
Monte–Carlo methods for Pricing American Style

Options.

Pierre Cohort.

Premia 17

Contents

1 Introduction. 2

2 The market model. 3

3 Pricing of Bermudean style options. 4

4 Pricing algorithms. 4

4.1 The Longstaff–Schwartz algorithm. 4
4.1.1 Basic principle. 4
4.1.2 Forward price. 5
4.1.3 Backward simulation. 6
4.1.4 Practical design. 7
4.1.5 Some other versions. 7

4.2 The Tsitsiklis–VanRoy algorithm. 8
4.2.1 Basic principle. 8
4.2.2 Backward price. 9
4.2.3 Forward price. 10
4.2.4 Practical design. 10
4.2.5 Some other versions . 11

4.3 The Quantization algorithms. 11
4.3.1 Basic principle. 11
4.3.2 Dynamical programming algorithm. 12
4.3.3 Quantized kernel. 12
4.3.4 Backward price. 12
4.3.5 Empirical version for Qb

0. 13
4.3.6 Forward price. 13
4.3.7 Empirical version for Qf

0 13
4.3.8 The Random Quantization algorithm. 14
4.3.9 Optimal quantization and random weights. 15
4.3.10 Payoff vectorization. 17

4.4 The Broadie–Glassermann algorithm. 17
4.4.1 Basic principle. 17
4.4.2 Mesh generation. 18

1

40 pages 2

4.4.3 Weights. 18
4.4.4 Backward price. 19
4.4.5 Forward price. 19
4.4.6 Practical design. 20

4.5 The Barraquand–Martineau algorithm. 21
4.5.1 Basic principle. 21
4.5.2 Dynamical programming algorithm. 21
4.5.3 Quantized payoff space and transitions. 22
4.5.4 Backward price. 22
4.5.5 Practical design. 23

5 Implementation. 23

5.1 Structure of the implementation. 23
5.2 Pricing routines parameters. 24

5.2.1 Parameter families. 24
5.2.2 Black–Scholes family parameters. 25
5.2.3 Option family parameters. 26
5.2.4 Algorithms parameters. 27

5.3 Payoff formulae. 30
5.4 Pseudo–random and quasi–random numbers generators. 31

6 Scilab interface. 31

6.1 Functions parameters . 31
6.1.1 The Black–Scholes T–list. 32
6.1.2 The option T–list. 32
6.1.3 The algorithm T–list. 33
6.1.4 The output parameter. 35

6.2 Build and use of the Scilab interface. 36
6.2.1 Building the amclib Scilab library. 36
6.2.2 Using the amclib Scilab library. 36

6.3 The function examc.sci. 36

7 Using the pricing routines from a C–source. 37

8 Rogers Methods 37

1 Introduction.

In this paper, we present some recent Monte–Carlo algorithms devoted to the
pricing of american (more precisely, bermudean) style options. We also describe
the implementations of these algorithms and the related Scilab interface : the
amclib Scilab library.

First, we briefly recall the market model to be used (section (2)) and the
minimal mathematical background of the pricing theory (section (3)). Whereas
the investigated algorithms can deal with general markov stocks and exotic
options, we chose to restrict our attention to a d-dimensional constant rates
Black–Scholes model and to the pricing of vanilla options. This restriction
allowed us to provide more efficient implementations. The extension of the
Black–Scholes and the vanilla settings to more general markets and options is
often straightforward.

40 pages 3

Second, we take up the description of the following algorithms : Longstaff-
Schwartz (1998), Tsitsikliss-VanRoy (2000), the quantization algorithms (Bally,
Pagès, Printem 2000), Broadie–Glassermann (1997) and Barraquand–Martineau
(1995). The algorithms based on the parametrization or the recursive compu-
tation of the exercise boundary and based on the Malliavin calculus will be
investigated in the next amclib version. For each algorithm, we provide

- a precise description of its mathematical aspects.

- a sketch of one of its possible implementations (sections “practical de-
sign”). Apart from the language details, this sketch is very close to the
true C implementation.

Third, we give the global structure of the C implementation and we depict
in details (types, meaning, relevant values) the pricing routines parameters (sec-
tion (5)). Finally, we decribe the Scilab interface of the C routines : Scilab func-
tion parameters, build of the library, use and examples function (section (6)).

2 The market model.

We restrict our attention to a constant rate d–dimensional Black–Scholes model
St :=

(
S1

t , . . . , S
d
t

)
defined for t ∈ [0, T] on a probability space (Ω,A, P). More

precisely, let

- (Bt)t≥0 be a d–dimensional brownian motion defined on (Ω,A, P).

- r > 0 be the riskfree interest rate of the market, assumed to be determin-
istic and constant.

- δ1, . . . , δd > 0 be the dividend rates of the stocks S1
t , . . . , S

d
t , assumed to

be deterministic and constant.

- µ1, . . . , µd > 0 be the mean rates of the stocks S1
t , . . . , S

d
t , assumed to be

deterministic and constant.

- Σ be a symetric positive definite d × d matrix and let σ be its Cholesky
square root.

Then, we assume that Si
0 is deterministic and we consider the stock Si

t satisfying

dSi
t = Si

t


µi dt+

∑

1≤j≤i

σi,jdB
j
t




or, equivalently,

Si
t = Si

0 exp


−t


1

2

∑

1≤j≤i

σ2
i,j − r + δi


+

∑

1≤j≤i

σi,jW
j
t




where (Wt)t∈[0,T] is a brownian motion under the unique risk–neutral probability
measure P of the market.

40 pages 4

3 Pricing of Bermudean style options.

Let O be a Vanilla option with maturity T > 0, payoff (ϕ (St))0≤t≤T (satisfying

E

(
ϕ (St)

2
)
< +∞ for every t) and exercise times t0 = 0 < t1 < . . . < tN = T .

Recall that the discounted value of a self–financed portfolio is a martingale
under the risk–neutral probability measure P. So, the hedging value Qτ

0 at time
0 of the option related to an exercise strategy τ is

Qτ
0 = E (B (0, τ)ϕ (Sτ))

Hence, the price Q0 of O at time 0 is given by

Q0 = sup
τ∈T0,N

E (B (0, τ)ϕ (Sτ)) (1)

where T0,N is the set of the F–stopping times taking values in {t0, . . . , tN } and
where F is the completion of the filtration generated be the process (St)0≤t≤T .

Equivalently, the price Q0 can be obtained as the terminal value of the
following backward dynamical programming algorithm

{
QN := ϕ (StN

)
Qj−1 := max

(
ϕ
(
Stj−1

)
,E
(
B (tj−1, tj)Qj |Ftj−1

))
, 1 ≤ j ≤ N.

(2)

At last, one can show that the stopping time

τ∗ := min
{
tj ;ϕ

(
Stj

)
= Qj

}
(3)

attains the supremum in (1), i.e.,

Q0 = E (B (0, τ∗)ϕ (Sτ ∗)) (4)

and is the smallest stopping time checking (4).
Throughout the sequel, a price Q0 computed with an algorithm based on the

formulae (4) will be called a forward price whereas a price Q0 computed with an
algorithm based on the dynamical programming (2) will be called a backward
price.

4 Pricing algorithms.

4.1 The Longstaff–Schwartz algorithm.

4.1.1 Basic principle.

The algorithm consists in approximating the stopping time τ∗ along M Black–
Scholes paths

(
ωi
)

1≤i≤M
by a random variable τM and then estimating the

forward price Q0 according to the Monte–Carlo formulae

QM
0 =

1

M

∑

1≤i≤M

B
(
0, τM

(
ωi
))
ϕ
(
Sτ M (ωi)

)
(5)

We set out the construction of τM in the following steps : first, we give the
dynamical programming algorithm which gives recursively the stopping time
τ∗. Then, we present the Longstaff–Schwartz approximation of this recursion.
Finaly, we give the corresponding empirical version, leading to τM .

40 pages 5

4.1.2 Forward price.

Dynamical programming algorithm for τ∗. Let τ∗
N := T and for 0 ≤

j ≤ N − 1, let τ∗
j be the optimal stopping time as defined in (3) but for the

Bermudean option with maturity T , initial information Ftj
and exercise times

tj , . . . , tN = T , i.e.,

τ∗
j := min {ti; i ≥ j;ϕ (Sti

) = Qi} (6)

Then, τ∗
0 = τ∗ and one can derive that the sequence

(
τ∗

j

)
0≤j≤N

checks

{
τ∗

N := T
τ∗

j := tj1Aj
+ τ∗

j+11∁Aj
0 ≤ j ≤ N − 1.

(7)

where
Aj :=

{
ϕ
(
Stj

)
≥ E

(
B
(
tj , τ

∗
j+1

)
ϕ
(
Sτ ∗

j+1

)
|Stj

)}

Since
{
ϕ
(
Stj

)
= 0
}

⊂ ∁Aj , it is useless to know E

(
B
(
tj , τ

∗
j+1

)
ϕ
(
Sτ ∗

j+1

)
|Stj

)

on the set
{
ϕ
(
Stj

)
= 0
}

. So, the authors only consider the conditional expecta-

tion Ej

(
.|Stj

)
defined on the measure space (Ωj ,Mj) where Ωj :=

{
ϕ
(
Stj

)
> 0
}

and Mj = P (Ωj ∩ .). The set Aj then reads

Aj =
{
ϕ
(
Stj

)
> Ej

(
B
(
tj , τ

∗
j+1

)
ϕ
(
Sτ ∗

j+1

)
|Stj

)}
∈ Ftj

where Ej

(
.|Stj

)
= Ej

(
.|Stj

)
on Ωj and = 0 elsewhere.

So, the main step to estimate τ∗ from (7) is to approximate

Ej

(
B
(
tj , τ

∗
j+1

)
ϕ
(
Sτ ∗

j+1

)
|Stj

)
(8)

or equivalently, to approximate a function ψj : Stj
(Ωj) → R+ satisfying

ψj

(
Stj

)
= Ej

(
B
(
tj , τ

∗
j+1

)
ϕ
(
Sτ ∗

j+1

)
|Stj

)
(9)

The authors introduce a least square regression method to perform this approx-
imation.

A regression method. For every 1 ≤ j ≤ N − 1, let L
(
Stj

)
be the law of

Stj
and let Lj be L

(
Stj

)
restricted to Stj

(Ωj). Let
(
gj

i

)
i≥1

be a topological

basis of L2
(
R

d,Bd,Lj

)
. We assume that gj ≡ 0 outside Stj

(Ωj). For j = 0,
the conditionnal expectation with respect to St0

reduces to an expectation so
that we don’t need a basis at time 0.

Fixing an index k ≥ 1, one can approximate ψN−1 by its orthogonal pro-
jection 〈αN−1, gN−1〉 on the space spanned by gN−1 :=

{
gN−1

1 , . . . , gN−1
k

}
, and

compute the stopping time τ̂N−1 := tN−11
ÂN−1

+ T1
∁ÂN−1

where

ÂN−1 :=
{
ϕ
(
StN−1

)
> 〈αN−1, gN−1〉

(
StN−1

)}

Iterating this procedure backward in time for j = N − 2 downto 1, one obtains
the approximated dynamical programming algorithm

{
τ̂N := T
τ̂j := tj1

Âj
+ τ̂j+11

∁Âj
1 ≤ j ≤ N − 1. (10)

40 pages 6

where
Âj :=

{
ϕ
(
Stj

)
> 〈αj , gj〉

(
Stj

)}
1 ≤ j ≤ N − 1

and where αj :=
{
αj

1 . . . , α
j
k

}
∈ R

k is the unique solution of the least square

problem

min
α∈Rk

Ej

(
〈αj , gj〉

(
Stj

)
−B

(
tj , τ

∗
j+1

)
ϕ
(
Sτ ∗

j+1

))2

(11)

To make (10) implementable, one needs an empirical version of (11).

