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In this article we will give a brief introduction on COS option pricing
method for European and American options, with different underlying pro-
cesses. Our contribution for Premia project is based on papers [1] and [2].
These papers can be find at:

http://ta.twi.tudelft.nl/mf/users/oosterle/index.html.

Premia 18
This article is organised as follows. As a start, an introduction on COS pric-
ing algorithm for European and early–exercise options are given in Section 1
and Section 2, respectively. A 4–point Richardson extrapolation scheme is
applied to approximate the value of American option from Bermudan option
prices with different number of early-exercise dates. In section 3, we goes
through different underlying processes which we have implemented, together
with our pricing method, in the Premia project. At the end, we give a few
explanation words concerning our codes/programmes.

1 COS Pricing Method for European options

COS pricing method recovers the conditional density by its characteristic
function through Fourier Cosine expansions. It can be applied for all pro-
cesses where the characterisitc function of the underlying is available, which
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includes all affine processes. The method performs impressively especially
when the underlying follows the Lévy processes. It starts from the risk-
neutral valuation formula

v(x, t0) = e−r∆t
∫

∞

−∞

v(y, T )f(y|x)dy,

where v(x, t) is the option value, and x, y can be any increasing functions of
the underlying at t0 and T , respectively. We truncate the integration range,
so that

v(x, t0) ≈ e−r∆t
∫ b

a
v(y, T )f(y|x)dy. (1)

with | ∫

R
f(y|x)dy − ∫ b

a f(y|x)dy| < TOL. Error analysis of the various ap-
proximations is given in [1, 2].

The conditional density function of the underlying is then approximated
by means of the characteristic function via a truncated Fourier cosine expan-
sion, as follows:

f(y|x) ≈ 2

b− a

∑′N−1

k=0
Re(φ(

kπ

b− a
;x) exp (−i akπ

b− a
)) cos (kπ

y − a

b− a
), (2)

where Remeans taking the real part of the expression in brackets, and φ(ω;x)
is the characteristic function of f(y|x) defined as:

φ(ω;x) = E(eiωy|x). (3)

The prime at the sum symbol in (2) indicates that the first term in the ex-
pansion is multiplied by one-half. Replacing f(y|x) by its approximation (2)
in (1) and interchanging integration and summation, gives us the COS algo-
rithm to approximate the value of a European option:

v(x, t0) = e−r∆t
∑′N−1

k=0
Re(φ(

kπ

b− a
;x)e−ikπ a

b−a )Vk, (4)

where

Vk =
2

b− a

∫ b

a
v(y, T ) cos (kπ

y − a

b− a
)dy (5)

is the Fourier cosine coefficient of v(y, T ), which is available in closed form
for several European option payoff functions.

Formula (4) can be directly applied to calculate the value of a European
option, and it also forms the basis for pricing Bermudan options.

The COS algorithm exhibits an exponential convergence rate for all pro-
cesses whose conditional density f(y|x) ∈ C∞((a, b) ⊂ R). The size of the
integration interval [a, b] can be determined with help of the cumulants [1].
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2 COS Pricing Method for Bermudan and

American Options

The pricing formula for a Bermudan option with M exercise dates, with
m = M,M − 1, . . . , 2, is divided into a stage in which a continuation value is
computed, and a stage where this value is compared to the payoff g(x, tm−1) ≡
v(x, T ), as shown below

{

c(x, tm−1) = e−r∆t
∫

R
v(y, tm)f(y|x)dy,

v(x, tm−1) = max (g(x, tm−1), c(x, tm−1)),
(6)

, followed by a final computation,

v(x, t0) = e−r∆t
∫

R

v(y, t1)f(y|x)dy. (7)

In this description, we have x := ln (S(tm−1)/K) and y := ln (S(tm)/K),
and v(x, t), c(x, t), g(x, t) are the option value, the continuation value and
the payoff at time t, respectively. For vanilla options

g(x, t) = max [αK(ex − 1), 0], α =

{

1 for a call,
−1 for a put.

(8)

Practically, for each time step we first determine an early-exercise point, x∗

m,
for which c(x∗

m, tm) = g(x∗

m, tm) by means of the Newton method. If x∗

m lies
outside interval [a, b] we set x∗

m equal to the nearest boundary point. At each
time step, tm, we can split the Fourier cosine coefficients Vk(tm) into two
parts:

Vk(tm) = Ck(a, x∗

m, tm) +Gk(x∗

m, b), for a call, (9)

Vk(tm) = Gk(a, x∗

m) + Ck(x∗

m, b, tm), for a put. (10)

for m = M − 1,M − 2, . . . , 1, and

Vk(tM) = Gk(0, b) for a call,

Vk(tM) = Gk(a, 0) for a put.

