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Abstract

Adaptive importance sampling techniques are widely known for the Gaussian setting of

Brownian driven diffusions. In this work, we want to extend them to jump processes. Our

approach relies on a change of the jump intensity combined with the standard exponential tilting

for the Brownian motion. The free parameters of our framework are optimized using sample

average approximation techniques. We illustrate the efficiency of our method on the valuation of

financial derivatives in several jump models.
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1 Introduction

Lévy models have become quite popular in finance over the last decade. Vanilla options are easily

and efficiently priced using the Fast Fourier Transform approach developed by Carr et al. (1999) but

things become far more delicate for exotic options, for which Monte Carlo often reveals as the only

possible approach from a numerical point of view. This becomes even more true when dealing with

high dimensional products. In this work, we want to propose an adaptive Monte Carlo method based

on importance sampling for computing the expectation of a function of a Lévy process. As explained

by Kiessling and Tempone (2011), when resorting to Monte Carlo approaches, infinite activity Lévy

processes are often approximated by finite activity processes, which can always be represented as the

sum of a continuous diffusion (ie. driven by a Brownian motion) and a compound Poisson process.

In this work, we will concentrate on such jump diffusions with a Brownian driven part and a jump

part written as a compound Poisson process or possibly the sum of independent compound Poisson

processes in the multidimensional case.

We consider a mixed Gaussian and Poisson framework in which we would like to settle an adaptive

Monte Carlo method based on some importance sampling approach. Let G = (G1, . . . ,Gd) be a

standard normal random vector in Rd and Nµ = (N
µ1

1
, . . . ,N

µp

p ) a vector of p independent Poisson
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random variables with parameters µ = (µ1, . . . , µp). We assume that G and Nµ are independent. We

focus on the computation of

E = E[ f (G,Nµ)] (1.1)

where f : Rd × Np −→ R satisfies E[| f (G,Nµ)|] < ∞.

Lemma 1.1. For any measurable function h : Rd × Np −→ R either nonnegative or such that

E[|h(G,Nµ)|] < ∞, one has

∀ θ ∈ Rd, λ ∈ (]0,+∞[)p, E[h(G,Nµ)] = E



















h(G + θ,Nλ) e−θ·G−
|θ|2
2

p
∏

i=1

eλi−µi

(

µi

λi

)N
λi
i



















(1.2)

where Nλ is a vector of p independent Poisson random variables with parameters λ = (λ1, . . . , λp).

The proof of this lemma relies on elementary variable changes. Lemma 1.1 enables us to introduce

some extra degrees of freedom in the computation of E. When the expectation E is computed using a

Monte Carlo method, the Central Limit Theorem advises to use the representation of f (G,Nµ) with

the smallest possible variable which is achieved by choosing the parameters (θ, λ) which minimize

the variance of of f (G + θ,Nλ) e−θ·G−
|θ|2
2

∏p

i=1
eλi−µi

(

µi

λi

)N
λi
i . This raises several questions which are

investigated in the paper. Does the variance of f (G + θ,Nλ) e−θ·G−
|θ|2
2

∏p

i=1
eλi−µi

(

µi

λi

)N
λi
i admits a

unique minimizer? If so, how can it be computed numerically and how to make the most of it in view

of a further Monte Carlo computation?

These questions are quite natural in the context of Monte Carlo computations and have already been

widely discussed in the pure Gaussian framework. The first applications to option pricing of some

adaptive Monte Carlo methods based on importance sampling goes back to the papers of Arouna

(Winter 2003/04, 2004). These papers were based on a change of mean for the Gaussian

random normal vectors and the optimal parameter was searched for by using some stochastic

approximation algorithm with random truncations. This approach was later further investigated by

Lapeyre and Lelong (2011) who proposed a more general framework for settling adaptive Monte

Carlo methods using stochastic approximation, which is know to be a little tricky to fine tune in

practical applications. To circumvent the delicate behaviour of stochastic approximation,

Jourdain and Lelong (2009) proposed to resort to sample average approximation instead, which

basically relies on deterministic optimization techniques. An alternative to random truncations was

studied by Lemaire and Pagès (2010) who managed to modify the initial problem in order ta apply

the more standard Robbins Monro algorithm. Not only have they applied this to the Gaussian

framework but they have considered a few examples of Levy processes relying on the Esscher

transform to introduce a free parameter. The idea of using the Esscher transform was also extensively

investigated by Kawai (2007, 2008a,b).

In this work, we want to understand how the jump intensity of a Lévy process can be modified to

reduce the variance. First, we explain the parametric importance sampling transformation we use

for the Gaussian and Poisson parts. Then, in Section 2, we prove that this transformation leads to a

convex optimization problem and we study the properties of the optimal parameter estimator. Then, in

Section 3, we explain how to use this estimator in a Monte Carlo method. We prove that this approach

satisfies an adaptive strong law of large numbers and a central limit theorem with optimal limiting

variance. Finally, in Section 4, we apply our methodology to option pricing with jump processes.
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Notations.

• We define the space R∗+
m = {x ∈ Rm : ∀ 1 ≤ i ≤ m, xi > 0}.

• We define the space N∗m = {x ∈ Nm : ∀ 1 ≤ i ≤ m, xi > 0}.

• We encode any elements of Rm or R∗+
m as column vectors.

• If x ∈ Rm, x∗ is a row vector. We use the “∗” notation to denote the transpose operator for

vectors and matrices. Beware not to mix this notation with the subscript ⋆, which is used to

denote optimal solutions of optimization problems.

• If x, y ∈ Rm, x · y denotes the scalar product of x and y and the associated norm is denoted by

| · |.

• If x ∈ Rm, diagm(x) is the matrix with diagonal elements given by the vector x and all extra

diagonal elements equal to zero.

• The matrix Im denotes the identity matrix in dimension m.

• If x ∈ Rm, we defined d0(x) = min1≤i≤m |xi| which is the distance between x and the set {y ∈
R

m :
∏m

i=1 yi = 0}.

• We say that a random vector X with values inRm has Poisson distribution with parameter µ ∈ Rm

if the Xi are independent and have Poisson distribution with parameter µi.

2 Computing the optimal importance sampling parameters

2.1 Properties of the variance

Thanks to Lemma 1.1, the expectation E can be written

E = E



















f (G + θ,Nλ) e−θ·G−
|θ|2
2

p
∏

i=1

eλi−µi

(

µi

λi

)N
λi
i



















, ∀ θ ∈ Rd, λ ∈ R∗+p
.

Note that for the particular choice of θ = 0 and λ = µ, we recover Equation (1.1).

The convergence rate of a Monte Carlo estimator of E based on this new representation is governed by

the variance of f (G + θ,Nλ) e−θ·G−
|θ|2
2

∏p

i=1
eλi−µi

(

µi

λi

)N
λi
i which can be written in the form v(θ, λ) − E2

where

v(θ, λ) = E

















f (G,Nµ)2 e−θ·G+
|θ|2
2

p
∏

i=1

eλi−µi

(

µi

λi

)N
µi
i

















. (2.1)

This expression of v is easily obtained by applying Lemma 1.1 to the function h(g, n) = f (g +

θ, n)2 e−2θ·g−|θ|2 ∏p

i=1
e2(λi−µi)

(

µi

λi

)2ni
. Applying the change of measure backward after computing the

variance enables us to write the variance in a form which does not involve the parameters θ and λ

in the arguments of the function f . This remark is of prime importance as it is the basement of the

following key result stating the strong convexity of v.

Proposition 2.1. Assume that
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(A1) i. ∃(n1, . . . , np) ∈ N∗p, s.t. P(| f (G, (n1, . . . , np))| > 0) > 0

ii. ∃γ > 0, E

[

| f (G,Nµ)|2+γ
]

< ∞.

