
Finite differences approximations for

multidimensional models of pricing

Maya Briani Roberto Natalini Marco Papi

Cristiano Paris

1 Introduction

In the following we shall describe finite difference approximations for some mul-
tidimensional models of pricing. More preciley, we shall consider the Heston
volatility model, a Two-factors stochastic volatility model, and a model for
pricing swaptions in an affine framework. For each model we shall recall some
financial backgrounds, we shall introduce the finite difference approximation
and the setup for numerical tests. Some tests will be also described.

Premia 18

2 The Heston volatility model

Heston [1] proposed a stochastic model for asset volatility after the so-called
smile effects was observed in the implied volatility of markets. Specifically, under
the Heston model, the volatility and the asset price behave like the following
SDE system:

dS = (r − δ)Sdt +
√

V SdW 1,

dV = κ(θ − V )dt + σ
√

V dW 2,

dW 1dW 2 = ρdt,

where r is the spot interest rate, δ is the dividend paid by the asset S, V is
the value of the spot volatility, θ is the long-run volatility, σ is the volatility of
volatility (vol-vol) and W 1, W 2 two stochastic processes correlated by ρ.

Under the Feynman-Kac representation, the spot price U of the vanilla op-
tion satisfies the following PDE,

1
2 V S2 ∂2U

∂S2 + ρσV S ∂2U
∂S∂V

+ 1
2 σ2V ∂2U

∂V 2 + (r − δ)S ∂U
∂S

+
+{κ(θ − V ) − Λ(S, V, t)σ

√
V } ∂U

∂V
− rU + ∂U

∂t
= 0.

(1)

In this equation the term Λ represents the market price of volatility risk.
For our implementation purposes, this term was removed from the model.

The PDE is usually given along with a proper payoff. In the case of vanilla
european call option we have,

1



?? pages 2

U(S, V ) = max [S − K, 0] , (2)

where K is the strike price. It should be noted that closed-form solutions
of problem (1) for vanilla-option payoff do exist, methods for integrating such
solutions can be found in [1, 2, 3]. Nevertheless, direct numerical integration of
(1) is important when dealing with non-trivial payoff functions.

2.1 Numerical setup

A finite-differences scheme has been implemented to solve (1). Specifically, the
following final-value problem with Dirichelet boundary conditions was consid-
ered,

{

∂U
∂t

+ LU − (r − δ)U = 0,

UB(S, V, t) = UB(S, V, t), (S, V ) ∈ ∂D,

where L is the differential operator of (1), ∂D is the boundary of the cube
D = [SL, SR]× [V L, V R] and UB is a function over that boundary. In particular,
the discounted payoff was used as the artificial boundary function,

U(S, V, t) = max
[

S(t) − Ke−r(T −t), 0
]

.

The intervals [SL, SR] and [V L, V R] were choosen wide enough so as to min-
imize the influence of the boundary conditions on the numerical solution. For
example if we want to compute the solution at point

{

S0, V 0
}

,

{

SL = max
{

S0 − αSS0, ε
}

, SR = SL + αSS0,

V L = max
{

V 0 − αV V 0, ε
}

, V R = V L + αV V 0.

where αS and αV are two constants and 0 < ε ≈ 10−6.
Since the final problem runs backward in time, a simple change of time

variable, τ = T − t, was performed to solve an equivalent forward-time problem.
Further, we operated the following change of the U variable to eliminate the

zero-order term,

Ũ(S, V, τ) = erτ U(S, V, T − τ)

The new Dirichelet problem then becomes,
{

∂Ũ
∂τ

= LŨ ,

Ũ(S, V, τ) = ŨB(S, V, τ), (S, V ) ∈ ∂D,

where Ũ(x, τ) = U(x, T − τ) and ŨB(x, τ) = UB(x, T − τ).
After these changes of variables, the PDE was discretized using centered

schemes for first and second order terms. For mixed derivatives we used the
following expansion suggested by Bouchut [4]:

∂2S

∂xi∂xj

≈ 1
2

1
∆xi∆xj

(

∆0
xi

∆0
xj

+ ∆+
xi

∆−

xi
∆+

xj
∆−

xj

)

Sn.



