
4 pages 1

Source | Model | Option

| Model_Option | Help on mc methods | Archived Tests

mc_outbaldi

This algorithm is taken from [1] and allows to numerically compute the price
and the delta of double Knock-Out Barrier Options with a Monte Carlo
method. The issue, as it is discussed in there, is to provide a good ap-
proximation of the first time τ at which the price of the underlying stock
reaches the barriers. If such a time is observed to be less or equal to the
maturity, the option is nullified, being equal to a pre-specified rebate, and is
activated otherwise. One could numerically determine the first time at which
the stock price is observed to cross the barriers by a crude simulation, i.e.
through k∗

· h, where h stands for the time step increment and k∗ denotes
the first step the underlying asset price has been outside the boundary (here,
it is supposed that 0 is the starting time). Numerical tests show that this
method does not perform well because the stock price is checked at dicrete
instants through simulations and the barriers might have been hit without
being detected, giving rice to an over-estimation of the exit time and thus to
a non trivial error for the estimate of the option price.

The algorithm (there) from [1] allows to improve the performance of the
crude Monte Carlo method, by giving a careful estimation of τ as follows.
When the stock price is observed to stay inside the boundary either at step k−

1 and k, an accurate approximation ph

k
of the probability that the underlying

asset price crosses a barrier during the time interval ((k−1)h, kh) is computed
and a bernoulli r.v. with parameter ph

k
is generated: if it is observed to be

equal to 1, then the process is supposed to have gone out, so that the exit
time can be approximated by kh, otherwise the (k + 1)th step is considered,
unless k = N , i.e. the maturity has been reached.

/*Initialisation*/
The variables giving the price, the delta and the corresponding variances
are initialised. The coefficients rloc, sigmaloc and sigmat are used in

order to generate the the underlying asset prices starting at s and s + ε, at
the discretisation times.

4 pages 2

/*Coefficient for the computation of the exit probability*/
The constant rap is used to compute the local probability of exit from the

barriers.

/*MC sampling*/
In this cicle, at step i the paths ln S(i)(s) and ln S(i)(s + ε), starting at s

and s + ε, are simulated. Thus, it starts by initialising the variable
timegiving the current value of the discretization time. Since the paths
really simulated are given by the logarithm of the underlying asset price

starting at s and s + ε, their current values are set in the variables lnspot

and lnspot_increment. Notice that the process starting at ln(s + ε) is
equal to the process starting at ln s added by ln(1 + ε/s), which is a

constant denoted as increment.

/*Up and Down barrier at time */
Since the paths really simulated are given by the logarithm of the

underlying asset price, the considered barriers are set in the variables up

and low as the the logarithm of the starting upper and lower barrier
respectively.

/*Inside = 0 if the path reaches the barrier*/
inside and inside_increment are boolean variables initialised to 1,

switching to 0 when the corresponding path is observed to exit from the
barriers.

/*Simulation of the i-th path until its exit if it does*/
In this cicle, the processes are both simulated at the discretisation times

kh, whose current name is time, until k = N or the corresponding value of
the flag is changed, i.e. until inside= 0 or inside_increment= 0. The

value of the old and new simulated points and of the barriers are put in the
variables lastlnspot, lnspot, lastlnspot_increment,

lnspot_increment, lastup, up, lastlow, low respectively .

/*Check if the i-th path has reached the barriers at time*/
If the paths starting at s and s + ε have not yet reached the boundary, i.e.
the corresponding value of inside and inside_increment are equal to 0,

lnspot and lnspot_increment are compared with the barriers: if the path
is outside the barriers, the corresponding value of inside and

inside_increment is set equal to 0 and the exit times turns out to be
equal to time. Moreover, in such a case the price of the samples,

price_sample and price_sample_increment, are set equal to rebate,
discounded by \exp(-r*time).

4 pages 3

/*Check if the i-th path has reached the barriers during (time-1, time)*/
If “((inside)&&(inside_increment))" is true, no path has reached the

boundary. In such a case, the local exit probabilities proba and
proba_increment are computed by means of proba_barrierout and a

uniform r.v. uniform is generated: if (uniform<proba) and/or
(uniform<proba_increment) then (the path has gone out, so that) inside

and/or inside_increment becomes equal to 0 and price_sample and/or
price_sample_increment are set equal to rebate, discounded by

\exp(-r*time).
If “((inside)&&(!inside_increment))" is true, the path starting at s has
not reached the boundary whereas the path starting at s + ε had. Thus, the

local exit probability proba is computed by means of proba_barrierout

and a uniform r.v. uniform is generated: if (uniform<proba) then (the
path has gone out, so that) inside becomes equal to 0 and price_sample

set equal to rebate, discounded by \exp(-r*time).
If “((!inside)&&(inside_increment))" is true, the path starting at s has
reached the boundary whereas the path starting at s + ε had not. Thus, the

local exit probability proba_increment is computed by means of
proba_barrierout and a uniform r.v. uniform is generated: if

(uniform<proba_increment) then (the path has gone out, so that)
inside_increment becomes equal to 0 and price_sample_increment set

equal to rebate, discounded by \exp(-r*time).
At the end of the while-cicle, if inside and/or inside_increment are not

changed, then the path has not reached the boundary: the option is
activated and price_sample and/or price_sample_increment can be

computed as usual.

/*Delta*/
The delta of the sample is computed (recall that increment= ln(1 + ε/s) so

that ε ∼ increment*s:that is why the variation of the price sample is
divided by increment*s).

/*Sum*/
The partial sums of the observed price_sample and delta_sample are

computed.

/*Sum of Squares*/
The partial sums of the squares of the observed price_sample and

delta_sample are computed and will be used to evaluate the empirical
variances.

4 pages 4

/*Price*/
The price is numerically computed by averaging over the M observed
price_sample. The variable pterror_price is such that the interval

(ptprice− pterror_price, ptprice+ pterror_price) represents the 95%
confidence interval for ptprice.

/*Delta*/
The delta is computed according to the case of a put or call option. The

variable pterror_delta is such that the interval (ptdelta−

pterror_delta, ptdelta+ pterror_delta) represents the 95% confidence
interval for ptdelta.

References

[1] P.BALDI L.CARAMELLINO M.G.IOVINO. Pricing general barrier op-
tions: a numerical approach using sharp large deviations. To appear in
Mathematical Finance (1999), 1999. 1

