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The following method computes the price of American Options on Maximum in High
dimensions using a stochastic grid method. It is based on the paper [2].

1 Introduction

1.1 Problem Formulation

We consider a d-dimensional Brownian motion, whose augmented filtration is de-
noted F;, and a d-dimensional Fj-adapted asset S; = (S},---,S¢). The payoff of the
option is represented by h(t,S;) and the riskless savings account process is denoted By :=
exp(fg rsds), where r; denotes the instantaneous risk-free rate of return. The problem is
to compute

h(r, S
Vo = maxE ((T’ T)) ,
T B,
where 7 is a stopping time taking values in a finite set {tx = 0,¢1,--- ,ty = T'}. The value

of the option at terminal time 7" is V(T,z) = h(T, z). The conditional continuation value
Q(t;, Sy, = x), i.e. the expected future payoff at time ¢; and state S, = x, is given by

By,

Q(t;, Sy, =) = E (V(tit1St,,,)1S, = @) . (1)

tit1

The Bermudan option value at time ¢; and state Sy, = z is given by
V(tiSt,) = max (h(ti, St,), Q(ti, St,)) -
We are interesting in finding the value of the option at the initial state Sp, i.e. V(0,Sp).

1.2 The Stochastic Grid Method

The stochastic grid method (SGM) solves a general optimal stopping problem using a
hybrid of dynamic programming and Monte Carlo methods. The method first computes
the optimal exercise policy and a direct estimator of the true option price. Then, a
lower bound value of the price is obtained by discounting the payoff obtained by following
the exercise policy. Unlike the Longstaff-Schwartz algorithm, the conditional expectation
appearing in (1) are not computed using a least-square method. In an approach similar to
Barraquand and Martineau [1], Jain and Oosterlee reduce the dimensions of the problem
by using g(S;,,,) (where g : R? — R) for the regression of the continuation value Q
at time #;11. Then, they use the distribution of the transition g(Sy, ,)|S; to get the
approximation of E[Q(t;i11, St;,,)|St,]. We refer to Section 2 for more details.
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2 Details on the Method

We are interested in computing an approximation V (;S;,) of V(¢;S;,) backwards in
time. By using nested conditional expactations, we have

By.
V(tisti):max h(ti7stz) ‘Bttz E E[V(ti"‘lsti-&-l)‘( (Stz+1 Stz)] ‘Stz
i+1

Z(ti+1,9(St;11),5%;)

Similar to regression-based algorithms, SGM approximates the unknown functional
form Z(t;1,9(St,,), St;) by projecting it on P polynomial basis functions. Z(t;y1,9(S.,),S)
is approximated by

Z(ti+1ag(sti+1)) = E[V(tl+lst1+1 ’g Stz+1 Z ap 1+1))

at each time step, where (U,),—¢.... p—1 form a set of basis functions. It remains to compute
an approximation of the continuation value Q(t;,S:,) defined by (1)

Q@ﬁﬁz@zl?i [Z(ti1, 9(S0 )11 = 2]

tz+1

-5, / Z% (S )AB(9(St IS = ).

i+1

2.1 Computation of the distribution of ¢(S;,,,) given state 5,

The computation of the distribution of g(S,, ) given S;, can be computed more or less
easily

e if the exact transition probability density function P(g(Sy,,,)|S:, = x) is known, for
example for a call or a put on a single asset in the Black-Scholes framework, or a
call or a put on the geometric mean of d assets,

e if the first four centered moments (i;)i=1..4 of the distribution are known, we can
use the Gram-Charlier Series, which approximates the density function f(z) as

\ 1 (2 — )’ T (2

= gy o () (1o g (75 2) + i (727,
where H; is the ¢th Hermite polynomial and k; is the ith cumulant, i.e. k1 = u1,

= U2 = 0’2, k3 = pu3 and kg = g — 4u%.

e if the first four moments are unknown, we can compute an approximation of these
moments by using Monte Carlo techniques.