Then, the function v is infinitely continuously differentiable, strongly convex and moreover the gradient

vectors are given by

∇θv(θ, λ) =E

















(θ −G) f (G,Nµ)2 e−θ·G+
|θ|2
2

p
∏

i=1

eλi−µi

(

µi

λi

)N
µi
i

















(2.2)

∇λv(θ, λ) =E

















a(Nµ, λ) f (G,Nµ)2 e−θ·G+
|θ|2
2

p
∏

i=1

eλi−µi

(

µi

λi

)N
µi
i

















(2.3)

where the vector a(Nµ, λ) =

(

1 − N
µ1
1

λ1
, . . . , 1 − N

µp
p

λp

)∗
. The second derivatives are defined by

∇2
θ,θv(θ, λ) =E

















(

Id + (θ −G)(θ −G)∗
)

f (G,Nµ)2 e−θ·G+
|θ|2
2

p
∏

i=1

eλi−µi

(

µi

λi

)N
µi
i

















(2.4)

∇2
θ,λv(θ, λ) =E

















(θ −G)a(Nµ, λ)∗ f (G,Nµ)2 e−θ·G+
|θ|2
2

p
∏

i=1

eλi−µi

(

µi

λi

)N
µi
i

















(2.5)

∇2
λ,λv(θ, λ) =E

















(

D + a(Nµ, λ)a(Nµ, λ)∗
)

f (G,Nµ)2 e−θ·G+
|θ|2
2

p
∏

i=1

eλi−µi

(

µi

λi

)N
µi
i

















(2.6)

where the diagonal matrix D is defined by D = diagp

(

N
µ1
1

λ2
1

, . . . ,
N
µp
p

λ2
p

)

.

Proof. Let us define the function F : Rd × Rd × R∗+p −→ R by

F(g, θ, n, λ) = f (g, n)2 e−θ·g+
|θ|2
2

p
∏

i=1

eλi−µi

(

µi

λi

)ni

. (2.7)

For any values of (g, n), the function (θ, λ) 7−→ F(g, θ, n, λ) is infinitely continuously differentiable.

Since for all 0 < m < M,

sup
|(θ,λ)|≤M,m<d0(λ)

|∂θ j
F(G, θ,Nµ, λ)| ≤

(

M + eG j + e−G j

)

f (G,Nµ)2 eM2/2+pM

d
∏

k=1

(eMGk + e−MGk )

p
∏

i=1

e−µi

(

µi

m

)N
µi
i

(2.8)

where the right hand side is integrable because by Hölder’s inequality and Assump-

tion tegrable](A1-ii), we have that for all (θ, λ) ∈ Rd × Rp, E( f (G,Nµ)2 eθ·G+λ·N
µ

) < ∞. Hence,

Lebesgue’s theorem ensures that v is continuously differentiable w.r.t. θ and ∇θv is given by Equa-

tion (2.2).

We proceed similarly for the derivative w.r.t. λ by using the following upper bound

sup
|(θ,λ)|≤M,m<d0(λ)

|∂λ j
F(G, θ,Nµ, λ)| ≤

(

1 + e
N
µ j

j
/m
+ e
−N

µ j

j
/m

)

f (G,Nµ)2 eM2/2+pM

d
∏

k=1

(eMGk + e−MGk )

p
∏

i=1

e−µi

(

µi

m

)N
µi
i

. (2.9)



22 pages 5

High order differentiability properties are obtained by similar arguments and in particular the Hessian

matrix writes with the help of the function F

∇2v(θ, λ) =E

[

F(G, θ,Nµ, λ)

(

(θ −G)(θ −G)∗ (θ −G)a(Nµ, λ)∗

a(Nµ, λ)(θ −G)∗ a(Nµ, λ)a(Nµ, λ)∗

)

+F(G, θ,Nµ, λ)

(

Id 0

0 D

)]

.

Note that
(

(θ −G)(θ −G)∗ (θ −G)a(Nµ, λ)∗

a(Nµ, λ)(θ −G)∗ a(Nµ, λ)a(Nµ, λ)∗

)

=

(

θ −G

a(Nµ, λ)

) (

θ −G

a(Nµ, λ)

)∗
.

Hence, the first part of the Hessian is a positive semi definite rank one matrix.

E

[

F(G, θ,Nµ, λ)

(

Id 0

0 D

)]

≥ E[F(G, θ,Nµ, λ)1{Nµ=(n1,...,np}] diag













Id,
n1

λ2
1

, . . . ,
np

λ2
p













.

Moreover,

E[F(G, θ,Nµ, λ)1{Nµ=(n1,...,np)}] ≥ E
[

f (G, (n1, . . . , np))2 e−θ·G+
|θ|2
2

]
p

∏

i=1

eni−2µi













µ2
i

ni













ni
1

ni!

≥ E
[

f (G, (n1, . . . , np))2 e−θ·G
]

E

[

eθ·G
]

p
∏

i=1

eni−2µi













µ2
i

ni













ni
1

ni!

≥
(

E

[

| f (G, (n1, . . . , np))|
])2

p
∏

i=1

eni−2µi













µ2
i

ni













ni
1

ni!

where the last line comes from the Cauchy Schwartz inequality. Thanks to Condition sitive](A1-i),

this lower bound is strictly positive. Hence, the Hessian matrix is uniformly bounded from below,

which yields the strong convexity of v. �

As a consequence, the function v admits a unique minimizer (θ⋆, λ⋆) defined by ∇θv(θ⋆, λ⋆) =

∇λv(θ⋆, λ⋆) = 0. The characterization of (θ⋆, λ⋆) as the unique minimizer of a strongly convex func-

tion is very appealing but there is no hope to compute the gradient of v in a closed form, so we will

need to resort to some kind of approximations before running the optimization step. Before studying

the possible ways of approximating the optimal parameter, let us note that it is of dimension d + p

which can become very large in particular when the variables G and Nl come from the discretization

of jump diffusion processes. In many situations, it is advisable to reduce the dimension of the space

in which the optimization problem is solved.

Reducing the dimension of the optimization problem. Let 0 < d′ ≤ d and 0 < p′ ≤ p be the

reduced dimensions. Instead of searching for the best importance sampling parameter (θ, λ) in the

whole space Rd×R∗+p, we consider the subspace {(Aϑ, Bλ) : ϑ ∈ Rd′ , λ ∈ R∗+p′} where A ∈ Rd×d′ is a

matrix with rank d′ ≤ d and B ∈ R∗+p×p′ a matrix with rank p′ ≤ p. Note that since all the coefficients

of B are non negative, for all ϑ ∈ R∗+p′ , Bϑ ∈ R∗+p; actually, it is easily seen that the image of R∗+
p′

through B is isomorphic to R∗+
p′ .

For such matrices A and B, we introduce the function vA,B : Rd′ × R∗+p′ 7−→ R defined by

vA,B(ϑ, λ) = v(Aϑ, Bλ) (2.10)
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The function vA,B inherits from the regularity and convexity properties of v. Hence, from Propo-

sition 2.1, we know that vA,B is continuously infinitely differentiable and strongly convex. As a

consequence, there exists a unique couple of minimizers (ϑ
A,b
⋆ , λ

A,B
⋆ ) such that vA,B(ϑ

A,B
⋆ , λ

A,B
⋆ ) =

inf
ϑ∈Rd′ ,λ∈R∗+ p′ vA,B(ϑ, λ). We can also deduce the gradient vector of v

A,B
n

∇vA,B(ϑ, λ) =

(

A∗∇θ(Aϑ, Bλ)
B∗∇λ(Aϑ, Bλ)

)

and its Hessian matrix

∇2vA,B(ϑ, λ) = E

[

F(G, Aϑ,Nµ, Bλ)

(

A∗(Aϑ −G)(Aϑ −G)∗A A∗(Aϑ −G)a(Nµ, Bλ)∗B
B∗a(Nµ, Bλ)(Aϑ −G)∗A B∗aa∗(Nµ, Bλ)B

)

+F(G, Aϑ,Nµ, Bλ)

(

A∗A 0

0 B∗DB

)]

where the function F is defined by Equation (2.7). For the particular choices A = Id, B = Ip, d = d′

and p = p′, the functions vId ,Ip and v coincide.

The Esscher transform as a way to reduce the dimension. Consider a two dimensional process

(Xt)t≤T of the form Xt = (Wt, Ñ
µ̃
t ) where W is a real Brownian motion and Ñ µ̃ is a Poisson process

with intensity µ̃. The Esscher transform applied to X yields that for any nonnegative function h, we

have the following equality ∀ α ∈ R, λ̃ ∈ R∗+,

E[h((Wt, Ñ
µ̃
t ), t ≤ T )] = E















h((Wt + αt, Ñ λ̃, t ≤ T )) e−αWT− |α|
2T
2 eT (λ̃−µ̃)

(

µ̃

λ̃

)Ñ λ̃
T















Let 0 = t0 < · · · < tp = T be a time grid of [0,T ]. If we consider the vector G (resp. Nµ) as the

increments of W (resp. Ñ µ̃) on the grid, we can recover a particular form of Equation (1.2) with

A, B ∈ Rp given by

A =
(√

t1,
√

t2 − t1, . . . ,
√

tp − tp−1

)∗
; B =

(

t1, t2 − t1, . . . , tp − tp−1

)∗
.

