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1 Introduction

1.1 The Problem and its Motivation

We consider a stochastic differential equation written in the Stratonovich
form

Y(t, x) = x +

∫ t

0

V0 (Y(s, x)) ds +

d
∑

i=1

∫ t

0

Vi (Y(s, x)) ◦ dBi
s,

V j ∈ C∞b

(

R
N ;RN

)

,

(1)

where B =
(

B1, · · · ,Bd
)

is a standard Brownian motion, and C∞
b

(

R
N;RN

)

denotes the set of RN-valued smooth functions defined over RN whose
derivatives of any order are bounded. In particular, we will use the clas-

sical notation V f (x) =
∑N

i=1 Vi (x)
(

∂ f/∂xi
)

(x) for V ∈ C∞
b

(RN ;RN) and f a
differentiable function fromRn intoR. This stochastic differential equation
can be written in Itô form:

Y(t, x) = x +

∫ t

0

Ṽ0 (Y(s, x)) ds +

d
∑

i=1

∫ t

0

Vi (Y(s, x)) dBi
s,

where

Ṽi
0

(

y
)

= Vi
0

(

y
)

+
1

2

d
∑

j=1

V jV
i
j

(

y
)

.

Now, given a function f with some regularity, how can one approxi-
mate efficiently E

[

f (Y(1, x))
]

? It is equivalent to the following deterministic

problem: if L is the differential operator V0 + (1/2)
∑d

i=1 V2
i

and u is the so-
lution of the heat equation

∂u

∂t
(t, x) = Lu, u (0, x) = f (x),

how does one approximate u (1, x) (which is equal to E
[

f (Y(1, x))
]

by
Feynman-Kac theorem [8]).

This problem has had a lot of attention because of its practical impor-
tance: it gives the evolution of the temperature in some media, and also
represents price of financial derivatives under stochastic financial models
such as Black-Scholes [1].

Non-probabilistic methods to solve the PDE (such as finite difference
methods) seem to only work well when L is elliptic and in low dimension.
We refer to [13] for a more detailed discussion on the subject. We will focus
in this paper on probabilistic methods.
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1.2 Notation

If V is a smooth vector field, i.e. an element of C∞
b

(

R
N;RN

)

, exp (V) x

denotes the solution at time 1 of the ordinary differential equation

dzt

dt
= V (zt) , z0 = x.

For x ∈ R, ⌊x⌋ denotes the integer part of x. For a random variable X, Var[X]
denotes the variance of X.

1.3 Probabilistic Methods

1.3.1 Order 1

The most popular probabilistic method to approximate E
[

f (Y(1, x))
]

is
called the Euler-Maruyama method [9]. We first fix n independent d-
dimensional random variables Z1, · · · ,Zn such that, if X denotes a standard
normal random variables,

E
[

p (Zk)
]

= E
[

p (X)
]

(2)

for all polynomial of degree less than or equal to 3. Then one defines
recursively the following random variables:

X
(EM),n
0

= x,

X
(EM),n

(k+1)/n
= X

(EM),n

k/n
+

1

n
Ṽ0

(

X
(EM),n

k/n

)

+
1
√

n

d
∑

i=1

Vi

(

X
(EM),n

k/n

)

Zi
k+1.

Then, one can show [9][24] that for an arbitrary C4 function f
∥

∥

∥

∥

E
[

f
(

X(EM),n
1

))

− E
[

f (Y(1, x))
]

∥

∥

∥

∥

≤ C f
1

n
. (3)

Of course, one needs an algorithm to compute E
[

f
(

X(EM),n
1

)]

. If the Zk are

constructed from Bernoulli random variables, E
[

f
(

X(EM),n
1

)]

is a discrete

sum, but one would need to do 2nd additions, which can be rather lengthy
when nd is large (one is then forced to do some Monte-Carlo on a discrete
measure). If the Zk are normal random variables, one then is forced to do
use some Monte Carlo or quasi-Monte Carlo techniques. When nd is big,
quasi-Monte Carlo method become less effective than Monte-Carlo, but if
nd is not too high, quasi-Monte Carlo method can be very efficient.

