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Abstract. We describe “Conformal parabolic inverse Fourier transform method” for
efficient pricing European options for a wide class of Lévy processes developed in Bo-
yarchenko and Levendorskǐi (2014). The method was implemented into program plat-
form Premia for KoBoL (CGMY) model.
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Introduction

In recent years more and more attention has been given to stochastic models of finan-
cial markets which depart from the traditional Black-Scholes model. At this moment a
wide range of models is available. One of the tractable empirical models are jump dif-
fusions or, more generally, Lévy processes. We concentrate on the one-dimensional case.
For an introduction on these models applied to finance, we refer to Cont and Tankov
(2004).

In the case of pricing European options in one-factor exponential Levy models, the
most popular approach is the Fourier transform method which was applied in Carr and
Madan (1999), Boyarchenko and Levendorskǐi (2002) and many others. In all these
papers, as in most others, the inverse Fourier integral representation is used, and the
option price is represented as the integral over an appropriate line in the complex plane
parallel to the real axis. A numerical realization of the inverse Fourier transform (iFT)
can be handled very efficiently by means of the Fast Fourier Transform (FFT), if we
need a set of option prices at different spot/strike levels.

Boyarchenko and Levendorskǐi (2014) give fairly simple and efficient recommendations
for choosing the parameters of the numerical scheme and suggest families of the conformal
contour deformations, which greatly increases the rate of convergence of the integral. The
resulting pricing formula was called “parabolic iFT” because it can be described as a
change of variables in the standard Fourier inversion formula, resembling the analytical
expression for a fractional parabola. In cases in which the standard inverse Fourier
transform realization may require thousands or even millions of terms, parabolic iFT
may sufficiently reduce the number of terms in the integral sum. Notice that parabolic
iFT cannot be applied in combination with the FFT technique introduced to finance in
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Carr and Madan (1999). If prices of European options at less than one or two hundred
points are needed, then parabolic iFT remains faster than the standard iFT with FFT.

It should be noted that parabolic iFT can be applied to price at-the-money (ATM)
and out-the-money (OTM) European options. In-the-money (ITM) European options
can be priced from OTM-prices by using the put-call parity.

1. Lévy processes: a short reminder

A Lévy process is a process with stationary independent increments (for details, see
e.g. Sato (1999)). A Lévy process may have a Gaussian component and/or pure jump
component. The latter is characterized by the density of jumps, which is called the
Lévy density. We denote it by F (dy). A Lévy process can be completely specified
by its characteristic exponent, ψ, definable from the equality E[eiξX(t)] = e−tψ(ξ) (we
confine ourselves to the one-dimensional case). The characteristic exponent is given by
the Lévy-Khintchine formula:

(1.1) ψ(ξ) =
σ2

2
ξ2 − iµξ +

∫ +∞

−∞
(1 − eiξy + iξy1|y|≤1)F (dy),

where σ2 is the variance of the Gaussian component, and F (dy) satisfies

(1.2)
∫

R\{0}
min{1, y2}F (dy) < +∞.

If the jump component is a process of finite variation, equivalently, if

(1.3)
∫

R\{0}
min{1, |y|}F (dy) < +∞,

then (1.1) can be simplified

(1.4) ψ(ξ) =
σ2

2
ξ2 − iµξ +

∫ +∞

−∞
(1 − eiξy)F (dy),

with a different µ, and the new µ is the drift of the Gaussian component.
Assume that under a risk-neutral measure chosen by the market, the stock has the

dynamics St = eXt . Then we must have E[eXt ] < +∞, and, therefore, ψ must admit the
analytic continuation into a strip Im ξ ∈ (−1, 0) and continuous continuation into the
closed strip Im ξ ∈ [−1, 0]. Further, if the riskless rate, r, is constant, and the stock does
not pay dividends, then the discounted price process must be a martingale. Equivalently,
the following condition must hold

(1.5) r + ψ(−i) = 0,

which can be used to express µ via the other parameters of the Lévy process:

(1.6) µ = r −
σ2

2
+

∫ +∞

−∞
(1 − ey + y1|y|≤1)F (dy).

Example 1. [Tempered stable Lévy processes] The characteristic exponent of a
pure jump KoBoL process of order ν ∈ (0, 2), ν 6= 1 is given by

(1.7) ψ(ξ) = −iµξ + cΓ(−ν)[λν+ − (λ+ + iξ)ν + (−λ−)ν − (−λ− − iξ)ν ],
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where c > 0, µ ∈ R, and λ− < −1 < 0 < λ+. Formula (1.7) is derived in Boyarchenko
and Levendorskǐi (2000, 2002) from the Lévy-Khintchine formula with the Lévy densities
of negative and positive jumps, F∓(dy), given by

(1.8) F∓(dy) = ceλ±y|y|−ν−1dy;

in the first two papers, the name extended Koponen family was used. Later, the same
class of processes was used in Carr et al. (2002) under the name CGMY-model. The
following relations between parameters of KoBoL model and C,G,M, Y parameters of
CGMY-model is valid:

C = c, Y = ν, G = λ+, M = −λ−.

