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1 The 4/2 stochastic volatility model

The diffusion term of 4/2 volatility model is obtained simply by combining that
of the Heston model and the 3/2 model :

dSt

St
= rdt+ (a

√
Vt +

b√
Vt

)dZt (1)

where the stochastic variance factor V follows a CIR process as in the Heston model :

dVt = κ(θ − Vt)dt+ σV
1/2

t dWt (2)

with parameters r, κ, θ, σ ∈ R+ ; a, b ∈ R ; V0 = v ∈ R+.
Z and W are two Wiener processes with correlation ρ :

d〈W,Z〉t = ρdt

The CIR process remains positive if Feller’s condition 2κθ > σ2 is satisfied.
By taking Xt = V −1

t , we have the dynamic Xt including a power 3/2 term :

dXt = κ̃Xt(θ̃ −Xt)dt+ σ̃X
3/2
t dWt

where κ̃ = κθ − σ2, θ̃ = κ/(κθ − σ2) and σ̃ = −σ.
By taking resp. (a = 1; b = 0) and (a = 0; b = 1), we are able to recover Heston

model and 3/2 model.
In order to make the Heston term and the 3/2 term comparable, we need to have

b ≈ aV0. We can for example take a, b such that a
√
V0 + b/

√
V0 =

√
V0 to satisfy the

initial condition on the volatility.
We note ΨT (u) = E[euYT ] the characteristic function of the log price YT =

log(ST ).

2 Direct calculation of the European option prices

Knowing the cumulative distribution function FYT
(x) = P(YT 6 x), we are

able to valuate a European put option with the formula thanks to a numerical
integration :

P = e−rT
E[(K − ST )+] = e−rT

∫ k

−∞
exFYT

(x)dx

1
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The cumulative distribution function is obtained from the characteristic function
ΨT (u) using another integration given by the inverse theorem of Gil-Pelaez (1951) :

FYT
(x) =

1

2
+

1

2π

∫ +∞

−∞

e−iuxΨT (iu)

iu
du

Thus, we have a double inproper integral to evaluate, it involves the control of
both truncation error and discretization error.

3 Adaptation of the FFT method to the 4/2 model

In the paper of Carr and Madan (1999) we are able to calculate the option price
using only one integral, moreover we are able to apply the Fast Fourier Transform
(FFT) alogrithm for the discretized sum.

CT (k) ≈ exp(−łphak)

π

N−1∑

j=0

e−ivjk ĉT (vj)η

where α is chosen such that ΨT (α + 1) = E[Sα+1
T ] < ∞ and ĉT (v) the Fourier

tranform of cT (k) = exp(αk)CT (k) with α > 0, it is defined by :

ĉT (v) =

∫ +∞

−∞
eivkcT (k)dk =

e−rT ΨT [(α+ 1) + iv]

α2 + α− v2 + i(2α+ 1)v

As output, we have European call option prices corresponding to N values of log
strike with a step λ. In order to apply the FFT algorithm of Cooley-Tukey (1965),
the relation λη = 2π/N must be satisfied, where η is the grid for the discretized
integral. By Simpson’s rule, we finally have :

CT (kn) ≈ exp(−αkn)

π

N−1∑

j=0

e−i
2π
N

jnei(b−Y0)vj ĉT (vj)
η

3
[3 + (−1)j − δj−1]

4 Adaptation of Broadie and Kaya’s method to the 4/2
model

4.1 Exact simulation of the CIR process

Given V0, the initial value of the CIR process, the distribution of Vt is, up to a
scale factor, a noncentral chi-square. Its transition law is given by :

Vt =
σ2(1 − e−κt)

4κ
χ′2

d (
4κe−κt

σ2(1 − e−κt)
V0)

with d = 4θκ/σ2 degrees of freedom and λ = 4κe−κt

σ2(1−e−κt)
V0 the noncentrality para-

meter.
When d > 1, a noncentral chi-squared distribution of d degrees of freedom is

linked to a ordinary chi-squared distribution of d − 1 degrees of freedom by the
following relation :

χ′2
d (λ) = χ′2

1 (λ) + χ2
d−1
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where χ′2
1 (λ) is equal in law to (G+

√
λ)2 with G a standard normal variable.