2.2 Tracking the optimal importance sampling parameter

The optimal importance sampling parameter (θ∗, λ∗) can characterized as the unique zero of an

expectation, which is the typical framework for applying stochastic approximation. In particular, we

could use the algorithm introduced by Chen and Zhu (1986); we refer to Lelong (2008, 2011) for a

study of the convergence and asymptotic behaviour of these algorithms. The use of stochastic

approximation for devising adaptive importance sampling method was deeply investigated in a recent

survey by Lapeyre and Lelong (2011) who highlighted the difficulties in making those algorithms

practically converge.

In this work, we adopt a totally different point of view often called sample average approximation,

which basically consists in first replacing expectations by sample averages and then using

deterministic optimization techniques on these empirical means. This approach was studied in the

Gaussian framework by Jourdain and Lelong (2009) and proved to be very efficient.

Let (G j) j≥1 be a sequence of d−dimensional independent and identically distributed standard nor-

mal random variables. We also introduce (Nµ, j) j≥1 a sequence of p− dimensional independent and
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identically distributed random vector following the law of Nµ, ie. the components of the vectors are

independent and Poisson distributed with parameter µ.

For n ≥ 1, we introduce the sample average approximation of the function vA,B defined by

vA,B
n (ϑ, λ) =

1

n

n
∑

j=1

f (G j,Nµ, j)2 e−Aϑ·G j+
|Aϑ|2

2

p
∏

i=1

e(Bλ)i−µi

(

µi

(Bλ)i

)N
µi , j

i

. (2.11)

For n large enough, f (G j,Nµ, j) , 0 for some index j ∈ {1, . . . , n} and the approximation v
A,B
n is

also strongly convex and hence admits a unique minimizer (ϑ
A,B
n , λ

A,B
n ) defined by v

A,B
n (ϑ

A,B
n , λ

A,B
n ) =

inf
ϑ∈Rd′ ,λ∈R∗+ p′ v

A,B
n (ϑ, λ).

Proposition 2.2. Under Assumption p0](A1), the sequence of random functions (v
A,B
n )n converges

a.s. locally uniformly to the continuous function vA,B.

To prove this result, we use the uniform strong law of large numbers recalled hereafter, see for instance

Rubinstein and Shapiro (1993, Lemma A1). This result is also a consequence of the strong law of

large numbers in Banach spaces Ledoux and Talagrand (1991, Corollary 7.10, page 189).

Lemma 2.3. Let (Xi)i≥1 be a sequence of i.i.d. Rm-valued random vectors, E an open set of Rd and

h : E × Rm → R be a measurable function. Assume that

• a.s., χ ∈ E 7→ h(χ, X1) is continuous,

• for all compact sets K of Rd such that K ⊂ E, E
(

supχ∈K |h(χ, X1)|
)

< +∞.

Then, a.s. the sequence of random functions χ ∈ K 7→ 1
n

∑n
i=1 h(χ, Xi) converges locally uniformly to

the continuous function χ ∈ E 7→ E(h(χ, X1)).

Proof of Proposition 2.2. It is sufficient to prove the result for vn and it will hold for v
A,B
n . Let M >

m > 0. For all (θ, λ) such that |(θ, λ)| ≤ M and d0(λ) > m, we have

f (G,Nµ)2 e−θ·G+
|θ|2
2

p
∏

i=1

eλi−µi

(

µi

λi

)N
µi
i

≤ f (G,Nµ)2
d

∏

k=1

(e−MGk + eMGk ) e
M2

2

p
∏

i=1

eM−µi

(

µi

m

)N
µi
i

.

The r.h.s. is integrable by p0](A1) and Hölder’s inequality; hence, we can apply Lemma 2.3. �

Proposition 2.4. Under Assumption p0](A1), the pair (ϑ
A,B
n , λ

A,B
n ) converges a.s. to (ϑ

A,B
⋆ , λ

A,B
⋆ ) as

n −→ +∞. Moreover, if

(A2) ∃δ > 0, E

[

| f (G,Nµ)|4+δ
]

< ∞,

√
n
(

(ϑ
A,B
n , λ

A,B
n ) − (ϑ

A,B
⋆ , λ

A,B
⋆ )

)

converges in law to the normal distribution Nd+p(0,Γ) where

Γ =
(

∇2vA,B(ϑ
A,B
⋆ , λ

A,B
⋆ )

)−1
Cov(∇F(G, Aϑ

A,B
⋆ ,Nµ, Bλ

A,B
⋆ ))

(

∇2vA,B(ϑ
A,B
⋆ , λ

A,B
⋆ )

)−1

with the function F defined by Equation (2.7) and its gradient computed w.r.t. the reduced parameters

(ϑ, λ).

Condition tegrable2](A2) ensures that the covariance matrix Cov(∇F(G, Aϑ
A,B
⋆ ,Nµ, Bλ

A,B
⋆ )) does

exist. The non singularity of the matrix ∇2vA,B(ϑ
A,B
⋆ , λ

A,B
⋆ ) is guaranteed by the strict convexity of v.

By combining Propositions 2.2 and 2.4, we can state the following result



8

Corollary 2.5. Under Assumption p0](A1), v
A,B
n (ϑ

A,B
n , λ

A,B
n ) converge a.s. to vA,B(ϑ

A,B
⋆ , λ

A,B
⋆ ) as n −→

+∞.

Proof of Proposition 2.4. Let ε > 0. We define a compact neighbourhoodVε of (ϑ⋆, λ⋆)

Vε
def
=

{

(ϑ, λ) ∈ Rd × Rp : |(ϑ, λ) − (ϑ⋆, λ⋆)| ≤ ε
}

. (2.12)

In the following, we assume that ε is small enough, so thatVε is included in Rd × R∗+p.

By the strict convexity and the continuity of vA,B,

α
def
= inf

(ϑ,λ)∈Vc
ε

vA,B(ϑ, λ) − vA,B(ϑ
A,B
⋆ , λ

A,B
⋆ ) > 0.

The local uniform convergence of v
A,B
n to vA,B ensures that for some nα sufficiently large,

∀n ≥ nα, ∀(ϑ, λ) ∈ Vε, |vA,B
n (ϑ, λ) − vA,B(ϑ, λ)| ≤ α

3
. (2.13)

For n ≥ nα and (ϑ, λ) < Vε, we define (ϑ
A,B
ε , λ

A,B
ε ) ∈ Vε and writes as the convex combination of

(ϑ
A,B
⋆ , λ

A,B
⋆ ) and (ϑ, λ).

(ϑA,B
ε , λA,B

ε )
def
=















ϑ
A,B
⋆ + ε

ϑ − ϑA,B
⋆

|(ϑ − ϑA,B
⋆ , λ − λA,B

⋆ )|
, λ

A,B
⋆ + ε

µ − λA,B
⋆

|(ϑ − ϑA,B
⋆ , λ − λA,B

⋆ )|















.

We deduce, using the convexity of v
A,B
n for the first inequality and Equation (2.13) for the second one

vA,B
n (ϑ, λ) − vA,B

n (ϑ
A,B
⋆ , λ

A,B
⋆ ) ≥

|(ϑ − ϑA,B
⋆ , λ − λA,B

⋆ )|
ε

[

vA,B
n (ϑA,B

ε , λA,B
ε ) − vA,B

n (ϑ
A,B
⋆ , λ

A,B
⋆ )

]

≥
[

vA,B(ϑA,B
ε , λA,B

ε ) − vA,B(ϑ
A,B
⋆ , λ

A,B
⋆ ) − 2α

3

]

≥ α

3
.

The optimality of (ϑ
A,G
n , λ

A,B
n ) yields that v

A,B
n (ϑ

A,B
n , λ

A,B
n ) ≤ v

A,B
n (ϑ

A,B
⋆ , λ

A,B
⋆ ). So, we conclude that

(ϑ
A,B
n , λ

A,B
n ) ∈ Vε for n ≥ nα. Therefore, (ϑ

A,B
n , λ

A,B
n ) converges a.s. to (ϑ

A,B
⋆ , λ

A,B
⋆ ).

