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Abstract

Applying the pricing method based on Fourier-Cosine series expansion
(COS) proposed in [3], we implement the algorithms for pricing butterfly
options under the uncertain volatility model. The idea is to formulate
the pricing problem into a stochastic control problem and then apply the
Fourier-Cosine series expansion method to solve the stochastic control
problem.

Premia 18

1 Butterfly Option under Uncertain Volatility

Model

We assume that the dynamics of the asset price follows the uncertian volatility
model:

dSs = (r − d)Ssds+ αsSsdWs, S0 given. (1)

(αs)0≤s≤T is an uncertain volatility process, which is valued in the interval
[a−, a+] and r is the risk-neutral interest rate, d is the dividend. The payoff
function of the butterfly options with strike K1 and K2 at maturity T is

g(ST ) = (ST −K1)+ − 2

(

ST −
K1 +K2

2

)+

+ (ST −K2)+. (2)

The price of butterfly option under the uncertain volatility model is the worst
case of expected payoff for an investor with a long position of this option, that
is

v(t, S) = inf
α∈[α−,α+]

J(t, S, α) = inf
α∈[α−,α+]

E

[

e−r(T −t)g(ST )
]

. (3)

Thus the problem of pricing butterfly options under uncertain volatility model
converts to the stochastic control problem where the value function is v(t, S)
and taking the infimum over the gain function J(t, S, α) = E

[

e−r(T −t)g(ST )
]

.
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2 Dynamics Programming Principle

The optimal control problem can be solved backward recursively by the Bell-
man’s optimality principle, which is also called the dynamic programming prici-
ple. This priciple shows that if one has taken an optimal control path until some
arbitrary observation time θ, given this information, it remains optimal ot use
it after that observation time, which is stated as follows:

Remark 1. Let (t, x) ∈ [0, T ] × R
n. Then we have

v(t, x) = sup
α∈[α−,α+]

E

[

e−ρ(θ−t)v(θ, St,x
θ )

]

, (4)

for any stopping time θ ∈ [t, T ] and S
t,x
θ stands for the asset price at stopping

time θ given St = x.

Remark 2. By the dynamic programming principle, on can derive the well-
known Hamilton-Jacobi-Bellman (HJB) equation corresponding to the problem
(3).

−
∂v

∂t
(t, S) + rv(t, S) − min

α∈[α−,α+]

[

rS
∂v

∂S
(t, S) +

1

2
α2S2 ∂

2v

∂S2
(t, S)

]

= 0, (5)

∀(t, S) ∈ [0, T ) × R+, which yields

{

if ∂2v
∂S2 ≤ 0 ⇒ take α = α+

if ∂2v
∂S2 > 0 ⇒ take α = α−.

(6)

This means that the infimum achieves either when α = α− or when α = α+, so
that it allows us to restirct the set of possible control values to A = {a−, a+}.

3 COS method for stochastic control problem

To solve the stochastic control problem (3) by dynamic programming priciple,
the time interval [t, T ] is divided into M grids: t = t0 < t1 < · · · < tM = T ,
with △t := tm − tm−1. In each time grid [tm, tm+1), a constant volatility
am ∈ {a−, a+} is taken such that the gain function is minimized. The dy-
namic programming priciple is used to determine the value function backward
recursively by the following equation

v(tm−1, x) = min
αm−1∈{α−,α+}

e−ρ△t
E[v(tm,Xtm

)|Xtm−1
= x, αm−1]

= min[c(tm−1, x, α
−), c(tm−1, x, α

+)], (7)

where Xs := log(Ss), s ∈ [t, T ] and the continuation value

c(tm−1, x, α) = e−ρ△t
E[v(tm,Xtm

)|Xtm−1
= x, αm−1 = α]

= e−ρ△t

∫

R

v(tm, y)f(y | x, α)dy. (8)

The numerical method is based on the cosine series expansions of the value
function at the next time level and the density function. The resulting equation
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is called the COS formula, due to the use of Fourier-cosine series expansions.
Fourier series expansions and their convergence properties have been discussed
in [1]. The conditional density function f(y | x, α) decays to zero rapidly as
y → ±∞, so that we can, for given x, truncate the infinite integration range of
the expectation to some interval [a, b] ⊂ R without loosing significant accuracy.
This gives the approximation

c1(tm−1, x, α) = e−ρ△t

∫ b

a

v(tm, y)f(y | x, α)dy (9)

