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1. Introduction

Lookback options are among the most popular path-dependent derivatives traded

in exchanges worldwide. The payoffs of these options depend on the realized minimum

(or maximum) asset price at expiration. A standard European lookback call (put)

gives the option holder the right to buy (sell) an asset at its lowest (highest) price

during the life of the option. Standard (also called floating strike) lookbacks were

first studied in [32, 33], where closed-form pricing formulas were derived in the Black-

Scholes framework. In addition to standard lookback options, paper [23] introduces

fixed strike lookbacks. A fixed strike lookback call pays off the difference between the
1
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realized maximum price and some prespecified strike or zero, whichever is greater.

A lookback put with a fixed strike pays off the difference between the strike and the

realized minimum price or zero, whichever is greater. Fixed strike lookback options

can be priced also analytically in the Black-Scholes model [23]. In a discrete time

setting the extremum of the asset price will be determined at discrete monitoring

instants (see e.g. [2] for a detailed description). The continuity corrections for discrete

lookback options in the Black-Scholes setting are given in [16]. For a description

of lookback options with American type constrains and related pricing methods in

diffusion models, we refer to [5, 31, 34, 47, 64] and the references cited therein.

Other types of lookback options include exotic lookbacks, percentage lookback

options in which the extreme values are multiplied by a constant [23], and partial

lookback options [35] (the monitoring interval for the extremum is a subinterval

between the initial date and the expiry).

In recent years more and more attention has been given to stochastic models of

financial markets which depart from the traditional Black-Scholes model. We con-

centrate on one-factor non-gaussian exponential Lévy models. These models provide

a better fit to empirical asset price distributions that typically have fatter tails than

Gaussian ones, and can reproduce volatility smile phenomena in option prices. For

an introduction to applications of these models applied to finance, we refer to [14, 22].

Option valuation under Lévy processes has been dealt with by a host of researchers,

therefore, an exhaustive list is virtually impossible. However, the pricing of path-

dependent options in exponential Lévy models still remains a mathematical and

computational challenge (see, e.g., [62, 41, 54, 10, 11, 9] for recent surveys of the

state of the art of exotic option pricing in Lévy models).

The Wiener-Hopf factorization method is a standard tool for pricing path-dependent

options. Nguyen-Ngoc and Yor [54] obtained formulas in terms of the WienerŰHopf

factors for the Laplace transform of continuously monitored barrier and lookback

options in general Lévy models. The probabilistic approach used in the paper al-

lows, in particular, to recover the results for barrier options derived in [14] using

the analytical form of the Wiener-Hopf factorization method. The drawback of the
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formulas in [14, 54] is the complexity of numerical calculations required, since, in

general, numerical n-fold integrals (with n = 2, 3) are needed.

In the case of jump diffusions with exponentially distributed Poisson jumps (a

double-exponential jump diffusion process (DEJD) and its generalization: a hyper-

exponential jump-diffusion model (HEJD)), the Laplace transform of the price w.r.t.

time has a relatively simple explicit form. Formulas for DEJD model were obtained

by Lipton [50] and Kou [41], and, for double-barrier options, by Sepp [61]; for HEJD

case, see [20, 24, 36] and the bibliography in [9]. Note that papers [50, 40] consider

continuously monitored barrier and lookback options, whereas the other papers cited

above studied barrier options only. The Laplace transform of the price having being

calculated, one uses a suitable numerical Laplace inversion algorithm to recover the

option price. However, the problem of the inversion of the Laplace transform is

non-trivial from the computational point of view. We refer the reader to [1] for a

description of a general framework for related numerical methods.

Calculation of the Laplace transform of the price under a general Lévy process is

non-trivial as well. To simplify calculations, one can approximate the initial process

by a DEJD or, more generally, HEJD, and then use the Laplace transform method

(see, e.g., [20, 24, 36]). However, this approximation introduces an additional error,

which may be quite sizable near the barrier (see examples in [10, 11]).

Borovkov and Novikov [8] develop a method based on Spitzer’s identity to price

discrete lookback options in a general Lévy model; see also [55]. The methods of

these papers are computationally expensive when the monitoring is frequent (e.g.,

daily monitoring). Using the Hilbert transform, Feng and Linetsky [29, 30] proposed

a new computationally efficient method for pricing discrete barrier and lookback

options and calculation of exponential moments of the discrete maximum of a Lévy

process.

As the number of monitoring times goes to infinity, discrete (barrier) lookback

options converge to continuous (barrier) lookbacks. However, the discrete options

pricing methods described above converge to continuous prices rather slowly. The

Richardson extrapolation is typically used to improve the rate of convergence of
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various numerical schemes. Unfortunately, even for the standard lookbacks, there are

no theoretical results, which can be used to find a generalization of the Richardson

extrapolation procedure appropriate for estimation of continuous values from discrete

ones (see the discussion in [30]). Motivated by the pricing of lookback options in

exponential Lévy models, Dia and Lamberton [25] studied the difference between

the continuous and discrete supremum of a general Lévy process. However, similar

results for hybrid exotics are unavailabale at present.