We have seen in the proof of Proposition 2.1, that E
[

sup|(θ,λ)|≤M,m<d0(λ) ∇F(G, θ,Nµ, λ)
]

< ∞, see

Equation (2.9) and (2.8). Similarly, we can show that E
[

sup|(θ,λ)|≤M,m<d0(λ) ∇2F(G, θ,Nµ, λ)
]

< ∞.

The central limit theorem governing the convergence of the pair (ϑ
A,B
n , λ

A,B
n ) to the pair (ϑ

A,B
⋆ , λ

A,B
⋆ )

can be deduced from Rubinstein and Shapiro (1993, Theorem A2). �

3 Adaptive Monte Carlo

In this section, we assume to have at hand a sequence of optimal solutions (ϑ
A,B
n , λ

A,B
n ) and want

to devise an adaptive Monte Carlo taking advantage of the knowledge of these parameters through

the use of Equation (1.2). In a previous work Jourdain and Lelong (2009) dedicated to the Gaussian

framework, we had used the same samples for approximating v by vn and after to build a Monte Carlo

estimator of E involving θn. This was possible because a normal random vector X with mean vector θ

naturally writes as X = θ +G where G is a standard normal random vector.

No such simple relation exists for the Poisson distribution to link a Poisson random variable with

parameter µ to one with parameter λ. Hence, it is not worth trying to reuse, for the Monte Carlo

estimator based on Equation (1.2), the same Poisson random samples as those involved in vn. Then,

we suggest the following two stages algorithm.
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Algorithm 3.1.

First stage Generate a sequence (G j) j=1,...,m of i.i.d random vector following the standard normal

distribution in Rd and a sequence (N j = (N
j

1
, . . . ,N

j
p)) j=1,...,m of i.i.d Poisson random vectors

with parameter µ.

Define

vA,B
m (ϑ, λ) =

1

m

m
∑

j=1

f (G j,Nµ, j)2 e−Aϑ·G j+
|Aϑ|2

2

p
∏

i=1

eBλi−µi

(

µi

Bλi

)N
µi , j

i

. (3.1)

Compute

(ϑm, λm) = arg min
(ϑ,λ)∈Rd×R∗+ p

vA,B
m (ϑ, λ).

Second stage: Generate a sequence (Ḡ j) j=1,...,n of i.i.d random vector following the standard normal

distribution in Rd and a sequence (N̄ j = (N̄
j

1
, . . . , N̄

j
p)) j=1,...,n of i.i.d Poisson random vectors

with parameter Bλm. Conditionally on λm, these two sequences are assumed to be independent

of the sequences (G j) j=1,...,m and (Nµ, j) j=1,...,m

Define

MA,B
n,m =

1

n

n
∑

j=1

f (Ḡ j + Aϑm, N̄
j) e−Aϑm·Ḡ j− |Aϑm |2

2

p
∏

i=1

e(Bλm)i−µi

(

µi

(Bλm)i

)N̄
j

i

. (3.2)

3.1 Strong law of large numbers and central limit theorem

The conditional independence between the two stages combined with Lemma 1.1 immediately shows

that for any fixed m, n, the estimator M
A,B
n,m is unbiased, ie. E[M

A,B
n,m ] = E. Conditionally on

(G j,N j) j=1,...,m, the terms involved in the sum of Equation (3.2) are i.i.d., hence the standard strong

law of large numbers yields that limn→+∞ M
A,B
n,m = E[ f (G,Nµ)] a.s. by applying Lemma 1.1. Similarly,

the central limit theorem applies and we can state the following result.

Proposition 3.2. For any fixed m, M
A,B
n,m converges a.s. to E[ f (G,Nµ)] as n goes to infinity and more-

over
√

n(M
A,B
n,m − E[ f (G,Nµ)])

law−−−−−→
n→+∞

N(0, vA,B(ϑm, λm)).

This result is not fully satisfactory as from a practical point of view, we like to know the limiting

of the estimator M
A,B
n,m(n)

where m(n) is a function of n tending to infinity with n. To investigate the

asymptotic behaviour when m and n tend to infinity together, it is convenient to rewrite M
A,B
n,m(n)

using

an auxiliary sequence of random variables. We introduce a sequence (Ū
j

i
)1≤i≤p, j≥1 of i.i.d. random

variables following the uniform distribution on [0, 1] and independent of all the other random variables

used so far. If we define

Ñ
j

i
(λ) =

∞
∑

k=0

k1{

P(λi;k)≤U
j

i
<P(λi;k+1)

} for all 1 ≤ i ≤ p, 1 ≤ j

where P(λ, ·) is the cumulative distribution function of the Poisson distribution with parameter λ, then

(N̄ j) j=1,...,n
Law
= (Ñ j(λm(n))) j=1,...,n. Since for all k ∈ N, the function λ ∈ R∗ 7−→ P(λ, k) is continuous

and decreasing, we get that limn→∞ Ñ j(λm(n)) = N j(λ⋆) a.s. and for all λ ≤ λ′, Ñ j(λ′) < Ñ j(λ) where

the ordering has to be understood component wise.
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We define

M̃n(θ, λ) =
1

n

n
∑

j=1

f (Ḡ j + θ, Ñ j(λ)) e−θ·Ḡ
j− |θ|

2

2

p
∏

i=1

eλi−µi

(

µi

λi

)Ñ
j

i
(λ)

.

It is obvious that M
A,B
n,m(n)

Law
= M̃n(Aϑm(n), Bλm(n)).

Theorem 3.3. Let m(n) be an increasing function of n tending to infinity. Then, under Assump-

tions p0](A1) and tegrable2](A2), M
A,B
n,m(n)

converges a.s. to E[ f (G,Nµ)] as n goes to infinity.

It is actually sufficient to prove the result for A and B being identity matrices. For the sake of clear

notations, when A = Id and B = Ip, we write Mn,m(n) instead of M
A,B
n,m(n)

.

Proof. We have already seen that E[Mn,m] = E. Thanks the independence of the samples used in the

two stages of the algorithm, conditionally on ((G j,N j), j ≥ 1), Mn,m writes as a sum of i.i.d random

variables. We introduce the σ−algebra G = σ((G j,N j), j ≥ 1). We define for all m, j ≥ 1

Xm, j = f (Ḡ j + θm, N̄
j) e−θm·Ḡ j− |θm |

2

2

p
∏

i=1

e(λm)i−µi

(

µi

(λm)i

)N̄
j

i

.

Note that conditionally on G, the sequence (Xm, j) j≥1 is i.i.d. for any fixed m ≥ 1.

For a fixed ε > 0, we recall the definition ofVε

Vε
def
=

{

(θ, λ) ∈ Rd × Rp : |(θ, λ) − (θ⋆, λ⋆)| ≤ ε
}

.

In the following, we assume that ε is small enough, so that Vε is included in Rd × R∗+p. For all

m, n ≥ 1,

E

[

(Mn,m − E)21{(θm,λm)∈Vε}
]

= E

















E































1

n

n
∑

i=1

(Xm,i − E)















2
∣

∣

∣

∣

G
















1{(θm,λm)∈Vε}

















≤ 1

n
E

[

E

[

(Xm,i − E)2
∣

∣

∣

∣

G
]

1{(θm,λm)∈Vε}

]

≤ 1

n
E

[

v(θm, λm)1{(θm,λm)∈Vε}
]

≤ 1

n













sup
(θ,λ)∈Vε

v(θ, λ) − E2













≤ c

n
. (3.3)

We deduce from the Borell Cantelli Lemma that for any increasing function ρ : N → N,

(Mn2,ρ(n) − E)1{(θρ(n),λρ(n))∈Vε} tends to 0 a.s.

To prove that (Mn,m(n) − E)1{(θm(n),λm(n))∈Vε} converges to zero a.s., we mimic the proof of the classical

strong law of large numbers.

Let n ∈ N∗, we define k = ⌊
√

n⌋; then k2 ≤ n < (k + 1)2.

Mn,m(n) − E =
1

n

k2
∑

i=1

(Xm(n),i − E) +
1

n

n
∑

i=k2+1

(Xm(n),i − E)

∣

∣

∣Mn,m(n) − E
∣

∣

∣ ≤ 1

k2

∣

∣

∣

∣

∣

∣

∣

∣

k2
∑

i=1

(Xm(n),i − E)

∣

∣

∣

∣

∣

∣

∣

∣

+
1

n

∣

∣

∣

∣

∣

∣

∣

n
∑

i=k2+1

(Xm(n),i − E)

∣

∣

∣

∣

∣

∣

∣

. (3.4)
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Using Equation (3.3),

E







































1

k2

∣

∣

∣

∣

∣

∣

∣

∣

k2
∑

i=1

(Xm(n),i − E)

∣

∣

∣

∣

∣

∣

∣

∣



















2

1{(θm,λm)∈Vε}





















≤ c

k2
.