?? pages 3

As shown by Bouchut, not only does this expansion provide second-order
accuracy under Crank-Nicolson schemes, but also is monotone where the naive
expansion is not.

The above expansions for the space variables, were used in an explicit scheme
in time in order to smooth out the initial condition for the first 20 steps. After
that, a Crank-Nicolson scheme was implemented. To keep the scheme stable we
used a CFL condition for the first explicit steps as,

∆TEX ≈ min
{

∆x1V R(SR)2, ∆x2V Rσ2
}

,

and, for the following time steps, using Crank-Nicolson approximation,

∆TCN =
√

∆TEX.

Under this setup, at each time step, the finite-differences approximation
generate, both for the explicit and Crank-Nicolson part, the following linear
system:

Axn+1 + Bbn+1 = Cxn + Dbn,

where A and C are (N1 −1)(N2 −1)(N3 −1) generally non-symmetric banded
square matrices, B and D are [N1N2N3 − (N1 − 1)(N2 − 1)(N3 − 1)] × (N1 −
1)(N2 − 1)(N3 − 1) matrices. Vectors xn, xn+1 are the solution at time n and
n + 1 respectively, while vectors bn and bn+1 store the boundary conditions at
time n and n + 1 respectively. At time n, the xn, bn and bn+1 are all known,
with x0 coming from the problem’s initial value.

For the explicit part A ≡ I so the solution xn+1 can be directly calculated.
For the Crank-Nicolson part, the solution xn+1 is calculated using a standard
Stabilized BiConjugate Gradient (SBiCG) iterative algorithm with the Incom-
plete LU preconditioner. If the SBiCG algorithm doesn’t converge to a solution
with a specific accuracy after N steps, a Generalized Minimum Residuals (GM-
RES) algorithm is used.

2.2 Programming interface

The solver is implemented as a single function named fn_hes(). The function
accepts the following parameters:

• kappa. Reversion rate.

• sigma. Volatility of volatility.

• theta. Lont-term volatility.

• rho. Asset-volatility correlation.

• r. Interest rate.

• V0. Current volatility.

• S0. Current asset price.

• K. Strike price.

• T. Exercise time (in years).



?? pages 4

• opttype. Type of the option: 0 for European Call, 1 for European Put.

• d. Dividend rate.

• N1. Number of nodes along the asset price direction.

• N2. Number of nodes along the volatility direction.

• V. Pointer to a double that will contain the calculated option price.

• delta. Pointer to a double that will contain the calculated option price
derivative.

The function returns an integer: 0 on success and 1 on failure. Compile
the code with the DEBUG macro to get more info on errors.

2.3 Numerical Test

For the purpose of testing the implementation, we fixed the following parame-
ters:

• kappa=2.

• sigma=0.2.

• theta=0.01.

• rho=0.5.

• r=0.1.

• V0=0.01.

• K=100.

• T=1.

In the table the results for a European Call for different asset spot prices
on an Athlon AMD64 2.4Ghz and 2GB of RAM are shown: here N1 = 201 and
N2 = 51. The results are compared with those calculated from the evaluation
of the closed form formula as implemented in Premia:

S0 P ($) ∆ ($) time (s) PCF ($) ∆ ($)
90 3.020626 0.421302 3.919221 3.076410 0.422205
95 5.766727 0.689945 3.921054 5.792484 0.666280
100 9.829271 0.892125 4.261158 9.658327 0.863656
105 14.593351 0.971309 3.890816 14.253142 0.958117
110 19.533194 0.993057 4.361929 19.127745 0.988669



?? pages 5

3 Two-factors stochastic volatility model: a fi-

nite differences approach

Following [5], we consider a two-factor stochastic volatility model (St, Yt, Zt),
where St is the underlying price, and Yt and Zt are correlated diffusion pro-
cesses. Under the risk-neutral probability measure, the model is described by
the following equations:

dSt = rStdt + σtStdW S
t ,

σt = f(Yt, Zt),

dYt =
(

α(mf − Yt) − νf

√
2αłf (Yt, Zt)

)

dt

+νf

√
2α

(

ρ1dW S
t +

√

1 − ρ12dW Y
t

)

,

dZt =
(

δ(ms − Zt) − νs

√
2δłs(Yt, Zt)

)

dt

+νs

√
2δ

(

ρ2dW S
t + ρ12dW Y

t +
√

1 − ρ22 − ρ122dW Z
t

)

.

