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1 Approximation Formulae

1.1 Model

The term "spread" is often used for the difference between two indices. Hence,
the spread option refers to an option written as the difference between two in-
dices and a fixed price, or, more generally, as a linear combination of a finite set
of indices plus a certain constant (± strike).

Spread options are traded in commodity markets, here is an example given in
[3]. The soybean crush spread is traded on the Chicago Board of Trade (CBOT).
The three underlying indices are the future contracts of soybean, soybean meal,
and soybean oil. The spread option is based on the gross processing margin: the
raw product is the soybean, and the manufactured products are soybean meal
and soybean oil. As crushing a bushel of soybeans procuces 0.022 short tons of
soybean meal and 11 lbs soybean oil in average, the GPM can be calculated as
follows:

GPM = 0.022 * [meal($/short ton)] + 11 * [oil($/lb)] - [soybeans($/bushel)]

This crush spread is used by crushers to hedge cash positions: crushing is prof-
itable only if the margin is greater than a constant which is the cost of the
process, for instance.

In this section, we assume that the spread option has two underlying assets
whose prices at time t are denoted by S1(t) and S2(t). Si(t), for i = 1, 2, follows
geometric Brownian motion dynamic under the risk-neutral probability:

dS1(t) = S1(t)[(r − q1)dt + σ1dW1(t)]
dS2(t) = S2(t)[(r − q2)dt + σ2dW2(t)]

(1)

where W1(t) and W2(t) are two Brownian motions correlated by ρ ∈ [−1, 1]. r is
the risk-free interest rate and qi the dividend or convenience yields. We denote
the current forward price for delivery at maturity date Fi := e(r−qi)T Si(0).
And then, we have the following expression for Si(T ):

Si(T ) = Si(0)e(r−qi−σ2

i /2)T +σiWi(T ) = Fie
−σ2

i T/2+σiWi(T ) (2)
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The European type spread option grants the holder the right to pay the
fixed price K instead of the difference (S1(t) − S2(t)) at the maturity date T .
The spread option’s pay-off at maturity is therefore:

(S1(T ) − S2(T ) − K)+ (3)

where x+ = max(x, 0) denotes the positive part of x.
Then the price C of the Call-like spread option at the initial time 0 of this
spread option is given under the risk-neutral probability:

C := e−rTE[(S1(T ) − S2(T ) − K)+] (4)

This quantity is what we want to compute using the different methods below.

Before we start, let us state the following identity which is the Call-Put
parity. This identity is independent of the model chosen:

C + P = S1(0)e−q1T − S2(0)e−q2T − Ke−rT (5)

where C is the price of the spread option defined in (4), and P is equivalent of a
Put option, it is the spread option with strike −K and in which the roles of the
assets 1 and 2 are reversed. For instance, the soy manufacturer would hedge his
position using Put-like spread option in order to ensure he is paid more than
K.

1.2 Exchange option - Margrabe Formula

In the case K is null, the pay-off of the spread option is (S1(T ) − S2(T ))+. The
holder is given the right to exchange the assets S2 he possesses for the asset
S1 at T , that is why this particular case of spread option is named exchange
option. Margrabe (1978) gave a method to compute explicitly the price of an
exchange option in [9].

Proposition 1. The price of an exchange option is given by:

C = S1(0)e−q1T N(d1) − S2(0)e−q2T N(d2) (6)

where

d1 =

log

(

S1(0)

S2(0)

)

− (q2 − q1)

σ
√

T
+ 1

2 σ
√

T

d2 =

log

(

S1(0)

S2(0)

)

− (q2 − q1)

σ
√

T
− 1

2 σ
√

T

σ =
√

σ2
1 − 2ρσ1σ2 + σ2

2

(7)

and N(·) denotes the normal cumulative distribution function.