Kudryavtsev and Levendorskǐi [42] developed a fast and accurate numerical method

labelled Fast Wiener-Hopf factorization method (FWHF-method) for pricing continu-

ously monitored barrier options under Lévy processes of a wide class. FWHF-method

is based on an efficient approximation of the Wiener-Hopf factors in the exact for-

mula for the solution and the Fast Fourier Transform (FFT) algorithm. In contrast

to finite difference methods which require a detailed analysis of the underlying Lévy

model, the FWHF-method deals with the characteristic exponent of the process.

In [44], Kudryavtsev and Levendorskǐi derive a general formula which is applicable

to barrier options, lookbacks, lookbarriers, barrier-lookbacks, and other similar types

of options, using an operator form of the Wiener-Hopf factorization. An efficient

numerical realization of the formula for lookback options in KoBoL(CGMY) and Kou

models was implemented into Premia 14. As well as in [44] we use Gaver-Stehfest

algorithm (see [1]) and the Fast Wiener-Hopf factorization method developed in [42].

The total computational cost of our algorithm is O(NM log2(M)), where N is the

parameter of the Gaver-Stehfest algorithm (see Appendix A), and M is the number

of discrete points used to compute the fast Fourier transform in FWHF-method (see

Appendix B). In contrast to pricing methods based on approximations by options

with discrete monitoring, our pricing method converges very fast to prices of options

with continuous monitoring.

The rest of the paper is organized as follows. In Section 2, we give necessary

definitions of the theory of Lévy processes, and we provide a general theorem on

pricing of options with barrier and lookback features. In Section 3, we consider

realizations of the general formula for several types of options with lookback and/or
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barrier features, and describe an efficient numerical method for realization of the

general formula. Numerical examples in Section 4 demonstrate advantages of our

method in terms of accuracy and speed. Section 5 gives details on the method

implemented into Premia 14.

2. Lévy processes: basic facts

2.1. General definitions. A Lévy process is a stochastically continuous process

with stationary independent increments (for general definitions, see, e.g., [60]). A

Lévy process may have a Gaussian component and/or pure jump component. The

latter is characterized by the density of jumps, which is called the Lévy density.

A Lévy process Xt can be completely specified by its characteristic exponent, ψ,

definable from the equality E[eiξX(t)] = e−tψ(ξ) (we confine ourselves to the one-

dimensional case).

The characteristic exponent is given by the Lévy-Khintchine formula:

ψ(ξ) =
σ2

2
ξ2 − iµξ +

∫ +∞

−∞
(1 − eiξy + iξy1[−1;1](y))F (dy),

where σ2 ≥ 0 is the variance of the Gaussian component, 1A is the indicator function

of the set A, and the Lévy measure F (dy) satisfies
∫

R\{0}
min{1, y2}F (dy) < +∞.

Assume that the riskless rate r is constant, and, under a risk-neutral measure

chosen by the market, the underlying evolves as St = S0e
Xt , where Xt is a Lévy

process. Then we must have E[eXt ] < +∞, and, therefore, ψ must admit the analytic

continuation into the strip Im ξ ∈ (−1, 0) and continuous continuation into the closed

strip Im ξ ∈ [−1, 0].

Further, if d ≥ 0 is the constant dividend yield on the underlying asset, then the

following condition (the EMM-requirement) must hold: E[eXt ] = e(r−d)t. Equiva-

lently,

(2.1) r − d+ ψ(−i) = 0,
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which can be used to express the drift µ via the other parameters of the Lévy process:

(2.2) µ = r − d−
σ2

2
+
∫ +∞

−∞
(1 − ey + y1[−1;1](y))F (dy).

In empirical studies of financial markets, the following classes of Lévy processes are

popular: the Merton model [53], double-exponential jump-diffusion model (DEJD)

introduced to finance by Lipton [50] and Kou [38], generalization of DEJD model

constructed by Levendorskĭi [48] and labelled later Hyper-exponential jump-diffusion

model (HEJD), Variance Gamma Processes (VGP) introduced to finance by Madan

with coauthors (see, e.g., [51]), Hyperbolic processes constructed in [26, 27], Normal

Inverse Gaussian processes constructed by Barndorff-Nielsen [3] and generalized in

[4], and extended Koponen’s family introduced in [12, 13] and labelled KoBoL model

in [14]. Koponen [37] introduced a symmetric version; Boyarchenko and Levendorskǐi

[12, 13] gave a non-symmetric generalization; later, in [21], a subclass of this model

appeared under the name CGMY–model.

Example 2.1. The characteristic exponent of a pure jump KoBoL (CGMY) process

of order ν ∈ (0, 2), ν 6= 1, is given by

(2.3) ψ(ξ) = −iµξ + cΓ(−ν)[λ+
ν − (λ+ + iξ)ν + (−λ−)ν − (−λ− − iξ)ν ],

where c > 0, µ ∈ R, and λ− < −1 < 0 < λ+. Carr et al. (2002) [21] use different

parameters labels C,G,M, Y :

(2.4) ψ(ξ) = −iµξ + CΓ(−Y )[GY − (G+ iξ)Y +MY − (M − iξ)Y ].

