
The Stochastic Grid Bundling Method

Ricardo RincÃşn

February 18, 2016

9 pages 1

Premia 18

Closed Formula Methods
Shashi Jain and Cornelis W. Oosterlee (2013) [?] proposed the Stochastic
Grid Bundling Method (SGBM) for pricing of Bermudan options with sev-
eral underlying assets. The method is based on simulation, regression, and
bundling. The steps involved in the SGBM algorithm, are:

• Step I: Generating grid points

• Step II: Option value at terminal time

• Step III: Bundling

• Step IV: Mapping high-dimensional state space to a low-dimensional
space

• Step V: Computing the continuation and option values at tm−1

We perform initially the first two steps and then, starting from tM and moving
backwards in time, steps III to V are performed for each time step, tm,
m ≤ M . The next sections retake the method exposed in [?], for more
details and the proofs of all theoretical results one can look into the paper.

Initial steps

We start by doing a Monte Carlo simulation, following the indicated scheme
for the required financial model, of the stochastic paths. Simulating indepen-
dent copies of the market state variable, {St0(n), ..., StM

(n)}, n = 1, ..., N ,
is a forward process in which all the paths start from the same initial state St0 .

Subsequently the option value for all paths at terminal time is computed
as :

VtM
(StM

) = max (h(StM
), 0).

Bundling

We want to sample the distribution of Stm
conditional on the state Stm−1 ,

in a backward loop. To accomplish this, the SGBM firstly clusters using
some measure of proximity the grid points at tm−1 into ν non-overlapping

9 pages 2

partitions. Then, we sample Stm
with those paths originated from the bundle

that contains Stm−1 . We have considered the three different approaches for
partitioning proposed by Jain and Oosterlee (2013) [?] for SGBM and we
explain them next.

K-means clustering algorithm

The objective of this algorithm is to cluster points so as to minimize the
sum of squares within clusters, i.e :

arg min
Bt

mâĹŠ1

ν
∑

β=1

∑

Stm−1 (n) ∈ Bt
mâĹŠ1

(β)

‖Stm−1(n) − µβ‖2

 ,

where µβ is the mean of the points into each of the ν non-overlapping bundles
β, Bt

mâĹŠ1
(β). The algorithm (Lloyd 1982 [2]) uses an iterative refinement

technique. Initially, we take ν aleatory points from the N points to cluster
as bundle centroids, µ1

1, ..., µ1
ν . Subsequently, we perform the following steps

alternately :

• Step 1 : Assign grid points to the set whose mean is closest to it.

B
(l)
tm−1

(β) = {Stm−1(n) : ‖Stm−1(n)−µ
(l)
β ‖2 ≤ ‖Stm−1(n)−µ

(l)
j ‖2, âĹĂ 1 ≤ j ≤ ν},

where grid point Stm−1(n) is assigned to just one bundle.

• Step 2 : If the assignment of the grid points does not change anymore
from a previous iteration the process has converged, else the means are
updated into each of the new clusters as :

µ
(l+1)
β =

1

|B
(l)
tm−1

(β)|

∑

Stm−1 (n) ∈ B
(l)
tm−1

(β)

Stm−1(n),

where |B
(l)
tm−1

(β)| is the cardinal of the set B
(l)
tm−1

(β).

This is computationally the most expensive algorithm of the three presented
here. In order to not prejudice k-means clustering with respect to the others,
especially in high dimensions, we can set a maximum number of iterations
before stopping performing those two steps, without having converged. Even
in this case, we find an accurate price. In addition, we can specify directly
centroids and just distribute grid points in clusters as indicated in step 1. We
use this procedure when computing path estimator with centroids previously
found in calibration phase.

9 pages 3

Recursive bifurcation

To bundle grid points we can also perform the following steps :

• Step 1 : Compute the mean of the grid points along each dimension,

µδ =
1
N

N
∑

n=1

Sδ
tm−1

(n), δ = 1, ..., d.

• Step 2 : Bundle separately along each dimension the grid points by
dividing the grid into 2d sets according to :

Aδ = {Stm−1(n) : Sδ
tm−1

(n) > µδ, n = 1, ..., N},

Āδ = {Stm−1(n) : Sδ
tm−1

(n) ≤ µδ, n = 1, ..., N},

where δ = 1, ..., d.

• Step 3 : The 2d unique non-overlapping clusters are obtained inter-
secting these sets as follows :

Bt
mâĹŠ1

(1) = A1âĹľA2âĹľ...âĹľAd,

Bt
mâĹŠ1

(2) = Ā1âĹľA2âĹľ...âĹľAd,

Bt
mâĹŠ1

(3) = A1âĹľĀ2âĹľ...âĹľAd,

..
...

Bt
mâĹŠ1

(2d) = Ā1âĹľĀ2âĹľ...âĹľĀd,

(1)

We can continue performing as much iterations as we want of previous steps
to split further each bundle.