Hence, we easily deduce from the Borrel Cantelli Lemma that 1
k2

∣

∣

∣

∣

∑k2

i=1(Xm(n),i − E)
∣

∣

∣

∣

1{(θm(n),λm(n))∈Vε}
tends to 0 a.s. when k goes to infinity, ie. when n goes to infinity. A similar computation as in

Equation (3.3) leads to

E



































1

n

∣

∣

∣

∣

∣

∣

∣

n
∑

i=k2+1

(Xm(n),i − E)

∣

∣

∣

∣

∣

∣

∣

















2

1{(θm(n),λm(n))∈Vε}



















≤ n − k2

n2













sup
(θ,λ)∈K

v(θ, λ) − E2













≤ c

n3/2
.

Hence, the Borel Cantelli Lemma yields that 1
n

∣

∣

∣

∑n
i=k2+1

(Xm(n),i − E)
∣

∣

∣ 1{(θm(n),λm(n))∈Vε} → 0 a.s. when n

goes to infinity.

Eventually, we have proved that (Mn,m(n) − E)1{(θm(n),λm(n))∈Vε} converges to zero a.s. Since,

(θm(n), λm(n))→ (θ⋆, λ⋆) a.s., we deduce that Mn,m(n) → E a.s. when n goes to infinity. �

Theorem 3.4. Let m(n) be an integer valued function of n increasing to infinity with n and such that

m(n) ∼ nβ for some β > 0. Assume that

(A3) i. for all k ∈ Np, the function g ∈ Rd 7−→ f (g, k) is continuous;

ii. there exists a compact neighbourhood V of (ϑ⋆, λ⋆) included in Rd′ × R∗+p′ and η > 0

such that E
[

sup(ϑ,λ)∈V | f (Ḡ + Aϑ, Ñ1(Bλ))|2(1+η)
]

< ∞.

Then, under Assumptions p0](A1) and tegrable2](A2),

√
n(M̃n(Aϑm(n), Bλm(n)) − E[ f (G,Nµ)])

law−−−−−→
n→+∞

N(0, vA,B(ϑ⋆, λ⋆)).

Proof. It is actually sufficient to prove the result for A and B being identity matrices.

√
n(M̃n(θm(n), λm(n)) − E) =

√
n(M̃n(θ⋆, λ⋆) − E) +

√
n(M̃n(θm(n), λm(n)) − M̃n(θ⋆, λ⋆))

From the standard central limit theorem,
√

n(M̃n(θ⋆, λ⋆) − E)
law−−−−−→

n→+∞
N(0, v(θ⋆, λ⋆)). Therefore, it is

sufficient to prove that
√

n(M̃n(θm(n), λm(n)) − M̃n(θ⋆, λ⋆))
Pr−−−−−→

n→+∞
0. Let ε > 0 and 0 < α < β/2.

P

(√
n
∣

∣

∣M̃n(θm(n), λm(n)) − M̃n(θ⋆, λ⋆)
∣

∣

∣ > ε
)

≤ P(nα
∣

∣

∣(θm(n), λm(n)) − (θ⋆, λ⋆)
∣

∣

∣ > 1)

+
n

ε2
E

[

∣

∣

∣M̃n(θm(n), λm(n)) − M̃n(θ⋆, λ⋆)
∣

∣

∣

2
1{|(θm(n),λm(n))−(θ⋆,λ⋆)|≤n−α}

]

.

Note that nα ∼ m(n)α/β with α/β < 1/2, hence we deduce from Proposition 2.4, that

P(nα
∣

∣

∣(θm(n), λm(n)) − (θ⋆, λ⋆)
∣

∣

∣ > 1) −→ 0. We define

Q(θ, λ) = e−θ·Ḡ
1− |θ|

2

2

p
∏

i=1

eλi−µi

(

µi

λi

)Ñ1
i
(λ)

.
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Conditionally on (θm(n), λm(n)), M̃n(θm(n), λm(n)) writes as a sum of i.i.d random variables.

nE

[

∣

∣

∣M̃n(θm(n), λm(n)) − M̃n(θ⋆, λ⋆)
∣

∣

∣

2
1{|(θm(n),λm(n))−(θ⋆,λ⋆)|≤n−α}

]

=

E

[

∣

∣

∣ f (Ḡ1 + θ⋆, Ñ
1(λ⋆))Q(θ⋆, λ⋆) − f (Ḡ1 + θm(n), Ñ

1(λm(n)))Q(θm(n), λm(n))
∣

∣

∣

2

1{|(θm(n),λm(n))−(θ⋆,λ⋆)|≤n−α}
]

. (3.5)

Thanks to the convergence of Ñ1(λm(n)), Q(θm(n), λm(n)) converges a.s. to Q(θ⋆, λ⋆) when n goes to

infinity. Since for n large enough, N1(λm(n)) = N1(λ⋆), the continuity of f with respect to its first

argument enables to prove that f (Ḡ1 + θm(n), Ñ
1(λm(n))) converges a.s. to f (Ḡ1 + θ⋆, Ñ

1(λ⋆)). Hence,

the absolute value inside the expectation tends to zero a.s. We need to bound the term inside the

expectation by an integrable random variable to apply the bounded convergence theorem which yields

the result.

∣

∣

∣ f (Ḡ1 + θ⋆, Ñ
1(λ⋆))Q(θ⋆, λ⋆) − f (Ḡ1 + θm(n), Ñ

1(λm(n)))Q(θm(n), λm(n))
∣

∣

∣

2

1{|(θm(n),λm(n))−(θ⋆,λ⋆)|≤n−α} ≤ 2 sup
|(θ,λ)−(θ⋆,λ⋆)|≤n−α

∣

∣

∣ f (Ḡ1 + θ, Ñ1(λ))
∣

∣

∣

2
Q2(θ, λ).

For n large enough,
{|(θ, λ) − (θ⋆, λ⋆)| ≤ n−α

} ⊂ V. Moreover, there exist m > 0 and M > 0 such that

V ⊂ {|θ| ≤ M, |λ| ≤ M and d0(λ) ≥ m
}

. Hence,

sup
(θ,λ)−(θ⋆,λ⋆)|≤n−α

∣

∣

∣ f (Ḡ1 + θ, Ñ1(λ))
∣

∣

∣ Q(θ, λ)

≤ sup
(θ,λ)∈V

∣

∣

∣ f (Ḡ1 + θ, Ñ1(λ))
∣

∣

∣ epM
d

∏

i=1

(e−MG1
i + eMG1

i )

p
∏

i=1

















(

µi

m

)Ñ1
i
(m)

+

(

µi

m

)Ñ1
i
(M)

















≤
∑

σ∈{−M,M}d
ν∈{m,M}p

sup
(θ,λ)∈V

∣

∣

∣ f (Ḡ1 + θ, Ñ1(λ))
∣

∣

∣ epM eσ·G
1

p
∏

i=1

(

µi

m

)Ñ1
i
(ν)

.

Then, using Hölder’s inequality we get

E

































∑

σ∈{−M,M}d
ν∈{m,M}p

sup
(θ,λ)∈V

∣

∣

∣ f (Ḡ1 + θ, Ñ1(λ))
∣

∣

∣

2

















epM eσ·G
1

p
∏

i=1

(

µi

m

)Ñ1
i
(ν)

















2

































≤
∑

σ∈{−M,M}d
ν∈{m,M}p

E













sup
(θ,λ)∈V

∣

∣

∣ f (Ḡ1 + θ, Ñ1(λ))
∣

∣

∣

2(1+η)













1
1+η

E







































epM eσ·G
1

p
∏

i=1

(

µi

m

)Ñ1
i
(ν)

















2+ 2
η























η
1+η

.

