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All this document is based on the documentation of option pricing in Lévy
models (Deterministic methods for option pricing in exponential Lévy models)
written by Ekaterina Voltchkova and Peter Tankov for Premia 14.

Premia 18

1 Exponential Lévy models

We consider the following model for the stock price:

St = S0e
rt+Xt ,

where {Xt}t≥0 is a Lévy process. The characteristic function φt(z) = E[exp(izXt)]
of a Lévy process has the form φt(z) = exp{tψ(z)} with

ψ(z) =
σ2z2

2
+ iγz +

∫ ∞

−∞

(eizx − 1 − izx1|x|≤1)ν(dx).

It is determined by three parameters called the Lévy triplet of X:

• σ ≥ 0: volatility of the diffusion part

• γ ∈ R: drift

• ν(dx): positive measure on R \ {0} (Lévy measure)

The Lévy measure has to satisfy the following integrability conditions:

∫ +1

−1

x2ν(dx) < ∞,

∫

|x|>1

ν(dx) < ∞.

In the context of option pricing, due to the martingale condition on the dis-
counted price e−rtSt, ν satisfies in addition

∫

|x|>1

exν(dx) < ∞,

1
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and the drift is determined by the other parameters:

γ = −σ2

2
−
∫ ∞

−∞

(ex − 1 − x1|x|≤1)ν(dx).

One distinguishes two types of exponential Lévy models: the so-called jump-
diffusion models, with σ > 0 and ν(R) < ∞, and pure jump models, where
σ = 0 and ν(R) = ∞. We give below examples of such models used in financial
literature.

1.1 Jump-diffusion models

Merton model
The Lévy measure in this model has a gaussian density:

ν(x) = λ
e−(x−µ)2/2δ2

√
2πδ2

.

Here λ is the jump intensity, µ the average jump size, and δ the standard vari-
ation of jump sizes.

Double exponential model (Kou)
In this model, the jumps have an asymmetric exponential distribution:

ν0(x) = pλλ+e
−λ+x1x>0 + (1 − p)λλ−e

−λ−|x|1x<0.

Here λ is the jump intensity, parameters λ− > 0 and λ+ > 1 control the decrease
of the distribution tails of, respectively, negative and positive jumps, and p is
the probability of a positive jump.

1.2 Pure jump models

Variance Gamma model
The Lévy measure of a Variance Gamma process Xt has a density given by:

ν(x) =
1

κ|x|e
Ax−B|x| with A =

θ

σ2
and B =

√

θ2 + 2σ2/κ

σ2
.

The characteristic function of Xt is equal to

φt(u) = eituγ(1 +
u2σ2κ

2
− iθκu)− t

κ , with γ =
1

κ
log(1 − σ2κ

2
− θκ).

Normal inverse gaussian models (NIG)
The Lévy density in this model is given by

ν(x) =
C

|x|e
AxK1(B|x|)
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with

C =

√

θ2 + σ2/κ

πσ
√
κ

, A =
θ

σ2
, and B =

√

θ2 + σ2/κ

σ2
,

where K1 is the modified Bessel function of second kind. Note that the asymp-
totic behaviour of K1 in zero implies that

ν(x) ∼ 1

|x|2 as x → 0.

Let us make a computational remark: if Ax is large, the exponential in the
expression of ν may lead to an overflow. To avoid this, we use the asymptotic
behaviour of K1 for large arguments:

K1(x) ≈ π√
2πx

e−x as x >> 1.

We then obtain the following approximation1 of the Lévy density:

ν(x) ≈ C

|x|
π

√

2πB|x|
eAx−B|x|.

Tempered stable models
These models are also known as CGMY or KoBoL. The Lévy density of a
tempered stable process has the following expression:

ν(x) =
c−

|x|1+α−

e−λ−|x|1x<0 +
c+

|x|1+α+
e−λ+x1x>0,

with c± > 0, λ− > 0, λ+ > 1, and 0 < α± < 2.

A detailed presentation of exponential Lévy models and their properties can
be found in [2]. The moments of X1 can be easily calculated in all models
mentioned.

E+ =







Γ(−α+)λ
α+

+ c+

((

1 − 1
λ+

)α+

− 1 + α+

λ+

)

, si α+ 6= 1,

c+

[

(λ+ − 1) log
(

1 − 1
λ+

)

+ 1
]

, si α+ = 1,
(1)

E− =







Γ(−α−)λ
α−

− c−

((

1 + 1
λ−

)α−

− 1 − α−

λ−

)

, si α− 6= 1,

c−

[

(λ− + 1) log
(

1 + 1
λ−

)

− 1
]

, si α− = 1.
(2)

2 Gap options

We consider a gap option (described in [5]) with maturity T subdivided onto N
periods of length ∆ (e.g. days): T = N∆. The return of the k-th period will
be denoted by R∆

k = Sk∆

S(k−1)∆
. The interest rate is deterministic and equal to r.