Recursive bifurcation of reduced state space

We can also bundle the grid points based on proximity of the reduced state
space h(Stm−1), i.e. starting by using the payoff as a mapping function and
then employing the clustering procedure of the recursive bifurcation to the
mapped points (which belong to dimension d = 1). However, in terms of pro-
gramming, we do not call the recursive bifurcation function after obtaining
the reduced state space, because of feasible optimizations in the algorithm
and memory allocation. The number of bundles obtained after p iterations
in this case will be 2p.

9 pages 4

Mapping high-dimensional state space to a low-

dimensional space

Corresponding to each bundle Bt
mâĹŠ1

(β), β = 1, ..., ν, a parametrized value
function Z : Rd × RK → R, is introduced. This approximation of the value
function assigns values Z(Stm

, α
β
tm

) to states Stm
in order to better deal with

the large dimension of the state space. α
β
tm

∈ RK is a vector of free parame-
ters and we aim to choose, for each tm and bundle β, a parameter vector so
that Z(Stm

, α
β
tm

) ≈ Vtm
(Stm

).

We use basis functions that map the state space from Rd to R, to approximate
the value functions. The function Z(Stm

, α
β
tm

) projecting the option values
onto the span of φ is restricted to a linear combination of basis functions
and, can be approximated by :

Z(Stm
, α̂

β
tm

) =
K
∑

k=1

α̂
β
tm

(k)φk(Stm
), (2)

satisfying,

arg min
α̂

β
tm

|Btm−1 (β)|
∑

n=1

(

Vtm
(Stm

(n)) −
K
∑

k=1

α̂
β
tm

(k)φk(Stm
(n))

)2

. (3)

Therefore, the parametrized function Z(Stm
, α̂

β
tm

) is computed, corresponding
to each bundle Btm−1(β), using ordinary least squares regression, so that:

Vtm
(Stm

(n)) = Z(Stm
(n), α̂

β
tm

) + ǫ
β
tm

, (4)

where Stm−1(n) ∈ Btm−1(β) and ǫ
β
tm

is the error made in the regression. In
theoretical terms, it is assumed that E[ǫβ

tm
|Stm−1(n)] = 0.

The continuation and option values at tm−1

Now, using the parametrized option value function Z(Stm
, α̂

β
tm

) corresponding
to bundle Btm−1(β), the continuation values for the paths into this cluster are
approximated by :

Q̂tm−1(Stm−1(n)) = Dtm−1E[Z(Stm
, α̂

β
tm

)|Stm−1 = Stm−1(n)], (5)

9 pages 5

where Stm−1(n) ∈ Btm−1(β), n = 1, ..., N , β = 1, ..., ν. Using Equation (2),
this can be written as:

Q̂tm−1(Stm−1(n)) = Dtm−1E

[(

K
∑

k=1

α̂
β
tm

(k)φk(Stm
)

)

|Stm−1 = Stm−1(n)

]

= Dtm−1

K
∑

k=1

α̂
β
tm

(k)E[φk(Stm
)|Stm−1 = Stm−1(n)].

(6)

The direct estimator of the option values for the paths at tm−1 is defined
as :

V̂tm−1(Stm−1(n)) = max(h(Stm−1(n)), Q̂tm−1(Stm−1(n))),

where n = 1, . . . , N . The direct estimator is said to be an upper bound,
E[V̂t0(St0)] ≥ Vt0(St0), converging to the true price when simulating an in-
creasing number of paths and using an increasing number of bundles to clus-
ter paths at each time step.

Numerically, if the regression is not perfectly performed, we will not obtain
E[ǫβ

tm
|Stm−1(n)] = 0. In addition, to compute E[φk(Stm

)|Stm−1 = Stm−1(n)],
we do not take a closed form or an analytic approximation for each payoff.
We use directly the first right hand side in (6). Therefore, it is not strange
that here, direct estimator is not sometimes an upper bound as it is shown
in [?] experiments.

Computing path estimator

After finishing previous procedure to compute the direct estimator, we sim-
ulate a new set of paths and we develop a lower bound estimator based on
these new paths. Using the same scheme followed in prior generation of grid
points, we simulate S(n) = St1(n), . . . , StM

(n), n = 1, . . . , NL. Along each
path, the approximate optimal policy exercises at,

τ̂ âĹŮ(S(n)) = min{tm : h(Stm
(n))âĽěQ̂tm

(Stm
(n)), m = 1, . . . , M},

where Q̂tm
(Stm

(n)) is computed using Equation (6), which means to com-
pute another backward loop including bundling again, but using directly the
parameters α

β
tm

stored before for the regression step.

The path estimator V t0
(St0), lower bound respect to the true option value,

is :

V t0
(St0) = lim

NL

1
NL

NL
∑

n=1

h(S
τ̂âĹŮ(S(n))) ≤ Vt0(St0).

The SGBM: Calculation of

Exposure Profiles and CVA

Feng and Oosterlee (2014) [1] proposed using the Stochastic Grid Bundling
Method (SGBM) for computation of exposure profiles. For more details and
a theoretical framework one can see [1].

