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1 Introduction

Premia 18

Saddlepoint methods are successfully applied in probability, complex analysis
and mathematical physics for more than fifty years.

The idea of the method is to change the path of integration in a given in-
tegral of the Laplace or Fourier type to obtain better convergence. It occurs
that such an optimal path should pass through the so called saddlepoint of
the integrand. As soon as the optimal path is found one can either write ap-
proximate expansions or apply some numerical integration routine efficiently.

In Premia, we apply saddlepoint method to approximate European call /put
prices in the Heston model (Lugannani-Rice formula, see Section 2.2, formula
(12)).We also demonstrate how the saddlepoint itself can be approximated
using formulae by Lieberman or Glasserman and Kim (see subsection 2.3).

In some cases (like the NIG is) the global parametrization of the optimal
path can be found. In this case we come to an integral with smooth real-
valued non-oscilating fast decaying integrand (see subsection 3.4, formula
(39)). It provides very fast and accurate computation.

This text is organized as follows.

In Section 2 we show how the Lugannani-Rice formula may be derived
and applied to European call/put pricing. To use it for the Heston model
we need just to substitute Heston’s cumulant generating function. We also
present Lieberman’s and Glasserman’s formulae to approximate saddlepoint.
Both formulae perform well for Heston model.

In Section 3 we discuss briefly the general framework of the saddlepoint
method, then we consider the European put pricing formula in the NIG model
and rewrite it in a form which is convinient for the saddlepoint method to be
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applied. Next, we find saddlepoint and global parametrization of the optimal
path. All results in this section are specific for NIG.

2 Saddlepoint approximation

2.1 Option pricing formula

Consider european put option with strike price X, maturity 7', riskless rate
r, written on an asset with price S. Its price at the moment ¢ may be written
as

P, = e "E[max(0,X — Sr)]
_ elanrTPr(ST <X) — e "E [ST|ST <X] PT(ST <X)7 (1)

where 7 =T — t is the time to maturity, and the expected value and proba-
bility are both conditioned on the current value S; of the underlying.

Let Y; = InS; be a diffusion process and let K denote the conditional
cumulant generating function of Y;, that is,

K(1,ulx) = InE [exp(uY;)|Yy = 2] .

We assume that for each (7,z), K exists in some interval (—c,d) with ¢ >
0,d>0and c+d > 0.

Notice that E[Sp|Sy < X] Pr(Sy < X) = XM Pr(Sp < X) where the
probability Pr is defined by

E [exp(uYr)] = E [exp((u + 1)Y7)] exp(—K (7, 1|x)).
The cumulant generating function of Pr is defined by
K(u) = K(u+1) — K(1). (2)

Therefore, provided that the function K is known we can express the option
price as

P, =X Pr(Yp < InX) — e RO Pr(Yy < In X) (3)

and all that remains to be done is to approximate the cumulant probabilities
Pr(Yr <InX) and Pr(Yr <InX).
To do that, we express probabilities by the Fourier inversion formula

Pr(Yr >y[Yo =x) = P(r,ylr)
L i du
= (2mi)" [ exp(K(7,ulr) —uy) - (4)

U—100
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2.2 Saddlepoint approximation. Lugannani-Rice for-
mula.

An explicit saddlepoint approximation for the cumulative distribution func-
tion can be constructed using a method proposed by Lugannani and Rice.
The idea is to find the best possible value of @ in (4). Consider the following
choice:

Set & = a(7,y|r) € R as a solution in u of the equation

K'(1,ulr) =y, (5)

where K'(7,u|x) denotes the derivative of the function K with respect to
u. Such a solution exists and is unique because of the convexity in u of the
function K.

Write Taylor expansion of the function u — (K (7, u|x) — uy) around its
minimum :

K(r,ulx) —uy = K(,d|z) — dy + ;(u —a)?’K"(r,alz) + O(ju — a]*). (6)

On the path of integration we have u = 4 + v, v € R, hence, u — @ is a
purely imaginary. Thus

1v2K"(7',ﬁ|x) + O?). (7)

K(r,u|z) —uy = K(7,4|x) — 4y — 5

Let us approximate the quadratic behavior of K (7, u|x) —uy near @ given
by (6) by the same quadratic behavior of w near some . That is,

(K (r,ulr) — g} — (K (r,le) — iy} = (w — @)’

for an arbitrary real w. In particular, choose w to satisfy

from which we derive that
W = {2 (ty — K(r,alz))}"*sgn(a),

where sgn(@) equals -1, 0 or 1 depending on whether @ is negative, zero or
positive, correspondingly. Then

K(7,4|z) — ty = ~w* — wid. 9)
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Applying this change of variable to (4) yields
W+ico 1 1
P(r,y|x) = (2mi)~! /'wfioo exp <2w2 - wﬁ)) Wdzsjju) dw (10)
and the term du(w)/dw can now be approximated near w = 0 as
du(w)  du()

T = dw + O(w — ).
From (9) one may find that
du(w _
YD) (K ()
To avoid singularity at u = 0 we process (10) as follows:
wW—+ico 1 d
P(r,ylz) = (2772')’1/ exp (2w - ww) v (11)
W—100 w

w+1i00
+ (27rz')_1/ exp (;w2 - w@) (ulw) d?;{:)u) - 1) dw.