Here,

Gk(x1, x2) =
2

b− a

∫ x2

x1

g(x, tm)cos(kπ
x− a

b− a
)dx, (11)
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Ck(x1, x2, tm) =
2

b− a

∫ x2

x1

ĉ(x, tm)cos(kπ
x− a

b− a
)dx, (12)

with

c(x, tm) = e−r∆t
∑′N−1

k=0
Re(φ(

kπ

b− a
;x)e−ikπ a

b−a )Vk(tm+1),

from the Fourier cosine expansion.
Gk(x1, x2) and Ck(x1, x2, tm) are the Fourier Cosine coefficients of the

payoff and continuation value, repectively. Gk(x1, x2) is known analytically.
With (8), it follows for a put, with x2 ≤ 0, that

Gk(x1, x2) =
2

b− a

∫ x2

x1

K(1 − ex) cos
(

kπ
x− a

b− a

)

dx, (13)

and for a call, with x1 ≥ 0, that

Gk(x1, x2) =
2

b− a

∫ x2

x1

K(ex − 1) cos
(

kπ
x− a

b− a

)

dx, (14)

The fact that x∗

m ≤ 0, for put options, and x∗

m ≥ 0, for call options, ∀t ∈ T ,
gives

Gk(x1, x2) =
2

b− a
αK [χk(x1, x2) − ψk(x1, x2)] , α =

{

1 for a call,
−1 for a put,

(15)
with

χk(x1, x2) :=
∫ x2

x1

ex cos
(

kπ
x− a

b− a

)

dx, (16)

ψk(x1, x2) :=
∫ x2

x1

cos
(

kπ
x− a

b− a

)

dx. (17)

These integrals admit analytic solutions.
We now derive the formulas for the Ck(x1, x2, tm). For Lévy processes,

applying (4) and (6) matrix

C(x1, x2, tm) ≡ Ck(x1, x2, tm))N−1
j=0

can be rewritten as

Ck(x1, x2, tm) := e−r∆t

N−1
∑′

j=0

Re
(

φA

(

jπ

b− a

)

Vj(tm+1) · Mk,j(x1, x2)
)

, (18)
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with

Mk,j(x1, x2) =
2

b− a

∫ x2

x1

eijπ x−a

b−a cos(kπ
x− a

b− a
)dx (19)

and for Lévy processes, φA(u, τ) comes from the function

φ(u; τ) = eiux0φA(u, τ), (20)

Matrix Mk,j(x1, x2) can be split into the sum of a Toeplitz and a Hankel
matrix where Fast Fourier Transform can be applied. If we denote D(vector)
as the discrete Fourier transform of the vector, whereas D−1 stands for the
inverse discrete Fourier transform. Then we have

C(x1, x2, tm) = e−r∆tIm(Msu+Mcu)/π

where Im means taking the imaginary part of the expression in brackets.
Msu represents the first N elements of D−1(D(ms) ·D(us)) and Mcu denotes
the computation of the first N elements of D−1(D(mc) · sgn · D(us)), in
reversed order, see [2].

In this description, we have

sgn = [1,−1, 1,−1, . . . ]T , ms = [m0,m−1, · · · ,m1−N , 0,mN−1, · · · ,m1]
T ,

mc = [m2N−1,m2N−2, · · · ,m1,m0]
T , us = [u0, u1, · · · , uN−1, 0, · · · , 0]T ,

with elements

mj =
(x2 − x1)

b− a
πi, if j = 0,

mj =
exp(ij (x2−a)π

b−a
) − exp(ij (x1−a)π

b−a
)

j
, if j 6= 0.

Finally, uj = φ( jπ
(b−a)

)Vj(tm+1) and u0 = 1
2
φ(0)V0(tm+1).

For all time steps, m = M−1, · · · , 1, approximation of Vk(tm) is recovered
from (9) or (10). Option value v(x, t0) is obtained by inserting Vk(t1) into (7),
and then, applying (4) with T replaced by t1.