Proof. Margrabe used the change of numéraire technique, he expressed the price
of the asset S1 using the asset S2 as numéraire. For the sake of simplicity, we
suppose that the convenience yields q1 and q2 are equal to zero, the argument
would be the same by considering the prices discounted by the corresponding
factors eqit.
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Let Z1(t) and Z2(t) be two independent standard Brownian motions under
the risk-neutral probability P, S1 and S2 could be represented as

(dS1/S1)(t) = rdt + σ1(ρdZ1(t) + ρ′dZ2(t))
(dS2/S2)(t) = rdt + σ2dZ2(t)

(8)

or equivalently

S1(t) = S1(0) ∗ exp[(r − σ2
1/2)t + σ1(ρZ1(t) + ρ′Z2(t))]

S2(t) = S2(0) ∗ exp[(r − σ2
2/2)t + σ2Z1(t)]

(9)

where ρ ∈] − 1; +1[ is the correlation factor and ρ2 + ρ′2 = 1 (if |ρ| = 1, the
computation can be handled directly because we have a 1D problem).

We would like to express S1 using S2 as numéraire, so let us study their
quotient’s dynamic:

(S1/S2)(t) = (S1/S2)(0) exp

[

σ2
2 − σ2

1

2
t + (σ1ρ − σ2)Z1(t) + σ1ρ′Z2(t)

]

(10)

Itō’s lemma provides:

d(S1/S2)

(S1/S2)
(t) = (ρσ1 − σ2)dZ1(t) + ρ′σ1dZ2(t) + σ2(σ2 − ρσ1)dt (11)

If we denote by FT the completion of the σ-algebra generated by the processes
{Z1(t), Z2(t)}0≤t≤T , we create a new probability measure Q whose Radon-
Nikodýn derivative with respect to P is given by:

dQ

dP

∣

∣

∣

∣

FT

= exp

[

−1

2
σ2

2T + σ2Z1(T )

]

=

(

e−rT S2(T )

S2(0)

)−1

(12)

Under this new probability Q and by Girsanov theorem, Z ′
1(t) := Z1(t) − σ2t

and Z2 are Brownian motions. We have:

d(S1/S2)

(S1/S2)
(t) = (ρσ1 − σ2)dZ ′

1(t) + ρ′σ1dZ2(t) (13)

In other words, the quotient S1/S2 is a geometric Brownian motion under Q

with no drift, and its volatility is σ given in (7).
The price of the spread option is thus:

C = e−rTEP(S1(T ) − S2(T ))+]
= e−rTEP{[(S1/S2)(T ) − 1]+ · S2(T )}
= S2(0)EQ {[(S1/S2)(T ) − 1]+}

(14)

The expectation is exactly the price of a European call option with no interest
rate, strike 1 and volatility σ. The result is given by the standard Black-Scholes
formula.
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Computation of the Deltas

Recall that the price of the exchange option is C = e−rTE[(S1(T ) − S2(T ))+]
which is a homogeneous function of degree 1 of variables S1(0) and S2(0), Euler
theorem shows that C satisfies:

P =
∂C

∂S1(0)
S1(0) +

∂C

∂S2(0)
S2(0) (15)

The comparison between (6) and (15) suggests that the factors ±e−q1T N(di)
are exactly the corresponding Deltas. The following proposition shows we were
right by thinking that.

Proposition 2. The Deltas of the exchange option is given by:

∆1 = +e−q1T N(d1)
∆2 = −e−q2T N(d2)

(16)

Proof. We compute the Deltas explicitly, but we do not give all the details.

To compute ∆1, we note first that

∂d1

∂S1(0)
=

∂d2

∂S1(0)
= (S1(0)σ

√
T )−1 (17)

The chain rule gives

∂C

∂S1(0)
= e−q1T N(d1) +

[

S1(0)e−q1T N ′(d1) − S2(0)e−q2T N ′(d2)
]

S1(0)σ
√

T
(18)

where N ′ denotes the probability density of a standard normal distribution.
Finally, we can replace d2 by (d1 − σ

√
T ) in N ′ and expanding the identity

N ′(a + b) = N ′(a) exp(−b2/2 + ab), we show that all the terms between the
square brackets vanish.

The computation of ∆2 is similar.

The interest of the Margrabe formula is that it extends the Black-Scholes
formula to 2D (the Black-Scholes formula is obtained by giving to σ2 the value
0). Unfortunately, we cannot use this same artful technique once K is not equal
to 0. So far, there is no closed formula of the spread option’s price. In the next
part, we present three approximation formulae.
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1.3 Carmona-Durrleman

The Carmona-Durrleman procedure uses the following elementary but essential
result.