Implementable regression. Let
{
ω1, . . . , ωM

}
be an i.i.d. sample path from

P. Let (after reordering indexes)
{
ω1, . . . , ωMj

}
be the points of this sample

belonging to Ωj . Then, the authors consider the empirical version of (11)

min
α∈Rk

∑

1≤m≤Mj

(
〈αj , gj〉

(
Stj

(ωm)
)

−B (tj , τ̂j+1 (ωm))ϕ
(
S

τ̂j+1(ωm)

))2

(12)

and finally get the implementable algorithm
{
τM

N := T
τM

j := tj1AM
j

+ τM
j+11∁AM

j
1 ≤ j ≤ N − 1. (13)

where
AM

j :=
{
ϕ
(
Stj

)
> 〈αj , gj〉

(
Stj

)}
1 ≤ j ≤ N − 1

and where αj is the unique solution of (12) (set αj = 0 if Mj = 0).
At time 0, the decision to exercise or not is deterministic (i.e., one has either

τM
0 ≡ 0 or τM

0 ≡ τM
1 . Then, the output of the algorithm is

Qf
0 = max


ϕ (St0

) ,
1

M

∑

1≤m≤M

B
(
0, τM

1

)
ϕ
(
Sτ M

1

)

 .

4.1.3 Backward simulation.

Before to sum up the algorithm, we give an improvement of its effectiveness.
In their paper, the authors compute and store simultaneously all the Black–

Scholes paths (i.e., the vectors
(
Stj

(
ωl
))
, 0 ≤ j ≤ N 1 ≤ l ≤ M). This

procedure can be very memory consumming since requiring M × N × d ×
(size of machine number) octets.

But, the algorithm (13) works backward in time and the regression at time

tj of the vector
(
B
(
tj , τ̂j+1

(
ωl
))
ϕ
(
S

τ̂j+1(ωl)

))
1≤l≤Mj

only requires the knowl-

edge of the vector
(
Stj

(
ωl
))

1≤l≤Mj

So, we propose to use a backward simulation of the stock Stj
: knowing that

B0 = 0 and Btj+1
= b, the law of Btj

is

N

(
tj
tj+1

b,
tj
tj+1

(tj+1 − tj) Id

)
(14)

At time tj , one can then compute
(
Btj

(
ωl
))

1≤l≤M
and

(
Stj

(
ωl
))

1≤l≤M
from(

Btj+1

(
ωl
))

1≤l≤M
and forget simultaneously this last vector.

The memory consumption of the backward simulation procedure is about N
times less than the Longstaff–Schwartz global simulation technique.

We now sum up the different stages of the algorithm.

40 pages 7

4.1.4 Practical design.

Let

- (B[m])1≤l≤M be a memory vectors of size M × d for the storage of the
Brownian motion samples.

- (S[m])1≤l≤M be a memory vectors of size M × d for the storage of the
Black–Scholes stocks.

- (P [m])1≤l≤M be a memory vector of size M for the storage of the optimal
stopped stocks.

The following steps make up our version of the Longstaff–Schwartz algorithm.

1. At time T and for every l, initialise B[m] according to N (0, T Id) and put
the corresponding stock in S[m]. Then, put B (tN−1, T)ϕ (S[m]) in P [m].

2. For j = N − 1 downto 1.

(a) (Stock simulation) Compute B[m] according to (14) with b = old
value of B[m]. Then compute S[m].

(b) (Regression) Keep the at–the–monney paths
{
S[m1], . . . , S[mMj

]
}

and compute the solution of (13), given by the formulae

αj = D−1
j

∑

1≤p≤Mj

P [mp] tgj (S[mp]) (15)

where t is the transpose operator and where

Dj :=
∑

1≤p≤Mj

gj (S[mp]) tgj (S[mp]) .

is the (unnormalised) empirical dispersion matrix of the regressor.
Use the Cholesky algorithm to compute D−1

j .

(c) (Dynamical programming) For p = 1 to Mj,

P [mp] := ϕ (S[mp]) if ϕ (S[mp]) > 〈αj , gj〉 (S[mp])

(d) (Discounting) For m = 1 to M , P [m] := B (tj−1, tj)P [m].

3. (Forward Price) The output of the algorithm is

max


ϕ (S0) ,

1

M

∑

1≤m≤M

P [m]


 .

4.1.5 Some other versions.

Normalised regressor. Some numerical problems may appear in the regres-
sion procedure when too larges values of the stock are send through the regres-
sion basis. To avoid this problem and to make the algorithm more insensitive to
the Black–Scholes parameters values, it seems natural to perform the regression
with respect to a normalised version of Stj

.

40 pages 8

For instance, one can deal at each time with the normalised stock

S̃tj
= Σ−1

j

(
Stj

−mj

)

where
mj :=

[
Si

0 exp (−tj (δi − r))
]

1≤i≤d

and

Σj = Cholesky Square Root of


mp

jm
q
j


exp


−tj/2

∑

1≤l≤d

σplσql


− 1






1≤p,q≤d

are respectively the mean and the dispersion matrix of the Black–Scholes model
at time tj .

Hermite basis. In general, the basis
{
gj

1

(
Stj

)
, . . . , gj

k

(
Stj

)}
is not orthogo-

nal in L2 (Ωj ,F,Mj). Hence, estimating the projection of the random variable

B (tj , τ̂j+1)ϕ
(
S

τ̂j+1

)
requires the computation and the inversion of the (non–

diagonal) regressor dispersion matrix. To avoid this numerical procedure, we
suggest to perform the regression with respect to the brownian motion itself and
to consider the following Hermite basis :

Hn1,...,nd
(x1, . . . , xd) :=

Hn1
(x1) . . .Hnd

(xd)

(2n1+...+ndn1! . . . nd!)
1/2

n1, . . . , nd ∈ N

where Hi is the ith Hermite polynomial :




H0 (x) = 1
H1 (x) = x
Hi+1 (x) = xHi (x) − iHi−1 (x) .

Indeed, for every 1 ≤ j ≤ N − 1, the family
{
Hn1,...,nd

(
Btj

/ (2tj)
1/2
)}

n1,...,nd∈N

(16)

is orthonormal in L2 (Ω,F,P) and the computation of the regressor coefficient
αj

n1,...,nd
reduces to the scalar product

αj
n1,...,nd

= E

(
Hn1,...,nd

(
Btj

/ (2tj)
1/2
)
B (tj , τ̂j+1)ϕ

(
S

τ̂j+1

))
(17)

We point out that the expectation in formulae (17) is not Ej since the family (16)
is not orthogonal on L2 (Ωj ,F,Mj)

This procedure is more simple and efficient than the use of formulae (15).
In counterpart, the reduction complexity given by the restriction to the at–the–
money paths measure Mj is lost.

4.2 The Tsitsiklis–VanRoy algorithm.

4.2.1 Basic principle.

This algorithm acts on a dynamical programming algorithm equivalent to (2)

but involving Q̃j := E
(
B (tj , tj+1)Qj+1|Stj

)
instead of Qj. The approximation

of Q̃j is performed with a regression method.

40 pages 9

4.2.2 Backward price.

Another form of the dynamical programming algorithm. Remember
the notations of the algorithm (2) and let

Q̃j := E
(
B (tj , tj+1)Qj+1|Stj

)
0 ≤ j ≤ N − 1.

Then, (2) reads

{
Q̃N−1 := E

(
B (tN−1, tN)ϕ (StN

) |StN−1

)

Q̃j := E

(
B (tj , tj+1) max

(
ϕ
(
Stj+1

)
, Q̃j+1

)
|Stj

)
, 0 ≤ j ≤ N − 2.

(18)

A regression method to approximate Q̃j. For every 1 ≤ j ≤ N − 1, let

Lj be the law of Stj
, let

{
gj

i

}
i≥1

be a topological basis of L2
(
R

d,Bd,Lj

)
and

let χj : Rd → R+ such that Q̃j = χj

(
Stj

)
.

At time N−1, the authors approximate χN−1 by its projection 〈αN−1, gN−1〉
on the subspace spanned by

{
gN−1

1 , . . . , gN−1
k

}
, according to the L2

(
R

d,Bd,LN−1

)

norm. They iterate this procedure backward in time, projecting at time tj
(j ≥ 1) the function

B (tj , tj+1) max
(
ϕ, 〈αj+1, gj+1〉

)

on the subspace vect
{
gj

1, . . . , g
j
k

}
according to the L2

(
R

d,Bd,Lj

)
norm . The

resulting approximated dynamical programming algorithm is then




αN−1 = D−1
N−1E

(
B (tN−1, tN)ϕ (StN

) tgN−1
(
ϕ
(
StN−1

)))

αj = D−1
j E

(
B (tj , tj+1) max

(
ϕ
(
Stj+1

)
, 〈αj+1, gj+1〉

(
Stj+1

))
tgj
(
Stj

))
1 ≤ j ≤ N − 2.

α = E
(
B (0, t1) max

(
ϕ (St1

) , 〈α1, g1〉 (St1
)
))

(19)
where Dj is the dispersion matrix of the vector gj

(
Stj

)
. At time 0, the needed

backward price Qb
0 is given by

Qb
0 = max (ϕ (St0

) , α)

Empirical version. Let ω1, . . . , ωM be an i.i.d. sample from P and let Sm
tj

:=
Stj

(ωm). The empirical version of (19) is





αN−1
M = D−1

N−1

∑
1≤l≤M B (tN−1, tN)ϕ

(
Sm

tN

)
tgN−1

(
ϕ
(
Sm

tN−1

))

αj
M = D−1

j

∑
1≤l≤M B (tj , tj+1) max

(
ϕ
(
Sm

tj+1

)
, 〈αj+1

M , gj+1〉
(
Sm

tj+1

))
tgj
(
Sm

tj

)
1 ≤ j ≤ N − 2.

αM =
∑

1≤l≤M B (0, t1) max
(
ϕ
(
Sm

t1

)
, 〈α1

M , g1〉
(
Sm

t1

))

(20)
where Dj denotes the empirical dispersion matrix

Dj :=
∑

1≤l≤M

gj
(
Sm

tj

)
tgj
(
Sm

tj

)

The price backward Qb
0 is then

Qb
0 = max (ϕ (St0

) , αM)

40 pages 10

4.2.3 Forward price.

Here, we give a forward price formulae for the Tsitsiklis–VanRoy algorithm.
Such a formulae is not derived in the author’s paper.

Recall that an optimal stopping time for (2) is given by

τ∗ = min {ti ≥ 0;ϕ (Sti
) = Qi}

and, for 1 ≤ j ≤ N − 1, let τ∗
j = min {ti; i ≥ j;ϕ (Sti

) = Qi}. The sequence(
τ∗

j

)
checks {

τ∗
N := T
τ∗

j := tj1Bj
+ τ∗

j+11∁Bj
1 ≤ j ≤ N − 1.

