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Pricing Asian options via Fourier and Laplace
transforms

Abstract

By means of Fourier and Laplace transform, we obtain a simple expression for the double transform

(with respect the logarithm of the strike and time to maturity) of the price of continuously monitored

Asian options. The double transform is expressed in terms of Gamma functions only. The computation

of the price requires a multivariate numerical inversion. We show that the numerical inversion can be

performed with great accuracy and low computational cost.

Keywords: Black-Scholes model, Asian options, Laplace, Fourier and Mellin Trans-
form, Numerical Inversion of multidimensional transform.
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1 Introduction

In this note we show how to price Asian options using Fourier and Laplace transform.
These options are very popular: the payoff depends on the arithmetic average of the
underlying asset price over a defined time period. Therefore, Asian options reduce the
possibility of market manipulation near the expiry date and offer a better hedge to firms
with a stream of positions.

Under the standard Black-Scholes framework, the arithmetic average of prices is a
sum of correlated lognormal distributions. Since the distribution of this sum does not
admit a simple analytical expression, several approaches have been proposed to price
Asian options and detailed references can be found in Kat [19]. Among them, we recall:
a) the approximation for the density of the average by fitting the integer moments, as in
Turnbull and Wakeman [29], Levy [22], Milevsky and Posner [24], the inverse moments as
in Dufresne [10] or the logarithmic moments as in Fusai and Tagliani [13]; b) the numerical
solution of either a two-dimensional degenerate parabolic PDE, as in Barraquand and
Pudet [3], Zhang [31] or a rescaled one-dimensional equation as in Rogers and Shi [27]
and in Vecer [30]; c) Monte Carlo simulations with variance reduction techniques, Kemna
and Vorst [21] and Clelow and Carverhill [5]; d) binomial trees, as in Hull and White [16];
e) the lower and upper bounds for the price, as in Curran [6], Rogers and Shi [27] and
more recently Thompson [28]; f) the approximation of the characteristic function of the
average rate, as in Ju [17]; g) the Laplace transform approach in Geman and Yor [14] and
in Fu et al. [12]; h) the spectral expansion of the infinitesimal generator, as in Linetsky
[23].

In this paper we price Asian options by computing a Laplace transform with respect to
time to maturity and a Fourier transform with respect to the logarithm of the strike. Such
double transform is related to the characteristic function of a normal random variable. In
fact, it is not surprisingly that, as a consequence, the double transform can be expressed
easily in terms of Gamma functions. We present this result in Section 2, where we
show how the proposed method is easily extended to the computation of the Greeks, like
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delta and gamma. In order, to numerically invert our double transform and obtain the
option price, we use a multivariate version of the Fourier-Euler algorithm introduced in
Abate and Whitt [1]. It results that the numerical inversion is highly accurate also in
correspondence of low volatility levels, i.e. when other numerical methods, such as finite
difference solution of the pricing PDE, usually fail.

We remark that our approach differs from Geman and Yor [14]. They obtain the
Laplace transform with respect to time to maturity of the option price. They exploit
the relationship between the Geometric Brownian motion and the Bessel process with
a stochastic time change and the additivity property of the Bessel process. Instead,
we obtain our double transform thanks to a simpler procedure detailed in Appendix A.
Moreover, the numerical inversion of the Laplace transform given in Geman and Yor [14]
cannot be performed in correspondence of low volatility levels, for the limited computer
precision, see Fu et al. [12], Craddock et al. [8]. Instead, the numerical inversion of our
double transform can be computed with great accuracy in correspondence of low volatility
values as well.

Also, our approach differ from Fu et al. [12] who investigated a double transform
of the option price but with respect to time and strike. They obtain a rather compli-
cated expression in terms of non-standard functions, since their result is related to the
Laplace transform of a lognormal variable, which does not admit an analytical expression.
Moreover, their double transform proves hard to invert numerically.