Another method with the same rate of convergence appeared in [16],
and is called cubature on Wiener space of degree 3. It is defined with the
following recursive formula:

X(cub3),n
0

= x,

X(cub3),n
(k+1)/n

= exp















1

n
V0 +

1
√

n

d
∑

i=1

Zi
k+1Vi















X(cub3),n
k/n
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Such algorithm can be seen as a practical application of the Wong-Zakai
theorem [8][25], when the Zk are normal random variables.
If Bn

t = (Bn,1
t , . . .B

n,d
t ) (n ∈ N) is the piecewise linear approximation of the

Brownian motion defined by

Bn
t = (⌊nt⌋ + 1 − nt) B⌊nt⌋/n + (nt − ⌊nt⌋) B(⌊nt⌋+1)/n,

and Yn denotes the solution of the ordinary differential equation

Yn
t = x +

∫ t

0

V0
(

Yn
s

)

ds +

d
∑

i=1

∫ t

0

Vi
(

Yn
s

)

dBn,i
s ,

then the Wong-Zakai theorem states that Yn converges almost surely to

Yx. It is easy to see that X(cub3),n
1

and Yn
1

are equal in law, proving the
convergence of the weak algorithm cubature on Wiener space of degree 3
(but this argument does not provide the rate of convergence).

Remark 1 In the algorithm cubature on Wiener space of degree 3, one has to
solve numerically ODEs (unless one is lucky and one has a close form solu-
tion!). One possibility is to take its Taylor approximation of order 1 for the
approximation of exp (V) x and we fall back on an Euler scheme. Taking a
better approximation (Taylor approximation of order 2) will give a scheme
sometimes described as the Milstein scheme. Not spending enough care
on the approximating method of the ODEs to be solved can result in some
catastrophic situations. A general case where that happens is when the
diffusion is almost surely on a subset of Rn, that is, does not fill the whole
space. If one has an approximation scheme which at some time provides an
answer outside this set (which is what happen if one approximates badly
the ODEs), the algorithm may go very wrong or even bug. Increasing n
(which is costly) or artificial techniques can be implemented to solve this
problem, while this can be overcome by taking an appropriately good ap-
proximation of the ODEs which have to be solved (we usually recommend
a high order Runge-Kutta scheme, or an adaptive step size scheme, but
this may depend on the particular SDE to approximate). We will give an
example of this problem in Section 3.

Remark 2 Random variables which satisfy (2) are easy to find. One can take,

for a fixed i, Z
j

i
to be d independent Bernoulli or Gaussian random variables.

A more elaborate choice of such random variables appeared in [16][21].

Remark 3 Here, we have used the subdivision (k/n)k∈{0,··· ,n} of [0, 1] . It is
not clear whether taking equal time steps is optimal or not. Recently,
Kusuoka [11] proved that the partitioning into equal time steps is opti-
mal when we use the algorithm which we will propose in this paper. We
do not want to address this problem in this paper, and we will always take
subdivisions with equal time steps.
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1.3.2 Higher order

A way to obtain approximations of higher order is based on the under-
standing of more terms in the stochastic Taylor formula (see [3] and [9]
for example).When the vector fields Vi commute, it is relatively easy to
find a scheme of high order, see [?]eferences within. In the general case,
one needs to understand how to approximate weakly the increments of
the Brownian motion together with its first few iterated integrals. This was
first successfully done, to our knowledge, in [10][15][22][23][12] and then
generalized with the method cubature on Wiener space [16].

1.4 Romberg Extrapolation

Consider a nice scheme of order p, that is, a scheme X
(ord p),n

k/n
such that for

smooth f , there exists a constant K f such that

∣

∣

∣

∣

∣

E
[

f
(

X
(ord p),n

1

)]

− E
[

f (Y(1, x))
] − K f

1

np

∣

∣

∣

∣

∣

≤ C f
1

np+1
.

Then,

2p

2p − 1
E
[

f
(

X
(ord p),2n

1

)]

− 1

2p − 1
E
[

f
(

X
(ord p),n

1

)]

(4)

provides a scheme of order p + 1. We refer once again to [24] for more
details and the proof that the Euler-Maruyama scheme and its successive
Romberg extrapolations are “nice” schemes. Recently, it was proved that
our new algorithm presented below is a “nice” scheme [11].

1.5 A remark on the Monte Carlo method

Let W be a random variable. When we compute E[W] by Monte-Carlo

method with M samples, we consider a random variable
(

∑M
k=1 Wk

)

/M

where Wi’s are independent random variables whose distributions are
identical to W’s. We denote this random variable by MC(W,M). By virtue
of the central limit theorem, we can consider that MC(W,M) behaves as a
normal random variable of mean E[W] and variance Var[W]/M.