W—100 w

When y # K'(7,0|x)

1 du(w) 1  ldu(w) 1 R
u(w) dw w4 dw E+O(w )
1 17 A~ —1/2 1 A~
= — K _ —_
L i) L 0w — ),

and the leadmg term of (11) is
)

PO(rylz) = 1- (@
+ (27ri)’1 XD (;wQ - wt@) dw{; (K”(T,ﬁ]x))_1/2 — ;}}
= - 0@) + o) (g (K alo) ™ - 1} (12)

where ® is the standard normal cumulatlve distribution function, and ¢ is
the standard normal density function.
When y = K'(7,0|z) we have & = & = 0 and
1 du(w) 1 K" (t,0|x)

u) dw " w oo O

so that
PO(rle) = 1= 0(0) + 60N~ gt o 535
B 1_ 1 KW(T,O‘Z’)
= 3 6v/27 K" (7, 0[]/ (13)

Expansions of higher order may be used as well.
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2.3 Approximating the saddlepoint

The key step of saddlepoint method is solving the saddlepoint equation
(5). Numerical solution of the equation may require many iterations and
demands time-consuming evaluations of the cumulant generating function
and its derivatives op to the fourth order (and this is the casee for the op-
tion pricing in the Heston model). To avoid these difficulties one may use
approximation # instead of the true saddlepoint .

For example, Lieberman approximates saddlepoint @ as a power seriesus-
ing first four cumulants k;, i = 1..4:

. - K K — K1\ 2 K2 K — K1\
uL:y 1_3(y 1) n 732_74 <y 1>‘ (14)
Ko 2K9 K9 252 6K R9
Glasserman and Kim propose an improvement that proceeds one more
step. They expand K'(u) around u = ay, (rather than u = 0) to get

y—K'(ay) K" (i) (y— K'<aL>)2
K"(a;)  2K"(ag) \ K"(ag)

K”/(ﬂL)2 B K(4)(ﬁL)> (y—K/(ﬂL)>3
* <2K”(aL)2 6k (i) ) \ Kran) ) (15)

ug = ﬂL—F

One may also use 4y, or g as a starting point in numerical solving the
saddlepoint equation (5).

3 Saddlepoint integration. Case of the NIG
model

3.1 Saddlepoint and the path of integration.
The saddlepoint method is mainly applied to the integrals of Laplace type

F\) = AeAS(“)g(u) du (16)

where A is a large parameter, and v is a path in the complex plane; the
functions g and S are holomorphic in the neighborhood of +. Saddlepoint
method gives a procedure for the deformation of the contour ~ into a new
contour 7, which is more convenient for computation. We start with the
following definitions.
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Definition 3.1. @ € C is called a saddlepoint of the function S(u) if S'(4) =
0. A number n > 1 is called the order of the saddle point i if

S'(a) =...=S™(@)=0, S"(a)+#£0.
A saddle point of order 1 is called a simple saddle point.

Definition 3.2. A simple path v starting at the point G s called a path of
steepest descent for the function S(u), if for all uw #

S (u) = const;  and  RNS(u) < RS(4). (17)

Definition 3.3. Let F(\) be an integral defined by (16).
Two contours v and ~ are said to be equivalent iff integrals F(\) along
these contours are equal:

LeAS(“)g(u)du:/ eAS(“)g(u)du

,Y/
for any A > 0.

It is easy to show that there is the only path of steepest descent starting
at the regular (not saddle) point u, and there are n + 1 curves of steepest
descent starting at the saddle point @ of order n.

Example 3.1. In the simplest case S(u) = u?, the surface z = RS(u) in
the space (z = Ru,y = Su, 2) is a hyperbolic paraboloid z = z* — y?. On
this surface, there is only one point @ such that S’(@) = 0, and this point is
a saddle point of order 1. There are two paths of steepest descent that start
at 4 and go down different "slopes”.

