
6 pages 1

Help

/*

* Copyright (C) 1998, 1999 John Smith

*

* This file is part of Octave.

* Or it might be one day....

*

* Octave is free software; you can redistribute it and/or modify it

* under the terms of the GNU General Public License as published by the

* Free Software Foundation; either version 2, or (at your option) any

* later version.

*

* Octave is distributed in the hope that it will be useful, but WITHOUT

* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or

* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License

* for more details.

*

* You should have received a copy of the GNU General Public License

* along with Octave; see the file COPYING. If not, write to the Free

* Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

*

*/

/*

* Put together by John Smith john at arrows dot demon dot co dot uk,

* using ideas by others.

*

* Calculate erf(z) for complex z.

* Three methods are implemented; which one is used depends on z.

*

* The code includes some hard coded constants that are intended to

* give about 14 decimal places of accuracy. This is appropriate for

* 64-bit floating point numbers.

*

* Oct 1999: Fixed a typo that in

* const double complex cerf_continued_fraction(const double complex z)

* that caused erroneous answers for erf(z) where real(z) negative

*

*/

6 pages 2

/*

* Put in Premia by Jérôme Lelong

* used by Parisian Options

*/

#include <cmath>

#include <complex>

using namespace std;

typedef complex<double> complex_double ;

#ifndef M_SQRT2

#define M_SQRT2 1.41421356237309504880168872420969808 /* sqrt(2) */

#endif

#ifndef M_PI

#define M_PI 3.14159265358979323846264338327950288 /* pi */

#endif

/*#include <octave/oct.h>*/

/*#include "f77-fcn.h"*/

/*

* Abramowitz and Stegun: (eqn: 7.1.14) gives this continued

* fraction for erfc(z)

*

* erfc(z) = sqrt(pi).exp(-z^2). 1 1/2 1 3/2 2 5/2

* --- --- --- --- --- --- ...

* z + z + z + z + z + z +

*

* This is evaluated using Lentz’s method, as described in the narative

* of Numerical Recipes in C.

*

* The continued fraction is true providing real(z)>0. In practice we

* like real(z) to be significantly greater than 0, say greater than 0.5.

*/

static complex_double cerfc_continued_fraction(complex_double z)

6 pages 3

{

double tiny = 1e-20 ; /* a small number, large enough to calculate 1/tiny

double eps = 1e-15 ; /* large enough so that 1.0+eps > 1.0, when using */

/* the floating point arithmetic */

/*

* first calculate z+ 1/2 1

* --- --- ...

* z + z +

*/

complex_double f = z ;

complex_double C = f ;

complex_double D = 0.0 ;

complex_double delta ;

double a ;

a = 0.0 ;

do

{

a = a + 0.5 ;

D = z + a * D ;

C = z + a / C ;

if (D.real() == 0.0 && D.imag() == 0.0)

D = tiny ;

D = 1.0 / D ;

delta = (C * D) ;

f = f * delta ;

}

while (abs(1.0 - delta) > eps) ;

/*

* Do the first term of the continued fraction

*/

f = 1.0 / f ;

/*

* and do the final scaling

6 pages 4

*/

f = f * exp(-z * z) / sqrt(M_PI) ;

return f ;

}

static complex_double cerf_continued_fraction(complex_double z)

{

if (z.real() > 0)

return 1.0 - cerfc_continued_fraction(z) ;

else

return -1.0 + cerfc_continued_fraction(-z) ;

}

/*

* Abramawitz and Stegun, Eqn. 7.1.5 gives a series for erf(z)

* good for all z, but converges faster for smallish abs(z), say abs(z)<2.

*/

static complex_double cerf_series(complex_double z)

{

double tiny = 1e-20 ; /* a small number compared with 1.*/

/* warning("cerf_series:");*/

complex_double sum = 0.0 ;

complex_double term = z ;

complex_double z2 = z * z ;

int n;

for (n = 0; n < 3 || abs(term) > abs(sum)*tiny; n++)

{

sum = sum + term / (2.0 * n + 1.0) ;

term = -term * z2 / (n + 1.0) ;

}

return sum * 2.0 / sqrt(M_PI) ;

}

/*

* Numerical Recipes quotes a formula due to Rybicki for evaluating

* Dawson’s Integral:

*

* exp(-x^2) integral exp(t^2).dt = 1/sqrt(pi) lim sum exp(-(z-n.h)^2) / n

6 pages 5

* 0 to x h->0 n odd

*

* This can be adapted to erf(z).

*/

static complex_double cerf_rybicki(complex_double z)

{

/* warning("cerf_rybicki:"); */

double h = 0.2 ; /* numerical experiment suggests this is small enough

complex_double I = complex_double(0.0, 1.0);

/*

* choose an even n0, and then shift z->z-n0.h and n->n-h.

* n0 is chosen so that real((z-n0.h)^2) is as small as possible.

*/

int n0 = 2 * (int)(floor(z.imag() / (2.0 * h) + 0.5)) ;

complex_double z0 = I * (double)n0 * h;

complex_double zp = z - z0 ;

complex_double sum = 0.0;

/*

* limits of sum chosen so that the end sums of the sum are

* fairly small. In this case exp(-(35.h)^2)=5e-22

*

*/

int np;

for (np = -35; np <= 35; np += 2)

{

complex_double t = zp - np * h * I ;

complex_double b = exp(t * t) / (double)(np + n0);

sum += b ;

}

sum = sum * 2.0 * exp(-z * z) / M_PI ;

return (I * sum);

}

static complex_double cerf(complex_double z)

{

/* Use the method appropriate to size of z -

* there probably ought to be an extra option for NaN z, or infinite z

6 pages 6

*

*/

if (abs(z) < 2.0)

return cerf_series(z) ;

else if (fabs(z.real()) < 0.5)

return cerf_rybicki(z) ;

else

return cerf_continued_fraction(z) ;

}

complex_double normal_cerf(complex_double z)

{

return (0.5 * (cerf(z / M_SQRT2) + 1.0));

}

