [wp, wp+1] are defined by

Gk1,k2
(zp, zp+1] × [wp, wp+1]) (3.12)

=
2

b1 − a1

2

b2 − a2

∫ wp+1

wp

∫ zp+1

zp

g(y) cos

(

k1π
y1 − a1

b1 − a1

)

cos

(

k2π
y2 − a2

b2 − a2

)

dy1dy2.

These terms may admit an analytic solution; however, in some practical appli-
cations an analytic solution is not present. Methods to approximate these terms
are proposed in Section 3.2.

We end up with the approximated coefficients

V̂k1,k2
(tM−1) :=

∑

p

Gk1,k2
(Gp) +

∑

q

Ĉk1,k2
(tM−1, Cq). (3.13)

For the other coefficients Vk1,k2
(tm), the approximations ĉ(tm, y) and V̂j1,j2

(tm+1)
will be used to approximate the terms Ck1,k2

(tm, [zq, zq+1]× [wq, wq+1]), and the
elements of the corresponding matrix Aq are

Aq
j1,k2

=

N2−1
∑

j2=0

′ 1

2
e−r∆tϕlevy

(

j1π

b1 − a1

, +
j2π

b2 − a2

)

V̂j1,j2
(tm+1)M+

k2,j2
(wq, wq+1, a2, b2)

+

N2−1
∑

j2=0

′ 1

2
e−r∆tϕlevy

(

j1π

b1 − a1

, −
j2π

b2 − a2

)

V̂j1,j2
(tm+1)M−

k2,j2
(wq, wq+1, a2, b2).

(3.14)

FFT. The matrix-vector products M+v and M−v in the computation of ma-
trices Aq and Ĉ can be computed efficiently by a Fourier-based algorithm, as
stated in Fang and Oosterlee (2009) [2]. The computation time achieved is
O(N log2 N), with N the length of the vector.

Algorithm. We can recover the terms V̂k1,k2
(tm) recursively, starting with

Vk1,k2
(tM). The algorithm for solving the pricing problem backwards in time

reads as follows.

Computational complxity. The initialization is of order O(N1N2). In the
main loop there are M − 1 iterations in which the following computations are
performed. The construction of one matrix Aq costs O(2N1N2 log2 N2) opera-
tions. Computation of Ĉk1,k2

(tm, [zq, zq+1] × [wq, wq+1]) takes O(N2N1 log2 N1)
operations. Gk1,k2

([zp, zp+1] × [wp, wp+1]) is of order O(N1N2). The computa-
tion time is linear in the number of continuation and early-exercise regions. The
final step takes O(N1N2) operations.
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ALGORITHM 1. (2D-COS method for pricing Bermudan rainbow options)
Initialization: Calculate coefficients Vk1,k2

(tM).

Main loop to recover V̂ (tm): For m = M − 1 to 1:
• Determine optimal continuation regions Cq and early-exercise regions Gp.

• Compute V̂ (tm) from (3.3) with the help of the FFT algorithm.

Final step: Compute v̂(t0, x0) by inserting V̂k1,k2
(t1) into (3.1).

3.2 Approximations for the coefficients V (T ) and G(Gp)

In this section, we propose methods for approximating the terminal coef-
ficients Vk1,k2,...,kn

(T ) and the terms Gk1,k2,...,kn
(Gp) that are specific for the

multidimensional-COS method.

In the 1D pricing problem, the terminal coefficients Vk1
(T ) admit analytic

solutions for several options, like put-and call-based options, digital options, and
power options. Besides, in the 1D-COS method for pricing Bermudan options,
the terms Gk1

(Gp) are also usually known analytically.

In two dimensions, the payoff functions of, for instance, a geometric basket
or a call-on-maximum option provide analytic solutions to the 2D coefficients
Vk1,k2

(T ), but this is generally an exception. If no exact representation is avail-
able, then they can be approximated by using discrete cosine transforms (DCTs)
or the ClenshawCurtis quadrature rule. The usage of DCTs is explained in sec-
tion 3.2.1. Also, analytic forms for the terms Gk1,k2,...,kn

(Gp) are in general not
available in the multidimensional version. An approximation method, based on
Fourier cosine expansion of the payoff function, is discussed in section 3.2.