Let X
(ord p),n

1
denotes a scheme of order p of the type above. To calculate

X
(ord p),n

1
numerically, one need to approximate an integral over a nC(d)

dimensional space (C(d) denoting a function depending on d; for Euler or
Cub3, C(d) = d. As we will see later, C(d) = d+ 1 for our new algorithm). If
one uses the Monte-Carlo method to approximate this integrals, and uses

M samples, the random variable MC
(

f
(

X
(ord p),n

1

)

,M
)

is considered. The
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situation is summarized as following relations:

E
[

f (Y(1, x))
]

= E
[

f
(

X
(ord p),n

1

)]

+O
(

n−p) , (5)

MC
(

f
(

X
(ord p),n

1

)

,M
)

∼ N

















E
[

f
(

X
(ord p),n

1

)]

,
Var

[

f
(

X
(ord p),n

1

)]

M

















. (6)

Two types of approximation errors are involved in this calculation. One

is the difference between E
[

f (Y(1, x))
]

and E
[

f
(

X
(ord p),n

1

)]

and the other is

the difference between MC
(

f
(

X
(ord p),n

1

)

,M
)

(ω) and E
[

f
(

X
(ord p),n

1

)]

. In this

paper, we call the former error discretization error and the latter error inte-
gration error. (6) shows that we can consider the integration error of Monte
Carlo method to be a normal random variable of mean 0 and variance
Var

[

f
(

X
(ord p),n

1

)]

/M.

Because the difference between Var
[

f
(

X
(ord p),n

1

)]

and Var
[

f (Y(1, x))
]

is

very small, we get the following remark.

Remark 4 As long as we use the Monte Carlo method for numerical ap-
proximation of E[ f (Y(1, x))], the number of sample points needed to attain
the given accuracy is independent of the dimension of integration, namely
the number n of partitions and the order p of the approximation scheme.

1.6 A remark on the quasi-Monte Carlo method

Although there are some results which justify the quasi-Monte Carlo
method and give theoretical error with respect to the number M of sam-
ple points and the dimension of the integral domain, those results help
little for error estimation in practice when we apply the quasi-Monte Carlo
method to weak approximation of SDEs (see [19] or [20]). The following
observation seems to be widely accepted:

Remark 5 In contrast to the Monte Carlo case, the number of sample points
needed by the quasi-Monte Carlo method for numerical approximation of
E[ f (Y(1, x))] depends heavily on the dimension of integration. Smaller the
dimension, smaller number of samples are needed.

The integral that we have to approximate to obtain X
(ord p),n

1
is on a space

of dimension nC(d). If the numerical method is of high order and nC (d)
is not too big, one can then use quasi-Monte Carlo with this numerical
method to obtain a very fast algorithm.

Therefore, it seems optimal to look for a (simple) scheme of order greater
than that of the Euler-Maruyama scheme (one), with C (d) remaining com-
parable to d (i.e. the C (d) of the Euler-Maruyama scheme). This is the object
of this paper, where we suggest a new numerical scheme of order 2, with
C (d) = d + 1.We will show its efficiency by numerically pricing an Asian
option under the Heston model.
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2 Presentation of the new Algorithm

We present our new algorithm, of order 2.

Theorem 1 Let (Λi,Zi)i∈{1,··· ,n} be n independent random variables, where each
Λi is a Bernoulli random variable independent of Zi, which is a standard d-

dimensional normal random variable. Define {X(New),n
k/n

}k=0,...,n to be a family of

random variables as follows:

X(New),n
0

= x,

X
(New),n
(k+1)/n

=































exp
(

V0

2n

)

exp













Z1
k
V1
√

n













· · · exp













Zd
k
Vd
√

n













exp
(

V0

2n

)

X(New),n
k/n

if Λk = +1,

exp
(

V0

2n

)

exp













Zd
k
Vd
√

n













· · · exp













Z1
k
V1
√

n













exp
(

V0

2n

)

X(New),n
k/n

if Λk = −1.

(7)

Then, for all f ∈ C∞
b

(RN),

∣

∣

∣

∣

E
[

f
(

X
(New),n
1

)]

− E
[

f (Y(1, x))
]

∣

∣

∣

∣

≤
C f

n2
,

that is, our new algorithm is of order 2.

A few remarks before all: To compute

exp
(

V0

2n

)

exp













Z1
k
V1
√

n













· · · exp













Zd
k
Vd
√

n













exp
(

V0

2n

)

X(New),n
k/n

,

one needs to solve d + 2 ordinary differential equations. First along the

vector field V0 from t = 0 to t = 1/(2n) with starting point X(New),n
k/n

, then

along Vd from t = 0 to t = Zd
k
/
√

n with starting point the solution of the
ODE we have just solved, and we repeat similar operations d + 2 times.
One would need an algorithm to solve this ODE numerically (unless one
has a close form solution), and we, once again, strongly suggest that one
pays a lot of attention to the quality of such algorithm.