(21)

where Bj :=
{
ϕ
(
Stj

)
≥ Q̃j

}
. This algorithm can be approximated by

{
τ̂N := T
τ̂j := tj1

B̂j
+ τ̂j+11

∁B̂j
1 ≤ j ≤ N − 1. (22)

where B̂j :=
{
ϕ
(
Stj

)
≥ 〈αj , gj〉

}
and where αj is defined in (19). The practical

computation of (22) is performed according to

{
τM

N := T
τM

j := tj1BM
j

+ τM
j+11∁BM

j
1 ≤ j ≤ N − 1. (23)

where Bj :=
{
ϕ
(
Stj

)
≥ 〈αj

M , gj〉
}

and where αj
M is defined in (20).

One finaly gets the needed forward price

Qf
0 = max


ϕ (St0

) ,
1

M

∑

1≤m≤M

B
(
0, τM

1 (ωm)
)
ϕ
(
Sm

τ M
1

(ωm)

)



4.2.4 Practical design.

Let

- (B[m])1≤l≤M be a memory vectors of size M × d for the storage of the
Brownian motion samples.

- (S[m])1≤l≤M be a memory vectors of size M × d for the storage of the
Black–Scholes stocks.

- (Q[m])1≤l≤M be a memory vector of size M for the storage of the dynam-
ical programming prices.

- (P [m])1≤l≤M be a memory vector of size M for the storage of the optimal
stopped stocks.

The following steps make up our version of the Tsitsiklis–VanRoy algorithm.

1. At time T and for every l, initialise B[m] according to N (0, T Id) and put
the corresponding stock in S[m]. Then, put B (tN−1, T)ϕ (S[m]) in P [m]
and Q[m].

40 pages 11

2. For j = N − 2 downto 1.

(a) (Stock simulation) ComputeB[m] according to (14) with b = old value of B[m].
Then compute S[m].

(b) (Regression) Compute the regression coefficient αj
M , given by the

formulae
αj

M = D−1
j

∑

1≤l≤M

Q[m] tgj (S[m]) (24)

where t is the transpose operator and where

Dj :=
∑

1≤p≤Mj

gj (S[mp]) tgj (S[mp]) .

is the (unnormalised) empirical dispersion matrix of the regressor.
Use the Cholesky algorithm to compute D−1

j .

(c) (Dynamical programming)

Q[m] = max
(
ϕ (S[m]) , 〈αj

M , gj〉 (S[m])
)
.

If ϕ (S[m]) ≥ 〈αj
M , gj〉 (S[m]), then P [m] = ϕ (S[m]).

(d) (Discounting) Q[m] = B (tj−1, tj)Q[m] and P [m] = B (tj−1, tj)P [m]

3. (Bakward price)

Qb
0 = max


ϕ (St0

) ,
1

M

∑

1≤l≤M

Q[m]




4. (Forward Price)

Qf
0 = max


ϕ (St0

) ,
1

M

∑

1≤l≤M

P [m]




4.2.5 Some other versions

As in the Longstaff–Schwartz algorithm, one can use a normalised regressor or
an Hermite basis for the Tsitsiklis–VanRoy algorithm.

4.3 The Quantization algorithms.

The quantization algorithm has been introduced by Bally and Pagès. The ma-
terial presented in this section is taken from [13].

4.3.1 Basic principle.

The basic principle of the quantization method is, at time tj , to discretize
the stock Stj

or more generally an underlying Markov process Utj
by a set

of “quantization levels” yj :=
(
yj

i

)
1≤i≤nj

⊂ R
d and then to approximate the

transition kernel of
(
Utj

, Utj+1

)
by a discrete one, defined on yj × yj+1.

40 pages 12

More precisely, let (Ut)0≤t≤T be a process defined on (Ω,A,P) such that

for every t, St = ψ (Ut) where ψ : Rd → R
d is injective. Let P̂j (x, dy) be the

transition kernel between times tj and tj+1 of the Markov chain U0, Ut1
, . . . , UtN

.

For 1 ≤ j ≤ N , let yj be a set of discretization vectors yj :=
{
yj

1, . . . , y
j
nj

}
⊂

R
d, and let y0 = {y} (U0 is deterministic and then need not to be discretized).

4.3.2 Dynamical programming algorithm.

Remember the notations of (2), let χj : Rd → R+ such that Qj = χj

(
Utj

)
and

let φ = ϕ ◦ ψ. The dynamical programming (2) reads

{
χN = φ
χj = max (φ, Pjχj+1) 0 ≤ j ≤ N − 1.

(25)

As already said, we will approximate Pj by a discrete transition kernel P̂j and
then approximate (25) by

{
χ̂N = φ

χ̂j = max
(
φ, P̂j χ̂j+1

)
0 ≤ j ≤ N − 1.

(26)

4.3.3 Quantized kernel.

We want to define P̂j as a transition kernel defined on yj × yj+1 satisfying

the following requirement : the number P̂j

(
yj

k, y
j+1
l

)
must approximate the

probability that the process U move from a neighbourhood of yj
k at time tj , to

a neighbourhood of yj+1
l at time tj+1. So, we propose to pick

P̂j

(
yj

k, y
j+1
l

)
:=

E
(
1Ck(yj)

(
Utj

)
Pj

(
Utj

, Cl

(
yj+1

)))

E
(
1Ck(yj)

(
Utj

)) (27)

where the set Ci

(
yj
)

is the ith Voronoï cell of yj , defined by

Ci

(
yj
)

:=

{
z ∈ R

d ;
∥∥∥z − yj

i

∥∥∥ = min
1≤l≤nj

∥∥∥z − yj
l

∥∥∥
}
. (28)

There would be some other way to specify P̂j

(
yj

k, y
j
l

)
but the formulae (27)

will be easily implementable through a MonteCarlo method.
Note that for every x ∈ R

d, one has Pj

(
x,∪1≤l≤nj+1

∂Cl

(
yj+1

))
= 0. Then,

the formulae (27) defines a probability transition kernel.

4.3.4 Backward price.

For notational convenience, set

αj
k,l := P̂j

(
yj

k, y
j+1
l

)
.

40 pages 13

Knowing at time tj the numbers αj
k,l, one can compute the function P̂jχ̂j+1 on

the set yj. Hence, the dynamical programming algorithm (26) reduces to




χ̂N

(
yN

k

)
= φ

(
yN

k

)
1 ≤ k ≤ nN

χ̂j

(
yj

k

)
= max


φ

(
yj

k

)
,
∑

1≤l≤nj+1

αj
k,lχ̂j+1

(
yj+1

l

)

 0 ≤ j ≤ N − 1, 1 ≤ k ≤ nj .

(29)
and the needed backward price is Qb

0 = χ̂0 (y).

4.3.5 Empirical version for Qb
0.

Let ω1, . . . , ωM be an i.i.d. sample path from P and let Um
tj

:= Utj
(ωm). To

perform (29), one has to estimate the numbers αj
k,l. The formulae (27) suggests

us to consider the MonteCarlo estimator

α̂j
k,l :=

∑
1≤m≤M 1Ck(yj)

(
Um

tj

)
1Cl(yj+1)

(
Um

tj+1

)

∑
1≤m≤M 1Ck(yj)

(
Um

tj

) (30)

where the dependence on M of α̂j
k,l has been omited. The implementable version

of (29) is finaly obtained by replacing αj
k,l by α̂j

k,l in (29).

4.3.6 Forward price.

Once computed the numbers χ̂j

(
yj

k

)
, we propose to approximate τ∗ by the

stopping time
τ̂ := min

{
tj ;φ

(
QjUtj

)
= χ̂

(
QjUtj

)}
(31)

where Qj : Rd → yj is the quantizing function

Qj :=
∑

1≤k≤nj

1Ck(yj) y
j
l .

Informally, τ̂ may be viewed as an approximation of τ∗ along the quantized
stock paths.

The corresponding forward price is then

Qf
0 = E

(
B (0, τ̂)φ

(
Q

τ̂
U

τ̂

))
. (32)

4.3.7 Empirical version for Qf
0 .

The empirical version of (32) is given by the MonteCarlo formulae

Qf
0 =

1

M

∑

1≤m≤M

B (0, τ̂ (ωm))φ
(
Q

τ̂(ωm)
Um

τ̂(ωm)

)

where ω1, . . . , ωM is an i.i.d. sample path from P.

Clearly, there are many ways to implement the quantization method, de-
pending on the choice of the quantization sets yj . We present three of them in
the following sections.

40 pages 14

4.3.8 The Random Quantization algorithm.

Quantization sets. We assume that nj = n for every j and that the process
U is the Brownian motion. We use a self–quantization procedure to generate
the quantization sets. More precisely, let ω1, . . . , ωn be an i.i.d. sample from P.
Then , we set

yj
k := Utj

(
ωk
)

1 ≤ j ≤ n 1 ≤ k ≤ n.

One can show that this choice is in some sense somewhat good but is not the
best among all the random choices (see [5]).

Now, we can give an implementation of the random quantization method.

Practical design. Recall that nj = n for every 1 ≤ j ≤ N . Let

- (Y [i][j])1≤i≤n; 1≤j≤N be a memory array of size (n× d)×N for the storage
of the quantization sets.

- (S[i][j])1≤i≤n; 1≤j≤N be a memory array of size (n× d)×N for the storage
of the Black–Scholes transformation of the quantization sets.

- (B[m])1≤m≤M a memory vector of size M ×d for the storage of the Brow-
nian motion paths at a given time.

- (C[m])1≤m≤M be an integer memory vector of size M for the storage of
the cell numbers of B.

- (Q[i][j])1≤i≤n; 1≤j≤N be a memory array of size n × N for the storage of
the dynamical programming prices.

- (Λ[k][l])1≤k≤n; 1≤l≤n be a memory array of size n × n for the storage of
the transition probabilities at a given time.

- (W [k])1≤k≤n be a memory vector of size n for the storage, at a given time
j, of the numbers |{1 ≤ m ≤ M ;B[m] ∈ Ck (Y [][j])}|.

The following steps make up the needed implementation.

1. (Quantization sets) For 1 ≤ k ≤ n: initialise Y [k][1], . . . , Y [k][N] with
a Brownian path Bt1

(
ωk
)
, . . . , BtN

(
ωk
)

; compute the corresponding
Black–Scholes stock path S[k][1], . . . , S[k][N].

2. (Brownian bridge initialisation) For 1 ≤ m ≤ M : initialize B[m] accord-
ing to N (0, T Id). Then,

C[m] := NearestIndex(B[m])

where the function “NearestIndex” gives the index k0 of the Voronoï cell
Ck0

(Y [.][N]) in which B[m] belongs.

3. (prices initialisation) For 1 ≤ k ≤ n, Q[k][N] = ϕ (S[k][N]).

4. For j = N − 1 downto 1 :

(a) (Brownian bridge simulation) For 1 ≤ m ≤ M , Compute B[m] ac-
cording to (14) with b = old value of B[m].

40 pages 15

(b) (Transitions computation) For 1 ≤ m ≤ M :

i. AuxC := NearestIndex(B[m]),

ii. Λ[AuxN][C[m]]+ = 1,

iii. W [AuxN]+ = 1,

iv. C[m] = AuxC.

(c) (Transitions normalisation) For 1 ≤ k ≤ n : if C[k] > 0, for 1 ≤ l ≤ n
Λ[k][l] = Λ[k][l]/W [k].