3.2.1 DCTs for V (T )

In this section, we explain this idea of using DCTs to approximate the ter-
minal coefficients Vk1,k2

(T ). For this, we take Q ≥ max[N1, N2] grid-points for
each spatial dimension and define

yni

i := ai +

(

ni +
1

2

)

bi − ai

Q
and ∆yi :=

bi − ai

Q
, i = 1, 2. (3.15)

The midpoint-rule integration gives us

Vk1,k2
(T ) ≈

Q−1
∑

n1=0

Q−1
∑

n2=0

2

b1 − a1

2

b2 − a2

g(yn1

1 , yn2

2 ) cos

(

k1π
yn1

1 − a1

b1 − a1

)

(3.16)

cos

(

k2π
yn2

2 − a2

b2 − a2

)

∆y1∆y2

=

Q−1
∑

n1=0

Q−1
∑

n2=0

g(yn1

1 , yn2

2 ) cos

(

k1π
2n1 + 1

2Q

)

cos

(

k2π
2n2 + 1

2Q

)

2

Q

2

Q
.

The above 2D DCT (Type II) can be calculated efficiently by, we will apply
the 2D FFT in the implementation. The approximated coefficients are de-
noted by V DCT

k1,k2
(T ), with the corresponding computed European option value

v̂DCT (t0, x).
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3.2.2 Approximation methods for G(Gp)

The terms Gk1,k2
are defined by

Gk1,k2
(([zp, zp+1] × [wp, wp+1]) (3.17)

=
2

b1 − a1

2

b2 − a2

∫ wp+1

wp

∫ zp+1

zp

g(y) cos

(

k1π
y1 − a1

b1 − a1

)

cos

(

k2π
y2 − a2

b2 − a2

)

dy1dy2.

These terms may admit an analytic solution; however, in many practical applica-
tions the calculation of coefficients Gk1,k2

(Gp) is time consuming, or an analytic
solution is not present. Then, we can use discrete Fourier transforms to ap-
proximate them, similarly as in section 3.2.1. Another way is the usage of the
Fourier cosine expansion of the payoff function. The Fourier cosine expansion
of the payoff function can be written as

ĝ(y) :=

N1−1
∑

k1=0

′

N2−1
∑

k2=0

′ cos

(

k1π
y1 − a1

b1 − a1

)

cos

(

k2π
y2 − a2

b2 − a2

)

Vk1,k2
(T )

=

N1−1
∑

k1=0

′

N2−1
∑

k2=0

′ 1

2

[

Re

(

exp

(

ik1π
y1 − a1

b1 − a1

+ ik2π
y2 − a2

b2 − a2

))

+ Re

(

exp

(

ik1π
y1 − a1

b1 − a1

− ik2π
y2 − a2

b2 − a2

))

]

Vk1,k2
(T ). (3.18)

With this, the coefficients Gk1,k2
can by approximated by Ĝk1,k2

, similarly as
in (3.4):

Ĝk1,k2
([zp, zp+1] × [wp, wp+1]) (3.19)

= Re





N1−1
∑

j1=0

′

N2−1
∑

j2=0

′ 1

2
Vj1,j2

(T )M+

k1,j1
(zp, zp+1, a1, b1)M+

k2,j2
(wp, wp+1, a2, b2)





+ Re





N1−1
∑

j1=0

′

N2−1
∑

j2=0

′ 1

2
Vj1,j2

(T )M+

k1,j1
(zp, zp+1, a1, b1)M−

k2,j2
(wp, wp+1, a2, b2)



 .

We will apply the above approximation in (3.13).

3.3 Early-exercise Region

For Pricing Bermudan options we need to determine the continuation and
early-exercise region. For this, we divide the domain of the second dimension
[a2, b2] into J subintervals:

[a2, b2] = [w0, w1] ∪ [w1, w2] · · · [wq, wq+1] · · · [wJ−1, wJ ].

At each subinterval, we determine the value y∗ for which the optimal exercise
policy changes to the optimal continuation, i.e.,

g(y∗, wq) = c(tm, y∗, wq).

For the basket put option, the early-exercise region is Gq = [a1, y∗] × [wq, wq+1]
and the continuation region is Cq = [y∗, b1] × [wq, wq+1], while for the basket
call option, the early-exercise region is Gq = [y∗, b1] × [wq, wq+1] and the contin-
uation region is Cq = [a1, y∗] × [wq, wq+1].
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