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| Model_Option | Help on mc methods | Archived Tests

mc_fixedasian_robbinsmoro

Input parameters

• Number of iterations N

• Generator type

• Increment inc

• Confidence Value

Output parameters

• Price P

• Error price σP

• Delta δ

• Error delta σdelta

• Price Confidence Interval: ICp [Inf Price,Sup Price]

• Delta Confidence Interval: ICp [Inf Delta,Sup Delta]

Description
Computation of the price of a asian option when the underlying asset follows
the Black and Scholes model.
/*The model*/
Under the standard Black and Scholes assumptions the price of the underly-
ing asset is driven by the SDE

dSt = St((r − q)dt+ σdWt), ST0
= x, (1)
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with r the risk-free, continuously compounded interest rate, σ(t, y) the asset
volatility, W a Brownian motion, and x fixed.
The solution to this equation can be simulated without dicretization error
on a discrete grid of points T0 < T1 < · · · < Tm = T , by setting

STi
= STi−1

exp((r − 1
2
σ2)δt+ σ

√
δtZi), i = 1, . . . ,m,

where Z = (Z1, . . . , Zm) ∼ N (0, Im) and Im is the identity matrix of Rm.
/*The option real and approximate prices*/
For arbitrage reasons, the price of an option with payoff ψ(St, t ≤ T ) is given
by

V0 = E[e−r(T −T0)ψ(St, t ≤ T )].

For a call option we have ψ(St, t ≤ T ) =

(

1
T −T0

∫ T
T0
Stdt − K

)+

. which we

rewrite

G(Z) = e−r(T −T0)

(

Â(T0, T, Z) −K

)+

,

where Z is a random gaussian vector, Â(T0, T, Z) is the dicretized mean
and G is a function we can compute by using the dicretization of the mean
A(T0, T ) = 1

T −T0

∫ T
T0
Stdt and the payoff function. Thus the approximate price

of the option is given by
V̂0 = E[G(Z)].

Importance sampling

We change the law of Z = (Z1, . . . , Zm) by adding a drift vector µ =
(µ1, . . . , µm). An elementary version of Girsanov theorem leads to the follow-
ing representation of V̂0:

V̂0 = E[g(µ, Z)],

with
g(µ, Z) = G(Z + µ)e−µ·Z− 1

2
‖µ‖2

, (2)

where ‖x‖ denotes the Euclidean norm of a vector x ∈ R
m and x · y is the

inner product of two vectors x, y ∈ R
m. In (2) the optimal µ solves the

problem
min

µ
E[G(Z)2e−µ·Z+ 1

2
‖µ‖2

].

Note that even if the optimal µ can be found, it will not in general provide
a zero-variance estimator. In practice, finding the optimal µ exactly is in-
feasible and some approximation is required. Here the basic idea is to use a
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Robbins-Monro algorithm to assess the optimal sampling direction µ∗ that
minimizes the variance of g(µ, Z), for µ ∈ R

m or equivalently

H(µ) = E[g2(µ, Z)]. (3)

RM algorithms and variance reduction
See [1] =======================.
/*The MC price computation*/
If (Zn)1≤n≤N is an i.i.d. sample from the gaussian law N (0, Im) then the MC
price of the option is given by

V̂0 ∼ 1

N

N
∑

n=1

G(Zn + µ∗)e−µ∗·Zn− 1

2
‖µ∗‖2

.
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