Lemma 1. Let X be a real valued random variable on a probability space

(Ω, H, P ), and let A ⊂ H. Then,

E[X+] ≥ sup
A∈A

E[X1A]

Moreover, the inequality becomes an equality iff {X ≥ 0} ∈ A.

Proof. For any A ⊂ H,

E[X1A] =

∫

A

XdP =

∫

A∩{X≥0}

XdP +

∫

A∩{X<0}

XdP

≤
∫

A∩{X≥0}

XdP

≤
∫

{X≥0}

XdP = E[X+]

The equality is obtained by taking A = {X ≥ 0}.

This lemma is used as follows:
The main idea of [2] is to find a class of strategies A for which the expectation
E[X1A] has an explicit formula for each A ∈ A, then maximize this lower bound
with respect to A in order to approximate the real price of the spread option.

Recall that we are interested in computing the expectation of (3), which has
the same distribution as X+ with:

X := αeβ[sin φZ1+cos φZ2]−β2/2 − γeδZ2−δ2/2 − κ (19)

and

α = S1(0)e−q1T

β = σ1

√
T

γ = S2(0)e−q2T

δ = σ2

√
T

κ = Ke−rT

(20)

where Z1 and Z2 are two independent N(0, 1) random variables. Naturally, in
such representation, we use the phase angle φ that satisfy cos φ = ρ.

Given any other phase angle θ ∈ R, we introduce the random variable

Yθ = sin θZ1 − cos θZ2 (21)

and we choose the set A = (Aθ,d)(θ,d)∈R2 where Aθ,d = ({Yθ ≤ d})(θ,d)∈R2

The expectation E[X1Aθ,d
] could be computed explicitly:

E[X1Aθ,d
] = αN(d + β cos(θ + φ)) − γN(d + δ cos(θ)) − γN(d) (22)
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For this choice of A, the event {X ≥ 0} is not necessarily an element of A, we
are only computing a lowerbound.

By denoting Π(θ, d) the expectation above, we will use the following pricing
formula which could be computed by maximizing a function of two variables:

Pricing Formula.

C ≈ Π∗ : = sup
(θ,d)∈R2

Π(θ, d)

= sup
(θ,d)∈R2

αN(d + β cos(θ + φ)) − γN(d + δ cos(θ)) − γN(d)

= Π̂(S1(0), S2(0), θ∗, d∗)

(23)

where Π̂ is defined by

Π̂(x1, x2, θ, d) = +x1e−q1T N(d + σ1 cos(θ + φ)
√

T )

−x2e−q2T N(d + σ2 cos(θ)
√

T )
−Ke−rT N(d)

(24)

and θ∗ and d∗ denote the maximizing argument in the third line.

The numerical results show that the lower bound we use is very accurate.
The explanation is probably that the approximation formula turns out to be ex-
act formula in many special cases, as shown in the following proposition, whose
proof is not given here.

Proposition 3. Π∗ = E[X+] whenever α = 0, or γ = 0, or κ = 0, or ρ = −1,

or

ρ = +1 and κ(β − δ) > 0
or

ρ = +1, and κ(β − δ) < 0, and (
γδ

αβ
)

δ
β−δ ≤ κβ

γ(δ − β)
e−δ(β+δ)/2

Computation of the Deltas

Proposition 4. We compute the deltas with the following formulae which give

a sub-hedge for the option:

∆1 = +e−q1T N(d∗ + σ1 cos(θ∗ + φ)
√

T )

∆2 = −e−q2T N(d∗ + σ2 cos(θ∗)
√

T )
(25)

Proof. We do not give the entire proof of the proposition above, but we will
state a computation rule to compute all the Greeks.

