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Abstract

We are concerned with the problem of pricing plain-vanilla options with cash dividends

in a piecewise lognormal model. In the plain-vanilla case we offer a methods with provides

thin upper and lower bounds of the true binomial price. I

Premia 18

Introduction

The stock assets pay frequently dividends at discrete times and this produces important mod-
ifications on the numerical procedures involved in the option pricing. For plain vanilla options
several close formulas and approximation techniques have been investigated in previous pa-
pers (see e.g. Haug-Haug-Lewis [5], Meyer [8], Bos-Wandemark [3], Bos-Gairat-Shepeleva [2],
Beneder-Vorst [1]). These approximations, as showed in ([9]), are not very precise. Furthermore
Wilmott et al. [10] presented a finite difference approach to price options in the presence of cash
dividends. Vellekoop-Nieuwenhuis [9] presented a modified Cox-Ross-Rubinstein (CRR) tree
[4] that overcomes the non-recombining property of the standard CRR tree when discrete div-
idends are considered. These algorithms are mainly based on suitable interpolation techniques
at dividend dates.

We introduce different tree methods which cover European and American plain-vanilla op-
tions in the presence of discrete dividends.

In the plain-vanilla case we propose an algorithm based on the singular points approach
introduced in [7]. This technique permits us to obtain a thin upper and lower bound of the
true binomial price computationally efficient.

More precisely, we provide, at each time step of the tree, a continuous representation of the
option price as a piecewise linear function of the stock price. This function is characterized
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only by a set of points, called ”singular points”, which can easily be computed recursively by
backward induction. Although the number of singular points grows rapidly at every dividend
date, their number can be drastically reduced in a straightforward way, controlling, at the same
time, the error involved by the elimination procedure and providing upper and lower estimates.
The control of the error allows also to get immediately the convergence of the method to the
continuous value.

The paper is organized as follows: in Section 1 we present the model of the risk asset, in
Section 2 we present the singular points technique. In Section 3 we introduce the singular
points algorithm for pricing European and American options with cash dividends. In Section
4 we present the numerical results.

1 The model

In this paper, we consider a market model where the evolution of a risky asset, between dividend
dates involving a cash dividend payment, is governed by the Black-Scholes stochastic differential
equation

dSt

St

= rdt + σdBt, S0 = s0, (1)

where (Bt)0≤t≤T is a standard Brownian motion, under the risk neutral measure Q. The
nonnegative constant r is the force of interest rate and σ is the volatility of the risky asset.

We assume furthermore that the risk asset pays, at dividend dates t1, ..., tnD
,

0 = t0 < t1 < t2 < ... < tnD
< tnD+1 = T,

dividend amounts
D1, D2, ..., DnD

,

respectively.
For pricing plain-vanilla and barrier options in this piecewise lognormal model with discrete

dividends, we consider now a binomial approach. Let n be the number of steps of the binomial

tree and ∆T = T
n

the corresponding time-step. In order to simplify the construction of the

binomial tree we assume in the sequel that ti−ti−1

∆T
, i = 1, ..., nD + 1, is an integer (otherwise

suitable interpolations in the time variable are required).
The standard discrete binomial process (without dividends) is given by

S(i+1)∆T = Si∆T Yi+1, 0 ≤ i ≤ n − 1,

where the random variables Y1, . . . , Yn are independent and identically distributed with values
in {d, u}. Let us denote by π = P(Yn = u). The Cox-Ross-Rubinstein tree corresponds to the

choice u = 1
d

= eσ
√

∆T and

π =
er∆T − e−σ

√
∆T

eσ
√

∆T − e−σ
√

∆T
.

In order to take in account of the presence of dividends, at each time ti, i = 1, ..., nD, we
have to subtract the corresponding dividend amount Di at each node of the tree. Let us remark
that the tree so constructed is non-recombining. In fact the presence of dividends lead to a new
tree from each node on each dividend payment date.



9 pages 3

2 The singular points approach

The pricing of an European or American options can be done by a backward dynamic program-
ming equation using the ”pure” tree algorithm (see for instance the description given in Hull
[6]). However, because of the non-recombining property of the binomial tree, the straightfor-
ward implementation of the algorithm leads to an inefficient procedure. Remark that in the
case ti−ti−1

∆T
= m for all i = 1, ..., nD + 1, the computational complexity of the procedure is

mnD+2.
Wilmott et al. [10] suggest to use a linear interpolation technique in order to make the tree

recombining. Later Vellekoop and Nieuwenhuis [9] proved the convergence to the continuous
value of a similar binomial approach both in European and American case.