Example 2. [Normal Inverse Gaussian processes] A normal inverse Gaussian
process (NIG) can be described by the characteristic exponent of the form (see Barndorff-
Nielsen (1998))

(1.9) ψ(ξ) = −iµξ + δ[(α2 − (β + iξ)2)1/2 − (α2 − β2)1/2],

where α > |β| > 0, δ > 0 and µ ∈ R.

Example 3. [Variance Gamma processes] The Lévy density of a Variance Gamma
process is of the form (1.8) with ν = 0, and the characteristic exponent is given by (see
Madan et al. (1998))

(1.10) ψ(ξ) = −iµξ + c[ln(λ+ + iξ) − lnλ+ + ln(−λ− − iξ) − ln(−λ−)],

where c > 0, µ ∈ R, and λ− < −1 < 0 < λ+.

2. Conformal parabolic iFT method for pricing European options under
Lévy processes, [5]

Let T and G(x) be the maturity and the payoff function of European claim, and the
stock price St = eXt is an exponential Lévy process under a chosen risk-neutral measure.
The riskless rate r is assumed a constant. Then the no-arbitrage price of the European
option at time t < T and Xt = x with payoff G(XT ) is given by

(2.1) V (x, t) = V (T,G; t, x) = Et,x
[

e−rτG(XT )
]

,

where τ = T − t.
The standard Fourier transform technique gives the following pricing formula:

(2.2) V (x, t) = (2π)−1
∫

Im ξ=ω
exp[ixξ − τ(r + ψ(ξ))]Ĝ(ξ)dξ,

where Ĝ is the Fourier transform of a function G:

Ĝ(ξ) =
∫ +∞

−∞
e−ixξG(x)dx.

Now, we briefly describe the algorithm of parabolic iFT method developed in [5] for
KoBoL (CGMY) model (see Example 1). We use the notation x = ln(S/K), x′ = x+µτ ,
where K is the strike price, and µ is the coefficient in the linear term −iµξ of the
characteristic exponent ψ(ξ) (see (1.7)). Set φ(ξ) = ψ(ξ) + iµξ. We consider OTM and
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at-the-money (ATM) puts x′ ≥ 0 and OTM and ATM calls x′ ≤ 0. We consider only
the standard puts and calls.

2.1. Deformation and change of variable for put options. Let x′ ≥ 0. For α ∈
[1; 2], consider the conformal map χα defined on the half plane Im η < λ+ by

(2.3) χα(η) = iλ+ − iλ1−α
+ (λ+ + iη)α.

Fix ω ∈ (0, λ+) and let L be the image of line Im ξ = ω under the mapping χα. Consider
the deformation of line Im ξ = ω in the initial pricing formula (2.2) for the put into the
contour L:

(2.4) Vput(x, t) = −
Ke−rτ

2π

∫

L

exp[ix′ξ − τφ(ξ)]

ξ(ξ + i)
dξ.

In (2.4), change the variable ξ = χα(η + iω), where η ∈ R:

(2.5) Vput(x, t) = −
Ke−rτ

2π

∫

R

exp[ix′χα(η + iω) − τφ(χα(η + iω))]

χα(η + iω)(χα(η + iω) + i)
χ′
α(η + iω)dη.

Further simplification as in Carr and Madan (1999) leads to the final formula

(2.6) Vput(x, t) = −
Ke−rτ

π
Re

∫ +∞

0

exp[ix′χα(η + iω) − τφ(χα(η + iω))]

χα(η + iω)(χα(η + iω) + i)
χ′
α(η + iω)dη.

According recommendations in [5], we set α = min{2, 1 + 1/ν} in (2.3) for the case of
KoBoL (CGMY) model. For typical KoBoL parameters values, the choice ω = λ+/2 is
typically optimal.

An efficient numerical realization of (2.6) starts with a discretization of the integral
using the infinite trapezoid rule, denote the discretization step by ζ. Then we truncate
the sum from the up; we denote by N the number of terms in the truncated sum. Thus,
there are two sources of the errors: discretization and truncation.

Assuming that the error tolerance ǫ > 0 is small, we set

ζ = 1.5πd/ ln(1/ǫ1),

where d = λ+/2 and ǫ1 = 2πǫerτ/K.
More detailed recommendations about the most optimal choice of the algorithm pa-

rameters can be found in [5].

3. Implementation to the Premia

We implemented parabolic iFT-method for two types of European options (call and
put) under CGMY model (see Example 1). One can use the routine for the other
types of Lévy processes by replacing the corresponding part with the computation of
the characteristic exponent provided that a justification of the contour transformation
is done.

Note that in the program implemented to Premia one can manage by the parameter
N of the algorithm. To improve the truncation error one should increase N .
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