Here (W S
t , W Y

t , W Z
t ) are independent standard Brownian motions, and the

correlation coefficients ρ1, ρ2, and ρ12 satisfy −1 < ρ1 < 1, ρ22 + ρ122 < 1
respectively.

The parameter r > 0 is the constant risk-free interest rate. It is also the
rate of return of the stock St under the risk-neutral measure.
The risk-neutral probability is defined in terms of the market prices of volatility
risk łf and łs, which we assume to be bounded and independent of the stock
price St.
Moreover α > 0, δ > 0, νf > 0, νs > 0, and the volatility function f(y, z) is
smooth and bounded away from 0 (i.e. 0 < c1 ≤ f ≤ c2, everywhere).

3.1 Price of a European Option

Given the payoff of un European option H(S, y, z) of the stock price at maturity,
using the Markov property, the no-arbitrage price of the option is obtained as
the conditional expectation of the discounted payoff (given the current stock
price driving volatility levels):

P (x, y, z, t) = E
[

e−r(T −t)H(ST )|St = x, Yt = y, Zt = z
]

. (P)

3.2 Pricing of a European Option

By applying the Feynman-Kac formula to (P), the function P solves the three-
dimensional partial differential equation

∂P

∂t
+ LP − rP = 0, (3)

where P is the price of the option and

L ≡ αL0 +
√

αL1 + LBS +
√

δM1 + δM2 +
√

αδM3,

with,



?? pages 6

• L0 ≡ ν2
f

∂2

∂y2 + (mf − y) ∂
∂y

,

• L1 ≡ ν2
f

√
2

(

ρ1Sf(y, z) ∂2

∂S∂y
− Λf (y, z) ∂

∂y

)

,

• LBS ≡ 1
2 f2(y, z)S2 ∂2

∂S2 + (r − d)S ∂
∂S

,

• M1 ≡ ν2
s

√
2

(

ρ2Sf(y, z) ∂2

∂S∂z
− Λf (y, z) ∂

∂z

)

,

• M2 ≡ ν2
s

∂2

∂z2 + (ms − z) ∂
∂z

,

• M3 ≡ 2νf νs

(

ρ1ρ2 + ρ12

√

1 − ρ2
1

)

∂2

∂y∂z
,

and with the payoff function:

H(S, y, z) = max [S − K, 0] . (4)

In the following, we considered Λf and Λs as equal to zero.

3.3 Numerical setup

A finite-differences scheme has been implemented to solve (3). Specifically, the
following final-value problem with Dirichelet boundary conditions was consid-
ered,

{

∂P
∂t

+ LP − rP = 0,

P (S, y, z, t) = PB(S, y, z, t), (S, y, z) ∈ ∂D,

where L is the differential operator of equation (3), ∂D is the boundary of
the cube D = [SL, SR] × [yL, yR] × [zL, zR] and PB is a function defined over
that boundary. In particular, the following discounted payoff was used as the
artificial boundary function,

PB(S, y, z, t) = max
[

S(t) − Ke−r(T −t), 0
]

.