For instance, we want to compute ∆1 =
∂Π∗

∂(S1(0))
, remembering that the

price function Π∗ depends on S1(0) through Π̂, θ∗, and d∗. We have:

∂Π∗

∂(S1(0))
=

∂Π̂

∂x1

∣

∣

∣

∣

∣

S(0),θ∗,d∗

+
∂Π̂

∂θ

∣

∣

∣

∣

∣

S(0),θ∗,d∗

∂θ∗

∂(S1(0))
+

∂Π̂

∂d

∣

∣

∣

∣

∣

S(0),θ∗,d∗

∂d∗

∂(S1(0))
(26)
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As θ∗ and d∗ maximize Π∗, the corresponding differentials vanish both, so we
finally obtain:

∂Π∗

∂(S1(0))
=

∂Π̂

∂x1
(S1(0), S2(0), θ∗, d∗) (27)

which is simple to compute, its expression is given in (25).

The previous remark is also used to compute ∆2 and all the other Greeks.
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1.4 Bjerksund-Stensland

Bjernstund and Stensland (2006) used the following expectation which consti-
tutes a lower bound to the true value (see the lemma 1.):

e−rTE

[

(S1(t) − S2(t) − K) · 1

{

S1(t) ≥ a · (S2(t))b

E[(S2(t))b]

}]

(28)

where

a = Y0 = F2 + K
b = F2/a

(29)

Which leads the following approximation formula.

Pricing Formula.

C ≈ e−rT {F1N(d1) − F2N(d2) − KN(d3)} (30)

where

d1 =
1

σ
√

T

(

log(F1/a) +
T

2
(σ2

1 − 2bρσ1σ2 + b2σ2
2)

)

d2 =
1

σ
√

T

(

log(F1/a) +
T

2
(−σ2

1 − 2ρσ1σ2 + (b2 − 2b)σ2
2)

)

d3 =
1

σ
√

T

(

log(F1/a) +
T

2
(−σ2

1 + b2σ2
2)

)

σ =
√

σ2
1 − 2bρσ1σ2 + b2σ2

2

(31)

In addition, this lower bound could be improved by maximizing the pricing
formula with respect to a and b, which uses the same idea as in the Carmona-
Durrleman method. Actually, Bjernskund and Stensland proved that such op-
timization is equivalent to the Carmona-Durrleman optmization. However, the
numerical results show that the precision gained by such optimization procedure
is not significant, which suggests the use of fixed values for a and b defined in
(29).
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1.5 Function usage

static int Spread_CarmonaAn(...)

Compute the Spread option price using Carmona-Durrleman formula

static int Spread_BjerksundAn(...)

Compute the Spread option price using Bjerksund-Stensland formula

The arguments are the following:

• double s01

Initial price S1(0)

• double s02

Initial price S2(0)

• double K

Strike K

• double t

Maturity T

• double r

Risk-free interest r

• double divid1

Convenience yield q1 of the asset S1

• double divid2

Convenience yield q2 of the asset S2

• double sigma1

Volatility σ1 of the asset S1

• double sigma2

Volatility σ2 of the asset S2

• double rho

Correlation factor ρ

• double *ptprice

The pointer to the price computed using the function

• double *ptprice

The pointer to the delta ∆1 computed using the function

• double *ptdelta1

The pointer to the delta ∆1 computed using our functions

• double *ptdelta2

The pointer to the delta ∆2 computed using our functions
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1.6 Numerical Performance

We are going to compare the method presented above.

Our benchmark will be the price computed using quasi Monte Carlo method
(using the Halton sequence, see [10]) with 106 simulations. The theoretical up-
per bound of the errors is 10−2 (quasi Monte Carlo method in 2D converges at
(log N)2/N , and the prices’ variance is estimated at ≈ 102), but in practice, we
can consider that our benchmark has a 3, even 4 digit accuracy. The prices are
computed for several values of K and ρ, for the parameters presented in Table 1.

Both the Carmona-Durrleman and Bjerksund-Stensland methods turned out
to be very accurate. Bjerksund-Stensland is prefered because it is faster, it
uses a closed formula that can be computed in a single step whereas Carmona-
Durrleman uses a two-dimensional optimization.

Note that in our implementation of the Carmona-Durrleman, in order to
maximize the price function, we use the gradient descent method combined
with the Brent’s method (see [10]). More optimal methods exist, such as non-
linear conjugate gradient method.

For the Carmona-Durrleman method, the errors should be zero when ρ = −1
and when K = 0 (see prop. 1). The non-null errors of our computation may be
due to:

• the inaccuracy of our benchmark: we should keep in mind that the quasi-
Monte Carlo method is still an approximation.

