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1. MODEL

1.1. Framework. Let [0,T] be a finite time interval and let (2, F, Q) be a complete
probability space on which two-dimensional standard Brownian motion (B, W) is
defined. By {Fi}iepo,r) we denote the filtration generated by B and W, augmented
with the @-null sets and made right-continuous. We study a market model with
only two assets :

- a riskless one ( bond ). Its price is given by : R, = e™ for some constant r > 0.
- a risky one (stock)

We assume that there are no arbitrage opportunities, no transaction costs, no re-
strictions on short-selling and that the assets are infinitely divisible.

By the fundamental theorem of asset pricing we know that there exists at least
one probability P ~ @, under which the discounted risky asset price is a martingale.
From now on, we shall be able to work under a risk-neutral probability P, selected
by some criterion. Hence, fixing ¢ € [0, 7] as our initial time, x € R, as the logarithm
of the initial spot and v > 0, the dynamics of the price of the risky asset S for ¢ < s
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is given by :
sy et oSt taus [ pl)sy tdzu e e v 1)

where v, represents the stochastic volatily and verifies :

o=t [ uteldut [ nl)aB, )
t t
and Z and B are two p-correlated Brownian motions :

Zy = pBi + /1 = p*W;

with B and W two independent Brownian motions and —1 < p < 1.
Besides, we make the hypothesis :

(H) The functions f,u,n: R — R are well defined and in C*°(R) with uniformly
bounded derivatives of order greater than or equal 1. Moreover, we assume that (1)
- (2) have a unique strong solution (S.,v.) such that for any 2 <p

w€e(t,T)

E( sup (IS5 + vf;”l”)) <C

for some constant C depending on p,T,x,v.

1.2. Expansion of the price in terms of the correlation p. We want to price
a European call with payoff

U(eX7"") = (X177 — eX),, K € R. In the absence of arbitrage opportunities, the
price has the representation

ult, ,v;p) = E(e " T=0w (X)), (3)

We denote by (F2) the filtration generated by the Brownian motion B on the

interval [t, s]. The distribution of X!*" conditionally on FZ is normal.

X" g~ /\/(m—l—r(s—t +p/ f(v,*)dBy —f/ (v

(1- ) / e

~ ./\/(err(sft)erM;’”f(lTp p—)(M“’)'

2
(L= p2)(M"),)

where we denote by M!" the martingale :
e = [ rwins, (50)
t
S
arte). = [P (5b)
t

Conditionally on FZ, (X1®?),c,<7 follows the Black-Scholes dynamis with a
time-dependent volatility. We obtain simply the explicit formula of the value of a
call option thanks to the Black and Scholes formula changing the volatility into the
root mean square of the volatility f(vi¥) over the time intervalle [t, T].

Let us denote :

CBS(tvxvn) = ewN(dl(t’wvn)) - eKir(Tit)N(dQ(tvman))
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where
1 v 'lL2
N(z) = \/ﬂ/ e 2du (7a)
x—K+r(T—t)+ in?
di(t, ) = (n 1+ 3 (7b)
do(t,z,m) = dilt,z,m) —n (7c)
In our case, we can write :
ut,z,vip) = E(e T — o))

= E(Be T — oK), 7))

2
— B(cas(ta+ oMy = 2 (M) g, /(T = (M)

= E(e”“‘(”)N(dl(t,x + A(p), /(1 — p2)<Mt’”>T)>

,@K—T(Tft)]\](dz(t, x4+ A(p), /(1 — p2)<Mt,v>T)>)
where A(p) = pMy" — §<Mt,v>T'

The main result of [1] is that it is possible to expand wu(t, z,v; p) into a series of
powers of p.

Theorem Let S,v satisfy 1 and 2 under hypothesis (H).
If the condition :
(H1) There exists a constant Cy, depending only on T —t,v and the uniform bound
on the derivatives of the coefficients, such that for any 1 < q

1 q
(o)) =
Jo fr®)dr
is also satisfied, then :

(i) The function u(t,z,v;p) is C* in a neighborhood of p = 0.
(i) The series

1 0%u(t,z,v; p
u(t,x,v;p) = Z Ei(a % )|p:opk (9)
0<k P

converges for any p € (—R, R) for some appropriate constant 0 < R < 1.
We refer to [1] for the proof.