So, our aim is to find a new contour that satisfies the conditions (17).
From all such contours the best one for our purpose is the minimizer of
i RS (u). 18
min max RS (u) (18)
We call the minimizer by .. It can be proved (see [4]) that
(i) v« passes through saddle points, and
(ii) the set of saddle points and endpoints of v, (if any) contains all the
points of maximum of RS (u).
If the parametrization u = wu(s) of the contour =, is known, then from
(17) we conclude that the integral (16) can be written as

() = o5 [ T M) g((s)) () ds, (19)

— 00

where ¢(s) is a real-valued function, and @ is the point of maximum of RS.
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3.2 Option pricing formula in the Levy-based model

Assume that Y; = In S; is a Lévy process under some equivalent martingale
measure (EMM) Q.
Let ¢ be the characteristic exponent of Y under Q defined by the equa-
tion:
E[e’fYt] — oW

. Since Q is an EMM, both the bond and the stock must be priced under Q,
and therefore 1) must admit the analytic continuation into a strip 3¢ € (0, 1),
and continuous continuation into the closed strip ¢ € [0,1]. Further, the
following condition must hold

r 4+ 1(—i) = 0. (20)

Consider a contingent claim of the European type, with the payoff ¢(Y7)
at the expiry date T', then its price P(Y;,t) at time ¢t < T' is given by

+oo+io
Pla.t)= (207 [~ explivg — 7(r + 0(©)a€)ds,  (21)
where 7 =T — ¢ is the time to expiry, and
i) = [ e glayda 22)

is the Fourier transform of g. The ¢ is chosen so that the integral (22)
absolutely converges for 3¢ = o, and the integral (21) absolutely converges,
too.

Consider the European put option with the strike price X and the termi-
nal date T'. The payoff at the expiry date equals max{X — S;,0}. Then we
may write the terminal condition as follows

F(Ye,T) = g(Y) = X(1 — &%), (23)
Clearly,
i) = X [ Te -
1
e ey

is well-defined in the half-plane ¢ = ¢ > 0 and admits the meromorphic
extension into the complex plane with two poles at ¢ = 0 and £ = —i. If
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R(€) is bounded from below on the line 3¢ = o, then the integral in (21)
converges. In the case of NIG, this condition is satisfied for any o € (0, a+/3).
Similarly, for the European call option, we have to take ¢ < —1, and for
the integral in (21) to be defined, we need to take o > —a + . Thus, (21)
is applicable if & > 8+ 1, with any ¢ € (—a + 3, —1).
Assume that Y is a NIG, take 0 € (0, + f3), and write P(x,t) with
r=Y,—InX as

Pat) = o [ explig — (r+ 0(€)a(E)de

% —oo+i0
_ X rootieexplizg — 7(r +¥(£))]
- 271' /oo+io‘ —Zg(—Zg —|— 1) df

3.3 NIG pricing formula
The characteristic exponent of NIG is given by

(&) = —ipg + d[(a? — (B +i&)*)V? — (o — B, (24)

where a > || > 0,6 > 0,4 € R. Notice that v is holomorphic in the
complex plane with cuts [i(o+ 3), +ic0) and (—ioco, —i(a — /)], and in order
that the bond and the stock be priced, we need o — f > 1. The equation
(20) assumes the form

r—p+6[(e® = (B4+1)%) = (= )* =0. (25)

Assume that Y is a NIG, take o € (0, + (3), and express P(z,t) as

X +oo+io

Plat) = o [~ " expling - m{r + 0(€)a(€)ds

_ X pheotioexplizg — 7(r + 1(S))]

T oon /_oo+w —i&(—i + 1) de

X prootio expling — 71 4 iTpé — 75\/042 —(B+1i)2+ T(Sm]d

N 27r/_oo+z‘a —ig(—i{ + 1) ¢
Thus,
with

Ry = X exp|—7r + 76y/a? — (2] (27)
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By changing the variable & — &, we obtain

P(z,t) =

Ry /+oo+z‘o/a explia(x +Tp) — 0475\/1 —(B/a+ if)Q]dg_

21 J—ootio/a —i§(—i€+ 1/a)
Make the further change of variable £ — £ + i/

Pa. 1) = Roc /*‘”“(”—Wa explio(z + 7p)§ — ardyT+ &
z,t) = 2o —coti(o—f)ja  (—i& + B/a)(—=i€+ (B+1)/a)

Introduce new parameters:

de.

U = a(e+rn),

V = ard,
P11 = 6/057
p2 = lla+pi,
o = (0-p)/a
RyeB@+m)
R = —. 28
! 2T (28)

We have U e R, V >0, |p1] <1, 04 € (—p1,1),

Xexp(Vy/1—p2 —Upy — 771
T

1

and

Plet) = R +ootioy exp [’LU{ - V14 52} p
Jf,t = 1/ . .