Here we propose a different approach, based on the singular points technique, introduced
in [7], which allows to approximate the pure binomial price with an a-priori fixed level of error.
The procedure introduced in [7] can be adapted in a simple way to this context. In the sequel,
for sake of completeness and in order to clarify the differences with respect to [7], we presente
it in details.

According to the notations introduced in [7] we will use the next definition

Definition 1. Let us consider a set of points: (x1, y1), ..., (xn, yn), such that

a = x1 < x2 < ... < xn = b,

and the piecewise linear function f(x), x ∈ [a, b], obtained by interpolating linearly the given
points. The points (x1, y1), ..., (xn, yn) (which characterize completely f), will be called the
singular points of f , while x1, ..., xn will be called the singular values of f .

Let us remark that f is convex if and only the slopes

αi =
yi+1 − yi

xi+1 − xi

,

are increasing, i.e. αi ≤ αi+1 for all i = 1, ..., n − 1.

The approach of singular point allows to construct upper and lower bounds of the option
price in a simple way, as pointed out in the next remark (see also the geometrical interpretation
in Figure 1 and 2).

Remark 1. Let f be a piecewise linear and convex function defined on [a, b], and let C =
{(x1, y1), ..., (xn, yn)} be the set of its singular points. Then:

a) Removing a point (xi, yi), 2 ≤ i ≤ n − 1, from the set C, the resulting piecewise linear
function f̃ , whose set of singular points is C \ {(xi, yi)}, is again convex in [a, b] and we have:

f(x) ≤ f̃(x), ∀x ∈ [a, b].

b) Let us denote by (x, y) the intersection between the straight line joining (xi−1, yi−1), (xi, yi)
and the one joining (xi+1, yi+1), (xi+2, yi+2), 2 ≤ i ≤ n − 2. If we consider the new set of n − 1
singular points

{(x1, y1), ..., (xi−1, yi−1), (x, y), (xi+2, yi+2), ..., (xn, yn)},

the associated piecewise linear function f̃ is again convex on [a, b] and we have:

f(x) ≥ f̃(x), ∀x ∈ [a, b].
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Figure 1: Upper estimate: x4 has been removed.

Figure 2: Lower estimate: x3 and x4 have been removed, x has been inserted.

3 Plain-vanilla options

Let us consider an European call option with discrete dividends. The singular points approach
consists in a backward procedure which permits us to obtain a continuous representation of the
option price at every time step as a piecewise linear continuous function of the underlying asset.
Such price functions are characterized by their singular points. Hence the pricing procedure
depends exclusively by the knowledge of the singular points at every time step of the tree. It
is important to note that the procedure provides exactly the pure binomial value. However it
permits to obtain an important improvement, in fact the binomial price can be approximated
removing some singular points following the procedure described in Remark 1 and giving, in
the same time, a control of the error.

We proceed now to the description of the price function vi(S) at every step of the tree.
To this end we have to evaluate the minimum and the maximum of the risky asset at maturity.
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Such maximum and minimum can be evaluated inductively on the tree. Denoting by Smin
i ,

Smax
i the minumum and the maximum value of the underlying at step i, i = 0, ..., n, one has

Smin
0 = s0, Smin

i =





Smin
i−1 d if i∆T is not a dividend date

Smin
i−1 d − Dj if i∆T is the dividend date tj

Smax
0 = s0, Smax

i =





Smax
i−1 u if i∆T is not a dividend date

Smax
i−1 u − Dj if i∆T is the dividend date tj

.

At maturity, the option price, as function of the underlying asset S, is continuously defined
by

vn(S) = max{S − K, 0}.

vn(S) is a piecewise linear convex function characterized by the three singular points (Al
n, P l

n),
l = 1, 2, 3 given by:

A1
n = Smin

n , P 1
n = 0;

A2
n = K, P 2

n = 0;
A3

n = Smax
n , P 3

n = Smax
n − K.

(2)

Clearly, if K 6∈ (Smin
n , Smax

n ) the singular points reduce to two.
At step i = n − 1 one has

vi(S) = e−r∆T [πvi+1(Su) + (1 − π)vi+1(Sd)]. (3)

We can conclude that vn−1(S) is piecewise linear and convex as well. The singular values of vn−1

are Smin
n−1, Smax

n−1 , and eventually Kd, Ku if they belong to (Smin
n−1, Smax

n−1 ). In order to compute the
corresponding option prices we have to apply formula (3). To this end we remark, for example,
that vn−1(Ku) = e−r∆T [πvn(Ku2)+(1−π)vn(K)]. Now vn(K) is already known, while vn(Ku2)
has to be computed by linearity. The same procedure holds true for the other singular points
as well.