1.3. Identification of the coefficients.

1.3.1. Explicit computation. With the previous theorem, we want to compute the
different coefficients of the series. The first attempt will be to differenciate the
solution u with respect to p. To compute the first order derivative

du

. 05)loma = B (MEN (a2, 7))

the problem is the evaluation of the joint distribution of (M;:”, (M t7”>T). That is

why Antonelli and Scarlatti propose an alternative approach.

Due to the deterministic nature of the coefficients, the couple (X ,v.) is Markov.
Hence taking those processes as state variables and applying It6’s lemma, we may
associate the following PDE evaluation problem, u is a classical solution of which
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forz € R,v > 0,t €[0,7T] :

f2 62 82 82
ot 2(1})87;; )8 7 o) f )396;)
0 0
s TP,

w(T,z,v) = P(e®).

We denote by L, the operator in the first equality and we divide it into two
parts :
Ly, =Ly+pA:

v u 2(v u 2(v
Lo= ¢+ TG + T G 4 (r = T52) B+ n(v) 3 —ru

{An(ﬁ(b;v

We denote by gk (t,z,v) the series coefficients :

1 9Fu

k'@ k(t z,v p)|p 0 (10)

gi(t, z,v) =

If we differentiate with respect to p and specialize for p = 0 we find quickly that
the series coefficients have to verify :

Logo(t,z,v) =0 re€R,v>0
go(T,xz,v) =V¥(e") z€R,v>0

and for 1 < k ,

Logr(t,z,v) = —Agr_1(t,z,v) z€R,v>0
9:(T,z,0) =0 reR,v>0

Then the series coefficients g (¢, x,v) are the solutions of inhomogeneous PDE,
with zero terminal conditions. We can solve the PDE with classical methods. We
can find a formula for each coefficient (in article [1]), which is

gk(t,x,v) = /dozk /doqe Tt)IE(fn

< k)] gjumw%
N(k+1)(d2 al thv /Mozl,'ual

[V

(650
< g/ )

With the flow property of v we have, for ay € [¢,T] :

<Ma1,v(’;f>T _ <Mt’v>[a1,T] _ <Mt,v>T _ <Mt,v>a1
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1.3.2. The first coefficients. The hope is that when approximating u by means of
the truncated series, only a few coefficients g will be necessary to achieve a good
degree of approximation.

The first coefficient is given by :

st .0) = B (esta, /TTTT) ) (13)
The expression of g1 (t,z,v) is computed with the previous formula and:
—r(T— [dQN,(dQ)](tvxa <Mt’v>T) v
gi(t,z,v) = —efr t>E< (Mt CE,T] (14)

where :

v T T ALY [ Ovhv -1
Cfi,T]Z/t (fn)(vf;”)/a FE)f (02?) iR ( o ) dsdo (15)

and dy is given by ( 7)
See [1] for the proof

An explicit computation of the coefficients, and even go(¢,z,v) need the total
knowledge of the law of (M®*V)7 which is not possible for most of the models. So,
we are going to focus a possible approximation procedure for the coeffictients.

1.4. Approximation of the coefficients. To approximate the coefficients, An-
tonelli and Scarlatti propose to perform a Taylor expansion (up to the zeroth order)
of the functions appearing in the expectations with respect to the variable (M)
around its mean. Pratically this corresponds to substituting in the formulas (M)
with E((M%?)7) .

We can define the approximation of the first two coefficients :

golt.z,0) = eps(t.a, VE(MP)r)) = ¢*N(di) — " T"IN(dy)
gilt,z,v) = =M t)mE(C[t,T])

Here d; and dy are approximation of d; and do given by :
— z—K+r(T—t)+ 3E(M")r)

d1 = (178“)
E((M"5¥)7)
& = @ JE(@I)y) (17b)
If we denote by :
u(t, z,v; p) = ngtxv (18)
0<k

Then, Antonelli and Scarlatti control the total error due to this approximation :

Theorem  Under the hypotheses (H) and (H1), for any p € [—Ri1, R1] for some
sufficiently small Ry > 0 , it holds

fu(t, 2,03 p) = (t, z,v; p)| < CVar((M"")7)?
for some constant C' > 0 depending only on x,v,r, K, T —t,p and the constants
appearing in hypotheses (H) and (H1)
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See [1] for the proof