Since we have assumed that E

[

sup(θ,λ)∈V
∣

∣

∣ f (Ḡ1 + θ, Ñ1(λ))
∣

∣

∣

2(1+η)
]

< ∞, the random vari-

ables
∣

∣

∣ f (Ḡ1 + θ⋆, Ñ
1(λ⋆))Q(θ⋆, λ⋆) − f (Ḡ1 + θm(n), Ñ

1(λm(n)))Q(θm(n), λm(n))
∣

∣

∣

2
1{|(θm(n),λm(n))−(θ⋆,λ⋆)|≤n−α}

are uniformly bounded w.r.t n by an integrable random variable. Hence, the left hand side of Equa-

tion (3.5) tends to zero which achieves to prove that
√

n(M̃n(θm(n), λm(n)) − M̃n(θ⋆, λ⋆))
Pr−−−−−→

n→+∞
0. �
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3.2 Practical implementation

The difficult part of Algorithm 3.1 is the numerical computation of the minimizing pair (θm, λm).

The efficiency of the optimization algorithm depends very much on the magnitude of the smallest

eigenvalue of ∇2v. From the end of the proof of Proposition 2.1, we can deduce that the smallest

eigenvalue of ∇2v is larger than

E

[

F(G, θ,Nµ, λ)1{Nµ=(n1,...,np)}
]

min













1,
n1

λ2
1

, . . . ,
np

λ2
p













.

This lower bound depends on the function f whereas we would rather find a uniform lower bound.

Hence, we advice to rewrite ∇v as

∇v(θ, λ) =E

















(

θ

1p

)

f (G,Nµ)2 e−θ·G+
|θ|2
2

p
∏

i=1

eλi−µi

(

µi

λi

)N
µi
i

















− E
















(

G
Nµ

λ

)

f (G,Nµ)2 e−θ·G+
|θ|2
2

p
∏

i=1

eλi−µi

(

µi

λi

)N
µi
i

















where
Nµ

λ
=

(

N
µ1
1

λ1
, . . . ,

N
µp
p

λp

)

. Hence, (θ⋆, λ⋆) can be seen as the root of

∇u(θ, λ) =

(

θ

1p

)

−
E

[(

G
Nµ

λ

)

f (G,Nµ)2 e−θ·G
∏p

i=1

(

µi

λi

)N
µi
i

]

E

[

f (G,Nµ)2 e−θ·G
∏p

i=1

(

µi

λi

)N
µi
i

]

with u(θ, λ) =
|θ|2
2
+

∑p

i=1
λi + logE

[

f (G,Nµ)2 e−θ·G
∏p

i=1

(

µi

λi

)N
µi
i

]

. The Hessian matrix of u is given by

∇2u(θ, λ) =





































Id 0

0

E















D f (G,Nµ)2 e−θ·G+
∏p

i=1

(

µi
λi

)N
µi
i















E















f (G,Nµ)2 e−θ·G
∏p

i=1

(

µi
λi

)N
µi
i



















































+

E

[(

G
Nµ

λ

) (

G
Nµ

λ

)∗
f (G,Nµ)2 e−θ·G

∏p

i=1

(

µi

λi

)N
µi
i

]

E

[

f (G,Nµ)2 e−θ·G
∏p

i=1

(

µi

λi

)N
µi
i

]

−
E

[(

G
Nµ

λ

)

f (G,Nµ)2 e−θ·G
∏p

i=1

(

µi

λi

)N
µi
i

]

E

[(

G
Nµ

λ

)

f (G,Nµ)2 e−θ·G
∏p

i=1

(

µi

λi

)N
µi
i

]∗

E

[

f (G,Nµ)2 e−θ·G
∏p

i=1

(

µi

λi

)N
µi
i

]2

where we recall that the diagonal matrix D is defined by D = diagp

(

N
µ1
1

λ2
1

, . . . ,
N
µp
p

λ2
p

)

. The Cauchy

Schwartz inequality yields that the last two terms in the expression of ∇2u form a positive semi definite
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matrix. The first part of the Hessian is a positive definite matrix with smallest eigenvalue larger than

min

































1,
1

λ2
j

E

[

N
µi

i
f (G,Nµ)2 e−θ·G

∏p

i=1

(

µi

λi

)N
µi
i

]

E

[

f (G,Nµ)2 e−θ·G
∏p

i=1

(

µi

λi

)N
µi
i

]

































= min

































1,
µ j

λ3
j

E

[

f (G,Nµ + e j)
2 e−θ·G

∏p

i=1

(

µi

λi

)N
µi
i

]

E

[

f (G,Nµ)2 e−θ·G
∏p

i=1

(

µi

λi

)N
µi
i

]

































where the equality comes from Stein’s formula for Poisson random variables and e j denotes the j− th

element of the canonical basis. When the function f is increasing with respect to each component of

its second argument, then we come up with the following lower bound independent of the function f

min

















1,
µ j

λ3
j

















.

Our numerical experiments advocate the use of u instead of v to speed up the computation of (θ⋆, λ⋆).

Using this new expression, we implement Algorithm 1 to construct an approximation xk
n of (θn, λn).

Since un is strongly convex, for any fixed n, xk
n converges to (θn, λn) when k goes to infinity. The

direction of descent dk
n at step k should be computed as the solution of a linear system. There is no

point in computing the inverse of ∇2un(xk
n), which would be computationally much more expensive.

Remarks on the implementation : From a practical point of view, ε should be chosen reasonably

small ε ≈ 10−6. This algorithm converges very quickly and, in most cases, less than 5 iterations are

enough to get a very accurate estimate of (θn, λn), actually within the ε−error. Since the points at which

the function f is evaluated remain constant through the iterations of Newton’s algorithm, the values

f 2(G j,N j) for j = 1, . . . , n should be precomputed before starting the optimization algorithm which

considerably speeds up the whole process. The Hessian matrix of our problem is easily tractable so

there is no point in using Quasi-Newton’s methods.

Algorithm 1 Projected Newton’s algorithm

Choose an initial value x0
n ∈ Rd+p.

k = 1

while
∣

∣

∣∇un(xk
n)
∣

∣

∣ > ε do

1. Compute dk
n such that (∇2un(xk

n))dk
n = −∇un(xk

n)

2. x
k+1/2
n = xk

n + dk
n

for i = 1 : d + p do

if x
k+1/2
n (i) > 0 then

xk+1
n (i) = x

k+1/2
n (i)

else

xk+1
n (i) =

xk
n(i)

2

end if

end for

3. k = k + 1

end while
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4 Application to jump processes in finance

We will apply our methodology to two different classes of jump processes: jump diffusion processes

and stochastic volatility processes with jumps, in this latter case the volatility itself may jump also.

We consider a filtered probability space (Ω,A, (Ft)0≤t≤T ,P) with a finite time horizon T > 0 and I

financial assets. We define on this space a Brownian motion W with values in RI and I+1 independent

Poisson processes (N1, . . . ,N I+1) with constant intensities µ1, . . . , µI+1. We also consider (I + 1)

independent sequences (Y i
j
) j≥1 for i = 1 . . . I + 1 of i.i.d. real valued random variables with common

law denoted Y in the following. The Poisson processes, the Brownian motions and the sequences (Y i
j
) j

are supposed to be independent of each other. Actually, we are interested in considering the compound

Poisson process associated to the Poisson process Ni and to the jump sequences Y i for i = 1, . . . , I+1.

4.1 Jump diffusion processes

In this class of models, we assume that the log-prices evolve according to the following equation

Xi
t =















βi − (σi)
2

2















t + σiLiWt +

Ni
t

∑

j=1

Y i
j +

N I+1
t

∑

j=1

Y I+1
j (4.1)

where β = (βi, . . . , βI)∗ is the drift vector and σ = (σi, . . . , σI)∗ the volatility vector. The row vectors

Li are such that the matrix L = (L1; . . . ; LI) verifies that Γ = LL∗ is a symmetric definite positive

matrix with unit diagonal elements. The matrix Γ embeds the covariance structure of the continuous

part of the model. We have also chosen to take into account in the model the possibility to have

simultaneous jumps which explains the extra jump term
∑N I+1

t

j=1
Y I+1

j
common to all underlying assets.

This common jump term embeds the systemic risk of the market.

From Equation 4.1, we deduce that the prices at time t S i
t = eXi

t are defined by

S i
t = S i

0 exp





























βi − (σi)
2

2















t + σiLiWt















Ni
t

∏

j=1

e
Y i

j

N I+1
t

∏

j=1

e
Y I+1

j

which corresponds for each asset to a one dimensional Merton model with intensity µi + µI+1 when

the Y i
j
are normally distributed.