The relation between two parameterizations is quite easy to obtain:

(2.5) c = C, λ+ = G, λ− = −M, ν = Y.

Example 2.2. In DEJD model, the characteristic exponent is of the form

ψ(ξ) =
σ2

2
ξ2 − iµξ +

ic+ξ

λ+ + iξ
+

ic−ξ

λ− + iξ
,

where σ > 0, µ ∈ R, c± > 0 and λ− < −1 < 0 < λ+.

2.2. The Wiener-Hopf factorization. There are several forms of the Wiener-Hopf

factorization. The Wiener-Hopf factorization formula used in probability reads:

(2.6) E[eiξXTq ] = E[eiξXTq ]E[eiξXTq ], ∀ ξ ∈ R,
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where Tq ∼ Exp q is an exponentially distributed random variable independent of

X, and X t = sup0≤s≤tXs and X t = inf0≤s≤tXs are the supremum and infimum

processes. Introducing the notation

φ+
q (ξ) = qE

[
∫ ∞

0
e−qteiξXtdt

]

= E
[

eiξXTq

]

,

φ−
q (ξ) = qE

[
∫ ∞

0
e−qteiξXtdt

]

= E
[

eiξXTq

]

we can write (2.6) as

(2.7)
q

q + ψ(ξ)
= φ+

q (ξ)φ−
q (ξ).

Introduce the normalized resolvent of X or the expected present value operator

(EPV–operator) under X. The name is due to the observation that, for a stream

g(Xt),

(2.8) Eqg(x) = E
[
∫ +∞

0
qe−qtg(Xt)dt | X0 = x

]

.

Replacing in (2.8) process X with the supremum and infimum processes X and X, we

obtain the EPV operators E±
q under supremum and infimum process. Equivalently,

(2.9) Equ(x) = E
x[u(XTq

)], E+
q u(x) = E

x[u(XTq
)], E−

q u(x) = E
x[u(XTq

)].

Hence, Eq and E±
q admit interpretation as expectation operators:

Eqg(x) =
∫ +∞

−∞
g(x+ y)Pq(dy), E±

q g(x) =
∫ +∞

−∞
g(x+ y)P±

q (dy),

where Pq(dy), P±
q (dy) are probability distributions with suppP+

q ⊂ [0,+∞), suppP−
q ⊂

(−∞, 0]. The characteristic functions of the distributions Pq(dy) and P±
q (dy) are

q(q + ψ(ξ))−1 and φ±
q (ξ), respectively.

The operator form of the Wiener-Hopf factorization is written as follows (see details

in [59, p.81]):

(2.10) Eq = E+
q E−

q = E−
q E+

q .

Note that (2.10) is understood as equalities for operators in appropriate function

spaces, for instance, in the space of semi-bounded Borel functions. Under appropriate

conditions on the characteristic exponent, the EPV operators are defined as operators

in spaces of functions of exponential growth at infinity, and (2.10) holds in these

spaces. See [14].
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Finally, note that (2.7) is a special case of the Wiener-Hopf factorization of the

symbol of a pseudo-differential operator (PDO). In applications to Lévy processes,

the symbol is q/(q+ψ(ξ)), and the PDO is Eq := q(q+ψ(D))−1. Recall that a PDO

A = a(D) acts as follows:

Au(x) = (2π)−1
∫ +∞

−∞
eixξa(ξ)û(ξ)dξ,

where û is the Fourier transform of a function u:

û(ξ) =
∫ +∞

−∞
e−ixξu(x)dx.

It is easily seen that

(2.11) E±
q := φ±

q (D) = F−1
ξ→xφ

±
q (ξ)Fx→ξ.

where F is the Fourier transform. We will construct appropriate approximations

to each operator on the rightmost part of (2.11), and use (2.11) as the basis for a

numerical realization of the main Theorem 2.1.

2.3. Calculation of value functions using Laplace transform. We consider

options, whose payoff at maturity date T depends on (XT , XT ) but not on XT . This

implies that the barrier H = eh may play a role only when it is reached or crossed from

above. The definitions and results below admit the straightforward reformulation for

the case of options with payoffs depending on (XT , XT ) but not on XT . In this case,

the barrier H = eh may play a role only when it is reached or crossed from below.

Consider

(2.12) V (T, x) = E
x
[

e−rTg(XT , XT )1{τ−

h
>T}

]

,

where time 0 is the beginning of a period under consideration (so that X0 = X0 = x),

T is the final date, h is the absorbing barrier, τ−
h denotes the first entrance time into

(−∞, h], and g(XT , XT ) is the payoff at time T .

Denote by V̂ (q, x) the Laplace transform of V (T, x) w.r.t. T . Applying Fu-

bini’s theorem, we obtain that V̂ (q, x) is the value function of the perpetual stream

g(Xt, X t), which is terminated the first moment Xt crosses h, the discounting factor
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being q + r:

V̂ (q, x) =
∫ +∞

0
e−qt

E
x
[

e−rtg(Xt, X t)1{τ−

h
>t}

]

dt

= E
x

[

∫ τ−

h

0
e−(q+r)tg(Xt, X t)dt

]

.