1In practice, we use it when Ax > 600.
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Table 1: The average and the variance of X1 in some exponential Lévy models.

model EX1 V arX1

Merton −σ2/2 − λ(exp(µ+ δ2/2) − 1 − µ) σ2 + λ(δ2 + µ2)

Kou −σ2/2 − λ
(

p
λ+(λ+−1) + 1−p

λ−(λ−+1)

)

σ2 + λ
(

p
λ2

+
+ 1−p

λ2
−

)

VG θ + log(1 − σ2κ/2 − θκ)/κ σ2 + θ2κ

NIG θ + (
√

1 − σ2κ− 2θκ− 1)/κ σ2 + θ2κ

Temp. Stable −E+ − E−, see (1)–(2) below c+Γ(2−α+)

λ
2−α+
+

+ c−Γ(2−α−)

λ
2−α

−

−

Definition 1 (Gap Option). Let α denote the return level which triggers the
gap event and k∗ be the time of first gap expressed in the units of ∆ : k∗ :=
inf{k : R∆

k ≤ α}. The gap option is an option which pays to its holder the
amount f(R∆

k∗) at time ∆k∗, if k∗ ≤ N and nothing otherwise.

Proposition 1. Let the log-returns (R∆
k )N

k=1 be i.i.d. and denote the distri-
bution of log(R∆

1 ) by p∆(dx). Then the price of a gap option as of previous
definition is given by

G∆ = e−r∆

(

∫ β

−∞

f(ex)p∆(dx)

)

1 − e−rT
(

∫ +∞

β
p∆(dx)

)N

1 − e−r∆
∫ +∞

β
p∆(dx)

, (3)

with β = log(α) < 0.

Numerical evaluation of prices formula (3) allows to compute gap option
prices by Fourier inversion. For this, we need to be able to evaluate the cumu-
lative distribution function

F∆(x) =

∫ x

−∞

p∆(dξ) (4)

and the integral
∫ β

−∞

f(ex)p∆(dx). (5)

Let φ∆ be the characteristic function of p∆, and suppose that p∆ satisfies

∫ +∞

−∞

|x|p∆(dx) < +∞ and

∫ +∞

−∞

|φ∆(u)|
1 + |u| du < +∞. (6)

Let FΣ
G be the CDF and φΣ

G the characteristic function of a Gaussian random
variable with zero mean and standard deviation Σ > 0. Then

F∆(x) = FΣ
G (x) +

1

2π

∫ +∞

−∞

e−iuxφ
Σ
G(u) − φ∆(u)

iu
du. (7)
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The Gaussian random variable is only needed to obtain an integrable expression
in the right hand side and can be replaced by any other well-behaved random
variable. The integral (5) is nothing but the price of a European option with
payoff function f and maturity ∆. For arbitrary f it can be evaluated using the
Fourier transform method proposed by Lewis. However, in practice, the pay-off
of a gap option is either a put option or a put spread. Therefore, for most
practical purposes it is sufficient to compute this integral for f(x) = (K − x)+,
in which case a simpler method can be used. The price of such a put option
with log forward moneyness k = log(K/S0) − r∆ is given by

P∆ = PΣ
BS(k) +

S0

2π

∫ +∞

−∞

e−ivkζ∆(v)dv, (8)

where

ζ∆(v) =
φ∆(v − i) − φΣ

BS(v − i)

iv(1 + iv)
, φΣ

BS(v) = exp

(

−Σ2T

2
(v2 + iv)

)

(9)

and PΣ
BS(k) is the price of a put option with log-moneyness k and time to

maturity ∆ in the Black-Scholes model with volatility Σ > 0.

2.1 Approximation of small jumps

In the case ν(R) = ∞, the small jumps of a Lévy process generate a behavior
similar to that of a brownian motion. This led to the idea to replace the jumps
smaller than some ε > 0 by a Wiener process with the same variance:

σ2(ε) =

∫ ε

−ε

x2ν(dx). (10)

Remark that in models with jumps of infinite activity (ν(R) = ∞) we have σ =
0. By approximating the small jumps, we get a non-zero diffusion component
σ2(ε) which has a regularizing effect on the solution. It makes the numerical
solution easier. Clearly, if the model is of jump-diffusion type (e.g. Merton or
Kou), this approximation is not needed.