(d) (Dynamical programming) For 1 ≤ k ≤ n : compute

S :=
∑

1≤l≤n

Q[l][j + 1]Λ[k][l]

and set
Q[k][j] := max (ϕ (S[k][j]) , B(tj , tj+1)S) .

5. (Backward price) The backward price is

Qb
0 := max


ϕ (Spot) , B(0, t1)

∑

1≤l≤n

Q[l][1]W [l]/M


 .

6. (Forward price)

(a) If Qb
0 = ϕ (Spot) then Qf

0 := Qb
0 else :

(b) Let P be a memory vector of size d. Let ξ := 0. For 1 ≤ m ≤ M :

i. Set P = 0, j = 0

ii.





Do
P := P +

√
tj+1 − tj N (0, Id) , j = j + 1

while Q[j][NearestIndex(P)] > ϕ (S[NearestIndex(P)][j]) .

iii. Compute ξ = ξ +B (0, tj)ϕ (S[NearestIndex(P)][j]).

(c) (Output) The needed forward price is

Qf
0 := ξ/M.

4.3.9 Optimal quantization and random weights.

Quantization sets. As in the preceding section, we set nj = n for 1 ≤ j ≤ n
and we assume that the process U is the Brownian motion. One can show
(see [13]) that an error bound for the backward price Qb

0 may be derived in
term of the distortion

Dtj

(
yj
)

:=

∫

Rd

min
1≤k≤n

∥∥∥u− yj
k

∥∥∥
2

N (0, tj Id) (du) .

The modulus Dtj
is in some sense a measurement of the quality of yj. So, it

seems useful to choose a quantization set inducing a low distortion.
In fact, one can show that there exists an optimal set y∗j checking

Dtj

(
y∗j
)

= min
y∈(Rd)n

Dtj
(y)

40 pages 16

From a scaling invariance property, one can choose y∗j =
√
tj y

∗ where y∗ is an
optimal quantization set of the distortion D := D1. So, we set

yj
k :=

√
tj y

∗
k 1 ≤ k ≤ n; 1 ≤ j ≤ N. (33)

In the following section, we briefly recall an algorithm to numerically compute
y∗.

Approximation of y∗. Here, we chose the Lloyd I algorithm to perform the
optimization of D.

Let Y ∼ N (0, Id) and let y(0) ∈
(
R

d
)n

with no component agregates. Then,

using a MonteCarlo method, compute the sequence y(n) defined by

y
(n+1)
k := E

(
Y |Y ∈ Ck

(
y(n)

))
.

One can show that D
(
y(n)

)
is decreasing and that the sequence y(n) converges

toward a local minimum y(∞) of D. In the N (0, Id) setting, the local minimum
y(∞) is in practice a global minimum.

Once computed, the set y∗ is stored on a file, to be re–used through (33)
without new computation.

For more details on the Lloyd I algorithm and its convergence, see [9]. There
is another classical optimization procedure of D : the Kohonen algorithm; See[4].

Faster nearest index. The computation of the nearest quantization point of
a sample z ∈ R

d with respect to the unstructured quantization set y∗ is usualy
performed as follow : For k = 1 to n,





n = 0; i = 0.

do aux = aux+ (z[i] − y∗
k[i])

2
; i = i+ 1 while aux < min

if aux < min then output = k.
(34)

Since the quantization set y∗ is computed once for all, one can compute and
store some additional information on y∗. This may be useful to make the nearest
index search faster :

Once computed y∗, use a MonteCarlo method to estimate the radius r1, . . . , rn

of the Voronoï cells C1 (y∗) , . . . , Cn (y∗), defined by

rk := max {d (z, y∗
k) ; z ∈ Ck (y∗)} ,

and store these numbers with y∗.
Let δ1, . . . , δd ∈ R

d. Then, by the triangle inequality,

z ∈ Ck (y∗) =⇒
∧

1≤i≤d

d (δi, z) − ri ≤ d (y∗
k, z) ≤ d (δi, z) + ri.

So, if n is large and if M ≫ n searches has to be done, the algorithm (34) can
be improved in the following way :

1. Before to start the searches, compute and store the 2 × n × d numbers
βi,k := d (δi, y

∗
k)

2
.

2. To search the nearest index of a sample z :

40 pages 17

(a) Compute and store the 2 × d numbers λ±
i := (d (δi, z) ± ri)

2.

(b) for k = 1 to n, run the loop (34) only if the tests

∧

1≤i≤d

(
λ+

i ≥ βi,k

)
∧
(
λ−

i ≤ βi,k

)
(35)

are check.

If n is large and if M ≫ n, the preceding procedure is faster than (34). Indeed,
the quantization points that checks the two first tests in (35) must belong to a
neighbourhood of a sphere. So, one replace the loop (34) by only two tests for
a large subset of indexes. Moreover, since d “landmarks” are used, the subset
of the indexes that check all the tests in (35) is very small. The loop is then
runned only a few times.

The preceding landmarks algorithm would not be used when n is not suffi-
ciently large regarding d. In that case, the radius ri are too large with respect
to the diameter of the tesselation y∗. Consequently, the landmarks procedure
become inefficient and even longer than (34).

Practical design. There is only two differences between the design of the
optimal quantization algorithm and the random quantization algorithm’s one.

First, replace the step 1. by the procedure (33). Second, to avoid the storage
of d×N landmarks, perform the nearest index search straight on the set y∗ with
the normalised sample B[m]/

√
tj .

The other steps are similar.

4.3.10 Payoff vectorization.

A large part of the computations done in the quantization algorithm does not
depend on the payoff function and on the Black–Scholes parameters (e.g. quan-
tized kernel of the brownian motion and brownian path quantization for the
forward price). Hence, one can “vectorize” the payoff parameter by comput-
ing simultaneously numerous option prices, the computations needed for each
additionnal payoff beeing simply the dynamical programming.

4.4 The Broadie–Glassermann algorithm.

4.4.1 Basic principle.

The Broadie–Glassermann algorithm is a stock discretization method. As in

the quantization setting, a “mesh” Y j =
{
Y j

1 , . . . , Y
j

n

}
⊂
(
R

d
)n

is generated at

time tj (j > 0) and the dynamical programming algorithm is approximated on

Y 1, . . . , Y N by mean of some weights βj
k,l between Y j

k and Y j+1
l . The difference

with the quantization method is that the βj
k,ls are not computed according to

the stock transition kernel from time tj to tj+1 but according to an importance
sampling principle.

40 pages 18

4.4.2 Mesh generation.

Let fj (x, u) be the kernel function of the Black–Scholes stock between times tj
and tj+1,

fj (x, u) :=

(
1

2π (tj+1 − tj)

)d/2 ∣∣σ−1
∣∣ 1∏

1≤i≤d

ui
exp

(
−
∥∥σ−1Θ (x, u)

∥∥2

2 (tj+1 − tj)

)

where

Θ (x, u) :=


log (ui/xi) + (tj+1 − tj)


1

2

∑

1≤l≤d

σ2
i,l − r + δi






1≤i≤d

.

Assume that all the samples Y j
1 , . . . , Y

j
n considered in the sequel are defined on

some probability space
(

Ω̃, Ã, P̃
)

.

Let Y 1
1 , . . . , Y

1
n be an i.i.d. sample from the law f0 (St0

, u) du. The set{
Y 1

1 , . . . , Y
1

n

}
will be used to discretize St1

.
Next, consider an i.i.d. sample Y 2

1 , . . . , Y
2

n from the law

∑

1≤l≤n

f1

(
Y 1

l , u
)
du (36)

Iterating this procedure forward in time, one obtains N “meshes”
(
Y j

k

)
1≤k≤n

,

1 ≤ j ≤ N such that Y 1
1 , . . . , Y

1
n is an i.i.d. sample from the law f0 (St0

, u) du

and for 2 ≤ j ≤ N , Y j
1 , . . . , Y

j
n is an i.i.d. sample from the law

∑
1≤l≤n fj−1

(
Y j−1

l , u
)
du.

4.4.3 Weights.

One has to approximate the dynamical programming algorithm

{
χN = ϕ,
χj

(
Stj

)
= max

(
ϕ
(
Stj

)
,E
(
χj+1

(
Stj+1

)
|Stj

))
0 ≤ j ≤ N − 1.

(37)

on the meshes
(
Y j

k

)
1≤k≤n

. For j > 0, the authors propose to approximate the

conditional expectations

E

(
χj+1

(
Stj+1

)
|Stj

= Y j
k

)

by the sum
1

n

∑

1≤l≤n

βj
k,l χj+1

(
Y j+1

l

)
. (38)

40 pages 19

They choose the weights βj
kl by considering (38) as a MonteCarlo sum. Indeed,

one has

E

(
χj+1

(
Stj+1

)
|Stj

= Y j
k

)
=

∫

Rd

χj+1 (u) fj

(
Y j

k , u
)
du

=

∫

Rd

χj+1 (u)
fj

(
Y j

k , u
)

∑
1≤l≤n fj

(
Y j

l , u
)
∑

1≤l≤n

fj

(
Y j

l , u
)
du

= Ẽ


χj+1 (Y)

fj

(
Y j

k , Y
)

∑
1≤l≤n fj

(
Y j

l , Y
)




where Y :
(

Ω̃, Ã, P̃
)

→ R
d has the density

∑

1≤l≤n

fj

(
Y j

l , u
)

. But, the mesh

(
Y j+1

l

)
1≤l≤n

is an i.i.d. sample from the law
∑

1≤l≤n

fj

(
Y j

l , u
)
du. So one

can approximate (39) by the MonteCarlo estimator

1

n

∑

1≤l≤n

χj+1

(
Y j+1

l

) fj

(
Y j

k , Y
j+1

l

)

∑
1≤m≤n fj

(
Y j

m, Y
j+1

l

) (39)

Identifying (39) and (38), one obtains

βj
k,l :=

fj

(
Y j

k , Y
j+1

l

)

∑
1≤m≤n fj

(
Y j

m, Y
j+1

l

) . (40)

Since Y 1
1 , . . . , Y

1
n is drawn from f0 (St0

, u) du, the weights between St0
and Y 1

are equal to 1.

4.4.4 Backward price.

Once computed the weights βj
k,l according to the formulae (40), one obtains the

approximated dynamical programming algorithm
{
χN = ϕ,

χj

(
Y j

k

)
= max

(
ϕ
(
Y j

k

)
,
∑

1≤l≤n β
j
k,l χj+1

(
Y j+1

l

))
1 ≤ k ≤ n, 1 ≤ j ≤ N.

The needed backward price is finaly

Qb
0 := max


ϕ (St0

) ,
∑

1≤l≤n

β0
0,l χ1

(
Y 1

l

)

 .

4.4.5 Forward price.

Using arguments of the section (4.4.3), one can approximate the conditionnal
expectation E

(
χj+1

(
Stj+1

)
|Stj

= x
)

by the sum

Q̂j (x) :=
∑

1≤l≤n

βj
l (x)χj+1

(
Y j+1

l

)

40 pages 20

where

βj
l (x) :=

f
(
x, Y j+1

l

)

∑
1≤m≤n fj

(
Y j

m, Y
j+1

l

)

So, one can approximate pathwise the optimal stopping time τ∗ by

τ̂ := min
{
tj ;ϕ

(
Stj

)
≥ Q̂j

(
Stj

)}

The related forward price is as usual

Qf
0 := E

(
B (0, τ̂)ϕ

(
S

τ̂

))
.