Theorem 2.1. Let g be a measurable locally bounded function satisfying certain con-

ditions on growth at ∞. Then

(2.13) V̂ (q, x) = (q + r)−1
(

E−
q+r1(h,+∞)w(q + r; ·)

)

(x),

where

(2.14) w(q + r;x) = E+
q+rg(x, y)|y=x,

and E+
q+r acts w.r.t. the first argument.

The proof of the Theorem 2.1 can be found in [44].

3. Special cases and numerical method

In this section, we apply Theorem 2.1 to price different types of exotics on an

underlying that pays dividends. More details can be found in [44].

We assume that, under an EMM chosen for pricing, the log-price of the stock

Xt = logSt follows a Lévy process with the characteristic exponent ψ. The riskless

rate r ≥ 0 and dividend rate d ≥ 0 are assumed constant.

3.1. European floating strike lookback options. In this subsection, we recover

the formula for the European floating strike lookbacks from [54] using Theorem 2.1.

Assume that the infimum process starts at x = X0. Then the time-0 price of the

lookback option with payoff g(XT , XT ) at maturity is given by

V (T, x) = E
x
[

e−rTg(XT , XT )
]

.

This is a particular case of (2.12) with h = −∞. Hence, Theorem 2.1 can be applied.

Consider a floating strike lookback call. Then g(x, y) = ex − ey. Applying E+
q+r w.r.t.

x, we obtain w(q + r;x) = φ+
q+r(−i)ex − ex = (φ+

q+r(−i) − 1)ex, and then

V̂ (q, x) = (q + r)−1
(

E−
q+r(φ

+
q+r(−i) − 1)e·

)

(x)

= (q + r)−1φ−
q+r(−i)(φ

+
q+r(−i) − 1)ex.
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Using the Wiener-Hopf factorization formula (2.7) with q + r in place of q, and the

EMM condition (2.1), we arrive at

(3.1) V̂ (q, x) =
[

1
q + d

−
φ−
q+r(−i)
q + r

]

ex.

The value φ−
q+r(−i) can be calculated using an integral representation for lnφ−

q+r(ξ)

(see e.g. [14]).

3.2. European fixed strike lookback put. In this case, g(x, y) = (K − ey)+ is

independent of x, h = −∞, and w(q + r;x) = (K − ex)+. Therefore, equation (2.13)

simplifies:

V̂ (q, x) = (q + r)−1
(

E−
q+r(K − e·)+

)

(x).

Note that Eberlein and Papapantoleon [28] proved a symmetry relationship between

floating-strike and fixed-strike lookback options for assets driven by general Lévy

processes.

3.3. Barrier-lookback options. In the subsection, we suggest a new class of hybrid

exotics: lookbacks with barriers. We will call these options barrier-lookbacks. The

barrier-lookback option expires worthless if the extremum crosses some prefixed barrier

during the optionŠs life. Otherwise, the option’s owner is entitled to the lookback’s

payoff g(XT , XT ) at maturity date T . We may consider down-and-out or up-and-out

lookbacks with a floating (fixed) strike lookback’s payoff.

For instance, we apply our approach to a down-and-out floating strike lookback

call with the barrier H = eh. Without loss of generality, we assume h = 0. The

price V (T, x) of the option is given by (2.12) with g(XT , XT ) = eXT − eXT . We apply

Theorem 2.1 and obtain (2.13), where w(q;x) can be explicitly calculated:

(3.2) w(q;x) = E+
q+r(e

x − ey)|y=x = φ+
q+r(−i)e

x − ex.
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Using the Wiener-Hopf factorization formula (2.7) with q+ r in place of q, the EMM

condition (2.1) and (3.2), we rewrite (2.13) as follows.

V̂ (q, x) = (q + r)−1
(

E−
q+r1(0,+∞)(φ+

q+r(−i) − 1)e·
)

(x)

= (q + r)−1
(

E−
q+r(φ

+
q+r(−i) − 1)e·

)

(x)

− (q + r)−1
(

E−
q+r1(−∞;0](φ+

q+r(−i) − 1)e·
)

(x)

=
1

q + d
ex −

φ−
q+r(−i)
q + r

ex −

(

1
(q + d)φ−

q+r(−i)
−

1
q + r

)

(

E−
q+r1(−∞;0]e

·
)

(x).(3.3)

Remark 3.1. In a numerical realization, we need to approximate operator E−
q+r only.

Furthermore, since

φ−
q+r(−i) = (E−

q+r1(−∞;0]e
·)(0),

it is unnecessary to write a separate subprogram for calculation of φ−
q+r(−i).

Now, consider a down-and-out fixed strike lookback put with the barrier H = eh.

The price V (T, x) of the option under consideration at time zero is given by (2.12)

with the payoff function g(XT , XT ) = (K − eXT )+. Applying Theorem 2.1, we find

the Laplace transform of V (T, x):

(3.4) V̂ (q, x) = (q + r)−1
(

E−
q+r1(h,+∞)(K − e·)+

)

(x).