2.2 Truncation of large jumps

We cannot calculate numerically an integral on the infinite range (−∞,∞), so
we have to truncate this domain to a bounded interval (Bl, Br). In terms of
the process, this corresponds to truncate the large jumps. Usually, the tails
of ν decrease exponentially, so the probability of large jumps is very small.
Therefore, we don’t change much the solution by truncating the tails of ν. The
rigorous proof of the validity of such approximation is given in [6, 3]. In practice,
we fix some level of tolerance (e.g. 10−5) and truncate the values of ν which are
smaller than this level (ν(x) < 10−5).
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2.3 Pricing via Fourier transform

One deterministic approach to pricing European options in exponential Lévy
models was proposed by Carr and Madan [1]. They use Fourier transform and,
in particular, the Fast Fourier transform algorithm. We present here a slightly
improved version of their method proposed in [4, 2].

Let {Xt}t≥0 be a Lévy process. To compute the price of a call option

C(k) = e−rTE[(erT +XT − ek)+],

we would like to express its Fourier transform in log strike in terms of the
characteristic function ΦT (v) of XT and then find the prices for a range of
strikes by Fourier inversion. However we cannot do this directly because C(k)
is not integrable (it tends to 1 as k goes to −∞). The key idea is to instead
compute the Fourier transform of the (modified) time value of the option, that
is, the function

zT (k) = e−rTE[(erT +XT − ek)+] − (1 − ek−rT )+. (11)

Proposition 2 (Carr and Madan [1]). Let {Xt}t≥0 be a real-valued Lévy process
satisfying the martingale condition, such that

E[e(1+α)Xt ] < ∞ (12)

for some α > 0. Then the Fourier transform in log-strike k of the time value of
a call option is given by:

ζT (v) :=

∫ +∞

−∞

eivkzT (k)dk = eivrT ΦT (v − i) − 1

iv(1 + iv)
. (13)

Remark 1. Since typically ΦT (z) → 0 as ℜz → ∞, ζT (v) will behave like |v|−2

at infinity which means that the truncation error in the numerical evaluation of
the inverse Fourier transform will be large. The reason of such a slow conver-
gence is that the time value (11) is not smooth; therefore its Fourier transform
does not decay sufficiently fast at infinity. For most models the convergence can
be improved by replacing the time value with a smooth function of strike. In-
stead of subtracting the (non-differentiable) intrinsic value of the option from its
price, we suggest to subtract the Black-Scholes call price with a non-zero volatil-
ity (which is a smooth function). The resulting function will be both integrable
and smooth. Suppose that hypothesis (12) is satisfied and denote

z̃T (k) = e−rTE[(erT +XT − ek)+] − CΣ
BS(k),

where CΣ
BS(k) is the Black-Scholes price of a call option with volatility Σ and log-

strike k for the same underlying value and the same interest rate. Proposition
2 then implies that the Fourier transform of z̃T (k), denoted by ζ̃T (v), satisfies

ζ̃T (v) = eivrT ΦT (v − i) − ΦΣ
T (v − i)

iv(1 + iv)
, (14)
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where ΦΣ
T (v) = exp(− Σ2T

2 (v2 + iv)). Since for most exp-Lévy models found in
the literature (except Variance Gamma) the characteristic function decays faster
than every power of its argument at infinity, this means that the expression (14)
will also decay faster than every power of v as ℜv → ∞, and the truncation
error in the numerical evaluation of the inverse Fourier transform will be very
small for every Σ > 0.2

Numerical Fourier inversion. Option prices can be computed by evaluating
numerically the inverse Fourier transform of ζ̃T :

z̃T (k) =
1

2π

∫ +∞

−∞

e−ivk ζ̃T (v)dv. (15)

This integral can be efficiently computed for a range of strikes using the Fast
Fourier Transform. Recall that this algorithm allows to calculate the discrete
Fourier transform DFT[f ]N−1

n=0 , defined by,

DFT[f ]n :=
N−1
∑

k=0

fke
−2πink/N , n = 0 . . . N − 1, (16)

using only O(N logN) operations.
To approximate option prices, we truncate and discretize the integral (15)

as follows:

1

2π

∫ ∞

−∞

e−ivk ζ̃T (v)dv =
1

2π

∫ A/2

−A/2

e−ivk ζ̃T (v)dv + εT

=
L

2π(N − 1)

N−1
∑

m=0

wmζ̃T (vm)e−ikvm + εT + εD, (17)

where εT is the truncation error, εD is the discretization error, vm = −A/2+mh,
h = A/(N − 1) is the discretization step and wm are weights, corresponding to
the chosen integration rule (for instance, for the Simpson’s rule w0 = 1/3, and
for k = 1, . . . , N/2, w2k−1 = 4/3 and w2k = 2/3).3 Now, choosing kn = k0 + 2πn

Nh
we see that the sum in the last term becomes a discrete Fourier transform:

A

2π(N − 1)
eiknL/2

N−1
∑

m=0

wmζ̃T (km)e−ik0mhe−2πinm/N

=
A

2π(N − 1)
eiknL/2DFTn[wmζ̃T (km)e−ik0mh]

Therefore, the DFT algorithm allows to compute z̃T and option prices for the
log strikes kn = k0 + 2πn

Nh . The log strikes are thus equidistant with the step d

2The convergence of ζ̃T to zero is faster than exponential for all values of Σ and it is
particularly good for the value of Σ for which ζ̃(0) = 0.