In Section 2 we give the main result of the paper. In Section 3 we present the numerical
scheme and the numerical results. In Section 4 we conclude.

2 The double transform for the Asian option

We start with the standard assumption that the risk-neutral process for the underlying
asset is given by a Geometric Brownian process:

dS = rSdt + σSdW ,

where Wt is a Brownian process, r is the interest rate σ is the volatility and t is time.
Under this condition, in order to price continuously monitored Asian options we need

the probability density of the random variable:

At =
∫ t

0
e((r−σ2/2)s+σWs)ds. (1)

Indeed, the payoff of a fixed strike Asian option is given by:

(

S0At

t
− K

)+

.

The case of floating strike Asian options, characterized by a payoff
(

S0At

t
− St

)+
can

be dealt with by using the parity result in Henderson and Wojakowski [15]. The presence
of a continuous dividend yield q can be taken into account thanks to the replacement of
r by r − q and of the spot price by S0e

−qt. Instead, it does not seem to be easy to cope
with non-constant interest rate or volatility even if they are deterministic.
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Therefore the the price of the Asian option is obtained computing the following dis-
counted expected value:

e−rtE0

(

S0At

t
− K

)+

= e−rt S0

t
E0

(

At −
_

K
)+

where E0 is the expected value under the risk-neutral probability measure and
_

K ≡
(K/S0) t. In order to compute this expectation, we first use the scaling property of the
Brownian motion, see Karatzas and Shreve [18] Lemma 9.4 page 104, to express At as

At =
4

σ2
D

(v)
σ2t

4

, (2)

where:

D
(v)
h ≡

∫ h

0
e2(Ws+vs)ds (3)

and ν = 2r/σ2 − 1. Thus we obtain:

E0

(

At −
_

K
)+

= E0

(

4

σ2
D

(v)
h −

_

K
)+

(4)

=
4

σ2
E0

(

D
(v)
h − K̃

)+

=
4

σ2

∫

∞

K̃

(

x − K̃
)

fD (x, h) dx

where fD is the density function of the r.v. D
(v)
h ; K̃ ≡

_

Kσ2/4; and h ≡ σ2t/4. After a
final change of variable, w = ln x, we are interested in the function:

c (k, h) ≡ 4

σ2

∫

∞

k

(

ew − ek
)

fln D (w, h) dw (5)

where k = ln K̃. Note that we have used the fact that the density law of the logarithm of
a r.v. is related to the density of the same r.v. by the relationship:

fln D (w, h) = fD (ew, h) ew, −∞ < w < ∞

It is our aim is to compute the analytical expression of the double transform (Fourier
wrt k and Laplace wrt h) of c (k, h). Following Carr and Madan [4], we multiply the option
price c (k, h) by an exponentially decaying term so that it is square integrable in k over the
negative axis. Therefore, we replace the function c (k, h) by c (k, h; af ) ≡ c (k, h) e−af k,
af > 0, and we compute the double transform of c (k, h; af ):

L (F (c (k, h; af ) ; k → γ) ; h → λ) ≡
∫ +∞

0
e−λh

∫ +−∞

−∞

eiγkc (k, h; af ) dkdh (6)

It turns out that:
Theorem 1: The double transform of c (k, h; af ) , for λ > 2γ (γ + v) , reads

L (F (c (k, h; af ) ; k → γ) ; h → λ) = C (γ + iaf , λ)
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where:

C (γ, λ) =
4

σ2

1

λ

1

21+iγ

Γ (iγ) Γ
(

µ+v
2

+ 1
)

Γ
(

µ−v
2

− 1 − iγ
)

Γ
(

µ+v
2

+ 2 + iγ
)

Γ
(

µ−v
2

) , (7)

and Γ (.) is the gamma function of complex argument (see Press et al. [25], page 213)
and µ =

√
2λ + v2.