We then proceed iteratively in the same way for i = n − 2, ..., 0. More precisely we evaluate
the singular values of vi(S) considering the singular values of vi+1(S) multiplied by the up factor
u and by the down factor d. Such values become singular values of vi(S) if they belong to the
domain (Smin

i , Smax
i ). The evaluation of the corresponding option prices has to be done again

by equation (3). As before, this formula needs the computation of vi+1(Su) and vi+1(Sd). One
of them will be computed directly while the latter has to be computed by linearity.

At the dividend dates the previous procedure needs an additional treatment. Let in fact
tj a dividend date and let (A1

i , P 1
i ),...,(AL

i , P L
i ) the singular points associated to this date and

evaluated by the previous procedure. The presence of the dividend reduces the stock values of
the dividend amount Dj. Going backward in time, we have to increase the singular values of
this amount. Therefore the new set of singular values becomes

(A1
i + Dj, P 1

i ), ..., (AL
i + Dj, P L

i ).

This procedure induces a large increment of the number of singular points, in fact, due to
non-recombining property, the number of singular points could double at each step following a
dividend date.
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Finally, at step i = 0 we get only one singular point: (s0, P 1
0 ). P 1

0 provides the pure binomial
price of the European call option with multiple discrete dividends.

In the American case the function vi(S) becomes

vi(S) = max{S − K, vc
i (S)}, (4)

where
vc

i (S) = e−r∆T [πvi+1(Su) + (1 − π)vi+1(Sd)]

is the continuation value.
At the dividend date tj, by virtue of the shifting due the dividend, vc

i (S) has to be computed
by

vc
i (S) = e−r∆T [πvi+1((S − Dj)u) + (1 − π)vi+1((S − Dj)d)].

Hence at dividend dates we apply first the shift of the asset and then the early optimality. This
order in the computation is due to the fact that is convenient to exercise eventually just before
the dividend dates. This also implies that for the put options the order has to be inverted:
after the evaluation of the continuation value we evaluate the optimality of the early exercise
and then we apply the dividend shift.

At every step i vi(S) is still piecewise linear and convex, hence the procedure explained
in the European case holds again. The only difference is related to the computation of the
singular points. In fact at first we need to evaluate the singular points of vc

i (S). Then we
have to evaluate the singular points of vi(S). By convexity, this can be done considering three
possible cases:

1. Smax
i − K ≤ vc

i (S
max
i ) then vi ≡ vc

i , so the singular points do not change;

2. Smax
i − K > vc

i (S
max
i ) and Smin

i − K ≥ vc
i (S

min
i ). Then vi(S) ≡ S − K, hence there are

only two singular points: the extrema.

3. Smax
i − K > vc

i (S
max
i ) and Smin

i − K < vc
i (S

min
i ). Then there exists an unique value

S where the continuation value coincides with the early exercise. The singular points
of vi are now: all the ones whose singular value is less than S, then (S, S − K) and
(Smax

i , Smax
i − K) (see Figure 3).

This argument can be applied at every step i = n − 1, ..., 0. This allows to compute P 1
0 which

provides the pure American binomial price associated to the tree with n steps.
The technique previously presented is inefficient from a computational point of view be-

cause of the high number of singular points generated at every dividend date. However simple
modifications allows to reduce drastically the number of singular points providing an upper and
a lower bound of the exact binomial value.

In order to get an upper bound of the pure binomial price we just remove some singular
points at every time step. Remark 1.a ensures that the value obtained in such way is an upper
estimate of the pure binomial price. The criteria to remove the singular points is the same as
presented in [7].
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Figure 3: The point S has been inserted, A4 and A5 have been removed.

More precisely, consider the set of singular points C = {(A1
i , P 1

i ), ..., (AL
i , P L

i )} at step i, and
the corresponding price value function vi(S). Let v′

i(S) be the price value function obtained by
removing a point (Al

i, P l
i ) from C. We have (see Figure 4)

|vi(S) − v′
i(S)| ≤ ǫl, ∀S ∈ [Smin

i , Smax
i ] (5)

where
ǫl = v′

i(A
l
i) − vi(A

l
i). (6)

Therefore, given a real number h > 0, we choose to remove the point (Al
i, P l

i ) if ǫl < h.
Repeating this procedure sequentially at every node of the tree, avoiding the elimination of two
consecutive singular points, we can conclude that the obtained upper estimate differs from the
pure binomial value at most for nh.

The algorithm for the computation of the lower bound is similar and follows again by
Remark 1.b (see Figure 2).

Figure 4: If ǫ < h then A4 will be removed.