• the imperfection of our maximization method: the maximizing algorithm
stops as soon as the limit of number of steps is reached OR the norm of the
gradient of our price function is small enough. Both of these conditions
can lead to an detectable error on the choice of θ∗ and d∗ and thus the
price.

Besides, the first reason could explain why we obtained some positive signed
errors using Carmona-Durrleman and Bjerksund-Stensland methods (recall that
they provide lower bounds to the true value of the price, therefore their errors’
signe should be negative).

Parameter Value Parameter Value
S1(0) 110 S2(0) 100

q1 0.03 q2 0.02
σ1 0.10 σ2 0.15
r 0.05

Table 1: Computation parameters
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ρ -1 -0.5 0 0.3 0.8 1
K

29.6557 28.9945 28.3808 28.0699 27.7698 27.7536
-20 29.6561 28.9945 28.3802 28.0693 27.7689 27.7462

29.6561 28.9946 28.3806 28.0693 27.769 27.7535
21.8684 20.9048 19.8887 19.27 18.381 18.2437

-10 21.8686 20.9048 19.8884 19.2696 18.3805 18.241
21.8686 20.9049 19.8888 19.27 18.3808 18.2435
15.1332 13.918 12.5238 11.5619 9.6325 8.8212

0 15.1332 13.9179 12.5235 11.5618 9.6325 8.8196
15.1332 13.918 12.5237 11.5618 9.6325 8.8212
12.2442 10.9564 9.4456 8.3677 5.9672 4.4542

5 12.2441 10.9562 9.4453 8.3674 5.967 4.4533
12.2441 10.9562 9.4453 8.3674 5.967 4.4542
7.5221 6.2425 4.7449 3.6802 1.3427 0.0488

15 7.5218 6.2422 4.7444 3.6796 1.3419 0.0486
7.5217 6.2421 4.7443 3.6796 1.3421 0.0479
4.2017 3.1301 1.9626 1.2204 0.1042 0

25 4.2014 3.13 1.962 1.2197 0.0995 0
4.2013 3.1298 1.9617 1.2194 0.1032 0

Table 2: Spread option price using different methods: quasi MC, Carmona-
Durrleman and Bjerksund-Stensland
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ρ -1 -0.5 0 0.3 0.8 1
K

-20 0.0004 0 -0.0006 -0.0006 -0.0009 -0.0074
0.0004 0.0001 -0.0002 -0.0006 -0.0008 -0.0001

-10 0.0002 0 -0.0003 -0.0004 -0.0005 -0.0027
0.0002 0.0001 0.0001 0 -0.0002 -0.0002

0 0 -0.0001 -0.0003 -0.0001 0 -0.0016
0 0 -0.0001 -0.0001 0 0

5 -0.0001 -0.0002 -0.0003 -0.0003 -0.0002 -0.0009
-0.0001 -0.0002 -0.0003 -0.0003 -0.0002 0

15 -0.0003 -0.0003 -0.0005 -0.0006 -0.0008 -0.0002
-0.0004 -0.0004 -0.0006 -0.0006 -0.0006 -0.0009

25 -0.0003 -0.0001 -0.0006 -0.0007 -0.0047 0
-0.0004 -0.0003 -0.0009 -0.001 -0.001 0

Table 3: Pricing error of the different methods (approximation formula - quasi
MC): Carmona-Durrleman and Bjerksund-Stensland
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2 Fourier Transform Method

When the characteristic function of the log-spot (log S1(T ), log S2(T )) is explic-
itly known, Fourier transform methods can be used to compute the price of the
spread option.

2.1 Fourier transform formula

Without loss of generality, we assume that the strike price K is equal to 1 (if
K < 0 we can use the Call-Put parity (5) to consider a spread option with a
positive strike instead).
We denote XT = (log S1(T ), log S2(T )) and we make the simplifying assumption
that the increment Xt − X0 is independent of X0 for any t > 0, which implies
that the characteristic function of XT factorizes as follows:

EX0

[

eiu·XT
]

= eiu·X0E

[

eiu·(XT −X0)
]

(32)

where EX0
[·] is the conditional expectation given X0.