Also, we can obtain the delta and gamma of the Asian option. Indeed, after some
algebra it turns out that:

∆ (S0, K, t, r, σ) ≡ e−rt
∂E0

(

At −
_

K
)+

∂S0

=
e−rt

t

(

c (k, h) − ∂c (k, h)

∂k

)∣

∣

∣

∣

∣

k=ln

(

K
S0

σ2t
4

)

,h= σ2t
4

,

Γ (S0, K, t, r, σ) ≡ e−rt
∂2E0

(

At −
_

K
)+

∂S2
0

=
e−rt

S0t

(

∂c (k, h)

∂k
− ∂2c (k, h)

∂k2

)∣

∣

∣

∣

∣

k=ln

(

K
S0

σ2t
4

)

,h= σ2t
4

The above quantities can be again recovered by numerically inverting their double trans-
forms1:

∫ +∞

0
e−λh

∫ +−∞

−∞

eiγke−af k

(

c (k, h) − ∂c (k, h)

∂k

)

dkdh = D (γ + iaf , λ) , (8)

∫ +∞

0
e−λh

∫ +−∞

−∞

eiγke−af k

(

∂c (k, h)

∂k
− ∂2c (k, h)

∂k2

)

dkdh = G (γ + iaf , λ) .

where D (γ, λ)and G (γ, λ) are a simple rescaling of the function C (γ, λ):

D (γ, λ) = (1 + iγ) C (γ, λ) ,

G (γ, λ) = iγ (1 + iγ) C (γ, λ) .

3 Numerical inversion and numerical results

In this Section we discuss how to obtain the original function c (k, h) by double numerical
inversion. This given, the price of the Asian option reads:

e−rtE0

(

S0At

t
− K

)+

= e−rt S0

t
eaf kc (k, h; af )

∣

∣

∣

k=ln

(

K
S0

σ2t
4

)

,h= σ2t
4

. (9)

The numerical inversion of the double transform in (7) can be performed by resorting
to the multivariate version of the Fourier-Euler algorithm presented in Choudhury et al.
[7]. This algorithm consists in the iterated one-dimensional numerical inversion formula
proposed in Abate and Whitt [1] that improves the Fourier-series method originally pro-
posed in Dubner and Abate [9]. Given the double transform C (γ, λ) we first compute

1In order to obtain (8) we have used the property that relates the Fourier transform of a derivative of
a function to the transform of the function itself, F (∂c (k, h; af ) /∂k) = iγF (c (k, h; af )). This requires
the functions c (k, h; af ) and ∂c (k, h; af ) /∂k to be integrable and ∂c (k, h; af ) /∂k to be continuous, see
Priestley [26], Theorem 33.7, pag. 267.
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numerically the Fourier inverse wrt γ. Then, we numerically invert the Laplace transform
wrt λ by using again the numerical univariate inversion formula.

If we denote respectively with L−1 and with F−1 the formal Laplace and the Fourier
inverse, the function c (k, h) is given by:

c (k, h) = eaf kL−1 (F−1 (C (γ + iaf , λ) ; γ → k) ; λ → h)
:= eaf kL−1 (F−1 (C (γ + iaf , λ)))

and using the Fourier inversion formula, we obtain:

c (k, h) = eaf kL−1
(

1

2π

∫ +∞

−∞

e−iγkC (γ + iaf , λ) dγ
)

.

Given that |C (af + iγ, λ)| is integrable, in this case the trapezoidal rule is exact,
Abate and Whitt [1], p. 21 eq. 4.8. Then, if we discretize the inversion integral by a step
size ∆f , we obtain:

c (k, h) = eaf kL−1

(

1

2π
∆f

+∞
∑

s=−∞

e−i∆f skC (∆fs + iaf , λ)

)

.

If we set ∆f = π/k and af = Af/ (2k), we have:

c (k, h) = e
Af

2 L−1

(

1

2k

+∞
∑

s=−∞

(−1)s C
(

π

k
s + i

Af

2k
, λ
)

)

.