3.4. Partial barrier-lookback options. In the current subsection, we combine the

features of barrier-lookback options and of a class of partial barrier options intro-

duced in [35]. Consider the option with two maturity dates T1 < T2. Provided that

the underlying remains above the barrier level H = eh during the early monitoring

knock-out window [0, T1], at time T1, the option becomes a seasoned lookback option

g(XT1
, XT1

) with payoff g0(XT2
, XT2

) at time T2. We will call these options partial

barrier-lookbacks.

The price V (T1, T2;x) of the partial knock-out barrier lookback at time zero is

given by (2.12) with T = T1, where

(3.5) g(x, y) = ET1

[

e−r(T2−T1)g0(XT2
, XT2

)|XT1
= x,XT1

= y
]

.
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Set T = T2 − T1 and simplify the expression (3.5) for g(x, y) at x ≥ y:

g(x, y) = E
x
[

e−rTg0(XT ,min{XT , y})]

= E
x
[

e−rTg0(XT , XT )1{τ−

y ≤T}

]

+ E
x
[

e−rTg0(XT , y)1{τ−

y >T}

]

= E
x
[

e−rTg0(XT , XT )
]

+ E
x
[

e−rT (g0(XT , y) − g0(XT , XT ))1{τ−

y >T}

]

.

Hence, g(x, y) can be represented as follows.

(3.6) g(x, y) = V1(T, x) + V2(T, x, y),

where V1(T, x), V2(T, x, y) are the prices of the lookback and barrier-lookback options

with maturity T and payoffs g0(XT , XT ), g0(XT , y) − g0(XT , XT ), respectively.

Now, we can apply the procedures from the previous subsections to obtain the

prices of the partial barrier-lookbacks. An additional ingredient for an efficient nu-

merical realization would be a piece-wise linear or polynomial approximation of g

before the last step of calculation of the price of barrier-lookback options can be

made.

Remark 3.2. Notice that (3.6) gives the time-t price of a seasoned lookback with

the time remaining to expiration T , conditional on Xt = x and the minimum of the

underlying asset price observed prior to the current time t is ey, y < x.

3.5. Numerical method. In general Lévy models formulas (3.3) and (3.4) involve

the double Fourier inversion (and one more integration needed to calculate one of the

factors in the Wiener-Hopf factorization formula). Hence, it is difficult to implement

these formulas in practice apart from the cases when explicit formulas for the factors

are available. We suggest to use FWHF-method from [42] for calculation of V̂ (q, x)

at points q chosen for the application of the Gaver-Stehfest algorithm. (Appendix A

contains a description of the optimized version of the one-dimensional Gaver-Stehfest

method.) For this reason, we refer to our algorithm as the “FWHF&GS-method”.

The total computational cost of our method is O(NM log2(M)), where N is the

parameter of the Gaver-Stehfest algorithm, and M is the number of discrete points

used to compute the fast Fourier transform in FWHF-method. The short description

of the FWHF-method can be found in Appendix B. In [61], [24], [43], it was found
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numerically that the choice of 12-14 terms in the Gaver-Stehfest formula results in

satisfactory accuracy (5–7 significant digits) for the case of Kou, HEJD and KoBoL

models, respectively. Our numerical experiments in Section 4 confirm this statement.

In this case, the standard double precision gives reasonable results.

FWHF&GS algorithm for pricing options with barrier and/or lookback features

• Using Theorem 2.1, find the Laplace transformed prices V̂ (q, x) at values q

specified by the Gaver-Stehfest algorithm. Action of operators E±
q+r in (2.13)

and (2.14) can be realized using FWHF-method.

• Use the Gaver-Stehfest inversion formula.

4. Numerical examples

We check the performance of FWHF&GS-method against prices obtained by Monte

Carlo simulation (MC-method). It is well known that the convergence of Monte Carlo

estimators of quantities involving first passage is very slow. The recent exception is

the Wiener-Hopf Monte-Carlo simulation technique developed in [46]. The method

is numerically tractable for families of Levy processes whose Lévy measure can be

written as a sum of a Lévy measure from the β-family [45] or hypergeometric family

[46] and a measure of finite mass. However, class of KoBoL processes is not a subclass

of any of these two families. Hence, we simulate trajectories of KoBoL using the code

of J. Poirot and P. Tankov (www.math.jussieu.fr/ ∼ tankov/). The program uses the

algorithm in [52], see also [58]. We used 3, 000, 000 paths with time step 0.00005.

The option prices were calculated on a PC with characteristics Intel Core(TM)2 Due

CPU, 1.8GHz, RAM 1024Mb, under Windows Vista.

We consider two types of lookback options under the KoBoL(CGMY) model (2.3),

and use the same parameters of the KoBoL (CGMY) process as in [29]: c = 4,

λ+ = 50.0, λ− = −60.0, ν = 0.7 (C = 4, G = 50.0, M = 60.0, Y = 0.7 in CGMY

parametrization); the remaining parameters are time to maturity T = 1 and the

dividend rate d = 0.02 and interest rate r = 0.05. The drift parameter µ is fixed by
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(2.2), according to the EMM-requirement (2.1). The examples, which we analyze in

detail below, are fairly representative.