We denote Φ := E
[

eiu·(XT −X0)
]

and we assume this function is explicitly known.
Hurd and Zhou (2010)[5] show that the price of the spread option can be written
as a two-dimensional Fourier transform:

Theorem 1.

C = (2π)−2e−rT

∫

R2+iε

eiu·X0Φ(u)Ψ(u)du (33)

where Ψ is defined by :

Ψ(u1, u2) 7→ Γ(i(u1 + u2) − 1)Γ(−iu2)

Γ(iu1 + 1)
(34)

And ε = (ε1, ε2) ∈ R2 can be any ordered pair satisfying the constraints ε2 > 0
and ε1 + ε2 < −1.

The proof of this theorem is computational and is provided in 2.7.

The computation of the complex gamma function can be handled conve-
niently, see [7] for more details.

If ε is well-chosen, the integrand function has an asymptotic exponential
decay as ‖u‖ → ∞ for the models treated in 2.5, ?? and 2.6. This is why this
theorem enable us to implement methods that provide very accurate results
with reasonable time of computation.

Computation of the Deltas

The Deltas are obtained by differentiating the integrand, for instance:

∆1 = (2π)−2e−rT

∫

R2+iε

∂(eiu·X0)

∂(S1(0))
Φ(u)Ψ(u)du

=
(2π)−2e−rT

S1(0)

∫

R2+iε

iu1eiu·X0Φ(u)Ψ(u)du

(35)
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2.2 Numerical integration

The integral over R2 is replace by a two-dimensional sum over the following
lattice for each dimension of the u space:

u0 = −u < u1 = −u + η < · · · < uk = −u + kη < · · · < uN−1 = +u

where N is a power of two for the convenience of FFT (see 2.4), 2u is the width

of the integration domain, and η =
2u

N
is the lattice spacing. N and u are used

as fixed parameters.
On the other hand, we initially choose X0 to lie on the reciprocal lattice, it’s to
say, for each dimension of the x space:

x0 = −x < x1 = −x + η∗ < · · · < xl = −x + lη∗ < · · · < xN−1 = +x

where η∗ = π/u is the lattice space, and x =
Nη∗

2
.

Pricing Formula.

C ≈ (−1)l1+l2e−rT
( η

2π

)2 ∑

k∈{0,··· ,N−1}2

e2πk·l/N H(k) (36)

where

H(k) = (−1)k1+k2Φ(uk + iε)Ψ(uk + iε) (37)

and l = (l1, l2) is such that X0 = xl

2.3 Choice of parameters

The approximation error is due to the following phenomena: the truncation and
the discretization.
The truncation error is made by replacing the integration domain, R2, by
[−u; +u], the approximation is possible if the integrand decays rapidly at infin-
ity on the u space. The discretization error is made by replacing the integral by
a finite sum, the approximation if Φ is regular enough. In practice, we set the
value of u and N .
We keep in mind that the truncation error is null when u → ∞ and the dis-
cretization error is null when η → 0, or equivalently, with u fixed, when N → ∞.
For further details, see [5].

We choose ε = (−5, 3), u = 40 and N = 256 as default values, which gives
moderate errors and good computation time in our numerical tests.
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2.4 FFT algorithm

We notice that the sum over k in the pricing formula (36) is actually a discrete
inverse Fourier transform of the function H. If we need to compute all the
prices, for X0 describing the entire reciprocal lattice (xl, l ∈ {0, · · · , N − 1}2),
it is suitable to use the FFT algorithm. Numerical results show that the FFT
algorithm is able to produce high accuracy approximation (with errors ∼ 10−8)
for N = 256 in the models presented in 2.5, ?? and 2.6, see [5].
However, if we only need the price for a single value of X0 (it’s to say for a
single value of l), then the direct computation of the sum can be done. That is
why FFT algorithm is not used in our implementation of the Fourier transform
method.

Now that we introduced the theoretical framework of the Fourier transform
method, we are going to present some models of [5]. We implemented the
Fourier transform method for these models. However, we will not focus on the
numerical results as they are already discussed in [5], except for the two geo-
metric Brownian model, which can be compared to the methods in the section 1.