Then, by means of the Bromwich contour for the inversion of the Laplace transform, we
have:

c (k, h) =
eAf /2

2k

1

2πi

∫ al+i∞

al−i∞
eλh

(

+∞
∑

s=−∞

(−1)s C
(

π

k
s + i

Af

2k
, λ
)

)

dλ

where al is at the right of the largest singularity of the function C (γ, λ). By substituting
λ = al + iω, we have:

c (k, h) =
eAf /2

2k

ealh

2π

∫ +∞

−∞

eλh

(

+∞
∑

s=−∞

(−1)s C
(

π

k
s + i

Af

2k
, al + iω

)

)

dω

We can approximate again the above integral by using the trapezoidal rule with step size
∆l = π/h and by setting al = Al/ (2h), with Al such that al is greater than the right-most
singularities. Finally we have:

c (k, h) ≈ eAf /2+Al/2

2k

1

2h

+∞
∑

m=−∞

(−1)m

(

+∞
∑

s=−∞

(−1)s C
(

π

k
s + i

Af

2k
, al + is

π

h

)

)

. (10)

In fact, once we have written each sum as two sums over the nonnegative integers, the
inversion formula is simply (10). Choudhury et al. [7] discuss the sources of error in the
inversion algorithm above and how to control it. In particular, the parameters Af and
Al control the discretization error. By numerical experiments a good choice for these two
parameters is Af = Al = 18.4.
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Note that in the inversion formula we have sums of the form
∑

∞

s=1 (−1)s as where as

is complex. In the summation of alternating series like these, it is recommendable to use
the Euler transformation since it gives a much faster convergence of the infinite sums, see
the discussion in Abate and Whitt [1] and in Choudhury et al. [7]. Specifically, the Euler
sum provides an estimate E (m, n) of the series

∑

∞

s=1 (−1)s as, with:

E (m, n) =
m−1
∑

k=0

(

m

k

)

2−mSn+k

and:

Sj =
m−1
∑

k=0

(−1)k ak

Therefore, the use of the Euler algorithm requires n+m evaluation of the complex function
ak. In particular, the numerical inversion requires the application of the Euler algorithm
twice, once for the Fourier inversion and once for the Laplace inversion, for a total of
(nf + mf ) (nl + ml) evaluations of the double transform. Then, the computational cost
of the inversion is directly related to this product. In order to avoid numerical difficulties
in the computation of the binomial coefficient in the Euler algorithm, we set mf = nf +15
and ml = nl +15, where the choice of nf and nl has to be tuned according to the volatility
level.

The code for the inversion has been implemented in C by means of Microsoft Visual
C++ Version 5.0. All the calculations have been performed on a Compaq Presario with
Pentium 133 processor. Note that the code requires the use of operations between complex
numbers. For this purpose, we have used the complex utility (Complex.c and Complex.h)
for standard complex arithmetic operations available in Press et al. [25], pp. 948-950.
Also, we have used the complex natural logarithm function and the complex Gamma
function. This function has been computed by using the Lanczos approximation given
in Press et al. [25], pp. 213. No additional subroutines have been used. All calculation
have been done by means of standard precision calculation. We have coded the numerical
inversion in Mathematica as well. Indeed, the Euler algorithm is already available in the
Mathematica package NumericalMath‘NLimit‘2. Unfortunately, in some cases, mainly
owing to low volatility, Mathematica had some numerical problems in the computation
not encountered when using C. Therefore, all the following Tables have produced by using
C.

In Tables 1a, 1b and 2 we give some numerical results where we set the following
parameters: S0 = 100, r = 0.09, t = 1 and we let the volatility vary between 5% and 50%
and the strike price between 90 and 110.