For verification of the accuracy of our method, we calculate prices of European

lookbacks without barrier. Table 1 reports prices for the floating strike lookback

put calculated by using MC-Method, FWHF&GS-method and HT method [30] (HT-

method). The HT-prices were obtained using the code implemented into the program

platform Premia [56]. FWHF&GS-prices converge very fast and agree with MC-

prices very well. However, discrete lookback option prices calculated by HT-method

converge to the continuous lookback option prices rather slowly. If HT-method is

expanded for the case of the barrier-lookbacks, we may expect the same behavior of

the prices.

Next, we consider a barrier-lookback with a down-and-out barrier H, a floating

strike lookback’s payoff and and time to expiry T . We will refer to this option as a

down-and-out floating strike lookback call. In Table 2, the sample mean values are

compared with the prices of FWHF&GS method.

Appendix A. A numerical Laplace transform inversion: the

Gaver-Stehfest algorithm

Methods of numerical Laplace inversion that fit the framework of [1] have the

following general feature: the approximate formula for f(τ) can be written as

(A.1) f(τ) ≈
1
τ

N
∑

k=1

ωk · f̃
(

αk
τ

)

, 0 < τ < ∞,

where N is a positive integer and αk, ωk are certain constants that are called the

nodes and the weights, respectively. They depend on N , but not on f or on τ . In

particular, the inversion formula of the Gaver-Stehfest method can be written in the

form (A.1) with αk = k ln(2),

N = 2n;(A.2)

ωk :=
(−1)n+k ln(2)

n!

min{k,n}
∑

j=[(k+1)/2)]

jn+1Cj
nC

j
2jC

k−j
j ,(A.3)
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Table 1. KoBoL model: floating strike lookback put prices

A
MC FWHF&GS

h = 0.01 h = 0.001 h = 0.0002
Option prices 14.2693 14.4380 14.2880 14.2675
Errors w.r.t. MC 0.1% 1.2% 0.1% 0.0%
CPU-time (sec) 100,000 0.003 0.031 0.156

B
MC HT

N = 320 N = 640 N = 1280
M = 4096 M = 8192 M = 32768

Option prices 14.2693 13.94 14.07 14.17
Errors w.r.t. MC 0.1% -2.3% -1.4% -0.7%
CPU-time (sec) 100,000 28 129 1117

KoBoL parameters: c = 4, λ+ = 50.0, λ− = −60.0, ν = 0.7, µ = 0.207142.
Option parameters: S = 100, T = 1, r = 0.05, d = 0.02.
Parameters of the FWHF&GS-method : h – space step, N = 14.
Parameters of the HM-method : N – the number of observations of the maximum, M – the
number of discrete points used to compute the Hilbert transform.
Panel A: Option prices
Panel B: Relative errors w.r.t. MC; MC error indicates the ratio between the half-width of the
95% confidence interval and the sample mean.

where [x] is the greatest integer less than or equal to x and CK
L = L!

(L−K)!K!
are the

binomial coefficients.

Because of the binomial coefficients in the weights, the Gaver-Stehfest algorithm

tends to require high system precision in order to yield good accuracy in the calcu-

lations. If M significant digits are desired, then according to [63], the parameter n

in (A.2) should be the least integer greater than or equal to 1.1M , N = 2n, and

the required system precision is about 1.1N . In particular, for M = 6 and N = 14

a standard double precision gives reasonable results. The precision requirement is

driven by the coefficients ωk in (A.3).

Since constants ωk do not depend on τ , they can be tabulated for the values of N

that are commonly used in computational finance (e.g., 12 or 14).
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Table 2. KoBoL model: down-and-out floating strike lookback call prices

A
MC FWHF&GS

Spot price Sample mean h = 0.01 h = 0.001 h = 0.0002 h = 0.0001
S = 81 1.73270 1.40919 1.69624 1.72731 1.73151
S = 90 9.14148 8.99476 9.15197 9.16768 9.16946
S = 100 13.66470 13.6559 13.6864 13.6869 13.6864
S = 110 16.34670 16.4432 16.3807 16.3707 16.3688
CPU-time
(sec) 100,000 0.003 0.031 0.156 0.31

B
MC FWHF&GS

Spot price MC error h = 0.01 h = 0.001 h = 0.0002 h = 0.0001
S = 81 0.5% -18.7% -2.1% -0.3% -0.1%
S = 90 0.2% -1.6% 0.1% 0.3% 0.3%
S = 100 0.1% -0.1% 0.2% 0.2% 0.2%
S = 110 0.1% 0.6% 0.2% 0.1% 0.1%
CPU-time
(sec) 100,000 0.003 0.031 0.156 0.31

KoBoL parameters: c = 4, λ+ = 50.0, λ− = −60.0, ν = 0.7, µ = 0.207142.
Option parameters: S – spot price, H = 80, T = 1, r = 0.05, d = 0.02.
Algorithm parameters: h – space step, N = 14.
Panel A: Option prices
Panel B: Relative errors w.r.t. MC; MC errors indicate the ratio between the half-width of the
95% confidence interval and the sample mean.