The intervals [SL, SR], [yL, yR] and [zL, zR], were choosen wide enough so as
to minimize the influence of the boundary conditions on the numerical solution.
For example if we want to compute the solution at point

{

S0, y0, z0
}

,











SL = max
{

S0 − αSS0, ε
}

, SR = SL + αSS0,

yL = max
{

y0 − αyy0, ε
}

, yR = yL + αyy0.

zL = max
{

z0 − αzz0, ε
}

, zR = zL + αzz0.

where αS , αy and αz are two constants and 0 < ε ≈ 10−6.
Since the final problem runs backward in time, a simple change of time

variable, τ = T − t, was performed to solve an equivalent forward-time problem.
Further, we operated the following change of the P variable to eliminate the

zero-order term,

P̃ (S, y, z, τ) = erτ P (S, y, z, T − τ)

The new Dirichelet problem then becomes



?? pages 7

{

∂P̃
∂τ

= LP̃ ,

P̃ (S, y, z, τ) = P̃ (S, y, z, τ), (S, y, z) ∈ ∂D

where P̃ (S, y, z, τ) = S(S, y, z, T − τ) and S̃B(S, y, z, τ) = SB(S, y, z, T − τ).
After these changes of variables, the PDE was discretized using centered

expansions for the first and second order terms. For mixed derivatives we used
the following expansion suggested by Bouchut [4],

∂2S

∂xi∂xj

≈ 1
2

1
∆xi∆xj

(

∆0
xi

∆0
xj

+ ∆+
xi

∆−

xi
∆+

xj
∆−

xj

)

Sn

As shown by Bouchut, not only does this expansion provide second-order ac-
curacy under Crank-Nicolson schemes, but also is monotone where the naive
expansion is not.

The above expansions for the space variables, were used in an explicit scheme
in time in order to smooth out the initial condition for the first 20 steps. After
that, a Crank-Nicolson scheme was implemented. To keep the scheme stable we
used a CFL condition for the first explicit steps as,

∆TEX ≈ min
{

∆x1
1
2

f2(yR, zR)SR, ∆x2ν2
f , ∆x3ν2

s

}

under the assumption that f is increasing in its arguments. For the next
Crank-Nicolson steps, we fix

∆TCN =
√

∆TEX

Under this setup, at each time step, the finite-differences approximation
generate, both for the explicit and Crank-Nicolson part, the following linear
system:

Axn+1 + Bbn+1 = Cxn + Dbn,

where A and C are (N1 −1)(N2 −1)(N3 −1) generally non-symmetric banded
square matrices, B and D are [N1N2N3 − (N1 − 1)(N2 − 1)(N3 − 1)] × (N1 −
1)(N2 − 1)(N3 − 1) matrices. Vectors xn, xn+1 are the solution at time n and
n + 1 respectively, while vectors bn and bn+1 store the boundary conditions at
time n and n + 1 respectively. At time n, the xn, bn and bn+1 are all known,
with x0 coming from the problem’s initial value.

For the explicit part A ≡ I so the solution xn+1 can be directly calculated.
For the Crank-Nicolson part, the solution xn+1 is calculated using a standard
Stabilized BiConjugate Gradient (SBiCG) iterative algorithm with the Incom-
plete LU preconditioner. If the SBiCG algorithm doesn’t converge to a solution
with a specific accuracy after N steps, a Generalized Minimum Residuals (GM-
RES) algorithm is used.

3.4 Programming interface

The solver is implemented as a single function named fn_stochvol2f(). The
function accepts the following parameters:

• r. Interest rate.



?? pages 8

• m_f. Long-term fast-reverting process value.

• m_s. Long-term slow-reverting process value.

• nu_s. Volatility of the fast-reverting process value.

• nu_f. Volatility of the slow-reverting process value.

• rho1,rho2,rho12. Factor-asset correlations and factor-factor correlation.

• alpha. Fast reversion rate.

• delta. Slow reversion rate.

• x0. Current volatility.

• y0. Current fast-reverting process value.

• z0. Current slow-reverting process value.

• K. Strike price.

• T. Exercise time.

• opttype. Type of the option: 0 for European Call, 1 for European Put.

• d. Dividend rate.

• N1. Number of nodes along the asset price direction.

• N2. Number of nodes along the fast-reverting volatility direction.

• N3. Number of nodes along the slow-reverting volatility direction.