In Table 1a and 1b we investigate how to chose nf and nl in the Euler algorithm
in order to achieve a given accuracy. For example, in Table 1a for low volatility levels
(σ

√
t = 0.05), the estimate of the option price at a five decimal digits accuracy requires

a high number of terms. Larger part of the computational cost is due to perform the
Laplace inversion (indeed we should set nl = 315 and ml = nl + 15, whilst nf = 55 and
mf = nf +15). As the volatility increases, the optimal values of nf and nl decrease quickly
and consequently the computational time required for estimating the option price. For

2A notebook containing the Mathematica code is available from the Author upon request.
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example when σ
√

t ≥ 0.4, it is sufficient to have nf = nl = 15 in order to obtain a five
digits accuracy. In Table 1b, we investigate how the choice relative to nf and nl affects
the estimate in the Asian option price.
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In Table 2 we compare the transform method with other approximations proposed in
the literature: a) the lower and upper bounds for the option price given in Thompson [28]
that improves 3 on the bounds given by Rogers and Shi [27], b) the approximations based
on the fit to the lognormal density (see Turnbull and Wakeman [29] and Levy [22]) and
the Reciprocal Gamma distribution (see Milevsky and Posner [24]) by using the first two
integer moments, c) the numerical solution of the reduced form PDE given in Rogers and
Shi [27]4. We do not consider the Edgeworth series expansion method because it gives
completely unreliable results as the volatility parameter increases. Moreover, Ju [17] has
proved that the Edgeworth series expansion around a lognormal density is not convergent.
In Table 2 we report also the percentage of times that the different approximations give
an estimate inside the lower and upper bounds.

3The lower bound is the same as in Rogers and Shi but its computation is easier. The upper bound
improves the one in Rogers and Shi.

4Antonino Zanette (Università di Udine) has kindly provided the software PREMIA for numerically
solving the PDE. The numerical scheme adopted is the Crank-Nicolson one with 3000 spatial and time
grids.
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From Table 2, we can see that the estimates obtained with the double numerical
inversion when nl = 315 and nf = 55 only in one case out of thirty did not stay inside the
bounds. This happened when σ

√
t = 0.05 and K = 90, and the inaccuracy revealed only at

the sixth digits (upper bound: 13.378209804, double numerical inversion: 13.378212616)!
Other numerical methods lose in accuracy for low volatility levels. For example, the
numerical inversion of the Laplace transform given in Geman and Yor [14] cannot be
performed if σ

√
t < 0.08, for the limited computer precision, see Fu et al. [12], Craddock

et al. [8]. A similar problem occurs with the numerical solution of the reduced form PDE
given in Rogers and Shi, see column PDE (R-S) in Table 2, and in this case the problem
can be solved only thanks to a very fine discretization grid.

Also, from Table 2, we remark that the lognormal approximation, widely used by
practitioners, gives price estimates outside the bounds for very low volatility levels too, i.e.
when it should perform better. Moreover, this approximation deteriorates quickly as the
volatility increases. A similar problem occurs for the Reciprocal Gamma approximation.

4 Conclusions

In the present paper, by using Fourier and Laplace transform, we have given a simple
expression for a double transform of the option price of an Asian option. We discussed
the numerical inversion and obtained very accurate results, in particular for the difficult
cases of low volatility levels. An open question is whether we can apply the same technique
to discrete monitoring of the average and to basket options, which are widely traded. In
this direction, Ju [17] gives accurate approximations for the characteristic function of the
logarithm of the discrete average.
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Number of decimal 

digits
2 3 4 5

Volatility nf ; nl nf ; nl nf ; nl nf ; nl

0,05 35; 175 35; 195 35; 255 55; 315

0,1 15; 115 15; 115 35; 115 35; 135

0,2 15; 15 15; 35 15; 55 15; 55

0,3 15; 15 15; 35 15; 35 15; 35

0,4 15; 15 15; 15 15; 15 15; 15

0,5 15; 15 15; 15 15; 15 15; 15

Table 1a: Accuracy desired and parameters of the Euler algorithm

Parameters setting: mf=nf+15, ml=nl+15, Af=Al=22.4, S0=100, K=100, t=1, r=0.09

Figure 1: Table 1
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p
a
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e
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14

nf ; nl 15 35 55 75 95 115 135 155 175 195 215 235 255 275 295 315

15 5,27607 4,38630 4,21618 4,21062 4,23891 4,27513 4,29584 4,30082 4,30179 4,30190 4,30190 4,30190 4,30190 4,30190 4,30190 4,30190