Appendix B. The Fast Wiener-Hopf factorization method

We briefly review the framework proposed in [42]. The main contribution of the

FWHF–method is an efficient numerical realization of EPV-operators E , E+ and E−.

As the initial step, we need an efficient procedure for calculation of the Wiener-Hopf

factors φ±
q (ξ).

It is well-known that the limit of a sequence of the Poisson type characteristic

functions is an infinitely divisible characteristic function. The converse is also true.

Every infinitely divisible characteristic function can be written as the limit of a se-

quence of finite products of Poisson type characteristic functions. Since ψ(ξ) is the

characteristic exponent of Lévy process, then the function q/(q + ψ(ξ)) is infinitely

divisible characteristic function.
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5. Implementation to the Premia 14

We implemented FWHF-method for four types of lookback options:
• European floating strike lookback put with a prefixed maximum;
• European fixed strike lookback put with a prefixed minimum;
• European floating strike lookback call with a prefixed minimum;
• European fixed strike lookback call with a prefixed maximum;

The method is implemented for two models:
• CGMY model (see Example 2.1);
• Kou model (see Example 2.2).

Note that in the program implemented into Premia 14 one can manage by two
parameters of the algorithm: the space step d and the scale of logprice range L.

Parameter L controls the size of the truncated region in x-space; it corresponds to
the region (−L ln(2)/d;L ln(2)/d). The typical values of the parameter are L = 1,
L = 2 and L = 4. To improve the results one should decrease d, when L is fixed.

A
MC FWHF&GS

Spot price Sample mean h = 0.01 h = 0.001 h = 0.0002 h = 0.0001
S = 81 1.05121 0.84865 1.02957 1.04854 1.05112
S = 90 6.16135 6.00966 6.15043 6.16031 6.16138
S = 100 9.27596 9.24288 9.28138 9.27738 9.27651
S = 110 10.9063 10.95320 10.91950 10.90330 10.90130
CPU-time
(sec) 100,000 0.008 0.078 0.39 0.78

B
MC FWHF&GS

Spot price MC error h = 0.01 h = 0.001 h = 0.0002 h = 0.0001
S = 81 0.4% -19.3% -2.1% -0.3% 0.0%
S = 90 0.1% -2.5% -0.2% 0.0% 0.0%
S = 100 0.1% -0.4% 0.1% 0.0% 0.0%
S = 110 0.1% 0.4% 0.1% 0.0% 0.0%
CPU-time
(sec) 100,000 0.008 0.078 0.39 0.78

KoBoL parameters: c = 4, λ+ = 50.0, λ− = −60.0, ν = 0.7, µ = 0.207142.
Option parameters: S – spot price, H = 80, T1 = 0.5, T2 = 1, r = 0.05, d = 0.02.
Algorithm parameters: h – space step, N = 14.
Panel A: Option prices
Panel B: Relative errors w.r.t. MC; MC errors indicate the ratio between the half-width of the
95% confidence interval and the sample mean.

We approximate q/(q + ψ(ξ)) by a periodic function Φ with a large period 2π/h,

which is the length of the truncated region in the frequency domain, then approximate
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the latter by a partial sum of the Fourier series, and, finally, use the factorization of

the latter instead of the exact one.

Explicit formulas for approximations of φ±
q have the following form. For small

positive h and large even M , set

bhk =
h

2π

∫ π/h

−π/h
ln Φ(ξ)e−iξkhdξ, k 6= 0,

b+
h,M(ξ) =

M/2
∑

k=1

bhk(exp(iξkh) − 1), b−
h,M(ξ) =

−1
∑

k=−M/2+1

bhk(exp(iξkh) − 1);

φ±
q (ξ) ≈ exp(b±

h,M(ξ)).

We can also apply this realization after the reduction to symbols of order 0 has

been made (see details in [42]). Numerical experiments show that there is no sufficient

difference between both realizations.

Approximants for EPV-operators can be efficiently computed using the Fast Fourier

Transform (FFT) for real-valued functions. Consider the algorithm of the discrete

Fourier transform (DFT) defined by

Gl = DFT [g](l) =
M−1
∑

k=0

gke
2πikl/M , l = 0, ...,M − 1.

The formula for the inverse DFT which recovers the set of gk’s exactly from Gl’s is:

gk = iDFT [G](k) =
1

M

M−1
∑

l=0

Gle
−2πikl/M , k = 0, ...,M − 1.

In our case, the data consist of a real-valued array {gk}
M
k=0. The resulting transform

satisfies GM−l = Ḡl. Since this complex-valued array has real values G0 and GM/2,

and M/2 − 1 other independent complex values G1, ..., GM/2−1, then it has the same

“degrees of freedom” as the original real data set. In this case, it is efficient to use

FFT algorithm for real-valued functions (see [57] for technical details). To distinguish

DFT of real functions we will use notation RDFT.