We should keep in mind that Fourier transform method could be used for
any other model for which we explicitly know (or at least we can approximate
accurately and quickly) the characteristic function.

2.5 Two geometric Brownian case

The two geometric Brownian model treated in the section 1 can also be handled
by the Fourier transform method.

With the notations of the section 1, the joint characteristic function of the
log-spot is:

Φ

((

u1

u2

))

= exp

{

iT (u1, u2)

[(

r − q1

r − q2

)

− 1

2

(

σ2
1

σ2
2

)]

− 1

2
(u1, u2)

(

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)(

u1

u2

)} (38)

Function usage

static int Spread_HurdZhou_bsAn(...);

The arguments are the same used in 1.5.

Numerical performance

The computed prices are presented in the Table 4, the parameters are the same
as the ones used in section 1.

The Fourier transform method provides prices with very good accuracy for
a 2562-point integration, except for big values of K and ρ = 1. For the other
values, the error is comparable to those of the Carmona-Durrleman and the
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ρ -1 -0.5 0 0.3 0.8 1
K

29.6557 28.9945 28.3808 28.0699 27.7698 27.7536
-20 29.6561 28.9948 28.3811 28.0701 27.7701 27.7529

0.0004 0.0003 0.0003 0.0002 0.0003 -0.0007
21.8684 20.9048 19.8887 19.27 18.381 18.2437

-10 21.8686 20.905 19.8889 19.2701 18.3811 18.2466
0.0002 0.0002 0.0002 0.0001 0.0001 0.0029
12.2442 10.9564 9.4456 8.3677 5.9672 4.4542

5 12.2441 10.9562 9.4453 8.3674 5.9669 4.4214
-0.0001 -0.0002 -0.0003 -0.0003 -0.0003 -0.0328
7.5221 6.2425 4.7449 3.6802 1.3427 0.0488

15 7.5218 6.2422 4.7445 3.6798 1.3429 0.0118
-0.0003 -0.0003 -0.0004 -0.0004 0.0002 -0.037
4.2017 3.1301 1.9626 1.2204 0.1042 0

25 4.2014 3.13 1.9621 1.22 0.1038 0.0597
-0.0003 -0.0001 -0.0005 -0.0004 -0.0004 0.0597
4.2017 3.1301 1.9626 1.2204 0.1042 0

25 4.2014 3.13 1.9621 1.22 0.1041 0.0017
-0.0003 -0.0001 -0.0005 -0.0004 -0.0001 0.0017

Table 4: Numerical performance of the Fourier transform method for the two
geometric Brownian model, the parameters are ones used in the section 1. Note
that the case K = 0 is not treated here. In each cell, the first value is obtained
by the quasi-Monte Carlo method, the second one is computed by the Fourier
transform method, the last one is their difference. All the values are computed
using N = 28 = 256 and u = 40 except for the ones in the last row, we used
u = 80 instead.

Bjerksund-Stensland methods.

For K = 25, we observe that the results are better when we choose u = 80
instead of 40: we need to take the rate of decay of the characteristic functions
into account by adapting the integration domain when parameters change. Nat-
urally, all the results could be improved by increasing the value of N .
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2.6 The Variance Gamma model

Madan and Seneta (1990) introduced the variance gamma(VG) process to model
some prices.
A VG process Y is a pure jump Lévy process determined by its characteristic
function:

ΦY (t)(u) =

[

1 + i

(

1

a−
− 1

a+

)

+
u2

a+a−

]−λt

(39)

where a+, a− and λ are positive parameters.

We use here three independent VG processes Y1, Y2 and Y3, with common
parameters a±, and λ1 = λ2 = (1 − α)λ, and λ3 = αλ.
The log-prices of the indices are assumed to be equal to:

X1(t) = X1(0) + Y1(t) + Y3(t)
X2(t) = X2(0) + Y2(t) + Y3(t)

(40)

The parameter α ∈ [0; 1] is interpreted as the correlation coefficient.
The joint characteristic function of (X1(T ), X2(T )) is equal to:

Φ(u) = ΦY1
(u1)Φy2

(u2)Φy3
(u1 + u2) (41)

Function usage

static int Spread_HurdZhou_vgAn(double s01, double s02, double K,

double t, double r, double a_m, double a_p, double alpha, double lambda,

double *ptprice, double *ptdelta1, double *ptdelta2);

• double a_m

VG process parameter a−

• double a_p

VG process parameter a+

• double alpha

Correlation factor α

• double lambda

VG process parameter λ

The other parameters are model-independent and are presented in 1.5.