As, we assumed that P was the martingale measure associated to the risk free rate r > 0 supposed

to be deterministic, the processes (e−rt S t)t must be martingales under P. This martingale condition

imposes that for every i = 1, . . . , I,

βi = r − (µi
E[Y i] + µI+1

E[Y I+1]).

In the following, βi will always stand for this quantity.

Remark 4.1. In the one dimensional case, ie. when I = 1, we only consider a single compound

Poisson process as the systemic risk jump term becomes irrelevant. Hence, the log-price in dimension

one will follow

Xt =

(

β − σ
2

2

)

t + σWt +

Nt
∑

j=1

Y j.

For the sake of clearness, we will not treat the one dimensional case separately in the following, even

though the practical one dimensional implementation relies on a single Poisson process. So, we will

always consider that the Poisson process has values in RI+1.
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In the numerical examples, we will need to discretize the multi dimensional price process on a time

grid 0 = t0 < t1 < · · · < tJ = T . We will assume that this time grid is regular and given by t j =
jT

J
,

j = 0, . . . , J. Just to fix our notations, we consider that the Brownian (resp. Poisson) increments are

stored as a column vector with size I × J (resp. (I + 1) × J).















































Wt1

Wt2
...

WtJ−1

WtJ















































=



















































√
t1Id 0 0 . . . 0√
t1Id

√
t2 − t1Id 0 . . . 0

...
. . .

. . .
. . .

...
...

. . .
. . .

√
tJ−1 − tJ−2Id 0√

t1Id
√

t2 − t1Id . . .
√

tJ−1 − tJ−2Id
√

tJ − tJ−1Id



















































G,

where G is a normal random vector in RI×J and Id is the identity matrix in dimension I × I. The

Poisson process is discretized in a similar way.

The Merton jump diffusion model. The Merton model corresponds to the particular choice of a

normal distribution for the variables (Y i), Y i ∼ N(α, δ) where α ∈ R and δ > 0. In this framework, the

jump sizes in the price follow a log normal distribution.

The Kou model. In the Kou model Kou (2002), the variables Y i follow an asymmetric exponential

distribution with density

piµi
+ e−µ

i
+x 1{x>0} + (1 − p)iµi

− eµ
i
−x 1{x<0}

where pi ∈ [0, 1] is the probability of a positive jump for the i − th component and the variables

µi
+ > 0, µi

− > 0 govern the decay of each exponential part.

4.2 Stochastic volatility models with jumps

In this section, we consider the stochastic volatility type model developed

by Barndorff-Nielsen and Shephard (2001b,a) in which the volatility process is a non Gaussian

Ornstein Uhlenbeck driven by a compound Poisson process.

We consider that the log-prices satisfy for i = 1, . . . , I

dXi
t = (ai − σi/2)dt +

√

σi
t−dW i

t + ψ
idZi

κit
+ ψI+1dZI+1

κI+1t

where a ∈ RI , ψ ∈ RI+1 has non-positive components which account for the positive leverage effect,

Z is (I + 1)-dimensional Lévy process defined by Zi
t =

∑Ni
t

k=1
Y i

k
for i = 1, . . . , I + 1 and the squared

volatility process (σt)t is Lévy driven Ornstein Uhlenbeck

dσi
t = −(κi + κI+1)σi

tdt + dZi
κit
+ dZI+1

κI+1t
.

For the squared volatility process to remain positive, we assume that the components of Z only jumps

upward, which means that the random variables Y i
j
are non-negative.

More specifically, the jump sequence Y i is i.i.d following the exponential distribution with parameter

βi > 0 for i = 1, . . . , I + 1. The drift vector a is chosen such that the discounted prices are martingales

under P. Hence, a straight computation shows that we need to set

ai = r − ψi κiµi

βi − ψi
− ψI+1 κI+1µI+1

βI+1 − ψI+1
, for i = 1, . . . , I
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to ensure the martingale property of (e−rt exp Xt)t.

As in the section on jump diffusion models, the extra Poisson process giving raise to the term dZI+1

in the dynamics of X and σ accounts for modelling a systemic risk. When ZI+1 jumps, all the volatil-

ities and possibly all the assets (when there is a leverage effect) jump together. This parametriza-

tion of multi-dimensional stochastic volatility models with jumps corresponds to Section 5.3 of

Barndorff-Nielsen and Stelzer (2013). Adding this extra jump process only makes sense in a multi-

dimensional framework, hence we write the one-dimensional model using the previous equations but

without the terms involving the index I + 1.

In the following, we compare the efficiencies of several different approaches based on the theoretical

part of the paper in the context of option pricing with jumps. The problem always boils down to

computing the expectation of a function of a jump diffusion process.

4.3 Several importance sampling approaches

To design an importance sampling Monte Carlo method, we can either play with the Brownian part

— referred to hereafter as Gaussian importance sampling with an optimal variance denoted VarG, or

with the Poisson part — referred to as Poisson importance sampling with an optimal variance

denoted VarP, or with both at the same time. This last approach is named Gaussian+Poisson

importance sampling and yields to an optimal variance denoted VarGP. The Gaussian importance

sampling approach actually corresponds the methodology developed in Jourdain and Lelong (2009)

but with independent sets of samples for the optimization part and the true Monte Carlo computation.

For each of the three methods, we consider two approaches.

Full importance sampling. The first approach consists in allowing to optimize the parameters per

time steps, this means that d = d′ = I × J and p = p′ = (I + 1) × J. In this setting, the matrices A and

B are identity matrices. This approach is the more general in one framework, but the dimension of

the optimization problem linked to the variance minimization with the square of the number of time

steps, which yields some interest in trying to find a sub vector space with smaller dimension in which

optimizing the parameters and which achieves a variance close the global minimum.

Reduced importance sampling. The idea of reducing the dimension of the problem is to search for

the parameter (θ, λ) in the subspace {(Aϑ, Bλ) : ϑ ∈ Rd′ , λ ∈ R∗+p′} where A ∈ Rd×d′ is a matrix with

rank d′ ≤ d and B ∈ R∗+p×p′ a matrix with rank p′ ≤ p.

We choose to restrict ourselves to adding a constant drift to the Brownian motion and keeping the

Poisson intensity time independent. This corresponds to d′ = I and p′ = I + 1

A( j−1)I+i,i =
√

t j − t j−1, B( j−1)(I+1)+k,k = t j − t j−1

for j = 1, . . . , J, i = 1, . . . , I and k = 1, . . . , I + 1 , all the other coefficients of A and B being zero.

4.4 Numerical experiments

We compare the different importance sampling approaches on four different financial derivatives: the

first two examples are path-dependent single asset options while the last two examples are basket

option with or without barrier monitoring. To compare the different strategies, we have decided to fix

the number of samples for the Monte Carlo part, which implies that their accuracies only depend on

their variances, which we will compare in different examples. To determine which method is best, it
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is convenient to compute their efficiencies defined as the ratio of the variance divided by the CPU

time.

In all the following examples, we use the same number of samples for the approximation of the

optimal importance sampling parameters and for the Monte Carlo computation, ie. m(n) = n.

Asian option. We consider a discretely monitored Asian option with payoff

















1

J

J
∑

i=1

S ti − K

















+

.

Our tests on one dimensional Asian options (see Tables 1 and 2) show that the Poisson and Gaus-

sian+Poisson importance sampling methods perform generally better than the pure Gaussian im-

portance sampling approach but they also require a longer computational time. When taking into

account this extra computational times along with the variance reduction we notice that the Poisson

and Gaussian+Poisson importance sampling methods yield the same efficiency for the Merton model

(see Table 1). For the BNS model (see Table 2), the mixed Gaussian+Poisson importance sampling

approach achieves a better variance reduction than the two other methods for a comparable computa-

tional time. By closely looking at the CPU times of the different strategies, it clearly appears that the

reduced approach shows the better efficiency and should be used in practice.

Strike Price Var VarG VarP VarGP

Full 90 17.88 2639 2395 636 529

Reduced 17.88 2639 2640 839 752

Full 100 14.37 2750 2624 720 622

Reduced 14.37 2750 2624 552 470

Full 110 12.11 2327 2301 470 420

Reduced 12.11 2327 2301 676 585

Table 1: Discrete Asian option in dimension 1 in the Merton model with S 0 = 100, r = 0.05, σ = 0.25,

µ = 1, α = 0.5, δ = 0.2, T = 1, J = 12 and n = 50000. The CPU time for the crude Monte Carlo

approach is 0.08. The CPU times for the full importance sampling approach are (0.21, 0.28, 0.39) and

for the reduced approach (0.20, 0.21, 0.26).