3We use the FFT with N = 2p, so N is even.
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satisfying

dh =
2π

N
.

This relationship implies that if we want to compute option prices on a fine grid
of strikes, and at the same time keep the discretization error low, we must use
a large number of points.

3 Description of the algorithm

3.1 Variables

We give here a list of the variables used in the algorithm with their default
values.

// Parameters for the asset.

double S0 = 100.0; // Asset price

double Rate = 10;

double r = log(1+Rate/100.0);

double divid = 0.0; // Dividend

// Parameters for the gap option.

double T = 1.; // Maturity

int numberperiod = 252;

double deltagap = T/numberperiod;

double strike = 90; // Strike. It should be less than S0.

double alphagap = 0.9; // strike/S0. It should be between 0 and 1.

double betagap = log(alphagap);

Then we give a list of parameters used for the Lévy processes.

// Parameters for the Merton model.

double sigmaMerton = 0.20;

double lambdaMerton = 0.1;

double muMerton = 0.0;

double deltaMerton = 0.16;

// Parameters for the Kou model.

double sigmaKou = 0.3;

double lambdaKou = 7.0;

double lambdapKou = 50.0;

double lambdamKou = 25.0;

double probaKou = 0.6;

// Parameters for the VG model.

double sigmaVG = 0.12;
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double thetaVG = -0.33;

double kappaVG = 0.16;

// Parameters for the NIG model.

double sigmaNIG = 0.12;

double thetaNIG = -0.33;

double kappaNIG = 0.16;

Moreover in the pricing algorithm, we need to truncate and discretize the inte-
grals (7) and (8). In this aim, we use the following parameters.

int Nlimit = 2048; // Number of integral discretization steps.

double logstrikestep = 0.01;

// log strikes are equidistant with the step d=logstrikestep.

double k0 = log(strike/S0);

double h = 2*M_PI/Nlimit/logstrikestep; // Integral discretization step.

double A = (Nlimit-1)*h; // Integration domain is (-A/2,A/2).

where M_PI is the constant π.

3.2 Functions

All the functions have the same form, except for the parameters of the asso-
ciated Lévy process. The output price and delta are obviously *ptprice and
*ptdelta. The parameter *p contains the parameters of the payoff in the gap
option (i.e. the parameter strike).

int Ap_Gap_Merton(

double S0,NumFunc_1 *p,

int numberperiod,double alpha_gap,double T,double r,double divid,

double sigma,double lambda,double mu,double deltaVol,

double *ptprice,double *ptdelta) :

int Ap_Gap_Kou(

double S0,NumFunc_1 *p,

int numberperiod,double alpha_gap,double T,double r,double divid,

double sigma,double lambda,double mu,double deltaVol,

double *ptprice,double *ptdelta) :

int Ap_Gap_VG(

double S0,NumFunc_1 *p,

int numberperiod,double alpha_gap,double T,double r,double divid,

double theta, double sigma, double kappa,

double *ptprice,double *ptdelta) :

int Ap_Gap_NIG(

double S0,NumFunc_1 *p,
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int numberperiod,double alpha_gap,double T,double r,double divid,

double theta, double sigma, double kappa,

double *ptprice,double *ptdelta) :

3.3 Complete algorithm

Here is a complete description of the algorithm. We use the Lévy measures
defined in levy.h and the DFT implementation in fft.h.

• We declare all the variables used in the algorithm.

• We compute the Black-Scholes part used for regularization.

• We construct a Lévy measure object which contains a closed form of the
characteristic function.

• We perform three integration loops with Simpson’s rule and we define
corresponding arrays.

• We perform the discrete fast Fourier transform of arrays previously de-
fined.

• We compute (4), (5) and the delta of (5) by adding the Black-Scholes
part.

• We compute the price of the gap option and its delta.

4 Conclusion

The computation of a price is extremely fast thanks to the discrete fast Fourier
transform when the parameter Nlimit is of order 103. The parameter Nlimit

could be certainly chosen larger, but in practice 2048 is enough. Nevertheless,
for some Lévy parameters, the integral could be miscomputed. In particular,
this is the case when ∆ tends to zero, because the characteristic function φ∆

decays slowly at infinity, which means that A must be sufficiently big. Thus
Nlimit must be big and the computation of the integrals will be costly. In the
Kou model, an approximated formula would be performed as soon as r∆ < 10−4.
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