4.4.6 Practical design.

Let

1. (Y [k][j])1≤k≤n, 1≤j≤N be a memory array of size n×N for the storage of
the mesh.

2. (Q[k][j])1≤k≤n, 1≤j≤N be a memory array of size n×N for the storage of
the prices over the mesh.

3. (W [k][j])1≤k≤n, 1≤j≤(N−1) be a memory array of size n × N − 1 for the
storage of some partial computation of the weights.

The following steps make up our implementation of the Broadie–Glassermann
algorithm :

1. (Mesh initialization)

(a) For k = 1 to n, put in Y [k][1] a draw from the law f0 (St1
, u) du.

(b) For j = 2 to N , for k = 1 to n :

i. put in U a draw from the uniform law on {1, . . . , n}.

ii. then, put in Y [k][j] a draw from the law fj−1

(
Y j−1

U , u
)
du.

2. (Partial computation of the weights) For j = 1 to N − 1, for k = 1 to n,

W [k][j] = 1/
∑

1≤m≤n

fj (Y [m][j], Y [k][j + 1]) .

3. (Prices initialisation) For k = 1 to n, Q[k][N] = ϕ (Y [k][N]).

4. (Dynamical programming) For j = N − 1 downto 1, for k = 1 to n,
compute

S :=
1

n

∑

1≤l≤n

Q[l][j + 1]fj

(
Y j

k , Y
j+1

l

)
W [l][j]

and set
Q[k][j] := max (ϕ (Y [k][j]) , B(tj , tj+1)S) .

40 pages 21

5. (Backward price) The backward price is

Qb
0 := max


ϕ (Spot) , B (0, t1)

1

n

∑

1≤l≤n

Q[l][1]f0 (St0
, Y [l][1])


 .

6. (Forward price)

(a) If Qb
0 = ϕ (Spot) then Qf

0 := Qb
0 else :

(b) Let S be a memory vector of size d. Let ξ = 0. For 1 ≤ m ≤ M :

i. Set S = St0
and j = 0.

ii.





Do
j = j + 1
S = S + Black–Scholes increment between times tj−1 and tj knowing Stj−1

= S.

S :=
∑

1≤l≤n Q[l][j + 1]fj

(
S, Y j+1

l

)
W [l][j]

while B (tj , tj+1) 1
nS > ϕ (S) .

iii. Compute ξ = ξ +B (0, tj)ϕ (S).

(c) (Output) The needed forward price is

Qf
0 := ξ/M

4.5 The Barraquand–Martineau algorithm.

4.5.1 Basic principle.

To avoid the high dimensionality problem, the authors propose to approximate
the optimal stopping strategy by the following sub–optimal one : assume that
the option holder knows at time t the payoff values {ϕ (Sr) ; r ≥ t} but not the
stock values {Sr; r ≤ t}. Then, the option holder can only exercise according to
a strategy optimizing

sup
τ∈G0,N

E (B (0, τ)ϕ (Sτ)) (41)

where G0,N is the set of the G–stopping times taking values in {t0, . . . , tN } and
where G is the filtration generated by the payoff process.

To compute (41), the authors propose a quantization method acting on a
one–dimensional dynamical programming algorithm.

4.5.2 Dynamical programming algorithm.

Let Gt := σ (ϕ (Sr) ; r ≤ t) , t ≥ 0 be the filtration generated by the PayOff
process (ϕ (St))t≥0. The authors approximate the dynamical programming (2)
by
{
QN := ϕ (StN

)
Qj−1 := max

(
ϕ
(
Stj−1

)
,E
(
B (tj−1, tj)Qj |Gtj−1

))
, 1 ≤ j ≤ N.

(42)

Since the process (ϕ (St))t≥0 is (in general) not Markov with respect to G, a
second approximation is done and (42) is replaced by
{
QN := ϕ (StN

)
Qj−1 := max

(
ϕ
(
Stj−1

)
,E
(
B (tj−1, tj)Qj|ϕ

(
Stj−1

)))
, 1 ≤ j ≤ N.

(43)

40 pages 22

The algorithm (43) can now be handled by a one–dimensional quantization
technique.

4.5.3 Quantized payoff space and transitions.

For 1 ≤ j ≤ N , let
{
zj

2 < . . . < zj
nj

}
⊂ R and let zj

1 := −∞, zj
nj+1 := +∞.

Since St0
is deterministic, the payoff ϕ (St0

) need not to be discretized and we

set y0 := {ϕ (St0
)}. Then, define the quantization sets yj :=

{
yj

1, . . . , y
j
nj

}
by

yj
k := E

(
ϕ
(
Stj

)
|ϕ
(
Stj

)
∈
[
zj

k, z
j
k+1

])
. (44)

Let Pj (x, du) be the law of ϕ
(
Stj+1

)
knowing that ϕ

(
Stj

)
= x. As in the

quantization algorithm, the kernel Pj is discretized on yj ×yj+1 by the formulae

P̂j

(
yj

k, y
j+1
l

)
:=

E

(
1[zj

k
,zj

k+1]
(
ϕ
(
Stj

))
Pj

(
ϕ
(
Stj

)
,
[
zj+1

l , zj+1
l+1

]))

E

(
1[zj

k
,zj

k+1]
(
ϕ
(
Stj

))) (45)

The next step is to approximate (43) with (44) and (45).

4.5.4 Backward price.

Let χj : R → R such that E
(
B (tj , tj+1)Qj|ϕ

(
Stj

))
= χj

(
ϕ
(
Stj

))
. For no-

tational convenience, let αj
k,l := P̂j

(
yj

k, y
j+1
l

)
. Then, the quantized version

of (43) is

{
χN

(
yN

k

)
:= yN

k 1 ≤ k ≤ nN

χj

(
yj

k

)
:= max

(
yj

k,
∑

1≤l≤nj+1
αj

k,l χj+1

(
yj+1

l

))
, 1 ≤ k ≤ nj, 0 ≤ j ≤ N.

(46)
The needed backward price is finaly

Qb
0 = χ0 (St0

) .

Empirical version. The empirical version of (46) is simply obtained by taking
the MonteCarlo estimators of (44) and (43),

ỹj
k =

1∣∣∣Aj
k

∣∣∣

∑

m∈Aj

k

ϕ
(
Stj

(ωm)
)

and

α̂j
k,l :=

∣∣∣Aj
k ∩Aj+1

l

∣∣∣
∣∣∣Aj

k

∣∣∣

where ω1, . . . , ωM is an i.i.d. sample from P and where

Aj
k :=

{
l;ϕ

(
Stj

(
ωl
))

∈
[
zj

k, z
j
k+1

]}

40 pages 23

4.5.5 Practical design.

Quantization sets. Here, we don’t use (44) to design the quantization sets
yj but we consider some mean order statistics. More precisely, for 1 ≤ j ≤ N ,
assume that nj = n , let ϕj

1, . . . , ϕ
j
n be n independent replications of the random

variable ϕ
(
Stj

)
and let φj

1, . . . , φ
j
n be the corresponding order statistics. Then,

define
yj

k := E

(
φj

k

)
.

and replace the set
[
zj

k, z
j
k+1

]
by the Voronoï cell Ck

(
yj
)

(see (28)).

The implementation of such a procedure is straightforward (no distortion
optimization algorithm is required) and one can show that the distortion induced
by the set yj is somewhat good.

Backward price. Once computed the quantization sets, the end of the algo-
rithm is similar to a one–dimensional quantization method (see section (4.3)).
The details are then omited.

5 Implementation.

5.1 Structure of the implementation.

The implementation of the pricing algorithm have been done in the C language.
Since the Black–Scholes model, the payoff functions and some mathematical
tools are used over all the algorithms, the corresponding routines have been
grouped into specific files. The structure of the implementation then reads as
follow :

1. Black–Scholes routines : the file black.c contains the routines related to
the Black–Scholes model (essentially : backward brownian bridge gen-
eration, backward Black–Scholes stock path generation, forward Black–
Scholes stock path generation, Black–Scholes stock path normalisation,
density function of the Black–Scholes transition kernel).

2. Option routines : the files option.c contains the routines related to the
pre–existing payoff functions. See section (5.2.3) for more informations.

3. Mathematical tools : the mathematical tools are grouped in the following
files :

(a) basis.c : contains the canonical basis for dimensions= 1 . . . 10 and the
Hermite basis for dimensions= 1 . . . 10. These basis are used in the
regression algorithms. See section (5.2.4) for more informations.

(b) random.c : contains some pseudo–random numbers generators and
the Box–Muller gaussian generator. See section (5.4) for more infor-
mations.

(c) lds.c : contains the Sobol’ low discrepancy generator. Used in the
loscbld routine.

(d) sort.c : contains a quick sort algorithm. Used in the Barraquand–
Martineau algorithm to initialise the payoff quantizers.

40 pages 24

(e) cholesky.c : contains the Cholesky decomposition algorithm and some
other linear tools.

(f) fmath.c : contains the number π and the Max, Min functions.

4. Other tools :

(a) message.c : contains the warning/error messages.

(b) memory.c : memory allocation tools.

5. Payoff formulae compilation : the file compile.c contains a syntactic analysis–
formulae tree constructor function and a tree evaluation function. Used
in option.c for the non pre–existing payoff formulaes.

6. Pricing routines : the pricing routines are contained in the following files :

(a) loscb.c : Longstaff–Schwartz algorithm, backward simulation (func-
tion loscb).

(b) loscbn.c : Longstaff–Schwartz algorithm, backward simulation, nor-
malised regressor (function loscbn).

(c) loscbh.c : Longstaff–Schwartz algorithm, backward simulation, Her-
mite basis (function loscbh).

(d) loscbld.c : Longstaff–Schwartz algorithm, backward simulation, for
quasi-random generator.

(e) tsrob.c : Tsitsiklis–VanRoy algorithm, backward simulation (function
tsrob).

(f) raq.c : Random quantization algorithm, backward simulation (func-
tion raq).

(g) qopt.c : Optimal quantization algorithm, backward simulation (func-
tion qopt) .

(h) brgl.c : Broadie–Glassermann algorithm (function brgl).

(i) bama.c : Barraquand–Martineau algorithm (function bama).

7. Scilab interface : the file intamc.c contains the scilab interfaces of the
pricing routines. See section (6) for more informations.

5.2 Pricing routines parameters.

5.2.1 Parameter families.

The head of each pricing function contains three parameter families. First,
the algorithm family (section (5.2.4)); the related parameters have the prefix
“AL_”. Second, the option family (section (5.2.3)); the related parameters have
the prefix “OP_”. Third, the Black–Scholes family (section (5.2.2)); the related
parameters have the prefix “BS_”. The option and the Black–Scholes families
do not depend on the head routines. The parameters of the Black–Scholes and
the option families are all input parameters.

40 pages 25

5.2.2 Black–Scholes family parameters.

Let δ be the size in octets of a double variable.

1. BS_Spot :

Type : double pointer. Must point toward a memory vector of sizeBS_Dimension×
δ octets.

Meaning : initial values of the Black–Scholes stocks.

Relevant values : coordinates > 0.

2. BS_Interest_Rate :

Type : double.

Meaning : riskfree interest rate of the Black–Scholes model.