Remark

The following condition is needed to avoid singularities in the u-space when we
integrate: ε1, ε2 and ε1 + ε2 must lie in ] − a+, a−[.
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2.7 Proof of proposition 1

Proof. Let f be the function x = (x1, x1) 7→ (ex1 − ex2 − 1)+.
For all ε = (ε1, ε2) satisfying ε1 + ε2 < −1 and ε2 > 0, the function x 7→
eε·xf(x) lies in L2(R2) (under these conditions, all the integrals in the following
computation will be well-defined). Therefore, by applying the Fourier inversion
theorem to this function, we have:

eε·xf(x) =

∫

R2

eiu·x

(
∫

R2

e−iu·x′

eε·x′

f(x′)dx′

)

du (42)

By arranging the terms:

f(x) =
∫

R2 eiu·xe−ε·x
(

∫

R2 e−iu·x′

eε·x′

f(x′)dx′
)

du

=
∫

R2 ei(u+iε)·x
(

∫

R2 e−i(u+iε)·x′

f(x′)dx′
)

du

=
∫

R2+iε
eiu·x

(

∫

R2 e−iu·x′

f(x′)dx′
)

du

(43)

We are going to show that the inner integral we are going to denote by Ψ(u) is
exactly the same function Ψ given in (34).
Let us compute this integral. We integrate f on the domain {(x1, x2), x1 >
0, x2 < log(ex1 − 1)}:

Ψ(u) =

∫

R2

e−iu·xf(x)dx

=

∫ ∞

0

e−iu1x1

(

∫ log(ex1 −1)

−∞

e−iu2x2 [(ex1 − 1) − ex2 ]dx2

)

dx1

=

∫ ∞

0

e−iu1x1

[

e−iu2x2(ex1 − 1)

−iu2
− e(−iu2+1)x2

−iu2 + 1

]log(ex1 −1)

−∞

dx1

(44)

Recall that ℜ(−iu2) = ℑ(u2) = ε2 > 0, which implies that the terms in the
brackets vanish when x2 → −∞.
We have the following expression after rearranging:

Ψ(u) =

[

1

−iu2
− 1

−iu2 + 1

]
∫ ∞

0

e−iu1x1(ex1 − 1)−iu2+1dx1

=
1

(−iu2)(−iu2 + 1)

∫ ∞

0

e−iu1x1(ex1 − 1)−iu2+1dx1

(45)

The change of variable z = e−x1 leads to the following expression of the
remaining integral:

∫ ∞

0

e−iu1x1(ex1 − 1)−iu2+1dx1 =

∫ 1

0

zi(u1+u2)−2(1 − z)−iu2+1dz

= B(i(u1 + u2) − 1, −iu2 + 2)
(46)

where the beta function B is defined by B : (x, y) 7→
∫ 1

0
zx−1(1 − z)y−1dz for all

(x, y) ∈ C, ℜ(x) > 0, ℜ(y) > 0 (it is the case here thanks to our conditions upon
ε). This function is related to the gamma function by B(x, y) = Γ(x)Γ(y)/Γ(x+
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y).
We have thus:

Ψ(u) =
Γ(i(u1 + u2) − 1)

Γ(iu1 + 1)

Γ(−iu2 + 2)

(−iu2)(−iu2 + 1)
(47)

Recall that the gamma function satisfies Γ(x + 1) = xΓ(x), we finally find the
expected expression in (34).

Now that the essential part of the proof is done, let us compute the spread
option’s price:

C = e−rTE[f(X1(T ), X2(T ))]

= e−rTE

[

(2π)−2

∫

R2+iε

eiu·XT Ψ(u)du

]

= e−rT (2π)−2

∫

R2+iε

E[eiu·XT ]Ψ(u)du

= e−rT (2π)−2

∫

R2+iε

eiu·X0Φ(u)Ψ(u)du

(48)
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