One of course will have to use an algorithm to approximate E
[

f
(

X
(New),n
1

)]

,

but this is just a (difficult but classical, common to Euler algorithm for ex-
ample) problem of integrating a function on a finite dimensional space. The
simplest but quite effective method is to do some basic Monte-Carlo sim-
ulation of the random variables (Λi,Zi)i∈{1,··· ,n}. One could also simulate the
random variables (Λi,Zi)i∈{1,··· ,n} with some quasi-Monte Carlo techniques,
or replace the random variables Zi with some discrete random variables
with the right moment up to order 5. As this is a very classical problem and
common to all the other probabilistic solutions to our numerical problem,
we do not provide anymore precisions here.
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Proof The proof is quite classical, so we will not go into details. The reader
should be convinced that the algorithm is of order 2 once we show that for
f smooth enough,

∣

∣

∣

∣

E
[

f
(

X
(New),n
1/n

)]

− E
[

f (Y(1/n, x))
]

∣

∣

∣

∣

≤
C f

n3
.

The error over n steps, from the Markov property of Y, would then be n
times n−3. We consider a smooth function f . First observe that, from the
Feynman-Kac theorem,

∣

∣

∣

∣

∣

E
[

f (Y(1/n, x))
] −

(

x +
1

n
L f (x) +

1

2n2
L2 f (x)

)

∣

∣

∣

∣

∣

≤ C′f n
−3.

Developing L2, that means

x +
1

n
L f (x) +

1

2n2
L2 f (x) = x +

1

n















V0 +
1

2

d
∑

i=1

V2
i















f (x)

+
1

2n2

















V2
0 +

1

2
V0

d
∑

i=1

V2
i +

1

2

d
∑

i=1

V2
i V0 +

1

4

d
∑

i, j=1

V2
i V2

j

















f (x).

Now we need to approximate E
[

f
(

X
(New),n
1/n

)]

.Using Taylor approxima-

tion of the ODEs involved, we quickly see that the absolute value of

E

[

f

(

exp
(

1

2n
V0

)

exp

(

1√
n

Z1
kV1

)

· · · exp

(

1√
n

Zd
kVd

)

exp
(

1

2n
V0

)

x

)]

minus

x +
1

n















V0 +
1

2

d
∑

i=1

V2
i















f (x)

+
1

2n2

















V2
0 +

1

2
V0

d
∑

i=1

V2
i +

1

2

d
∑

i=1

V2
i V0 +

1

4

d
∑

i=1

V4
i +

1

2

d
∑

i< j

V2
i V2

j

















f (x)

is bounded by C′′
f
n−3. Inverting the order in which the vector fields are

integrated, we obtain that the absolute value of

E

[

f

(

exp
(

1

2n
V0

)

exp

(

1
√

n
Zd

kVd

)

· · · exp

(

1
√

n
Z1

kV1

)

exp
(

1

2n
V0

)

x

)]

minus

x +
1

n















V0 +
1

2

d
∑

i=1

V2
i















f (x)

+
1

2n2

















V2
0 +

1

2
V0

d
∑

i=1

V2
i +

1

2

d
∑

i=1

V2
i V0 +

1

4

d
∑

i=1

V4
i +

1

2

∑

i> j

V2
i V2

j

















f (x)
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is bounded by C′′
f
n−3. Adding up and dividing by 2, we obtain that

∣

∣

∣

∣

E
[

f
(

X
(New),n
1/n

)]

− E
[

f (Y(1/n, x))
]

∣

∣

∣

∣

≤
C′

f
+ C′′

f

n3
.

Remark 6 Using the results in [10], one can show the convergence of the
algorithm with f Lipschitz continuous, under a condition on the vector
fields weaker than Hörmander condition. We do not do it here to avoid
writing a very technical paper.

This algorithm could be seen in a non-trivial way as a particular case
of the algorithm cubature on Wiener space of degree 5. One should also
notice some common features with splitting methods.