—ootioy (=€ + p1)(—i§ + pa)
As £ = io + 1 tends to oo on the line ¢ = o, the expression under the
exponential sign admits the representation

UE—V 1+ & =-Vn|—Uos +iUn—iVayn/ln|+O(n|™"),  (31)

therefore the integral (30) converges faster if Uo, > 0, and the convergence
can be enhanced by a good choice of o,. If U > 0, then one is tempted to
choose o € (—py,1).

If U < 0, then the integrand in (30) is meromorphic in the strip ¢ €
(—1,1) with two poles at £ = —ip; and £ = —ips, therefore we can use the
residue theorem and transform the line of integration into the line ¢ =o_,
where o_ € (=1, —ps), and obtain

(30)

co+io_— ) — 2
P(a,t) = X(e™™ — ") + Ry /+ o= exp [iUE V”Hg}dg. (32)

—ootio- (=€ + p1)(—i& + p2)



13 pages 10

Introduce new parameters
W =+vU?+ V2,

z V= —,

_U
W W

S(€) = iz¢ —v\/1+ €2,
9(&) = (—i& + p1) (=& + p2) .

We have 2% +v? =1, |2] < 1, 0 < v < 1 and the branch of the square
root is determined by the condition

and functions

Ry/1 + €2 > 0. (33)

. Further, the S is holomorphic in the complex plane with cuts (—ico, —i
and [i, +i00), and g is meromorphic with simple poles at £ = —ipy, £ = —ips.
In the new notation,

+oo+io

P(z,t) = R / VSO g (£ d. (34)

—00+1i0 4

The integral in the r. h. s. of (34) is of the Laplace type so the saddlepoint
technique can be applied.

3.4 Optimal path of integration
A saddle point @ solves the equation S’(§) = 0. Since

£
Vite

izy/14 €2 = 0. (35)

From (35) and (33), it follows that

S'(&) =iz—w

we obtain the equation

sgn € = sgn z. (36)

Using the equality 2% 4+ v? = 1 and the condition (36), we find from (35)
the unique solution
U =1iz.
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We have
S(0) = iziz—ovV1—22
= 22 -0t =1,
and
F(@) = = A0,

RN RER

hence @ is a simple saddle point.
We can find the contour of steepest descent by using the following trick.
Introduce the new variable s, s € R, as a solution to the equation

S(§) = S(a) - s*,

this choice ensures that (17) and (18) hold and allows us to find the para-
metric equation for the contour of steepest descent v,. We have

i€z —uy 1+ €2 =—1— 5%

whence we find the parametrization of the optimal contour ~,:
E(s) =vsV2+s2+iz(l+s?). (37)

Denote by n and ¢ the real and imaginary parts of £&. Then from (37) and

(36), we obtain

2 2,2

v2o? — 22 772 = 2%v
with the condition
sgno = sgn z.

Thus, for z # 0 the optimal contour 7, is a branch of the hyperbola with
asymptotes o = 27, lying in the upper half-plane if z > 0 and in the lower
half-plane if z < 0; if z = 0 then the optimal contour is the real axis.

Notice that in the process of the transformation the contour never reaches
the cuts (since |z| < 1) but may cross the poles of the integrand, and consider
the following cases:

1) if —p; < z < 1 then in the process of the deformation, the contour
does not cross the poles, and we have

P(x,t) = Rie™ T, (W, z,v, p1, pa), (38)
where
[t exp[—W s?| ,
R B o - L G



13 pages 12

2) if z = —py, then the optimal contour passes through the pole £ = —ipy,
and we obtain

P(x,t) =05Xe"™ + Rie VI, (W, 2,0, p1, p2). (40)

Here the integral Z., (W, z, v, p1, p2) is understood in the sense of the principal
value.

3) if —ps < z < —py then in the process of the deformation, the contour
crosses the pole & = —ipy, and by applying the residue theorem, we obtain

f(z,t) = Xe ™ + Rie VI, (W, 2,0, p1, pa). (41)

4) if —py = z then in the process of the deformation, the contour crosses
the pole & = —ip;, and the optimal contour passes through the second pole;
hence, and by applying the residue theorem, we obtain

P(x,t) = X(e7™ — 0.5¢") + Rie™VI, (W, 2,0, p1, pa), (42)

where the integral is understood in the sense of the principal value.
5) if —1 < z < —py then in the process of the deformation, the contour
crosses the both poles £ = —ip; and £ = —ipy, and we obtain

P(z,t) = X(e ™ —€") + Rie” VI, (W, 2,0, p1, pa). (43)

To compute numerically the integrals in (38)— (43), we choose an appropriate
neighborhood |s| > A of the infinity. If W is large, we integrate by part and
calculate explicitly the leading term of the integral over |z| > A, up to the
desired error; in the case of a small W, we obtain an explicit upper bound
and show that the integral over the neighborhood of infinity can be included
in the error term of the approximate computation procedure.
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