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1 Model specificatoin

We consider a portfolio of N defaultable securities and assume that there exists a continuous time finite-state
irreducible Markov chain (ξt)t≥0 with infintesimal generator matrix Q, generating a filtration Fξ

t . Assume that
conditional on the path of the chain, defaults of the N names will be independent, the survival probability
of the ith reference entity being given by

qi
t = P(τ i ≥ t|Fξ

t ) = exp(−Ci
t), (1)

where Ci
t is some additive functional of the chain of the form

Ci
t =

∫ t

0

λi(ξu)du +
∑

j 6=k

wi
jkJjk(t).

Here, τ i is the default time of the ith name in the portfolio, λi is a deterministic function of the chain, Jjk(t)
denotes the number of jumps by time t from state j to state k, and the wi

jk are non-negative weights.
In order to gain some intuition, one could think of the chain as representing the state of health of the

economy. If the chain jumps from a state of economic growth to a state of recession, this may cause the
conditional default intensity of some of the reference entities to go up, increasing the chances of observing
a larger number of defaults in the portfolio. Note that the information about how the various credits in
the portfolio are correlated is contained in the λi, the wi

jk, and Q. (See section 3 of [1] for the derived
expression of the default correlation). In the following, we assume that the money market account takes the
following form

Bt = exp
(

∫ t

0

r(ξu)du
)

,

where r is a deterministic function of the chain.

Remark 1. • Note that the vectors λi(.), r, the matrix w and the infinitesimal generator Q are seen as

parameters of the problem and are calibrated to market data.

• One of the nice features of the model is that the number of parameters can be ajusted, by modifying the

number of the chain states to best reflect the availability of market data. As CDO markets become more

liquid, a higher number of quotes are likely to become available. By increasing the number of parameters we

are more likely to capture the extra information available in the market. In our code we just consider 4 states

of the Markov chain.

In order to price derivatives on a portfolio of N defaultable securities, we need to be able to find the
distributions of some non trivial random variable. If li = Ai(1 − Ri) denotes the loss on the ith name, in
terms of the notional Ai and the (possibly random) recovery rate Ri , then the portfolio cumulative loss
process is given by

Lt =

N
∑

i=1

li1{τi≤t}.
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By conditioning firstly on the path of the chain, it is easy to see that the (discounted) Laplace transform of
Lt is given by:

Eexp
(

−

∫ t

0

r(ξs)ds − αLt

)

= E

[

exp
(

−

∫ t

0

r(ξs)ds

N
∏

i=1

(

(1 − qi
t)ζi(α) + qi

t

)

]

,

where ζi(α) = E exp(−αli).

2 Poisson Computational approximation

The expression (1) for the survival probability of name i can be understood in terms of a standard Poisson
process ν independent of the chain ξ. If the jump times of ν are denoted S1 < S2 < . . . , then we may set

τ i = inf{t : Ci
t > S1},

and then the relation (1) holds. The Poisson approximation we propose here is to allow name i to default
more than once, at times

τ i
m = inf{t : Ci

t > Sm}, m = 0, 1, . . . .

ŕ By doing this, we arrive at an expression Lt for the portfolio cumulative loss which overestimates Lt ,
because it includes (non-existent) second and subsequent losses of each of the names. The error we are
committing by this is of the same order as the default probabilities themselves; typically this would be of
the order of a few percent, which would be comparable to the error we could expect from a Monte Carlo
approach. However, there is some simple trick we can employ to improve the approximation. The expected
(discounted) number of losses for name i by time t using the Poisson method is given by E[B−1

t Ci
t ] compared

with a true value of E[B−1
t (1 − exp(−Ci

t))]. So if we define

βi
t =

E[B−1
t (1 − exp(−Ci

t))]

E[B−1
t Ci

t ]
(2)

we can get a fairly good approximation for the Laplace transform of the cumulative loss by letting

Eexp
(

−

∫ t

0

r(ξs)ds − αLt

)

= E

[

exp
(

−

∫ t

0

r(ξs)ds +

N
∑

i=1

βi
t(ζi(α) − 1)Ci

t

)

]

, (3)

This is the key relation linking this modelling approach to the kinds of calculation needed to price credit
derivatives of various sort.