Relevant values : > 0.

3. BS_Dividend_Rate :

Type : double pointer. Must point toward a memory vector of sizeBS_Dimension×
δ octets.

Meaning : the dividend rates of the Black–Scholes stocks.

Relevant values : coordinates > 0.

4. BS_Dimension :

Type : integer.

Meaning : dimension of the Black–Scholes model

Relevant values : > 0. CAUTION : the regression basis used in the loscb, loscbn,
loscbh, tsrob routines are implemented only for the dimension 1 . . . 10.

5. BS_V olatility :

Type : double pointer. Must point toward a memory vector of sizeBS_Dimension×
δ octets.

Meaning : volatilities of the Black–Scholes stocks.

Relevant values : coordinates > 0.

6. BS_Correlation :

Type : double pointer. Must point toward a memory vector of sizeBS_Dimension×
BS_Dimension× δ octets.

Meaning : correlations between the (correlated) standard brownian motions
underlying the Black–Scholes stocks. Only the strict upper triangle
∆ of the related matrix is taken into account.

Relevant values : meaningful coordinates in] − 1, 1[and matrix with diagonal one
and upper–lower triangles ∆ positive definite.

40 pages 26

5.2.3 Option family parameters.

Let δ be the size in octets of a double variable.

1. OP_Option_Name :

Type : char pointer.

Meaning : name of the payoff function to be used in the algorithm.

Relevant values : the pre–existing vanilla payoff functions are :

“PutMin” : (OP_Strike[0] − min (s1, . . . , sBS_Dimension))+.

“CallMax” : (max (s1, . . . , sBS_Dimension) −OP_Strike[0])+.

“PutBasket” :
(
OP_Strike[0] −

∑
1≤i≤BS_Dimension OP_Basket[i] si

)
+

.

“CallBasket” :
(∑

1≤i≤BS_Dimension OP_Basket[i] si −OP_Strike[0]
)

+
.

“PutGeom” :
(
OP_Strike[0] − (s1 . . . sBS_Dimension)1/BS_Dimension

)
+

.

“CallGeom” :
(

(s1 . . . sBS_Dimension)
1/BS_Dimension −OP_Strike[0]

)
+

.

“MinOfPut” : min
1≤i≤BS_Dimension

(
(OP_Strike[i] − si)+

)
.

“BestOfCall” : max
1≤i≤BS_Dimension

(
(si −OP_Strike[i])+

)
.

If the parameter OP_Option_Name does not belong to the preced-
ing items, it is sent through a compiler formulae; see section (5.3).

2. OP_Basket :

Type : double pointer. When meaningful, must point toward a memory
vector of size BS_Dimension× δ octets.

Meaning : Meaningful if the parameterOP_Option_Name belongs to {“PutBasket′′, “CallBasket′′}.
In that case, coefficients of the basket in the payoff functions “Put-
Basket” and “CallBasket”.

Relevant values : no restriction.

3. OP_Strike :

Type : double pointer. If the parameter OP_Option_Name belongs to
{“MinOfPut′′, “BestOfCall′′}, must point toward a memory vector
of sizeBS_Dimension×δ octets. If the parameterOP_Option_Name
belongs to {“PutMin′′, “CallMax′′, “PutBasket′′, “CallBasket′′, “PutGeom′′, “CallGeom′′},
must point toward a memory vector of size δ octets.

Meaning : Meaningful if the parameter OP_Option_Name is one of the pre–
existing payoff functions. In that case, strike of the payoff functions
{“PutMin′′, “CallMax′′, “PutBasket′′, “CallBasket′′, “PutGeom′′, “CallGeom′′},
or strike vector of the payoff functions {“MinOfPut′′, “BestOfCall′′}.

Relevant values : no restriction.

4. OP_Maturity :

Type : double.

40 pages 27

Meaning : maturity of the option.

Relevant values : > 0.

5. OP_Exercice_Dates :

Type : integer.

Meaning : number of possible exercise dates of the bermudean option. The
exercise dates are tj = OP_Maturity.j/(OP_Exercice_Dates−1),
j = 0, . . . , OP_Exercice_Dates− 1.

Relevant values : > 0.

5.2.4 Algorithms parameters.

The loscb, loscbn routines.

1. AL_FPrice (Output parameter)

Type : double pointer.

Meaning : adress of the output of the algorithm (forward price).

2. AL_MonteCarlo_Iterations

Type : long integer.

Meaning : MonteCarlo parameter of the algorithm. See section (4.1) for more
informations.

Relevant values : no restriction. If negative, no computation is done.

3. AL_Basis_Name

Type : char pointer.

Meaning : name of the basis to be used for the regression procedures.

Relevant values : the implemented basis are : (canonical) “CanD1”,...,“CanD10” and
(Hermite) “HerD1”,...,“HerD10”.

4. AL_Basis_Dimension

Type : integer.

Meaning : dimension of the regression basis AL_Basis_Name.

Relevant values : > 0. The implemented maximal values are : “CanD1”:20, “CanD2”:21,
“CanD3”:20, “CanD4”:21, “CanD5”:20, “CanD6”:19, “CanD7”:20,
“CanD8”:23, “CanD9”:26, “CanD10”:29 , “HerD1”:6, “HerD2”:21,
“HerD3”:20, “HerD4”:21, “HerD5”:20, “HerD6”:19, “HerD7”:20, “HerD8”:23,
“HerD9”:26, “HerD10”:29.

5. AL_PayOff_As_Regressor

Type : integer.

Meaning : the payoff function is introduced in the basis regression at every
time greater than or equal to AL_PayOff_As_Regressor.

Relevant values : no restriction.

40 pages 28

6. AL_Antithetic

Type : integer.

Meaning : if AL_Antithetic! = 0, antithetic Black–Scholes paths are used
(AL_MonteCarlo_Iterations/2 plus AL_MonteCarlo_Iterations/2
antithetic).

Relevant values : no restriction.

7. AL_ErrorMessage (Output parameter)

Type : char pointer. Must point toward a sufficiently large memory vector
of char (default size in the Scilab interface : 10000).

Meaning : contains the error/warning messages sent by the algorithm during
its run.

8. AL_ShuttingDown

Type : integer.

Meaning : if AL_ShuttingDown = 0, the function free is not used on the
allocated variable. The routine can then be re–used with the same
parameter BS_Dimension without new call to the function malloc.

Relevant value : no restriction.

The loscbh routine. The algorithm parameters family of the loscbh routine
equals the loscb routine’s one less the parameter AL_Basis_Name.

The loscbld routine. The algorithm parameters family of the loscbld routine
equals the loscb routine’s one less the parameter ALAntithetic.

The tsrob routine. The algorithm parameters family of the tsrob routine
equals the loscb routine’s one less the parameter AL_Antithetic and plus the
output parameter AL_BPrice :

Type : double pointer.

Meaning : adress of the first output of the algorithm (backward price).

The raq routine.

1. AL_BPrice (Output parameter)

Type : double pointer.

Meaning : adress of the first output of the algorithm (backward price).

2. AL_FPrice (Output parameter)

Type : double pointer.

Meaning : adress of the second output of the algorithm (forward price).

3. AL_MonteCarlo_Iterations

Type : long integer.

40 pages 29

Meaning : MonteCarlo parameter of the algorithm. See section (4.3.8) for
more informations.

Relevant values : no restriction. If negative, no computation is done.

4. AL_T_Size

Type : integer.

Meaning : size of the random quantizers.

Relevant values : > 0.

5. AL_ErrorMessage (Output parameter) see the preceding routines.

6. AL_ShuttingDown see the preceding routines.

The qopt routine. The algorithm parameters family of the qopt routine equals
the raq routine’s one plus the two following parameters :

1. AL_Tesselation_Path

Type : char pointer.

Meaning : name of the path containing the tesselationAL_Tesselation_Name.

2. AL_Tesselation_Name

Type : char pointer.

Meaning : name of the tesselation to be used by the algorithm. To use
the default tesselation, set AL_Tesselation_Name =′′ d′′; the files
“d[BS_Dimension]n[AL_T_Size].tes will be loaded. If you want to
design your own tesselation, adopt the following format:

fprintf(YourFile,“%s \n”,String1);
fprintf(YourFile,“%s \n”,String2);
fprintf(YourFile,“%s \n”,String3);
fprintf(YourFile,“%s \n”,String4);
for (i=0;i<AL_T_Size;i++){
fprintf(YourFile,“%f %f ... %f ”,YourTesselation[i][1],...,YourTesselation[i][BS_Dimension]);
fprintf(YourFile,“%f \n”,Radius[i]);
}

where String1,..,String4 are some strings without space containing
some informations or comments and where Radius[i] is the radius
of the Voronoï cell of the ith point of your tesselation. Then, set
AL_Tesselation_Name to be the name of your file. See section (4.3.9)
for more information.

The brgl routine. The algorithm parameters family of the brgl routine equals
the raq routine’s one but the parameters AL_T_Size is replaced by the pa-
rameters AL_Mesh_Size (integer > 0, size of the meshes; see section (4.4) for
more informations).

40 pages 30

The bama routine.

1. AL_BPrice (Output parameter)

Type : double pointer.

Meaning : adress of the first output of the algorithm (backward price).

2. AL_MonteCarlo_Iterations

Type : long integer.

Meaning : MonteCarlo parameter of the algorithm. See section (4.5) for more
informations.

Relevant values : no restriction. If negative, no computation is done.

3. AL_PO_Size

Type : integer.

Meaning : size of the payoff quantizers.

Relevant values : > 0.

4. AL_PO_Init

Type : integer.

Meaning : number of order statistic used to initialise the payoff quantizers.

Relevant values : > 0.

5. AL_ErrorMessage (Output parameter) see the preceding routines.

6. AL_ShuttingDown see the preceding routines.

5.3 Payoff formulae.

When the parameter OP_Option_Name is not the name of a pre–existing
payoff function, it is sent through a syntactic analyser. The generic syntax of
the string OP_Option_Name must be

“Idt1 = Num1; . . . ; IdtN = NumN@f (s1, . . . , sd, Idt1, . . . , IdtN , Cst1, . . . , CstM)
′′

where d is the Black–Scholes dimension, s1, . . . , sd are the reserved word for
the Black–Scholes stocks, Idt1, . . . , IdtN are some alphabetic identifiers, and
where Num1, . . . , NumN , Cst1, . . . , CstM are some flotting point numbers or
some pre–existing constants.

First, the identifiers declared before “@” are analysed. If the related syntax
is correct without duplicate identifiers, the formulae

“f (s1, . . . , sd, Idt1, . . . , IdtN , Cst1, . . . , CstM)
′′

(47)

is analysed. If the syntax of (47) is correct according to the grammar depicted
in the file compile.c, the output of the compilation process is a son–brothers
formulae tree. This tree is evaluated during the run of the pricing algorithm
without new syntactic analysis.

The available functions are (a function can have several names):

40 pages 31

1. Arity one : sin, cos, tan, tg, asin, arcsin, arccos, acos, atan, arctan, exp,
log, ln, cosh, ch, acosh, argch, sinh, sh, asinh, argsh, tanh, th, atanh,
argth, rac (=square root), sqrt, Abs (absolute value), E (integer part), trc
(integer part), dec (decimal part).

2. Undefined arity : max, min, ind (ind(a1, . . . , aN)=1 if {a1 < . . . < aN},
=0 otherwise).

The available pre-existing constants are π and e.
Some example of formulaes are given in the file lists.sci.