4 Numerical results

In this section we provide some numerical comparisons of the algorithms presented in the
previous sections with the tree method given in [9] and a finite difference method implemented
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following [10]. For testing the efficiency we will consider a numerical experiments proposed in
[9]. In that paper the authors considered a call option with time to maturity of 7 years and
cash dividends equal to

D1 = 6, D2 = 6.5, D3 = 7, D4 = 7.5, D5 = 8, D6 = 8, D7 = 8,

respectively at time ti = i − 0.5, i = 1, ..., 7.
The volatility is σ = 0.25, the interest rate r = 0.06, the current stock price is s0 = 100 and

the strike price varies: K = 70, 100, 130.
All the computations presented in the tables have been performed in double precision on a

PC with a processor Centrino at 1.6 Ghz with 512 Mb of RAM.

4.1 European and American plain-vanilla

In this case we compare the singular point algorithm described in Section 3 with the one
obtained in [9] with n = 1000 steps (VN1000). For the singular points method we take the
same number of steps and compute the upper and the lower bound provided by the method.
As level of error we choose h = T

n
√

n
(SP1) and h = 10−5 (SP2). The first choice of h produces

a maximal error of = T√
n

which converges to 0 which implies that the estimates converge to
the continuous value. The second choice is independent from the number of steps and provides
an example of thin bounds of the pure binomial value (the maximal error in this case is 10−2).
For the comparison of the methods we take as benchmark value the one provided by Vellekoop-
Nieuvenhuis [9] (VNRE) evaluated with Richardson extrapolation for n = 64000.

In Table 1 and in Table 2 we report respectively the price estimates for the European and
American case with time of computation in parentheses (measured in seconds).

K VN1000 SP11000 SP21000 VNRE
down up down up

70 26.10 26.0770 26.0933 26.0802 26.0809 26.08
(0.22) (0.13) (0.08) (0.50) (0.34)

100 18.50 18.4761 18.4931 18.4795 18.4803 18.48
(0.22) (0.16) (0.09) (0.59) (0.37)

130 13.31 13.2771 13.2956 13.2808 13.2816 13.29
(0.22) (0.17) (0.09) (0.64) (0.42)

Table 1: European Call options with discrete dividends
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K VN1000 SP11000 SP21000 VNRE
down up down up

70 33.40 33.4651 33.4721 33.4669 33.4673 33.47
(0.26) (0.08) (0.05) (0.31) (0.17)

100 20.04 20.0388 20.0535 20.0422 20.0429 20.04
(0.26) (0.12) (0.06) (0.44) (0.28)

130 13.76 13.7386 13.7574 13.7421 13.7429 13.75
(0.26) (0.16) (0.09) (0.57) (0.37)

Table 2: American Call options with discrete dividends

References

[1] Beneder, R., Vorst, T. (2001): Options on dividends paying stocks. Recent Developments
in Mathematical finance (Shanghai). Riverhedge, NJ: Word Scientific Publishing. 1

[2] Bos, R., Gairat, A., Shepeleva, A. (2003): Dealing with discrete divedends. Risk Magazine
16, 109-112. 1

[3] Bos, R., Wandemark, S. (2002): Finessing fixed dividends. Risk Magazine15, 157-158. 1

[4] Cox J., Ross S.A., Rubinstein M. (1979): Option Pricing: A simplified appoach Journal
of Financial Economics 7, 229-264. 1

[5] Haug, E.G., Haug, J., Lewis, A. (2003): Back to basics: a new approach to the discrete
dividend problem. Willmott Magazine, 37-47. 1

[6] Hull, J. (2000) : Options, futures, and other derivatives. Fourth edition, Englewood Cliffs,
New Jersey: Prentice-Hall. 3

[7] Gaudenzi, M., Lepellere, M.A., Zanette, A. (2007): The singular point method for pricing
path-dependent options. Working paper DFIMF 1, University of Udine. 1, 3, 6

[8] Meyer, G.H. (2001): Numerical investigation of early exercise in American puts with
discrete dividends. Journal of Computational Finance Vol.5, 2. 1

[9] Vellekoop, M.H., Nieuwenhuis, J.V. (2006) : Efficient pricing of derivatives on assets with
discrete dividends. Applied Mathematical Finance Vol.13, 3, 265-284. 1, 3, 7, 8

[10] Wilmott, P., Dewynne, J., Howison, S. (1993) : Option pricing: mathematical models and
computation. Oxford: Oxford Financial Press. 1, 3, 8


	The model
	The singular points approach
	Plain-vanilla options
	Numerical results
	European and American plain-vanilla