More generally, for d > 0, the simulations are also made possible possible for
0 < d < 1, i.e. when 4θκ/ < σ2. In fact, we have

X2
d+2Nλ

law
= X

′2
d (λ) with Nλ ∼ Poisson(λ/2).

4.2 Exact simulation of the 4/2 model

We note this time Φt(x) = E[eixYt |Vt], the characteristic function conditional to
the stochastic volatility, we are able to apply the algorithm of exact simulation in
Broadie and Kaya (2006) to obtain a trajectory of (Sti

, Vti
)06i6N .

We use the inversion formula of Gil-Pelaez once more for the conditional cumu-
lative distribution function :

FYt|Vt
(u) = P[Yt 6 u|Vt] =

1

2
− 1

π

∫ ∞

0

Im[e−ixuΦt(x)]

x
dx

Then we can apply Newton’s method, or preferably Brent-Dekker’s method to
inverse the function FYt|Vt

(u).

5 Numerical schemes for the 4/2 model

5.1 Modified Euler’s method

We first consider the classical Euler’s scheme for the CIR process :

Vti+1
= Vti

+ κ(θ − Vti
)∆t+ σ

√
(Vti

)+∆Wti+1

For the dynamic of price under the 4/2 model, we have to introduce two positive
functions f and g due to the square root and its inverse :

Sti+1
= Sti

[1 + r∆t+ (af(
√
Vti

) +
b√
g(Vti

)
)(ρ∆Wti+1

+
√

1 − ρ2∆W⊥
ti+1

)]

We can take for example f(v) = (v)+ and g(v) = max(v, Vinf) with for example
Vinf = V0/16.

5.2 Alfonsi’s second order discretization scheme

As in Alfonsi (2010), we first provide the second order discretization scheme in
terms of weak error. In our model where the Feller’s condition is satisfied, we simply
have X̂x

t = ϕ(x, t,
√
tN) : The value of the CIR process departing from x after a

time t, where N is a standard normal random variable with :

ϕ(x,t,w) = e− kt
2 (

√
(a− σ2/4)ψk(t/2) + e− kt

2 x+
σ

2
w))2 + (a− σ2/4)ψk(t/2)

We also generalize the scheme for Heston model in the paper of Alfonsi :
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We split the operator associated to our process into two operators, the first one
gives : 




X1
t = X1

0 +
∫ t

0 κ(θ −X1
s )ds+

∫ t
0 σ

√
X1

sdWs

X2
t = X2

0 +
∫ t

0 rX
2
sds+

∫ t
0(a

√
X1

s + b√
X1

s )
)X2

sdZs

X3
t =

∫ t
0 a

2X1(s)ds

Using Itô’s lemma, we can write :

X2
t = X2

0 exp[(r − ab− aρκθ

σ
+
bρκ

σ
)t+

aρ

σ
(X1

t −X0
t )

+
bρ

σ
log

X1
t

X0
t

+ (
ρκ

aσ
− 1

2
)(X3

t −X3
0 )

+ (
ρ

bσ
(
σ2

2
− κθ) − 1

2
)(X4

t −X4
0 )]

Thus, the values can be calculated by trapezoidal rule.

For the second operator, we have dln(X2
t ) =

√
1 − ρ2(a

√
X1

t + b√
X1

t

)dW⊥
t and

other operators zero.
Finally, as in Alfonsi’s paper, we compose the transition probabilities associated

to both operators, an appropriate second order discretization scheme can take the
form :

1

2
(p̂2(t) ◦ p̂1

x(t) + p̂1(t) ◦ p̂2
x(t))

However, from a numerical point of view, we have to calculate twice the com-
position and need twice more costly. The idea is to take a Bernoulli variable with
parameter 1/2. For example, when it is equal to 1 with probability 1/2 we apply
p̂2(t) ◦ p̂1

x(t) and p̂1(t) ◦ p̂2
x(t) otherwise.
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