• V. Pointer to a double that will contain the calculated option price.

• delta. Pointer to a double that will contain the calculated option price
derivative.

The function returns an integer: 0 on success and 1 on failure. Compile
the code with the DEBUG macro to get more info on errors.

3.5 Results

For the purpose of testing the implementation, we fixed the following parame-
ters:

• r=0.1.

• mu_f=-0.8.

• mu_s=-0.8.

• nu_f=0.5.

• nu_s=0.8.

• rho1=-0.2.



?? pages 9

• rho2=-0.2.

• rho12=-0.0.

• K=50.

• T=1.

• x0=55.

• y0=-1.0.

• z0=-1.0.

• d=0.0.

In the table the results for a European Call for different values of δ and α on
an Athlon AMD64 2.4Ghz and 2GB of RAM are shown: here N1 = 51, N2 = 51
amd N3 = 51. The results are compared with those found in the reference
article [5]:

δ α P ($) time (s) Pref ($)
100 0.01 9.758370 391.691974 11.03
50 0.05 9.761846 321.589108 10.99
20 0.1 9.809959 198.568684 11.00
5 1.0 10.077694 153.125092 11.60

4 Pricing of an option over a Bond in a Gaussian

model with three factors.

An interest rate swaption is an option on an interest rate swap. It gives the
holder the right but not the obligation to enter into an interest rate swap at
a specific date (T0 below) in the future, at a particular fixed rate and for a
specified term. For an up-front fee (premium), the customer selects the strike
rate (the level at which it enters the interest rate swap agreement), the length
of the option period, the floating rate index (Prime, LIBOR), and tenor. Here
we study and implement the model proposed in [6], see also [7].

4.1 The short rate model

The instantaneous short rate is defined as a linear combination of 3 factors,
r(t) = δ+

∑3
j=1 xj(t), described by Markov processes xj(t), j = 1, 2, 3, following

a Gaussian model:

dxj(t) = −kjxj(t)dt + σjdWj(t), j = 1, 2, 3,

where:

• δ, kj , σj , are constants for all the factors.

• Wj(t), j = 1, 2, 3 are three Brownian motions (under the risk-neutral mea-
sure) which are dependent with each other, with instantaneous correlation
coefficients ρij , for i, j = 1, 2, 3.



?? pages 10

4.2 The bond price

Let P (x(t), t; T ) denote the bond price on date t for an euro on date T > t.
Then we will get:

P (x(t), t; T ) = IEt

[

e
−

∫

T

t
r(s)ds

]

where IEt denotes the conditional expectation at time t under the risk-neutral
measure.

For the 3-factor Guassian model described above, we have the following
closed-form expression:

P (x(t), t; T ) = exp



B0(T − t) −
3

∑

j=1

Bj(T − t)xj(t)



 ,

where the deterministic functions B0 and Bj satisfy a system of ordinary
differential (Riccati) equations. In the case of the Gaussian model, there are
explicit expressions for these functions. For all k > 0 and s > 0, define:

ϕ(s; k) ≡ 1 − e−ks

k
.

Then, we have:

Bj(s) = ϕ(s; kj),

B0(s) = −δs +
1
2

∑

i,j=1

3
σjσiρij

kikj

[s − ϕ(s; ki) − ϕ(s; kj) + ϕ(s; kj + ki)] .

4.3 The swaption

Define the following quantities:

• T0 denotes the exercise date of the swaption.

• {T1, . . . , TN } denote the dates the coupon payments are made on, with
Ti > T0, for any i = 1, . . . , N .

• {C1, . . . , CN } denote the payments at dates Ti, i = 1, . . . , N .

• CB(T0) denotes the price of the underlying coupon bond at the date T0,
and we have:

CB(T0) =
N

∑

i=1

CiP (x(T0), T0; Ti).

• K is the strike price of the swaption.

• Swn(x(T0), T0) denotes the price of a swaption which is defined as:

Swn(x(T0), T0) = IE
[

e
−

∫

T0

t
r(s)ds max (CB(T0) − K, 0)

]

.