5.4 Pseudo–random and quasi–random numbers genera-

tors.

The available pseudo–random numbers generators are : KNUTH, LECUYER,
MRGK3, MRGK5, SHUFL, TAUS. The single available quasi–random generator
is SOBOL (Antonov&Saleev version of the Sobol sequence, random direction
numbers). It is used only in the loscbld routine. Note that the generator to be
used by the pricing routines does not belong to the routines parameters but is a
parameter of the Scilab interface. To use the generator and the pricing routines
straight from a C–source (without the Scilab interface), see section (7).

6 Scilab interface.

The Scilab interface intamc.c is a C–file using some translation routines from
the Scilab variables to the C variables and containing the pricing routines calls
with the translated parameters. It allows to create a Scilab library containing
the Scilab functions loscb, loscbn, loscbh, tsrob, raq, qopt, bama and brgl.

In the next section, we describe in details the input/output Scilab parameters
of these functions. Some examples of these parameters are given in the file
lists.sci. See also the section (6.3).

6.1 Functions parameters

The functions contained in the library amclib have three input parameters :

1. An algorithm T–list containing the Scilab versions of the C parameter
algorithm family (see section (6.1.3)).

2. An option T–list containing the Scilab versions of the C parameter option
family (see section (6.1.2)).

3. A Black–Scholes T–list containing the Scilab versions of the C parameter
Black–Scholes family (see section (6.1.1)).

and one output T–list. The generic call of the pricing functions is

−− > z = Function_Name (ALL,BSL,OPL)

where ALL is an algorithm T–list, BSL is a Black–Scholes T–list and where
OPL is an option T–list

40 pages 32

6.1.1 The Black–Scholes T–list.

1. type : Scilab T–list.

2. fields : (the name of the fields have no meaning for the interface)

(a) (types field) [“BS”,“BS_Dimension”,“BS_Spot”,
“BS_Interest_Rate”,“BS_Dividend_Rate”,“BS_Volatility”,“BS_Correlation”]

(b) (“BS_Dimension” field) integer > 0, dimension of the Black-Scholes
Model.

(c) (“BS_Spot” field) vector of size BS_Dimension , initial values of the
Black-Scholes stocks.

(d) (“BS_Interest_Rate” field) real number > 0, riskfree interest rate of
the Black-Scholes model.

(e) (“BS_Volatility” field) vector of size BS_Dimension, volatilities of
the Black-Scholes stocks.

(f) (“BS_Correlation” field) several possible formats :

i. real number between −1 and 1 : constant correlation between
the Black-Scholes stocks.

ii. matrix of size (BS_Dimension,BS_Dimension) : matrix correla-
tion of the Black-Scholes stocks; the scilab interface only takes
into account the strict upper triangle of the matrix.

iii. vector of size BS_Dimension*(BS_Dimension-1)/2 : concatena-
tion of the rows of the strict upper triangle of the Black-Scholes
stocks correlations matrix.

6.1.2 The option T–list.

1. type : Scilab T–list.

2. fields : (the name of the fields have no meaning for the interface)

(a) (types field) [“OP”,“OP_Option_Name”,“OP_Exercise_Dates”,
“OP_Basket”,“OP_Strike”]

(b) (“OP_Option_Name” field) string; two possible formats :

i. one of the following pre-existing payoff functions : "PutBasket",
"CallBasket", "PutMin", "CallMax", "PutGeom", "CallGeom", "Be-
stOfCall", "MinOfPut". (see section (5.2.3) for the definition of
these functions).

ii. payoff formulae. See section (5.3) for the syntactic requirements
and the available functions.

(c) (“OP_Exercise_Dates” field) integer > 0; number of available ex-
ercise dates for the bermudean option. The exercise dates are tj =
OP_Maturity.j/(OP_Exercice_Dates− 1),
j = 0, . . . , OP_Exercice_Dates− 1.

(d) (“OP_Basket” field) if OP_Option_Name="PutBasket" or ="Call-
Basket", vector of size BS_Dimension. OP_Basket[i] is the coef-
ficient of the ith BlackScholes stock in the basket. This param-
eter has no significance if OP_Option_Name<>"PutBasket" and
<>"CallBasket".two possible formats :

40 pages 33

(e) (“OP_Strike” field) two possible formats :

i. if OP_Option_Name is in "PutBasket","CallBasket","PutMin",
"CallMax","PutGeom","CallGeom", real number, strike of the
corresponding option.

ii. if OP_Option_Name is in "BestOfCall", "MinOfPut", vector of
size BS_Dimension, strikes of the calls (resp. put) related to the
option "BestOfCall" (resp. "MinOfPut").

6.1.3 The algorithm T–list.

The loscb, loscbn, tsrob T–list.

1. type : Scilab T–list.

2. fields : (the name of the fields have no meaning for the interface)

(a) (types field) [“LOSCB”,“AL_Computations_Number”,
“AL_MonteCarlo_Iterations”,“AL_Generator_Name”,
“AL_Basis_Name”,“AL_Basis_Dimension”,“AL_PayOff_As_Regressor”,
“AL_Antithetic”]

(b) (“AL_Computations_Number” field) integer > 0, number of com-
putations to be done.

(c) (“AL_MonteCarlo_Iterations” field) (long) integer> 0. MonteCarlo
parameter; Its significance depends on the used algorithm.

(d) (“AL_Generator_Name” field) string. Name of the pseudo–random
numbers generator to be used. The possible values of this parame-
ter are : "KNUTH", "LECUYER", "MRGK3", "MRGK5", "SHUFL",
"TAUS".

(e) (“AL_Basis_Name” field) string, name of the regression basis to be
used. The implemented basis are : canonical : "CanD1", "CanD2",
... , "CanD10". Hermite : "HerD1", "HerD2", ... "HerD10". For
higher Black–Scholes dimension, implement the needed basis in the
file basis.c .

(f) (“AL_Basis_Dimension” field) integer > 0, dimension of the regres-
sion basis AL_Basis_Name. The implemented maximal values are
: CanD1:20, CanD2:21, CanD3:20, CanD4:21, CanD5:20, CanD6:19,
CanD7:20, CanD8:23, CanD9:26, CanD10:29 , HerD1:6, HerD2:21,
HerD3:20, HerD4:21, HerD5:20, HerD6:19, HerD7:20, HerD8:23, HerD9:26,
HerD10:29.

(g) (“AL_PayOff_As_Regressor” field) integer. The payoff function is
introduced in the regression basis at every time greater than or equal
to AL_PayOff_As_Regressor.

(h) (“AL_Antithetic” field) integer, if AL_Antithetic! = 0, use of anti-
thetic Black–Scholes paths.

The loscbh T–list. T–list of type “LOSCB” without the field “AL_Basis_Name”.

The loscbld T–list. T–list of type “LOSCB” without the field “AL_Antithetic”.
Note that the relevant value for the field “AL_Generator_Name” is ’SOBOL’.

40 pages 34

The raq T–list

1. type : Scilab T–list.

2. fields : (the name of the fields have no meaning for the interface)

(a) (types field) [“RAQ”,“AL_Computations_Number”,
“AL_MonteCarlo_Iterations”,“AL_Generator_Name”,“AL_T_Size”]

(b) (“AL_Computations_Number” field) already defined.

(c) (“AL_MonteCarlo_Iterations” field) already defined.

(d) (“AL_Generator_Name” field) already defined.

(e) (“AL_T_Size” field) integer > 0, size of the random tesselations.

The qopt T–list.

1. type : Scilab T–list.

2. fields : (the name of the fields have no meaning for the interface)

(a) (types field) [“QOPT”,“AL_Computations_Number”,
“AL_MonteCarlo_Iterations”,“AL_Generator_Name”,“AL_T_Size”,
“AL_Tesselation_Path”,“AL_Tesselation_Name”]

(b) (“AL_Computations_Number” field) already defined.

(c) (“AL_MonteCarlo_Iterations” field) already defined.

(d) (“AL_Generator_Name” field) already defined.

(e) (“AL_T_Size” field) integer > 0, size of the random tesselations.

(f) (“AL_Tesselation_Path” field) string, path of the optimal tessela-
tion to be used. See section (5.2.4), paragraph “The qopt routine”.

(g) (“AL_Tesselation_Name” field) string, name of the optimal tessela-
tion to be used. If AL_Tesselation_Name="", the default tesselation
d[BS_Dimension]n[AL_TSize].tes is called.

The brgl T–list.

1. type : Scilab T–list.

2. fields : (the name of the fields have no meaning for the interface)

(a) (types field) [“BRGL”,“AL_Computations_Number”,
“AL_MonteCarlo_Iterations”,“AL_Generator_Name”,“AL_Mesh_Size”]

(b) (“AL_Computations_Number” field) already defined.

(c) (“AL_MonteCarlo_Iterations” field) already defined.

(d) (“AL_Generator_Name” field) already defined.

(e) (“AL_Mesh_Size” field) integer > 0, size of the meshes.

40 pages 35

The bama T–list.

1. type : Scilab T–list.

2. fields : (the name of the fields have no meaning for the interface)

(a) (types field) [“BAMA”,“AL_Computations_Number”,
“AL_MonteCarlo_Iterations”,“AL_Generator_Name”,“AL_Mesh_Size”]

(b) (“AL_Computations_Number” field) already defined.

(c) (“AL_MonteCarlo_Iterations” field) already defined.

(d) (“AL_Generator_Name” field) already defined.

(e) (“AL_PO_Size” field) integer > 0, size of the quantizers of the payoff
space to be used.

(f) (“AL_PO_Init” field) integer > 0, number of order statistics used
to compute the quantizers.

6.1.4 The output parameter.

The loscb, loscbn, loscbh, loscbld, tsrob output T–list.

1. type : Scilab T–list.

2. fields : (the name of the fields have no meaning for the interface)

(a) (types field) [“Alg_Name_Price”,“AL_FPrice”,“AL_ErrorMessage”]

(b) (“AL_FPrice” field) vector of size “AL_Computations_Number”,
for prices.

(c) (“AL_ErrorMessage” field) string. Error/warning messages sent by
the algorithm during the computations.

The raq, qopt, brgl output T–list.

1. type : Scilab T–list.

2. fields : (the name of the fields have no meaning for the interface)

(a) (types field) [“Alg_Name_Price”,“AL_BPrice”,“AL_FPrice”,“AL_ErrorMessage”]

(b) (“AL_BPrice” field) vector of size “AL_Computations_Number”,
backward prices.

(c) (“AL_FPrice” field) already defined.

(d) (“AL_ErrorMessage” field) already defined.

The bama output T–list.

1. type : Scilab T–list.

2. fields : (the name of the fields have no meaning for the interface)

(a) (types field) [“Alg_Name_Price”,“AL_BPrice”,“AL_ErrorMessage”]

(b) (“AL_BPrice” field) already defined.

(c) (“AL_ErrorMessage” field) already defined.

40 pages 36

6.2 Build and use of the Scilab interface.

6.2.1 Building the amclib Scilab library.

The working directory must contain the files intamc.c, bama.c (.h), brgl.c (.h),
loscb.c (.h), loscbn.c (.h), loscbh.c (.h), loscbld.c (.h), raq.c (.h), qopt.c (.h),
tsrob.c (.h), basis.c (.h), cholesky.c (.h), random.c (.h), lds.c (.h), message.c
(.h), memory.c (.h), black.c (.h), option.c (.h), fmath.c (.h), compile.c (.h),
sort.c (.h) and the file builder.sce. To build the library amclib, simply type

−− > exec builder.sce

The Scilab object files .lo and the Scilab library amclib.so are created.