3 Numerical Example: Application to Finance

In this section, we numerically compare our new algorithm to the Euler-
Maruyama scheme and their Romberg extrapolation. We calculate the price
of an Asian call option with maturity T and strike K written on an asset
whose price process Y1 satisfies the following two factor stochastic volatil-
ity model (Heston model [7]):

Y1(t, x) = x1 +

∫ t

0

µY1(s, x) ds +

∫ t

0

Y1(s, x)
√

Y2(s, x) dB1(s),

Y2(t, x) = x2 +

∫ t

0

α (θ − Y2(s, x)) ds +

∫ t

0

β
√

Y2(s, x) dB2(s),

(8)

where x = (x1, x2) ∈ (R>0)2, (B1(t),B2(t)) is a 2-dimensional standard Brown-
ian motion, and α, θ, µ are some positive coefficients such that 2αθ−β2 > 0
to ensure the existence and uniqueness of a solution to our SDE [5]. The
payoff of this option is max (Y3(T, x)/T − K, 0), where

Y3(t, x) =

∫ t

0

Y1(s, x) ds. (9)

The price of this option becomes D×E [max (Y3(T, x)/T − K, 0)] where D is
the appropriate discount factor. We set T = 1, K = 1.05, µ = 0.05, α = 2.0,
β = 0.1, θ = 0.09, and (x1, x2) = (1.0, 0.09). We ignore D in this experiment.

Let Y(t, x) =
t
(Y1(t, x),Y2(t, x),Y3(t, x)). We transform the SDEs (8) and (9)

into a Stratonovich form SDE:

Y(t, x) =

2
∑

i=0

∫ t

0

Vi(Y(s, x)) ◦ dBi(s), (10)
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where

V0

(

t(y1, y2, y3
)

)

=

t
(

y1

(

µ −
y2

2

)

, α(θ − y2) −
β2

4
, y1

)

V1

(

t(y1, y2, y3
)

)

=
t(

y1
√

y2, 0, 0
)

V2

(

t(y1, y2, y3
)

)

=
t(

0, β
√

y2, 0
)

.

(11)

3.1 Implementation of the algorithm

We apply the algorithm which we introduced in Section 2 to this problem.

3.1.1 Solutions of the ODEs

We can easily get exp (sV1) and exp (sV2) (s ∈ R) as follows:

exp (sV1) t(y1, y2, y3
)

=
t(

y1es
√

y2 , y2, y3

)

,

exp (sV2) t(y1, y2, y3
)

=

t










y1,

(

βs

2
+
√

y2

)2

, y3













.
(12)

As there exists no closed form solution to exp (sV0), we are forced to use
an approximation and we choose:

exp (sV0) t(y1, y2, y3
)

=
t(

g1(s), g2(s), g3(s)
)

, (13)

where

g1(s) = y1 exp

(

(

µ − J

2

)

s +
y2 − J

2α

(

e−αs − 1
)

)

,

g2(s) = J +
(

y2 − J
)

e−αs,

g3(s) = y3 +
y1

(

eAs − 1
)

A
+O

(

s3
)

,

J = θ −
β2

4α
, and A = µ −

y2

2
.

(14)

The error compared to the true solution is O
(

t3
)

in small time t, creating an

additional error of O
(

n−3
)

at every step of the algorithm, but as the error of

our scheme at every step was also O
(

n−3
)

, taking the above approximation

of exp (sV0) does not alter the convergence rate of the algorithm.
Here, we see that one of the advantages of this algorithm over the

Euler-Maruyama scheme is the one we mentioned in Remark 1. When we
apply the Euler-Maruyama scheme to this process (8), it may happen that

the square volatility process (Y2)
(EM),n

k
becomes negative, and the algorithm



11

then fails at the next step (as we will have to take its square root). On the
other hand, equations (12) and (14) show that our new algorithm does not
share this problem. There exists a way of avoiding this problem with the
Euler-Maruyama scheme [4].

3.1.2 A remark on general implementation

In general, it is not always possible to obtain the closed form solution
to exp(sVi). Even in such cases, it is not difficult to implement our new
algorithm. All we have to do is to find an approximation of exp(sV0) whose
error is O(s3) and approximations of exp(sVi), (i , 0) whose errors are O(s6).
This can be achieved by Runge-Kutta like methods and we can find some
examples of them in [2].

3.1.3 Application of the quasi-Monte Carlo method

Our new algorithm has the virtue that the application of the quasi-Monte
Carlo method to this algorithm is possible in a straight forward way, once
we embed (Λi,Zi)i∈{1,...,n} into [0, 1)n(d+1). This is an advantage of the algo-
rithm over algorithms proposed in [17], [18], and [12] which also enable us
to proceed higher order weak approximation.