3 Synthetic CDOs

In the following, we assume that the credit portfolio is homogenous. Let B and A be the upper and lower
attachment points of the tranche respectively. At each payment date, investors receive a coupon which is
proportional to the notional of the tranche, net of the losses suffered by the credit portfolio up to that point.

3.1 Premium leg

The premium leg is equal to

pl =
M

∑

j=0

∆jE

[

B−1

Tj
Φ(LTj

)
]

,

where

Φ(x) =
1

B − A

[

(B − x)+ − (A − x)+

]

and M is the number of total payments occurring at dates T1, . . . , TM . In order to evaluate the pl, we need
to calculate the price of a portfolio of put options on the portfolio cumulative losses at each payment date
Tj . In particular, pl is the difference of two put options of the form

pl =
M

∑

j=0

∆j(PTj
(B) − PTj

(A)),
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where Pt(x) = E

[

B−1
t (K − Lt)+

]

. Standard computations shows that the laplace transform P̂t(.) of Pt(.) is

given by

P̂t(α) =
1

α2
Eexp

(

−

∫ t

0

r(ξs)ds − αLt

)

(4)

All that remains to do is to compute PTi
(B) and PTi

(A) for 1 ≤ j ≤ M by inverting the corresponding
Laplace transforms P̂Tj

. By expressions (3), (4) and using standard formulas for Markov chain processes (see
[2]) we prove that

P̂t(α) =< Vt(α), Π >, where < ., . > denotes the inner product

with Vt(α) = exp(Q̃t).1, (1 = (1, 1, 1, 1)) and Π is the initial distribution of the Markov chain. Here the matrix
Q̃ is obtained from the infintesimal generator Q of the Markov chain ξ using the following transformation:

Q̃ii = Qii − νi, Q̃ij = exp(−w̃ij)Qij , for i 6= j,

where νj = Nβt(1 − ζ(α))λ, w̃ij = Nwijβt(1 − ζ(α)).

The function computing P̂t(α) is called double Laplace_transform. Concequently, in order to compute
Pt(α) we have just to compute the inverse laplace transform of the computed quantity P̂t(α). The function
computing Pt(α) is called double InverseTransform. Then, it’s easy to compute the premium leg using
that

pl =

M
∑

j=0

∆j(PTj
(B) − PTj

(A)).

3.2 Default leg

Concerning the default leg, it can be easily shown that

dl = 1 − E

[

exp(B−1

T )Φ(LT )
]

− E

[

∫ T

0

rB−1
u Φ(Lu)du

]

.

Again all the quantities in the above expression can be calculated explicitly. Note that the basic elements
needed to calculate the default leg are the same as the ones we derived when calculating the premium leg,
with some minor modi£cation to account for the term appearing in the second expectation of the above
quantity. The time integral appearing in the last term of the above expression can be approximated by
standard quadrature methods. The tranche spread is recovered as usual by dividing the default leg by the
premium leg.

3.3 Calibration

The model is calibrated to tranches on the CDX (series 7) index (mid levels) for 4 consecutive business days
from November 1st to November 6th 2006. We implemented in Premia only the data model for the first
November and here are the used data:

Q =









−0.0069 0.0000 0.0004 0.0065
0.0179 −0.0180 0.0001 0.0000
0.0000 0.0000 −0.4291 0.4291
0.0000 1.2835 0.0014 −1.2849









,

w =









0.0000 9.3981 0.12770 14.8746
0.0000 0.0000 10.0362 19.6856
9.1688 7.5897 0.0000 0.00000
6.4959 0.0009 0.74070 0.0000









,

λ = (0.0545, 0.0134, 0.0000, 0.0007), Π = (0.0019, 0.0, 0.9981, 0.0)

and the recovery R = 04701.
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