6.2.2 Using the amclib Scilab library.

When begining a Scilab session, get the working directory to be the one con-
taining the library and type

−− > exec loader.sce

The functions loscb, loscbn, loscbh, tsrob, raq, qopt, bama and brgl are loaded.
See the section (6.1) to design the parameters of the functions. Numerous
examples of parameters are given in the file lists.sci; many of them can be
tested with the function examc.sci; see the next section.

6.3 The function examc.sci.

The file lists.sci contains about 100 examples of T–lists parameters. 80 of them
can be runned with the function examc (contained in the same file). To load
this function, type

−− > getf(’lists.sci’)
Then, call the function with the two following parameters :

1. the Black–Scholes dimension, between 1 and 10,

2. the name of a Scilab pricing function,

(for instance, −− > z=examc(4,’loscb’)).
The output parameter of the function examc.sci is the following T–list

1. (types field) [’EX’,’b’,’o’,’a’,’p’] :

2. (’b’ field) the Black–Scholes T–list used in the example.

3. (’o’ field) the option T–list used in the example.

4. (’a’ field) the algorithm T–list used in the example.

5. (’p’ field) the output T–list of the pricing function called with the T–lists
’a’,’b’ and ’o’.

40 pages 37

7 Using the pricing routines from a C–source.

If you want to use the pricing routines straight from a C–source (i.e., without
the Scilab interface), get the following includes in your source file :

#include “loscb.h”
#include “loscbn.h”
#include “loscbh.h”
#include “loscbld.h”
#include “raq.h”
#include “qopt.h”
#include “brgl.h”
#include “bama.h”
#include “tsrob.h”
#include “random.h”
#include “lds.h”

and proceed your source compilation with the files bama.c, brgl.c, loscb.c,
loscbn.c , loscbh.c, raq.c, qopt.c, tsrob.c, basis.c, cholesky.c, random.c, lds.c,
message.c, memory.c, black.c, option.c, fmath.c, compile.c, sort.c.

Before to use the routines (except loscbld), initialise (or re–initialise) the
generator with the function

void InitGenerator(char *ErrorMessage, char *Generator_Name)

The parameter ErrorMessage must point toward a memory vector of min-
imal size 42 octets (length of the error message if the generator is unknown).
An example of call is

InitGenerator(ErrorMessage,“LECUYER”);

See section (5.2) to design the parameters needed by the pricing routines.
Before to use the routine loscbld, initialise (or re–initialise) the quasi–random

generator with the function

void InitLDGenerator(char *ErrorMessage, char *LDGenerator_Name, long
Dimension, long Working_Dimension)

The parameter ErrorMessage must point toward a memory vector of mini-
mal size 41 octets (length of the error message if the generator is unknown). The
parameter Dimension must be 2 ∗BS_Dimension ∗OP_Exercise_Dates the
parameter Working_Dimension must be 2 ∗BS_Dimension. For the time be-
ing, the single available quasi–random generator is “SOBOL” so the parameter
LDGenerator_Name must be “SOBOL”.

To remove the memory used by the generator, use the function void KillLD-
Generator().

8 Rogers Methods

This section is due to J.F.Bergez.
Rogers proposes in [10] a new Monte Carlo method based on Lagrangian mar-
tingales to price the American put. The expectation of the pathwise maximum
of the option payoff less any martingale starting from 0 at t = 0 gives an upper
bound for the price of the option. A good choice of the martingale makes this
bound accurate.

40 pages 38

Notations

We consider a single primitive asset whose price (St)0≤t satisfies the Black
and Scholes equation under the risk-neutral probability measure :

S0 > 0
dSt = St((r − d)dt+ σdWt) 0 ≤ t ≤ T

(48)

where

• T is the maturity date

• r is the risk free rate

• d is the dividend rate

• σ is the volatility parameter

• (Wt)0≤t≤T is a standart brownian motion

• µ = r − d− σ2/2

The main result

Let Zt = e−rt(K−St)
+ and Yt denote respectively the discounted payoff and

price of the American put at time t ≤ T . This method is based on a theorical
result given and demonstrated in [?] :

Y0 = inf
M∈H1

0

E

[
sup

0≤t≤T
(Zt −Mt)

]
(49)

where H1
0 is the space of martingales M for which sup0≤t≤T |Mt| ∈ L1, and such

that M0 = 0.
Proof : For (Mt)t≤T ∈ H1

0 and τ denoting any stopping time of the Brownian
filtration smaller than T , E(Mτ) = 0. Therefore

Y0 = sup
τ

E(Zτ) = sup
τ

E(Zτ −Mτ) ≤ E

(
sup
t≤T

(Zt −Mt)

)

Hence the left hand side of (49) is smaller than the right hand side. According
to well known results concerning the American put, there is a predictable non
decreasing process (At)t≤T (which comes from the Doob Meyer decomposition of
the super-martingale (Yt)t≤T) such thatAt = 0 for t ≤ τ = inf {s ≤ T : Ys = Zs}
and Mt = Yt − Y0 +At belongs to H1

0 .
Now since ∀t ≤ T, Yt ≥ Zt and At ≥ 0

sup
t≤T

(Zt −Mt) = Y0 + sup
t≤T

(Zt − Yt −At)

= Y0 + Zτ − Yτ −Aτ

= Y0

which gives the reverse inequality.
The method uses this result by choosing a good martingale which gives

an accurrate upper bound. Then the expectation E
[
sup0≤t≤T (Zt −Mt)

]
is

evaluated by Monte Carlo.

40 pages 39

The choice of the martingale

In [?] Rogers suggests to take Mt equal to the martingale part of the European
put starting where the option goes first in the money :

dMt = I{t∗≤t}dP̃ (t, St) (50)

where t∗ = inf {0 ≤ t : St ≤ K} and P̃ (t, St) is the discounted price of the
European put ie P̃ (t, St) = e−rtP (t, St). By the Black and Scholes formula
P (t, St) = Ke−r(T −t)N(−d2) − Ste

−d(T −t)N(−d1) when

• d1 = ln(St/K)+(r−d+σ2/2)(T −t)

σ
√

T −t

• d2 = d1 − σ
√
T − t

N is the standart normal cumulative distribution function.

Implementation

For the previous choice of (Mt)0≤t≤T , infλ∈R E
[
sup0≤t≤T (Zt − λMt)

]
is ap-

proximated by Monte Carlo.

The first step is devoted to the approximation of λ∗ wich realizes the minimum
of E

[
sup0≤t≤T (Zt − λMt)

]
. Np paths are simulated with n equal time steps.

The function λ 7→ 1
Np

∑Np

i=1 sup0≤k≤n

(
Zi

kT
n

− λM i
kT
n

)
being convex, we proceed

by dichotomy to find λ̂ a zero of a finite difference approximation of its deriva-
tive.

The second step uses the above estimated λ̂ and a larger number N of
simulated paths to return the result

Ŷ0(S0) =
1

N

N∑

i=1

sup
0≤k≤n

(
Zi

kT
n

− λ̂M i
kT
n

)
. (51)

The delta is approximated by finite differences : Ŷ0(S0+h)−Ŷ (S0)
h where Ŷ0(S0+h)

is computed concurrently with Ŷ0(S0) using the same random numbers and the

same λ̂.

References

[1] J.BARRAQUAND D.MARTINEAU. Numerical valuation of high dimen-
sional multivariate american securieties. J.Of Finance and Quantitative
Analysis, 30:383–405, 1995.

[2] F.A.LONGSTAFF E.S.SCHWARTZ. Valuing american options by simula-
tions:a simple least-squares approach. Working Paper Anderson Graduate
School of Management University of California, 25, 1998.

[3] G.PAGES. A space vector quantization for numerical integration. Journal
of Applied and Computational Mathematics, 89:1–38, 1997.

40 pages 40

[4] J.C.FORT G.PAGES. About the a.s. convergence of the kohonen algorithm
with a general neighborhood function. The Annals of Applied Probability,
5(4), 1995. 16

[5] P.COHORT. Weak and strong law of large numbers for the random nor-
malised distortion. Submited for publication, 2000. 14

[6] M.BROADIE P.GLASSERMANN. Pricing american-style securities using
simulation. J.of Economic Dynamics and Control, 21:1323–1352, 1997.

[7] M.BROADIE P.GLASSERMANN. A stochastic mesh method for pric-
ing high-dimensional american options. Working Paper, Columbia
University:1–37, 1997.

[8] A.GERSHO R.M.GRAY. Vector Quantization and Signal Compression.
Kluwer, 7th edition, 1992.

[9] M.J.SABIN R.M.GRAY. Global convergence and empirical consistency of
the generalised lloyd algorithm. IEEE Transactions on Information Theory,
32:148–155, March 1986. 16

[10] L.C.G. Rogers. Montecarlo valuation of american option. Preprint, 2000.
37

[11] J.N.TSITSIKLIS B.VAN ROY. Optimal stopping of markov processes:
Hilbert spaces theory, approximations algorithms and an application to
pricing high-dimensional financial derivatives. IEEE Transactions on Au-
tomatic Control, 44(10):1840–1851, October 1999.

[12] J.N.TSITSIKLIS B.VAN ROY. Regression methods for pricing complex
american-style options. Working Paper, MIT:1–22, 2000.

[13] G.PAGES V.BALLY. A quantization method for the discretization of
bsde’s and reflected bsde’s. Working Paper Université Paris XII, pages
1–40, 2000. 11, 15

	Introduction.
	The market model.
	Pricing of Bermudean style options.
	Pricing algorithms.
	The Longstaff–Schwartz algorithm.
	Basic principle.
	Forward price.
	Backward simulation.
	Practical design.
	Some other versions.

	The Tsitsiklis–VanRoy algorithm.
	Basic principle.
	Backward price.
	Forward price.
	Practical design.
	Some other versions

	The Quantization algorithms.
	Basic principle.
	Dynamical programming algorithm.
	Quantized kernel.
	Backward price.
	Empirical version for Q0b.
	Forward price.
	Empirical version for Q0f.
	The Random Quantization algorithm.
	Optimal quantization and random weights.
	Payoff vectorization.

	The Broadie–Glassermann algorithm.
	Basic principle.
	Mesh generation.
	Weights.
	Backward price.
	Forward price.
	Practical design.

	The Barraquand–Martineau algorithm.
	Basic principle.
	Dynamical programming algorithm.
	Quantized payoff space and transitions.
	Backward price.
	Practical design.

	Implementation.
	Structure of the implementation.
	Pricing routines parameters.
	Parameter families.
	Black–Scholes family parameters.
	Option family parameters.
	Algorithms parameters.

	Payoff formulae.
	Pseudo–random and quasi–random numbers generators.

	Scilab interface.
	Functions parameters
	The Black–Scholes T–list.
	The option T–list.
	The algorithm T–list.
	The output parameter.

	Build and use of the Scilab interface.
	Building the amclib Scilab library.
	Using the amclib Scilab library.

	The function examc.sci.

	Using the pricing routines from a C–source.
	Rogers Methods