2.2 Algorithm

We summarize the SGM algorithm.

1. Generate M sample paths {S,,-- , Sty } starting from S.
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2. Compute the option value for the grid points at times ty = T : V(T,Sr) =
AT, St) = (9(ST) + X)+

3. Compute the approximate functional form Z(ty, Siy) = E[V(tn, Sty )|9(Siy)] by
regressing the option value at the grid points over polynomial basis functions of

g<StN)

4. Perform the following steps for each exercise time ¢; moving backward in time, start-
ing from txy_1 till £, to obtain V(0, Sp)

(a) If necessary, compute the first four centered moments of g(S;,,,) to get the
density function P(g(S;,.,)|S: = x)

(b) Compute the continuation value for grid points at t; using Z(t; 11, Sy, )

N By A
Q(ti, S1) = 2 [Z(ti11,9(S0,,)) 150

tiv1
(c) Compute the option value for grid points at t;
V(ti, St,) = max(h(t;, Sy,), Q(ti, St,))
(d) Compute the functional approximation for the conditional expectation, i.e.
Z(ti,St,) = B[V (tiz1, Se,,1)19(St,)]

by regressing the option value obtained at each grid point ¢; over the polynomial
basis functions of g(S,)

5. Using the exercise strategy obtained while computing the direct SGM estimator v,
for each path determine the earliest time to exercise 7 = min{t € [0,7] : Q; < h:}.
Obtain the lower bound option value E[g—:]

3 The Model

For the numerical experiments, we consider the pricing of an American Call on Max-
imum of d assets. We assume that the asset prices follow correlated geometric Brownian
motion processes, i.e.

dSi = Si((r — g;)dt + o;dWy), So = =

where each asset pays a dividend at a continuous rate ¢;. r is the riskless short interest
rate, and o is the vector of volatilities. W%, i =1,--- ,d are standard Brownian motions
and the instantaneous correlation between W} and W} is p. We assume that the option
expires at time 7" and there are N + 1 equally spaced exercise dates in the interval [0, 7).
The strike price of the option is K, and the payoff is

ht, S) = (max(S¢, -+, S7) - K)+ .



3.1 Continuation Value for the Single Asset case
In case of a single asset in the Black-Scholes model, we have

2

P(g(St,,, )|, = )—xexp<<r—q—"2>h+m/ﬁc:),

where h = t;41 — t; and G ~ N(0,1). Then, if we choose the canonical polynomial basis,
we get

P—
Q(tlvst _Th/ Z 1+1 d]P( (Sti+1)|Sti)7
p=0

o—h i h((r—g—%)+50?)
= Z p(Sti) eP 2 2 .
p=0

3.2 Continuation Value for Max options

)|S,), ie. P(max(S}

In this case, we need to know P(g(.S; tin1 tigr

case of the Black-Scholes model, we can rewrite

/S )1Sr,). In the

]P)(ma‘X(Stl+17 Ty Stdi+1) = X‘Stz) = P(max(}/li_‘_l? e 7§/tlii+1) = log(X)’Stz)’

where (Y;L R Y; T ,) has a multivariate normal distribution. Using Clark’s algorithm
(see [2, Appendlx A]), we can obtain the first four moments of the random variable Y :=

maX(Yt1+ o Y;d+ .)- The continuation value is given by

Q(ti, Sy,) = *’"h/ Z apeP*dP(Y = z|S},),
hP 1 N 53 4
— T P p? 1 — —
pz;) a e 2 ( + 5 p + 24p )

4 Numerical experiments

In the case of an American Call on Maximum, the numerical data used by default are
the following

So| K |T| o r q |p
90 | 100 | 3 [ 0.2 0.05]0.1]0

The number of trajectories of S is M = 10%. The number of discretization time steps
used for the discretization of S is N = 50. The number of polynomial basis functions is 6.
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