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Abstract. The aim of this work is to discuss the application of the work
presented in [BRS05a] to option pricing. The kernel-based stochastic gradient
algorithm avoids any discretization of the state space and any projection on a
subvector space of function basis. Thus, it approximates the optimum without
any restriction.
This algorithm is especially interesting for the pricing of multi-dimensional
American options (cf. [BRS05b]).

Premia 18

1. Basic Principle

This method acts on a dynamic programming algorithm corresponding to the
expected returns associated to the American option discretized in a Bermudean
option. Its fundamental principle relies on the fact that the expected return satisfies
a fixed point equation in a functional space. The solution of this fixed point equation
can then be characterized through variational inequalities leading to a perturbed
gradient algorithm in this functional space. The principles of this method have been
introduced in [BRS05a], and further applied to option pricing in [BRS05b]. At the
end of the algorithm, the expected returns are given as sums of kernel functions.

2. Pricing method

2.1. Framework. The price of a Bermudean option with evenly spaced exercise
dates {t0, t1, . . . , tN = T}, maturity T , discount factor α = B(t1, t2) and initial
stock price x is given by

(1) J0(x) = max
τ∈{t0,t1,...,tN }

E [ατ g(Xτ ) | Xt0
= x] ,

where the price process X is a Markov chain
{

Xtj
∈ S, 0 ≤ j ≤ N

}

with S = R
d

the multi-dimensional state space. The intrinsic value of the option is g : S → R
+.

Let us now introduce the dynamic programming counterpart of (1).

JN+1(x) =0,(2a)

Jj (x) = max
(

g (x) , αE
[

Jj+1(Xtj+1
) | Xtj

= x
])

, ∀ 0 ≤ j ≤ N.(2b)

We can equivalently write the equations (2) with the so-called Q-functions :

Qj (x) = αE
[

Jj+1(Xtj+1
) | Xtj

= x
]

,

i.e. the expected payoff if we do not exercise the option. Hence it comes:

(3) ∀0 ≤ j ≤ N, Jj(x) = max (g(x), Qj(x)) .
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Equation (2) now reads :

QN (x) =0(4a)

Qj (x) =αE
[

max
(

g
(

Xtj+1

)

, Qj+1

(

Xtj+1

))

| Xtj
= x

]

, ∀ 0 ≤ j ≤ N − 1.(4b)

Equations (4) can of course be rewritten as an infinite horizon stochastic dynamic
program, by letting the state be defined by (j, x) ∈ {0 ≤ j ≤ N} × S, and defining

the associated nonhomogeneous Markov chain. Finally, the function Q̂ : {0 ≤ j ≤
N}×S → R

N defined by Q̂(j, x) = Qj(x) verifies the following fixed point equation:

(5) Q̂(j, x) = αE
[

max
(

ĝ
(

V̂
)

, Q̂
(

V̂
))

| V = (j, x)
]

,

with

L
(

V̂
∣

∣

∣
V = (j, x)

)

=

{ (

j + 1, L
(

Xtj+1
|Xtj

= x
))

, if j ≤ N,
(j + 1, V ∞) , else, with V ∞ = +∞,

and for all x ∈ S, ĝ(j, x) = g(x), and ĝ(j, V ∞) = 0.

2.2. Algorithm. Equation (5) allows us to propose a perturbed gradient algo-
rithm to solve the fixed point problem equivalent to (4). It leads to the following
algorithm:

Algorithm 2.1. Step -1 : initialize Q0
j (·) = 0 for all 0 ≤ j ≤ N − 1,

Step k ≥ 0 :

• Draw Xk
tj

, ∀1 ≤ j ≤ N independently from the past drawings, starting from

Xk
t0

= x and with respect to the law of the Markov chain X ;
• Update:











































Qk+1
N (·) = 0,

Qk+1
N−1(·) = Qk

N−1(·) + ρk
N−1 ∆k

N−1 Kk
N−1(Xk

tN−1
, ·),

...

Qk+1
j (·) = Qk

j (·) + ρk
j ∆k

j Kk
j (Xk

tj
, ·),

...

Qk+1
0 (·) = Qk

0(·) + ρk
0 ∆k

0 Kk
0 (Xk

t0
, ·).

where

∆k
j = α max

(

g
(

Xk
tj+1

)

, Qk+1
tj+1

(

Xk
tj+1

))

− Qk
j (Xk

tj
).

where K-functions are kernels, i.e. bounded mappings from S × S → R, with
K(x, ·) non null on a subset of S centered on x. A typical choice of these kernels is
the Gaussian one:

Kk
j (x, y) = exp







(

x − y

εk
j

)2






.

where εk decreases to zero when k goes to infinity.

Let us note (Qk) = (Qk
j )0≤j≤N . Barty et al. proved, under several assumptions,

that the sequence (Qk)k∈N strongly converges to Q∗, the solution of the fixed point
equation (5). Some of these assumptions, that are especially important in practice,
are discussed below, in subsection 2.3.
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Steps ρk
j and radius of the kernels are decreasing scalar sequences, whose de-

creasing speeds are ruled by relations discussed in subsection 2.3.

As one can see, we are working directly in the infinite dimension state space to
which the solution belongs. In spite of the infinite dimension, this method remains
numerically tractable since in order to compute Qk+1 one only needs to keep in
memory

{

Qk, ∆k, Xk+1
}

. Using the previous notation of ∆k it holds that:

Qk+1
j (·) =

k
∑

i=0

ρi
j ∆i

j Ki
j(Xi+1

tj
, ·) + Q0

j (·), ∀0 ≤ j ≤ N.