Let v(M) denote the value of a Bermudan option with M early exercise
dates. Then the following 4–point Richardson extrapolation scheme is used
to estimate the value of an American option.

vAM(d) =
1

21
(64v(2d+3) − 56v(2d+2) + 14v(2d+1) − v(2d)) (21)

where vAM(d) denotes the approximated value of the American option.
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3 Underlying Asset Processes

3.1 Black-Scholes model

In BS model, the underlying price follows a Geometric Brownian motion
with constant drift and volatility, which satisfies the following stochastic
differential equation:

dSt = µStdt+ σStdWt (22)

where Wt is a Wiener process or Brownian motion and µ and σ are model
parameters for the drift and volatility. It follows from this that the return
is a Log-normal distribution with expected value E(St) = eµtS0 and variance
Var(St) = e2µtS2

0(eσ2t − 1).

3.2 CGMY model

The CGMY process, as defined in [5], is a generalisation of the Variance
Gamma process with the following characteristic function:

φCGMY (ω, t) = exp(tCΓ(−Y )[(M − iω)Y −MY + (G+ iω)Y −GY ]). (23)

Four parameters need to be calibrated to market data: Parameter Y : Y < 2
controls whether the CGMY process has finite or infinite activity. Parameter
C : C > 0 controls the kurtosis of the distribution and non-negative param-
eters G,M give control over the rate of exponential decay on the right and
left tails of the density, respectively.

3.3 Heston model

In the Heston stochastic volatility model, the underlying and the volatility
are modeled by the following stochastic differential equations,

dxt = (r − 1

2
µt)dt+

√
µtdW1,t,

dµt = λ(µ̄− µt)dt+ η
√
µtdW2,t, (24)

where xt and µt denote the log–asset price process and the process of its
volatility, respectively. Parameters λ, µ̄, η represent the speed of mean–
recursion, the long–term mean value of variance and the volatility of volatil-
ity, respectively. Moreover, W1,t and W2,t are Brownian motions, correlated
with correlation coefficient ρ.
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For the log-asset price in the Heston model an analytic characteristic
function can be found, which reads:

φ(ω,∆t, µ0) = exp (iωr∆t+
µ0

η2
(

1 − e−D∆t

1 −Ge−D∆t
)(λ− iρηω −D)) ·

exp (
λµ̄

η2
(∆t(λ− iρηω −D) − 2 log(

1 −Ge−D∆t

1 −G
)))

withD =
√

(λ− iηρω)2 + (ω2 + iω)η2 andG = λ− iηρω −D/λ− iηρω +D.
As for the value of D, we take the square root whose real part is non-

negative.

4 Premia Implementation

Oour codes only compute the option prices.

4.1 European Options

For European options we have implemented the method for the BS, CGMY
and Heston models. For all these models, the user has to give the input
values of the following parameters, which are common to all models:

• The initial underlying price S0.

• The strike price K.

• The maturity of the option T .

• The interest rate r.

• The dividend rate q.

Moreover, every model has some specific parameters:
For the BS model, the user needs to specify the volatility σ. For the

CGMY model, the user needs to specify the values for C,G,M, Y . For the
Heston model the values of the following parameters need to be entered:

• Initial volatility u0.

• Long term mean value of variance u.
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• Speed of mean recursion λ.

• Volatility of volatility η.

• Covariance Coefficient between the processes of underlying and volatil-
ity ρ.

Our C–codes are as follows:

• BS_Euro.c is the code of COS pricing method for European option
under BS model. Our default value of N is set as 128, where N is the
number of terms inside Fourier Cosine expansion. With N = 128, we
could achieve an error of order 1e–14.

• CGMY_Euro.c is the code of COS pricing method for European option
under CGMY model. Our default value of N is set as 128. With
N = 128, the error is of order 1e–10 or less for Y ∈ [0.5, 2]. For
Y < 0.5 we suggest the user to put a larger value of N .

• Heston_Euro.c is the code of COS pricing method for European option
under Heston model. Our default value of N is set as 256. With
N = 256, we could achieve an error less than 1e–10 for long maturity
and less than 1e–7 for short maturity.

4.2 American Options

For American options we need to specify the number of early exercise dates
M , where the Bermudan option prices with M, 2M, 4M, 8M are used in the
4–point Richardsion extrapolation scheme to get the American option values.
Our C–codes are as follows:

• BS_Ame.c is the code of COS pricing method for American Put Option
under BS model. Our default value of N and M are 256 and 8, which
returns an error of order 1e–7 or less.

• CGMY_Ame.c is the code of COS pricing method for American Put
Option under CGMY model. Our default value of N and M are 256
and 8, which returns an error of order 1e–7 or less.

Taking into consideration both efficiency and accuracy, please do NOT change
the value of N and M .
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