Strike Price Var VarG VarP VarGP

Full 90 11.85 63 22.7 50 13.3

Reduced 11.85 63 28.7 52.7 22.1

Full 100 3.96 47 19 29.7 9.4

Reduced 3.96 47 22 33 14.7

Full 110 0.92 19 7.8 9 3.5

Reduced 0.92 19 10 11.1 5.56

Table 2: Discrete Asian option in dimension 1 in the BNS model with S 0 = 100, r = 0.05, λ0 = 0.01,

µ = 1, κ = 0.5474, β = 18.6, T = 1, J = 12 and n = 50000. The CPU time for the crude Monte Carlo

approach is 0.13. The CPU times for the full importance sampling approach are (0.36, 0.52, 0.93) and

for the reduced approach (0.29, 0.29, 0.33).
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Barrier option. We consider a discrete monitoring barrier option with payoff

(S T − K)+ × 1{

∀1≤ j≤J, S t j
<U

}

where U is the upper barrier.

Strike Price Var VarG VarP VarGP

Full 90 17.88 2639 2395 636 529

Reduced 17.88 2639 2640 839 752

Full 100 14.37 2750 2624 720 622

Reduced 14.37 2750 2624 552 470

Full 110 12.11 2327 2301 470 420

Reduced 12.11 2327 2301 676 585

Table 3: Discrete barrier option in dimension 1 in the Merton model with S 0 = 100, r = 0.05,

σ = 0.2, µ = 0.1, α = 0, δ = 0.1, T = 1, J = 12, U = 140 and n = 50000. The CPU time for the

crude Monte Carlo approach is 0.08. The CPU times for the full importance sampling approach are

(0.22, 0.26, 0.37) and for the reduced approach (0.20, 0.20, 0.23).

Basket option. We consider a basket option on 10 assets with payoff

















I
∑

i=1

ωiS i
T − K

















+

where the vector ω ∈ RI describes the weight of each asset in the basket.

Strike Price Var VarG VarP VarGP

-10 10.61 112 85 66 48

0 3.66 85 66 33 25

10 1.17 111 52 12 10

Table 4: Basket option in dimension I = 10 in the Merton model with S i
0
= 100, r = 0.05, σi = 0.2,

µi = 0.1, αi = 0.3, δi = 0.2, ρ = 0.3, T = 1, ωi = 1
I

for i = 1, . . . , I/2, ωi = − 1
I

for i = I/2 + 1, . . . , I

and n = 50000. The CPU time for the crude Monte Carlo approach is 0.06. The CPU times for the

importance sampling approach are (0.17, 0.20, 0.32).

The experiments on the one dimensional barrier option (see Table 3 lead to very similar conclu-

sions regarding the efficiencies of the different approaches. Roughly speaking, the Gaussian approach

does not bring any variance reduction but costs 2.5 times the CPU times of the crude Monte Carlo

approach. The Poisson and Gaussian+Poisson importance sampling approaches do provide an im-

pressive variance reductions for equivalent computational times at least in the reduced size approach.

The improvement of the optimal variance obtained by the full size approaches does not look enough

to counter balance the extra computational time. Actually, the reduced size approaches show far better

efficiencies.

Since basket options are not path dependent derivatives, the full and reduced size approaches coincide

and we do not distinguish between the two in Tables 4 and 5. In these tables, we can see that the Gaus-

sian+Poisson approach provides better variance reductions that the pure Poisson approach, which in

turn outperforms the pure Gaussian strategy. However, except for out of the money options, the gain
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Strike Price Var VarG VarP VarGP

-10 10.21 60 41 48 29

0 3.35 30 21 22 13

10 0.68 8.3 5.9 5.2 2.8

Table 5: Basket option in dimension I = 10 in the Merton model with S i
0
= 100, r = 0.05, σi = 0.2,

µi = 1, αi = 0.1, δi = 0.01, ρ = 0.3, T = 1, ωi = 1
I

for i = 1, . . . , I/2, ωi = − 1
I

for i = I/2 + 1, . . . , I

and n = 50000. The CPU time for the crude Monte Carlo approach is 0.06. The CPU times for the

importance sampling approach are (0.17, 0.20, 0.32).

brought by the different importance sampling approaches do not compensate the extra computational

time in order to keep up with the crude Monte Carlo strategy. This lack of efficiency mainly comes

from the very simple form of the payoff which makes the crude Monte Carlo method very fast.

Multidimensional barrier option. We consider a discrete monitoring down and out barrier option

on a basket of assets with payoff

















I
∑

i=1

ωiS i
T − K

















+

1{

∀1≤i≤I, ∀1≤ j≤J, S i
t j
>bi

}

where the vector b ∈ RI is a lower barrier.

Strike Price Var VarG VarP VarGP

Full 0 0.59 7.00 4.03 4.36 1.98

Reduced 0.59 7.00 3.51 4.36 2.05

Full -5 1.06 13.33 8.43 9.64 4.79

Reduced 1.06 13.33 8.56 9.81 5.42

Full -10 1.64 24.26 16.57 18.39 10.57

Reduced 1.64 24.26 16.77 18.96 11.68

Table 6: Barrier option in dimension I = 10 in the Merton model with S i
0
= 100, r = 0.05, σi = 0.2,

µi = 1, αi = 0.1, δi = 0.01, bi = 80, ρ = 0.3, T = 1, ωi = 1
I

for i = 1, . . . , I/2, ωi = − 1
I

for

i = I/2 + 1, . . . , I and J = 12, n = 50000. The CPU time for the crude Monte Carlo approach is 0.76.

The CPU times for the reduced importance sampling approach are (1.42, 1.44, 1.52) and for the full

importance sampling approach they are (1.53, 2.41, 3.05).

Our last two examples deal multi-dimensional barrier options with discrete monitoring. The first

striking result to notice when looking at Tables 6 and 7 concerns the huge CPU times of the full

approaches which nonetheless do not significantly improve the variance reduction compared to the

reduced size methods. This remark definitely advocates the use of reduced size approaches. The

variance is always divided by a factor between 2 and 3, whereas the CPU time is only twice the

one of the crude Monte Carlo approach. In the Merton model case (Table 6), the Gaussian+Poisson

approach always provides the largest variance reduction for a computational time very close to the two

other methods, meanwhile in the BNS model (Table 7) the Poisson and Gaussian+Poisson methods

perform similarly. The efficiency of the pure Poisson approach comes from the particular form of the

BNS model which includes jumps in the volatility process. These jumps seem to have a larger impact

on the overall variance that the Brownian motion itself.
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Strike Price Var VarG VarP VarGP

Full 100 2.97 36 37.8 16 16

Reduced 2.97 36 36.2 16 16

Full 90 12.52 36 36.4 14.5 14.5

Reduced 12.52 36 36 14.3 14.3

Full 110 1.64 12.1 13.3 6.1 5.5

Reduced 0.80 12.1 12 5.3 5.4

Table 7: Barrier option in dimension I = 5 in the BNS model with S i
0
= 100, r = 0.05, λi = 0.01,

µi = 1, κi = 0.54, βi = 18.6, bi = 70, ρ = 0.2, T = 1, ωi = 1
I

for i = 1, . . . , I and J = 12,

n = 50000. The CPU time for the crude Monte Carlo approach is 0.52. The CPU times for the reduced

importance sampling approach are (1.06, 1.1, 1.17) and for the full importance sampling approach they

are (2.1, 3.8, 10.5).

5 Conclusion

In this work, we have studied an importance sampling based Monte Carlo method for jump processes.

The proposed algorithm splits into two parts. First, we compute the optimal change of measure

using Newton’s algorithm on a sample average approximation of the stochastic optimization problem.

This method is very robust and does not require any fine tuning unlike stochastic approximation

methods. Second, we use this estimator of the optimal measure change in an independent Monte

Carlo method. We have established a several convergence results for this approach and in particular

we have proved that it satisfies a Central Limit Theorem with optimal limiting variance. All the

numerical examples we have investigated advocates the use of reduced size problems to significantly

speed up the computations since the loss of variance reduction compared to the full approach remains

negligible. This importance sampling approach proves to be all the more efficient as the jump and the

diffusion parts are mixed up.
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