35 5,27607 4,38630 4,21615 4,21029 4,24095 4,27061 4,29037 4,30109 4,30605 4,30771 4,30841 4,30828 4,30822 4,30823 4,30823 4,30823

55 5,27607 4,38630 4,21615 4,21029 4,24095 4,27061 4,29039 4,30111 4,30598 4,30779 4,30829 4,30835 4,30830 4,30827 4,30825 4,30824

75 5,27607 4,38630 4,21615 4,21029 4,24095 4,27061 4,29039 4,30111 4,30598 4,30779 4,30829 4,30835 4,30831 4,30827 4,30825 4,30824

95 5,27607 4,38630 4,21615 4,21029 4,24095 4,27061 4,29039 4,30111 4,30598 4,30779 4,30829 4,30835 4,30831 4,30827 4,30825 4,30824

nf ; nl 15 35 55 75 95 115 135 155 175 195 215 235 255 275 295 315

15 5,29278 4,91301 4,90399 4,91222 4,91498 4,91534 4,91534 4,91534 4,91534 4,91534 4,91534 4,91534 4,91534 4,91534 4,91534 4,91534

35 5,29278 4,91301 4,90405 4,91255 4,91480 4,91509 4,91512 4,91512 4,91512 4,91512 4,91512 4,91512 4,91512 4,91512 4,91512 4,91512

55 5,29278 4,91301 4,90405 4,91255 4,91480 4,91509 4,91512 4,91512 4,91512 4,91512 4,91512 4,91512 4,91512 4,91512 4,91512 4,91512

75 5,29278 4,91301 4,90405 4,91255 4,91480 4,91509 4,91512 4,91512 4,91512 4,91512 4,91512 4,91512 4,91512 4,91512 4,91512 4,91512

95 5,29278 4,91301 4,90405 4,91255 4,91480 4,91509 4,91512 4,91512 4,91512 4,91512 4,91512 4,91512 4,91512 4,91512 4,91512 4,91512

nf ; nl 15 35 55 75 95 115 135 155 175 195 215 235 255 275 295 315

15 6,77613 6,77723 6,77735 6,77735 6,77735 6,77735 6,77735 6,77735 6,77735 6,77735 6,77735 6,77735 6,77735 6,77735 6,77735 6,77735

35 6,77613 6,77723 6,77735 6,77735 6,77735 6,77735 6,77735 6,77735 6,77735 6,77735 6,77735 6,77735 6,77735 6,77735 6,77735 6,77735

55 6,77613 6,77723 6,77735 6,77735 6,77735 6,77735 6,77735 6,77735 6,77735 6,77735 6,77735 6,77735 6,77735 6,77735 6,77735 6,77735

75 6,77613 6,77723 6,77735 6,77735 6,77735 6,77735 6,77735 6,77735 6,77735 6,77735 6,77735 6,77735 6,77735 6,77735 6,77735 6,77735

95 6,77613 6,77723 6,77735 6,77735 6,77735 6,77735 6,77735 6,77735 6,77735 6,77735 6,77735 6,77735 6,77735 6,77735 6,77735 6,77735

nf ; nl 15 35 55 75 95 115 135 155 175 195 215 235 255 275 295 315

15 8,82828 8,82876 8,82876 8,82876 8,82876 8,82876 8,82876 8,82876 8,82876 8,82876 8,82876 8,82876 8,82876 8,82876 8,82876 8,82876