3.2 Comparison to Euler-Maruyama scheme

We compare numerically our new algorithm to the Euler-Maruyama scheme
with and without Romberg extrapolation. Such methods involve, as we
saw, approximation of an integral over a finite dimensional space; we will
do these approximations using the Monte Carlo method and the quasi-
Monte Carlo method.

There are many studies on acceleration of Monte Carlo methods [6] but
we choose the crude Euler-Maruyama scheme with and without Romberg
extrapolation as only competitors by the following reasons:

1. Only our new algorithm and the Euler-Maruyama scheme are very
universal and applicable easily to any type of problems described in
subsection 1.1.

2. Almost all of variance reduction techniques which we can apply to the
Euler-Maruyama scheme are also applicable to our new algorithm.

These are important advantages of our new algorithm. Many existing al-
gorithms lack one or both of these properties. For example, in [14], they
proposed the trapezoidal algorithm which accelerates Monte Carlo pricing
of Asian option price. But this algorithm works only for the price of Asian
option written on one dimensional diffusion. There are many such type of
problem-specific algorithms and we exclude them, because in this paper
we focus on universal algorithms which work for any type of diffusions
which satisfy (1) and various types of derivatives.
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Fig. 1 Error coming from the discretization

In this experiment, we consider

E [max (Y3(T, x)/T − K, 0)] = 6.04720626353478 × 10−2

which is obtained by our new algorithm with extrapolation, quasi-Monte
Carlo, n = 256 + 128, and M = 1.1 × 109.

3.2.1 Discretization Error

Figure 1 shows the relation between the number of partitions in our dis-
cretization of the interval [0, 1] (n in the description of the algorithm) and
the error of the algorithms. We observe that to achieve four digits accu-
racy, our new method with Romberg extrapolation requires n = 6, our new
method needs n = 16, while the Euler-Maruyama scheme with Romberg
extrapolation needs n = 24, and the simple Euler-Maruyama scheme needs
n ≥ 2000. In all algorithms, consumed time is proportional to n×M, where
M is the number of sample points.

3.2.2 Convergence Error from Monte Carlo

We have already mentioned in 1.5 that the convergence performance of the
Monte Carlo method is independent of the number of partitions. We can
see in Figure 2 that in this experiment this statement holds. This figure also
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Fig. 2 Convergence Error from quasi-Monte Carlo and Monte Carlo

shows that to achieve four digits accuracy with 95% confidence level (2σ)
by using Monte Carlo method, we need over 108 sample points. We can also
see in this figure that the Monte Carlo errors which come from algorithms
boosted by the Romberg extrapolation become greater than those of the
original algorithms.

3.2.3 Convergence Error from quasi-Monte Carlo and Monte Carlo

Figure 2 also shows that the performance of the convergence of the quasi-
Monte Carlo method depends on the number n of partitions and on the
algorithms. Figure 2 seems to show that the quasi-Monte Carlo method
outperforms the Monte Carlo method specially when used with our new
algorithm and that the algorithm needs 5 × 104 sample points for four
digits accuracy, the algorithm with extrapolation 104 sample points, and
Euler-Maruyama with extrapolation 5 × 106 sample points when we use
the quasi-Monte Carlo method.

3.2.4 Performance comparison with respect to consumed time

The elapsed time of all methods required for four digits accuracy is shown
in Table 1. We find in this table that our new algorithm with Romberg
extrapolation and the quasi-Monte Carlo method provides the fastest
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Method #Partition #Sample CPU time (sec)
E-M +MC 2000 108 1.09 × 105

E-M + Extrpltn +MC 16 + 8 108 2.20 × 103

New +MC 16 108 3.2 × 103

New + Extrpltn +MC 4 + 2 108 1.4 × 103

E-M + Extrpltn + QMC 16 + 8 5 × 106 1.10 × 102

New + QMC 16 5 × 104 1.6
New + Extrpltn + QMC 4 + 2 104 1.4 × 10−1

Table 1 #Partition, #Sample, and CPU time required for 4 digits accuracy.

calculation. Our new algorithm with Romberg extrapolation and quasi-
Monte Carlo is about 800 times faster than Euler-Maruyama scheme with
Romberg extrapolation and quasi-Monte Carlo. We also see that even with-
out Romberg extrapolation, our new algorithm is still faster than any
boosted Euler-Maruyama method.

At last we would like to mention Remark 4 and Remark 5 again. The
remarkable performance of our new algorithm is closely related to the
property of the quasi-Monte Carlo method noted in Remark 5.
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