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1 The model

The optimal execution model presented here is described in detail in [1].

We consider a single asset and denote by Pt its price at time t. We assume

Pt = St
︸︷︷︸

fundamental price

+ Dt
︸︷︷︸

.

mesoscopic price deviation

Typically, these quantities are related to the permanent and the transient impact of the market orders,
respectively:

dSt =
ν

q
dNt
︸︷︷︸

market orders

dDt = −ρ Dt dt
︸ ︷︷ ︸

market resilience

+
1 − ν

q
dNt
︸︷︷︸

,

market orders

with ν ∈ [0, 1] the proportion of permanent impact, ρ > 0 the resilience speed of the price. The measure of
liquidity q > 0 corresponds to the quantity of shares that one should trade to shift the price of one unity (for
instance, of one euro if Pt is the price of a European stock), if the order book were block-shaped.

We introduce the MIH (Mixed-market-Impact Hawkes) model for the process N :

Nt = N+
t − N−

t ,

where the process (N+, N−) is a symmetric two-dimensional Hawkes process of intensity (κ+, κ−), with
unpredictable jumps of average size m1 > 0. We place ourselves in the Markovian settings

dκ+
t = −β (κ+

t − κ∞) dt + ιs dJ+
t + ιc dJ−

t ,

dκ−
t = −β (κ−

t − κ∞) dt + ιc dJ+
t + ιs dJ−

t . (1)

where β > 0 is the reversion speed of the intensity, ιs, ιc > 0 are the self-excitation and cross-excitation
parameters, respectively, κ∞ > 0 is the baseline intensity and J± count the jumps of N±.

Within this model, we consider a liquidating trader who has a position Xt in the considered asset at time t.
The initial position X0 = x0 is known and should be liquidated at time T > 0, thus XT + = 0 is imposed.
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The liquidating trader impacts the price similarly to other traders, with a proportion ǫ ∈ [0, 1] of permanent
impact:

dSt =
1

q
(νdNt + ǫdXt) ,

dDt = −ρ Dt dt +
1

q
((1 − ν)dNt + (1 − ǫ)dXt) . (2)

but does not impact the intensities κ±. We make the assumption of a block-shaped Limit Order Book: when
the liquidating trader places at time t an order of size v ∈ R (v > 0 for a buy order and v < 0 for a sell
order), it has the cost

πt(v) =

∫ v

0

[

Pt +
1

q
y

]

dy = Pt v
︸︷︷︸

cost at the current price

+
v2

2q
︸︷︷︸

impact cost

. (3)

Therefore, the cost of the whole strategy X is given by

C(X) =

∫

[0,T )

Pu dXu +
1

2q

∑

τ∈DX ∩[0,T )

(∆Xτ )2 − PT XT +
1

2q
X2

T

=

∫

[0,T )

Pu dXc
u +

∑

τ∈DX ∩[0,T )

Pτ (∆Xτ ) +
1

2q

∑

τ∈DX ∩[0,T )

(∆Xτ )2 − PT XT +
1

2q
X2

T ,

since at time T all the remaining assets have to be liquidated. Here, the sum brings on the countable times
of discontinuity DX of X, and the jumps ∆Xτ = Xτ+ − Xτ 6= 0 for τ ∈ DX .

The optimal strategy for this model is obtained as a closed formula in [1]. We introduce the processes

δt = κ+
t − κ−

t , Σt = κ+
t + κ−

t , (4)

along with the useful quantities
α = ιs − ιc, η = β − α,

and the two continuously differentiable functions ζ, ω : R → R
+ defined by

ζ(0) = 1 and ∀y 6= 0, ζ(y) =
1 − exp(−y)

y
,

ζ ′(0) = −1/2 and ∀y 6= 0, ζ ′(y) =
(1 + y) exp(−y) − 1

y2
=

exp(−y) − ζ(y)

y
,

ω(0) = 1/2 and ∀y 6= 0, ω(y) =
exp(−y) − 1 + y

y2
=

1 − ζ(y)

y
,

ω′(0) = −1/6 and ∀y 6= 0, ω′(y) =
2(1 − exp(−y)) − y(1 + exp(−y))

y3
=

2ζ(y) − 1 − exp(−y)

y2
.

The optimal strategy X∗ is characterized by

(1 − ǫ)X∗
t = − [1 + ρ(T − t)] D∗

t +
m1

2ρ
× [2 + ρ(T − t) × {1 + ζ(η(T − t)) + νρ(T − t) ω(η(T − t))}] δt (5)

for t ∈ [0, T ), and
X∗

T + − X∗
T = −X∗

T ,
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so that X∗
T + = 0. The expected cost of this strategy has the form

q × C(T, x0, D0, S0, δ0, Σ0) = −q(S0 + D0)x0 +

[
1 − ǫ

2 + ρT
+

ǫ

2

]

x2
0 +

ρT

2 + ρT

[

qd − Gη(T )
δ0m1

ρ

]

x0

−
1

1 − ǫ
×

ρT/2

2 + ρT

[

qd − Gη(T )
δ0m1

ρ

]2

+ ĉη(T )

(
δ0m1

ρ

)2

+ e(T ) Σ0 + g(T ). (6)

where for u ∈ [0, T ],

Gη(u) = ζ(ηu) + νρu ω(ηu),

ĉη(u) =
1

1 − ǫ
× (η − νρ)2 ρu3

8
ω′(ηu)ζ(ηu).