The holder receives the payoff value, g(Sm), when the option is exercised.
When the option contract is still alive (tm < τm), the discounted option
value, the continuation value w.r.t. state vector Xm, is

Q̂m(Xm) := EQ [Vm+1(Xm+1) · D(tm, tm+1)|Xm] , (7)

where Vm+1(·) represents the option value at time tm+1.

For European options, denoting Sm as the underlying asset variable at time
tm, the option value equals the continuation value before maturity and the
holder receives the payoff value only at maturity, i.e.

V Euro
m (Xm) =

{

g(SM), for tM ,

Q̂m(Xm), for tm ∈ T − tM .
(8)

For Bermudan options, we assume that the credit information of the other
party does not influence the exercise decision of the option holder. At each
exercise date the holder compares the payoff value with the continuation
value of the option, based on the currently available information. The holder
keeps the option until the payoff value is higher. When the option is still
alive at time tm, denoting Te the exercise dates, the option can be computed
as :

V Berm
m (Xm) =

{

max{Q̂m(Xm), g(Sm)}, for tm ∈ Te,

Q̂m(Xm), for tm ∈ T − Te.
(9)

On the other hand, the exposure value becomes 0 when the option is exercised
as there is not possible economic loss for the contract holder any longer,

6

9 pages 7

EM = 0. Equally, for Bermudan options, after being exercised at time tm

the exposure later is 0. By definition, the value of the exposure can be
represented mathematically as :

Em(Xm) =

{

0, when the option is exercised,
Vm(Xm), when the option is alive.

(10)

where Em(·) represents the exposure at time tm, m = 1, 2, . . . , M − 1.

Having computed the exposure values for all the simulated paths at times tm,
m = 0, . . . , M − 1, the EE value at time tm is approximated as an average
of them :

EE(tm) ≈
1
N

N
∑

i=1

Em(x̂m(i)), (11)

where N represents the number of paths and x̂m(i), i = 1, . . . , N , the
values of the state variables of the i-th path at tm. Since the interest rate
is deterministic in our case, the discounted exposure (EE∗) is the product
of the discount factor and the precedent EE value and so we also can obtain
the CVA, the direct estimator CVA. A discrete version formula to compute
the CVA can be given as :

CV A ≈ (1 − δ)
M−1
∑

m=0

EE∗(tm)(PD(tm+1) − PD(tm)). (12)

where δ is the recovery rate and PD(s) is the default probability function,
PD(t) = 1 − exp

(

−
∫ t

0 h(t)dt
)

, with h(t) called the intensity.

Backward iteration for exposure values

We provide here the procedure for calculating the exposure values in a back-
ward iteration, starting at final time T . This procedure corresponds to the
one introduced in [1] as well.

At time tM , as we mentioned before, the exposure values are 0 as there
is not possible economic loss for the holder any longer. For each path, the
option value is calculated as VM(x̂M(i)), with the corresponding formulas of
European or Bermudan options, (8) and (9).

At time tM−1, for all the paths, the continuation values Q̂M−1(x̂M−1), i =
1, . . . , N , can be calculated with (7), and so the option values, VM−1(x̂M(i)),
(8) or (9), and the exposure values, EM−1(x̂M(i)), (10), can be also computed.

9 pages 8

Then the iteration goes backward in time repeating the bundling and re-
gression exposed in SGBM explication to compute the continuation, option,
and exposure values at each time step until we arrive to the initial time.
When we arrive at t0, we have the option and exposure values of every grid
point.

For Bermudan options, we also need to take into account the optimal early-
exercise strategy in this case. If the option is still alive at tm, both option and
exposure values are set to the corresponding continuation value. Then, the
payoff value is calculated for each path, and compared with the continuation
value to determine if the option should be exercised. If yes, the exposure at
this path from time tm will be 0, and the option value at time tm corresponds
to the payoff value. The EE function is then written as :

EE(tm) ≈
1
N

∑

τi>tm

(D(tm, τi) · cash-flow(i)), (13)

where τi is the exercise time of the i-th path, and the cash-flow is the payoff
value at time τi, g(Sτi

(i)), with Sτi
(i) the value of the stock of the i-th path

at time τi. The EE values calculated with precedent expression, provide
the path estimator CVA, which considers the obtained "optimal" exercise
strategy. For computing the path estimator CVA, we simulate a new set of
paths and we employ again, in a backward procedure, the same regression
coefficients for each bundle that we used to compute direct estimator (and
that we have previously saved at each time step).

Bibliography

[1] Qian Feng and Cornelis W. Oosterlee. Monte carlo calculation of exposure
profiles and greeks for bermudan and barrier options under the heston
hull-white model. Available at SSRN 2494233, 2014. 6, 7

[2] Stuart P. Lloyd. Least squares quantization in pcm. Information Theory,

IEEE Transactions on, 28(2):129–137, 1982. 2

9