?? pages 11

4.4 The PDE approach

The application of the Feynman-Kac formula gives a three-dimensional partial
differential equation for the swaption price S:

∂S

∂t
−

3
∑

j=1

xjkj

∂S

∂xj

+
1
2

3
∑

i,j=1

ρijσiσj

∂2S

∂xi∂xj

=



δ +
3

∑

j=1

xj



 S (5)

where x = (x1, x2, x3) ∈ R
3. The payoff function is given by:

SB(x, T0) = max (CB(T0) − K, 0) (6)

4.5 Numerical setup

A finite-differences scheme has been implemented to solve eq. 5. Specifically,
the following final-value problem with Dirichelet boundary conditions was con-
sidered:

{

∂S
∂t

+ LS =
(

δ +
∑3

j=1 xj

)

S

S(t, x) = SB(t, x) x ∈ ∂D

where L ≡ − ∑3
j=1 xjkj

∂
∂xj

+ 1
2

∑3
i,j=1 ρijσiσj

∂2

∂xi∂xj
, ∂D is the boundary of the

cube D = [xL
1 , xR

1 ]× [xL
2 , xR

2 ]× [xL
3 , xR

3 ] and SB is a function over that boundary.
In particular the discounted payoff was used as the artificial boundary function:

S(x, t) = max (CB(t) − KP (x, t; T0), 0)

The intervals [xL
j , xR

j ] were choosen wide enough so as to minimize the in-
fluence of the boundary conditions on the numerical solution:

{

xL
j = x0

j − 8
∣

∣x0
j

∣

∣

xR
j = x0

j + 8
∣

∣x0
j

∣

∣

where x0
j is the final condition of the j-th factor.

Moreover, a simple change of time variable was performed to solve an equiv-
alent forward-time problem:

τ = T − t

The new Dirichelet problem becomes:
{

− ∂S̃
∂τ

+ LS̃ =
(

δ +
∑3

j=1 xj

)

S̃

S̃(τ, x) = S̃B(τ, x) x ∈ ∂D

where S̃(x, τ) = S(x, T − τ) and S̃B(x, τ) = SB(x, T − τ).
After this change of variable, the PDE was discretized using centered schemes

for first and second order terms. For mixed derivatives we used the following
expansion suggested by Bouchut [4]:

∂2S

∂xi∂xj

→ 1
2

1
∆xi∆xj

(

∆0
xi

∆0
xj

+ ∆+
xi

∆−

xi
∆+

xj
∆−

xj

)

Sn



?? pages 12

As shown by Bouchut, not only does this expansion provide second-order
accuracy under Crank-Nicolson schemes, but also is monotone where the naive
expansion is not.

The above expansions were used in an explicit scheme in order to smooth out
the final condition for the first 20 steps. After that, a Crank-Nicolson scheme
was implemented. With the aim of keeping the scheme stable we used a CFL
condition for the explicit part of the scheme as:

∆TEX ≈ min
j

{

1
2

∆xjσ2
j

}

and the following time step during the Crank-Nicolson part:

∆TCN =
√

∆TEX

Under this setup, the finite-differences expansions generate, both for the
explicit and Crank-Nicolson part, the following linear system:

Axn+1 + Bbn+1 = Cxb + Dbn

where A and C are (N1 −1)(N2 −1)(N3 −1) generally non-symmetric banded
square matrices, B and D are [N1N2N3 − (N1 − 1)(N2 − 1)(N3 − 1)]×(N1 −
1)(N2 − 1)(N3 − 1) matrices, all set up after the numerical scheme has been
applied. xi, bi are vectors representing, for time n and n + 1, the solution and
the boundary conditions at a specific time. At time n, the xn, bn and bn+1 are
all known, with x0 coming from the problem’s final value.

For the explicit part A ≡ I so the solution xn+1 can be directly calculated.
For the Crank-Nicolson part, the solution xn+1 is calculated using a standard
Stabilized BiConjugate Gradient (SBiCG) iterative algorithm with the Incom-
plete LU preconditioner. If the SBiCG algorithm doesn’t converge to a solution
with a specific accuracy after N steps, a Generalized Minimum Residuals (GM-
RES) algorithm is used.