35 8,82828 8,82876 8,82876 8,82876 8,82876 8,82876 8,82876 8,82876 8,82876 8,82876 8,82876 8,82876 8,82876 8,82876 8,82876 8,82876

55 8,82828 8,82876 8,82876 8,82876 8,82876 8,82876 8,82876 8,82876 8,82876 8,82876 8,82876 8,82876 8,82876 8,82876 8,82876 8,82876

75 8,82828 8,82876 8,82876 8,82876 8,82876 8,82876 8,82876 8,82876 8,82876 8,82876 8,82876 8,82876 8,82876 8,82876 8,82876 8,82876

95 8,82828 8,82876 8,82876 8,82876 8,82876 8,82876 8,82876 8,82876 8,82876 8,82876 8,82876 8,82876 8,82876 8,82876 8,82876 8,82876

nf ; nl 15 35 55 75 95 115 135 155 175 195 215 235 255 275 295 315

15 10,92377 10,92377 10,92377 10,92377 10,92377 10,92377 10,92377 10,92377 10,92377 10,92377 10,92377 10,92377 10,92377 10,92377 10,92377 10,92377

35 10,92377 10,92377 10,92377 10,92377 10,92377 10,92377 10,92377 10,92377 10,92377 10,92377 10,92377 10,92377 10,92377 10,92377 10,92377 10,92377

55 10,92377 10,92377 10,92377 10,92377 10,92377 10,92377 10,92377 10,92377 10,92377 10,92377 10,92377 10,92377 10,92377 10,92377 10,92377 10,92377

75 10,92377 10,92377 10,92377 10,92377 10,92377 10,92377 10,92377 10,92377 10,92377 10,92377 10,92377 10,92377 10,92377 10,92377 10,92377 10,92377

95 10,92377 10,92377 10,92377 10,92377 10,92377 10,92377 10,92377 10,92377 10,92377 10,92377 10,92377 10,92377 10,92377 10,92377 10,92377 10,92377

nf ; nl 15 35 55 75 95 115 135 155 175 195 215 235 255 275 295 315

15 13,02816 13,02816 13,02816 13,02816 13,02816 13,02816 13,02816 13,02816 13,02816 13,02816 13,02816 13,02816 13,02816 13,02816 13,02816 13,02816

35 13,02816 13,02816 13,02816 13,02816 13,02816 13,02816 13,02816 13,02816 13,02816 13,02816 13,02816 13,02816 13,02816 13,02816 13,02816 13,02816

55 13,02816 13,02816 13,02816 13,02816 13,02816 13,02816 13,02816 13,02816 13,02816 13,02816 13,02816 13,02816 13,02816 13,02816 13,02816 13,02816

75 13,02816 13,02816 13,02816 13,02816 13,02816 13,02816 13,02816 13,02816 13,02816 13,02816 13,02816 13,02816 13,02816 13,02816 13,02816 13,02816

95 13,02816 13,02816 13,02816 13,02816 13,02816 13,02816 13,02816 13,02816 13,02816 13,02816 13,02816 13,02816 13,02816 13,02816 13,02816 13,02816

Table 1b: Parameters of the Euler algorithm and Asian option prices

Parameters setting: mf=nf+15, ml=nl+15, Af=Al=22.4, S0=100, K=100, t=1, r=0.09
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Table 2:  A Comparison of Asian Option Pricing Models 

Parameters setting: mf=nf+15, ml=nl+15, Af=Al=22.4, S0=100, t=1, r=0.09

�V K Lower Bound Lognormal Rec. Gamma Double numerical Inversion PDE (R-S) Upper Bound

(nf, mf)=(15,30) (nf, mf)=(15,30) (nf,mf)=(55,70) (nf,mf)=(55,70)

(nl, ml)=(15,30) (nl,ml)=(175,190) (nl,ml)=(175,190) (nl,ml)=(315,330)

0,05 90 13,37821 13,37821 13,37821 12,06455 13,38473 13,38105 13,37821 13,37821 13,37821