2.3. Choice of the steps. Let us assume for the discussion that for all j, ρk
j = ρk,

and εk
j = εk. Recall that ρk is the multiplying factor in the temporal difference

and let us denote by εk the bandwidth of kernel Kk(·, ·). For the sequence Qk(·)
to converge, one needs the following relations :

∑

k∈N

ρkεk = ∞,
∑

k∈N

(ρk)2εk < ∞,
∑

k∈N

bρkεk(εk)1/d < ∞,

Let us choose :

ρk ≃ 1

ka
, εk ≃ 1

kb
.

Then we have the following relations :






0 ≤ a + b ≤ 1,
1 < a + 2b,
1 < a + b(1 + 1

d )

It defines a triangle in the plane (a, b), which shrinks to a line when d → ∞ To
choose a and b as the coordinates of the barycentre of the triangle seems to be a
good compromise between robustness and speed of convergence. It is given by:

{

a = 3+d
3(d+2) = 1

3 + 1
3(d+2) ,

b = 2d+2
3(d+2) = 2

3 − 2
3(d+2)

When d becomes high, (a, b) → ( 1
3 , 2

3 ). Note that 2
3 , as a power step for a

stochastic algorithm, is often reffered to in [PJ92] as an appropriate choice.

2.4. Acceleration of the rate of convergence by averaging. A good way to
develop optimal algorithms (in the sense of the convergence rate) has been studied
in [PJ92]. It is based on the idea of averaging the iterates.
Since the 1960s, the essential step was reached on the basis of the idea: a slow
algorithm having less than optimal convergence rate must be averaged.

We replace the update equation (2.1) by the following two-step update for all
0 ≤ j ≤ N :







Qk+1
j (·) = Qk

j (·) + ρk
j ∆k

j Kk
j (Xk

tj
, ·),

Q̄k+1
j (·) = 1

k+1

∑k+1
l=1 Ql

j(·).
We could also write the more practical update equation:

(6) Q̄k+1
j (·) = Q̄k

j (·) +
1

k + 1
(Qk+1

j (·) − Q̄k
j (·)).

It has been shown in [PJ92] that the variance of the residue decreases like
√

k.
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In practice, the best method is to begin averaging when the iterates have already
done a great part of the approximation. Moreover, since the form of our iterates in
a kernel-based stochastic gradient algorithm is the following :

Qk+1
j (·) =

k
∑

i=0

ρi
j∆i

jKi
j(Xi

tj
, ·) + Q0

j (·),

we can rewrite equation (6) in the following way :

Q̄k+1
j (·) =

{

Q̄k
j (·) + ρk

j ∆k
j Kk

j (Xk
tj

, ·) if k < k0

Q̄k
j (·) +

(

kmax−k+1
kmax−k0+1

)

ρk
j ∆k

j Kk
j (Xk

tj
, ·) if k ≥ k0

where kmax is the total number of iterations desired.

3. Numerical Applications

We applied algorithm 2.1 to a multi-dimensional option pricing problem. In the
two-dimensional case, the problem is the following :

• Price processes follow a risk-neutral discretized Black-Scholes dynamic:

(7) Xt+∆t ∼ Xt exp
(

(r − σ2/2)∆t +
√

∆tN(0, σ2)
)

.

• The intrinsic value of the option is:

g(X1, X2) = (S − min(X1, X2))+,

where S is the strike price.
• Time horizon is set to 7/12 years,
• X0

1 = X0
2 = 40, σ1 = 0.20, σ2 = 0.30, ρ = 0.5 the correlation rate bewteen

the prices and r = 0.04879 continuously compounded corresponding to 5%
effective per annum.

Results are shown in Table 1. We chose the exercise dates to be every month, it
means that we have 7 possible exercise dates here.

Strike Price Reference [Boy88] Averaged Kernel Method Relative Error
35 1.423 1.354 0.048
40 3.892 3.841 0.013
45 7.689 7.636 0.007

Table 1. Results of convergence after 10000 iterations for two-
dimensional option pricing compared with [Boy88], here dt = 1
month.

We finally present a higher dimensional example: Price processes follow the same
dynamic as described in equation (7). The intrinsic value of the option is :

g(x1, . . . , xd) = (max(x1, . . . , xd) − S)+ .

Results in dimension 3 are shown in Table 2. Every price is computed in ap-
proximately 15 seconds.
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S = 35.0, ρ = 0, σ1 = 0.2, σ2 = 0.3, σ3 = 0.5, reference : 8.59

Iterations Averaged Kernel Method Variance
500 6.56 0.11

1 000 7.24 0.09
5 000 8.22 0.08
20 000 8.47 0.03
50 000 8.55 0.03
100 000 8.59 0.02

S = 40.0, ρ = 0, σ1 = 0.2, σ2 = 0.3, σ3 = 0.5, reference : 3.84

Iterations Averaged Kernel Method Variance
500 2.98 0.19

1 000 3.31 0.12
5 000 3.72 0.06
20 000 3.80 0.04
50 000 3.83 0.04
100 000 3.83 0.02

S = 45.0, ρ = 0, σ1 = 0.2, σ2 = 0.3, σ3 = 0.5, reference : 0.90

Iterations Averaged Kernel Method Variance
500 0.76 0.08

1 000 1.19 0.08
5 000 1.15 0.04
20 000 0.94 0.03
50 000 0.92 0.02
100 000 0.91 0.02

Table 2. Estimates of the value of an option in dimension 3,
compared with results of Barraquand and Martineau [BM95].
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