4.6 Programming interface

The solver is implemented as a single function named fn_affineswaption. The
function accepts the following parameters:

• rho12, rho13, rho23 Correlations between the factor processes.

• kappa[] Vector of doubles, each for every reversion rate.

• x0[]. Vector of doubles, each for every initial factor value.

• sigma[]. Vector of doubles, each for every factor process volatility.

• delta. Intial interest rate displacement.

• toption. Exercise time (in years).

• tenor. Interval (in years) between payments.

• tswap. Last payment time (in years).

• C. Coupon payment amount.



?? pages 13

• K Strike price.

• N1. Number of nodes along the x1 factor.

• N2. Number of nodes along the x2 factor.

• N3. Number of nodes along the x3 factor.

• V. Pointer to a double that will contain the calculated option price.

• delta. Pointer to a double that will contain the calculated option price
derivative.

The function returns an integer: 0 on success and 1 on failure. Compile
the code with the DEBUG macro to get more info on errors.

4.7 Numerical Test

For the purpose of testing the implementation, we fixed the following parame-
ters:

• rho12 = -0.2;

• rho13 = -0.1;

• rho23 = 0.3;

• kappa[0] = 1.0;

• kappa[1] = 0.2;

• kappa[2] = 0.5;

• sigma[0] = 0.01;

• sigma[1] = 0.005;

• sigma[2] = 0.002;

• delta = 0.06;

• x0[0] = 0.01;

• x0[1] = 0.005;

• x0[2] = -0.02;

• toption = 0.5;

• tenor = 0.25;

• tswap = 5.75;

• C=0.085;



?? pages 14

In the table the results for a bond price for different strike prices on an
Athlon AMD64 2.4Ghz and 2GB of RAM are shown: here N1 = N2 = N3 = 31.
The results are compared with those calculated from a Monte Carlo simulation:

K P PMC

0.5 0.993890 0.9495
0.75 0.750913 0.6979
1 0.507935 0.4471
1.15 0.362149 0.29661
1.25 0.264958 0.1961

References

[1] S.L. Heston, A closed-form solution for options with stochastic volatility
with applications to bond and currency options, Review of Financial Stud-
ies Volume 6, Number 2 (1993), 327-343. 1, 2

[2] Heston, S. and S. Nandi (1997): A Closed Form GARCH Option Pricing
Model, Federal Reserve Bank of Atlanta Working Paper 97-9, 1âĂŞ34. 2

[3] S Mikhailov, U. Nögel. Heston’s stochastic volatility model. Implementa-
tion, calibration and some extensions, Wilmott magazine, July, 2003. 2

[4] F. Bouchut, H. Frid, Finite difference schemes with cross derivatives cor-
rectors for multidimensional parabolic systems. J. Hyperbolic Differ. Equ.
3 (2006), no. 1, 27–52. 2, 7, 11

[5] Fouque, Jean-Pierre; Han, Chuan-Hsiang. Variance reduction for Monte
Carlo methods to evaluate option prices under multi-factor stochastic
volatility models. Quant. Finance 4 (2004), no. 5, 597–606. 5, 9

[6] X. Wang, Pricing Swaptions within the Affine Framework, working paper
(Fall 2005). 9

[7] P Collin-Dufresne, RS Goldstein, Pricing Swaptions within the Affine
Framework, Journal of Derivatives, Fall 2002. 9


	Introduction
	The Heston volatility model
	Numerical setup
	Programming interface
	Numerical Test

	Two-factors stochastic volatility model: a finite differences approach
	Price of a European Option
	Pricing of a European Option
	Numerical setup
	Programming interface
	Results

	Pricing of an option over a Bond in a Gaussian model with three factors. 
	The short rate model
	The bond price
	The swaption
	The PDE approach
	Numerical setup
	Programming interface
	Numerical Test