The functions e and g are uniquely determined but have cumbersome expressions in general. However, in
the case ιc = 0, β = α = ιs, one has the simpler formulas

e(u) = −
(1 − ν)2

1 − ǫ
×

(

m2 −
βm2

1(2ρ − β)

ρ2

)

×

[
u

2
−

1

ρ
ln

(

1 +
ρu

2

)]

+
βν(1 − ν)m2

1

4ρ2(1 − ǫ)
×

(

1 −
β

ρ

)

× ρ2u2 −
β2ν2m2

1

8ρ3(1 − ǫ)
×

[

ρ2u2 +
1

3
ρ3u3 +

1

24
ρ4u4

]

,

g(u) = −2βκ∞ ×
(1 − ν)2

1 − ǫ
×

(

m2 −
βm2

1(2ρ − β)

ρ2

) {(

u +
2

ρ

) [
u

2
−

1

ρ
ln

(

1 +
ρu

2

)]

−
u2

4

}

+
β2κ∞ν(1 − ν)m2

1

6ρ3(1 − ǫ)
×

(

1 −
β

ρ

)

× ρ3u3 −
β3κ∞ν2m2

1

12ρ4(1 − ǫ)
×

[

ρ3u3 +
1

4
ρ4u4 +

1

40
ρ5u5

]

.

2 Closed-formula cost

The “Closed-formula cost” functionality implemented in Premia takes the parameters of the model as input
and returns

• The evaluation of formula (6) if the condition ιc = 0, β = α = ιs is satisfied.

• Zero as a default value otherwise.

3 Monte Carlo cost

The “Monte Carlo cost” functionality needs two additional input values: the number of simulations n ≥ 1
and the discretization step h > 0. It computes the cost of the optimal strategy averaged over all simulations,
along with a confidence interval.

For each simulation, we first determine a realization of the bi-dimensional Hawkes process (N+, N−) on [0, T ]
using equation (1). We resort to the thinning method described by the following algorithm:

• Initialize t = 0, κ+ = κ+
0 , κ− = κ−

0 , Σ = κ+
0 + κ−

0 .
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• While t < T ,

1. Simulate an exponential variable τ of rate Σ.

2. Set t = t + τ and κ± = κ∞ + (κ± − κ∞) exp(−βτ).

3. Simulate a uniform variable U on [0, 1].

4. If U ≤ κ+/Σ and t ≤ T , record t as a jump time of N+ and set κ+ = κ+ + ιs, κ− = κ− + ιc.

5. If κ+/Σ < U ≤ (κ+ +κ−)/Σ and t ≤ T , record t as a jump time of N− and set κ+ = κ+ +ιc, κ− =
κ− + ιs.

6. Set Σ = κ+ + κ−.

Then, we choose a positive probability law µ of expected value m1 for the amplitudes of the jumps. It should
be easy to simulate (for instance, an exponential or a log-normal law are suitable). For each jump time of
N+ and each jump time of N−, we simulate a variable of law µ independently of the rest and record it as
the amplitude of the corresponding jump.

Once the trajectory of (N+, N−) is simulated, we determine the corresponding discretized optimal strategy.
The discretization grid (ti)i≥0 is built incrementally to have steps smaller than h and to include t = 0, t = T
and all the jumps of (N+, N−):

• Set t0 = 0 and i = 0.

• While ti < T − h,

1. Define θ as the smallest jump time of (N+, N−) greater than ti.

2. If θ < ti + h, set ti+1 = θ. Else, set ti+1 = ti + h.

3. Set i = i + 1.

• Set ti+1 = T and i = i + 1.

For each discretization time tj (except the last one), we compute Dtj
and δtj

using equations (1), (2) and
(4), then we deduce the optimal order from equation (5)

∆X∗
tj

= −
x0

2 + ρ(T − tj)

+
1

1 − ǫ
×

2 + ρ(T − tj)[1 + ζ(η(T − tj)) + νρ(T − tj)ω(η(T − tj))]

2 + ρ(T − tj)
×

δtj
m1

2ρ

−
1

1 − ǫ
×

1 + ρ(T − tj)

2 + ρ(T − tj)
× Dtj

.

At time T , one has ∆X∗
T = −X∗

T . The cost of each order is given by equation (3), and we sum these costs
to obtain the total cost of the strategy for the current simulation.
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