= e−ρ△t

∫ b

a

v(tm, y)

+∞
∑

k=0

′Gk(x, α) cos

(

kπ
y − a

b− a

)

dy

In the second equation in (9), the conditional density is replaced by its Fourier
cosine expansion in y on [a, b], with series coefficients {Gk(x, α)}±∞

k=0 defined by

Gk(x, α) :=
2

b− a

∫ b

a

f(y | x, α) cos

(

kπ
y − a

b− a

)

dy

≈
2

b− a
Re

(

ψ

(

kπ

b− a
| x, α

)

e−ikπ a
b−a

)

. (10)

∑

′ in (9) indicates that the first term in the summation is weighted by one-half
and ψ(u|x, α) in (10) is the conditional characteristic function of the logarithm
of the asset price Xtm

given Xtm−1
= x. We interchange summation and inte-

gration and define:

Vk(tm) :=
2

b− a

∫ b

a

v(tm, y) cos

(

kπ
y − a

b− a

)

dy (11)

which are the Fourier cosine series coefficients of v(tm, y) on [a, b]. Then the
continuation value can be approximated as

c(tm−1, x, α) ≈ e−ρ△t

N−1
∑

k=0

′Re

(

ψlevy

(

kπ

b− a
|α

)

eikπ x−a
b−a

)

Vk(tm)

:= ĉ(tm−1, x, α). (12)

The characteristic function ψlevy(u|α) is the stationary increment of Xs in time
interval △t, which is ψlevy(u|α) = exp(iu(r − d − 1

2α
2))△t − 1

2u
2α2△t). Note

that it depends on the volatility α but independent of the initial value of x.

3.1 Recursion formula for coefficients Vk

The algorithm for solving the stochastic control problems is based on the recur-
sive recovery of the coefficients Vk, starting with the coefficients at the terminal
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time:

Vk(tM )

=
2

b− a

∫ b

a

v(T, y) cos

(

kπ
y − a

b− a

)

dy =
2

b− a

∫ b

a

g(ey) cos

(

kπ
y − a

b− a

)

dy

=
2

b− a

[

χk(logK1, b, a, b) − 2χk

(

K1 +K2

2
, b, a, b

)

+ χk(logK2, b, a, b)

−K1ϕk(logK1, b, a, b) + (K1 +K2)ϕk

(

K1 +K2

2
, b, a, b

)

−K2ϕk(logK2, b, a, b)

]

,

where χk(l, u, a, b) and ϕk(l, u, a, b) are given as follows:

χk(l, u, a, b) :=

∫ u

l

ex cos

(

kπ
x− a

b− a

)

dx

=
1

1 +
(

kπ
b−a

)2

[

cos

(

kπ
u− a

b− a

)

eu − cos

(

kπ
l − a

b− a

)

el

kπ

b− a
sin

(

kπ
u− a

b− a

)

eu −
kπ

b− a
sin

(

kπ
l − a

b− a

)

el

]

,

ϕk(l, u, a, b) :=

∫ u

l

cos

(

kπ
x− a

b− a

)

dx

=

{
[

sin
(

kπ u−a
b−a

)

− sin
(

kπ l−a
b−a

)]

b−a
kπ
, k 6= 0

u− l, k = 0.

The coefficients Vk(tM ), k = 0, · · · , N are used for the approximation of the
continuation value at time tM−1. The other time level of the Fourier coefficients
V̂k(tm) are approximated by

V̂k(tm) =
2

b− a

∫ b

a

min[ĉ(tm, y, α
−), ĉ(tm, y, α

+)] cos

(

kπ
y − a

b− a

)

dy, (13)

where m = 1, · · · ,M−1. To calculate V̂k(tm), we divide the integration interval
[a, b] into sub-domains D−

m and D+
m, for which the optimal control values at

control time tm are α−
m and α+

m, respectively:

V̂k(tm) =
2

b− a

∫

D−

m

ĉ(tm, y, α
−) cos

(

kπ
y − a

b− a

)

dy

+
2

b− a

∫

D+
m

ĉ(tm, y, α
+) cos

(

kπ
y − a

b− a

)

dy

:= Ĉk(tm,D
−
m, α

−) + Ĉk(tm,D
+
m, α

+) (14)

On the integrands of terms Ĉk we can apply again the Fourier cosine series
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expansion by inserting equation (12):

Ĉk(tm, z1, z2, α) (15)

=
2

b− a

∫ z2

z1

ĉ(tm, y, α) cos

(

kπ
y − a

b− a

)

dy

= e−ρ△t 2

b− a

∫ z2

z1





N−1
∑

j=0

′Re

(

ψlevy

(

jπ

b− a
| α

)

eijπ
y−a

b−a

)

Vj(tm+1)



 cos

(

kπ
y − a

b− a

)

dy

= e−ρ△tRe





N−1
∑

j=0

′ψlevy

(

jπ

b− a
| α

)

Vj(tm+1)Mk,j(z1, z2)





where z1, z2 are the bounds of integration domain D− or D+ and the elements
of matrix M(z1, z2) are given by:

Mk,j(z1, z2) :=
2

b− a

∫ z2

z1

eijπ
y−a

b−a cos

(

kπ
y − a

b− a

)

dy. (16)

Finally, we end up with the vector form

V̂ (tm) = e−ρ△tRe(M(D−
m)w−) + e−ρ△tRe(M(D+

m)w+) (17)

where wq = {wq
j }N−1

j=0 , q = {−,+} with

w
q
j = ψ

(

jπ

b− a
| αq

m

)

V̂j(tm+1), w
q
0 =

1

2
ψ(0 | αq

m)V̂0(tm+1).

The parameters of the matrices M are the boundary values of their respective
integration ranges.

Remark 3. (Efficient Computation of Ĉ(tm, z1, z2, α))
The matrix-vector product M(z1, z2)w can be computed in O(N log2 N) opera-
tions, with the help of the Fast Fourier Transform (FFT) algorithm.

The key insight of this efficient computation is the equality

Mk,j(z1, z2) = −
i

π
(M c

k,j(z1, z2) +Ms
k,j(z1, z2)),

where matrix M c is a Hankel matrix and Ms is a Toeplitx matrix. The special
matrix structure enables us to use the FFT algorithm for the matrix-verctor
products. More details on this matrix-vector product is included in [2].

Applying FFT to recover V̂1 from V̂M backward recursively, then substituting
V̂1 into (12), the continuation value c(t0, x, α) is derived, hence the option price
v(t0, x) is obtained by (7).

3.2 Algotithm

We can recover the terms V̂k(tm) recursively, starting with V̂k(tM ), to V̂k(t1).
The algorithm to solve the discrete-time stochastic control problem (3) back-
wards in time then reads:
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Algorithm 1. (COS method for stochastic control problems)
Initialization:

Calculate coefficients Vk(tM ) for k = 0, 1, · · · , N − 1.

Main loop to recover {V̂k(tm)}k=0,··· ,N−1: For m = M − 1 to 1:

• Determine the sub-domains Dq
m for which the optimal control value is αq

m

• Compute V̂k(tm) by equations (14) and (15), with the help of the FFT
algorithm.

Final step:

Compute v(t0, x) by inserting V̂k(t1) into equation (8) and with (7).

The computational complexity of the algorithm is O(MKN log2 N), as we
need to computer M time steps, and K sub-domains.

4 Program Manual

We implement the Butterfly options pricing by Fourier Cosine expansion. The
program HAS TO work with the pnl library.

Model Parameters:

sigma_min: the minimum volatility of uncertain volatility model, α− in (3).
sigma_max: the maximum volatility of uncertain volatility model, α+ in (3).

Parameters of the product:

S0: the initial value of stock price.
k1: strike K1 of the Butterfly option.
k2: strike K2 of the Butterfly option.
T: the maturity of the Butterfly option.
r: the discount interest rate.
divident: the payout dividend.

Parameters for Fourier-Cosine method:

N: number of Fourier-Cosine series, N in (9).
M: numbers of grids in time interval [t, T ].
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