0,05 95 8,80884 8,80888 8,80881 8,29387 8,80917 8,80717 8,80885 8,80869 8,80887

0,05 100 4,30823 4,30972 4,30720 5,27607 4,30179 4,30598 4,30824 4,30145 4,30837

0,05 105 0,95833 0,95815 0,95851 2,99514 0,96618 0,96198 0,95839 0,96037 0,95849

0,05 110 0,05210 0,05088 0,05303 1,37988 0,04751 0,05088 0,05214 0,05780 0,05236

0,1 90 13,38519 13,38629 13,38452 12,53421 13,38610 13,38520 13,38520 13,38490 13,38603

0,1 95 8,91183 8,91721 8,90820 8,50979 8,91137 8,91185 8,91185 8,91041 8,91296

0,1 100 4,91508 4,92310 4,90938 5,29278 4,91534 4,91512 4,91512 4,91298 4,91541

0,1 105 2,06993 2,07045 2,06952 2,91129 2,06999 2,07007 2,07007 2,07030 2,07038

0,1 110 0,63006 0,62338 0,63501 1,29656 0,63029 0,63027 0,63027 0,63236 0,63102

0,2 90 13,83122 13,86167 13,81078 13,73719 13,83150 13,83150 13,83150 13,83099 13,83721

0,2 95 9,99536 10,03043 9,97052 9,92790 9,99566 9,99566 9,99566 9,99515 9,99807

0,2 100 6,77700 6,80355 6,75716 6,77613 6,77735 6,77735 6,77735 6,77697 6,77866

0,2 105 4,29594 4,30408 4,28890 4,34518 4,29647 4,29647 4,29647 4,29649 4,29798

0,2 110 2,54546 2,53453 2,55250 2,60153 2,54622 2,54622 2,54622 2,54653 2,54854

0,3 90 14,98279 15,06704 14,92399 14,98317 14,98396 14,98396 14,98396 14,98369 14,99285

0,3 95 11,65475 11,73287 11,59733 11,65484 11,65589 11,65589 11,65589 11,65570 11,66128

0,3 100 8,82755 8,88576 8,78216 8,82828 8,82876 8,82876 8,82876 8,82861 8,83329

0,3 105 6,51635 6,54628 6,49026 6,51794 6,51779 6,51779 6,51779 6,51780 6,52257

0,3 110 4,69491 4,69511 4,69045 4,69712 4,69671 4,69671 4,69671 4,69678 4,70265

0,4 90 16,49702 16,65395 16,38398 16,49997 16,49997 16,49997 16,49997 16,49981 16,51601

0,4 95 13,50789 13,64791 13,40168 13,51071 13,51071 13,51071 13,51071 13,51062 13,52377

0,4 100 10,92090 11,03114 10,83224 10,92377 10,92377 10,92377 10,92377 10,92369 10,93596

0,4 105 8,72680 8,79965 8,66299 8,72994 8,72994 8,72994 8,72994 8,72994 8,74234

0,4 110 6,89990 6,93321 6,86426 6,90349 6,90349 6,90349 6,90349 6,90350 6,91747

0,5 90 18,18295 18,43698 17,99498 18,18885 18,18885 18,18885 18,18885 18,18874 18,22077

0,5 95 15,43707 15,66486 15,25983 15,44272 15,44272 15,44272 15,44272 15,44267 15,47216

0,5 100 13,02253 13,21198 12,86687 13,02816 13,02816 13,02816 13,02816 13,02810 13,05680

0,5 105 10,92375 11,06751 10,79735 10,92963 10,92963 10,92963 10,92963 10,92962 10,95880

0,5 110 9,11795 9,21323 9,02510 9,12432 9,12432 9,12432 9,12432 9,12431 9,15600

100,00% 6,67% 0,00% 50,00% 76,67% 83,33% 96,67% 60,00% 100,00%% Inside Bound
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