Fix the space step h > 0 and number of the space points M = 2m. Define the

partitions of the normalized log-price domain [−Mh
2

; Mh
2

) by points xk = −Mh
2

+

kh, k = 0, ...,M − 1, and the frequency domain [−π
h
; π
h
] by points ξl = 2πl

hM
, l =

−M/2, ...,M/2. Then the Fourier transform of a function g on the real line can be
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approximated as follows:

ĝ(ξl) ≈ heiπlRDFT [g](l), l = 0, ...,M/2.

Here and below, z denotes the complex conjugate of z, and .∗ is the element-wise

multiplication of arrays that represent the functions. Using the notation p(ξ) =

q(q + ψ(ξ))−1, we can approximate Eq:

(Eqg)(xk) ≈ iRDFT [p. ∗RDFT [g]](k), k = 0, ...,M − 1.

Next, we define

bhk = iRDFT [ln Φ](k), k = 0, ...,M − 1,

p±(ξl) = exp(b±
h,M(ξl)), l = −M/2, ..., 0.

The action of the EPV-operator E±
q is approximated as follows:

(E±
q g)(xk) = iRDFT [ p±. ∗RDFT [g]](k), k = 0, ...,M − 1.
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[12] Boyarchenko, S., and S. Levendorskǐi (1999) : “Generalizations of the Black-Scholes equation

for truncated Lévy processes". Working Paper, University of Pennsylvania, Philadelphia. 6
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[49] Levendorskĭi, S. (2011): “Convergence of Carr’s Randomization Approximation Near Barrier".

SIAM J. Finan. Math., 2, 79–111.

[50] Lipton, A. (2002) : “Assets with jumps”. Risk Mag., 15, 149–153. 3, 6

[51] Madan, D.B., Carr, P., and E. C. Chang (1998) : “The variance Gamma process and option

pricing”, European Finance Review, 2, 79–105. 6



24 OLEG KUDRYAVTSEV

[52] Madan, D.B., and M. Yor (2008) : Representing the CGMY and Meixner processes as time

changed Brownian motions. J. Comput. Finance 12(1), 27–47. 13

[53] Merton, R. (1976): “Option pricing when underlying stock returns are discontinuous”. J.

Financ. Econ. 3, 125–144 6

[54] Nguyen-Ngoc, L., and M. Yor (2007) : “Lookback and barrier options under general Lévy

processes” in Handbook of Financial Econometrics, Y. Aït-Sahalia and L.-P. Hansen, eds.,

North-Holland, Amsterdam. 2, 3, 9

[55] Petrella, G., Kou, S.G.(2004): “Numerical pricing of discrete barrier and lookback options via

Laplace transforms”. J. Comput. Finance, 8, 1–37. 3

[56] PREMIA: An Option Pricer Project CERMICS - INRIA. http://www.premia.fr 14

[57] Press,W., Flannery,B., Teukolsky, S. and W. Vetterling (1992) : Numerical recipes in C: The

Art of Scientific Computing, Cambridge : Cambridge Univ. Press, available at www.nr.com.

18

[58] Poirot, J. and P. Tankov (2006) : “Monte Carlo option pricing for tempered stable (CGMY)

processes”, Asia Pacific Financial Markets, 13(4), 327–344. 13

[59] L.C.G. Rogers and D. Williams, “Diffusions, Markov Processes, and Martingales. Volume 1.

Foundations”, 2nd ed. John Wiley & Sons, Ltd., Chichester, 1994. 7

[60] Sato, K. (1999) : Lévy processes and infinitely divisible distributions, Cambridge : Cambridge

University Press. 5

[61] Sepp, A. (2004) : “Analytical Pricing of Double-Barrier Options under a Double-Exponential

Jump Diffusion Process: Applications of Laplace Transform”. International Journal of Theo-

retical and Applied Finance, 7(2), 151–175. 3, 12

[62] Schoutens, W. (2006): “Exotic options under Lévy models: An overview”. J. Comput. Appl.

Math., 189, 526–538. 2



EFFICIENT PRICING LOOKBACK OPTIONS UNDER LÉVY PROCESSES 25

[63] Valko, P. P. and J. Abate (2004) : “Comparison of sequence accelerators for the Gaver method

of numerical Laplace transform inversion”. Computers and Math. with Applics., 48, 629–636.

15

[64] Zhang, T., Zhang, S., and D. Zhu (2009) : “Finite Difference Approximation for Pricing the

American Lookback Option”. J. Comp. Math., 27(4), 484–494. 2


	1. Introduction
	2. Lévy processes: basic facts
	2.1. General definitions
	2.2. The Wiener-Hopf factorization
	2.3. Calculation of value functions using Laplace transform

	3. Special cases and numerical method
	3.1. European floating strike lookback options
	3.2. European fixed strike lookback put
	3.3. Barrier-lookback options
	3.4. Partial barrier-lookback options
	3.5. Numerical method

	4. Numerical examples
	Appendix A. A numerical Laplace transform inversion: the Gaver-Stehfest algorithm
	Appendix B. The Fast Wiener-Hopf factorization method
	5. Implementation to the Premia 14
	References