The idea, now, to refine our approximation is to push the Taylor expansion of the
first term go up to the second order. The aim is to obtain the order of Var({(M%)r)
instead of E((M"")r) . Using the second-order Taylor expansion of cgg in (M"V)r
we obtain the following approximation for g
We denote by go(t,z,v) :
~ _ 1 0? .
go(t,z,v) = Golt,z,v)+ 587#033(1371', VU ly=r((artoy oy Var((M©Y)7)

eK—r(T—t)

¥ Bz et T DN (@) Var(M)

= Go(t,z,v)

The total error has been reduced since according to [1],
it z,v;p) = Gol(t, z,v) + Y _ Gult, x,v)p" (20)
1<k

is such
|u(t, z,v; p) — a(t, z,v; p)| < L(VGT(UW’”)T) + IprCW(<Mt’”>T)5)
where L is an appropriate constant depending on x,v,t, K.

1.5. Pricing of a European put. To compute the price of an European put we
want to use the same method of power series approach. We want to make the same
approximations as in the call options too. Instead of computing another time the
function of price (from the Black and Scholes formula), we just use the call and put
parity.

Denoting p(t, x,v; p) the price of a European put, in the above stochastic volatil-
ity model, we have :

u(t,,v;p) — p(t, z,v;p) = e” — 7T (21)
We assume that for our computation :

Bt v;p) = a(t,z,v;p) — €® + K 7T=D

1.6. Hedging.

1.6.1. Call option. In this subsection we are going to compute an approximation of
the hedging strategy. We are interested in strategies that incorporate a component
with respect to the underlying (delta hedging). By our approach, we are going to
write the option price in the series form and differentiate with respect to x. Then
a possible approximation involving the first two terms might be :

%(

0
h(t,z,v;p) = 5 D v) + p%(t z,v)

And we simply have :

%(t,az,v) = ezE(N<d1(t,CC, <Mt’v>T)>>
%(tw,v) = —eK_T(T_t)E<(1—dg)Nl(dz)(tyxa <MtU>T)“$j1ﬁ>
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Then as in the others formula and in order to stay coherent with the rest we
substitute (M%?)r with E((M*V)7) and we obtain :

h(t,z,v;p) = ho(t,z,v) + phyi(t,x,v)

ho(t,z,v) 1= e"N(di(t, @, VE((M 7))

h’l (ta xZ, U) = 7€K7T(T7t)(1 - d%)N/(dQ)(t7 €T, E(<Mt7U>T))M
(E((M*"v)r))?

For the delta of the call option 0. we use the following approximation :

Sc(t,,v5p) = e “(ho(t,z,v) + phy(t,z,v))

1.6.2. Put option. In order to compute the hedging for a put option, we still use
the call and put parity.

p(t,x,v;p) = u(t, T, v; p) — et 4+ err(T—t)
%(t,x,v;p) = %(t,w,v;p) et

Then, we simply have (after first order approximation ) for the delta of a put
option 4,
5P(t7 &€, U3 p) = 6C(t’ &€, U3 ,0) -1
2. APPLICATION TO FINANCIAL MODELS

In these applications, we will compute :

Ueap(0,2,03p) = go(0,2,v) + pgi(0,z,v) (26a)
Peap(0,2,05p) = Ueap(0,7,v5p) — S + 7T (26b)
Ocony (0,2,05p) = €7° (ho((), x,v) + phy(0, z, 11)) (26¢)
Opeuy (0, 2,03p) = e, (0,2,0;p) — 1 (26d)

(26€)

2.1. Heston model. In the Heston model the stochastic volatility/asset price dy-
namics are given by :

= vt /Sb(a—vf;”)dt+c / oidB, (27a)
¢ t
Ste™w = T 4 / Ssge‘”’ﬂ(rdqu vi")dZ, (27b)
t
with v, a,b,c > 0.
So :
flv) = Vo, pu(v) = bla —v), n(v) = cv/v
PO = e H@)=-b )=
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Then we have :

(M"Y, = /tvi’”du

E(<Mt’U>T) _ a(T _ t) + %(1 _ e—b(T—t))
T T t,v t,v
o ¢ t ovlV ovhY . 4
Chr = 2/5 vy o ( 5 ) dsda
E@!) = (v-ae ) 4,

2.1.1. Computation of gi(t, z,v). Explicity gi(t,z,v) is :

_ _ _C K—r(T—t) daN'(dy) tw
g1(t,z,v) 26 E((M%) ) (c[t,T])

g1(t,z,v) can be computed with :

vt s —b(s—w)
;s = e bD 4 c/ S — owkvdB,,
v t 2V oy
LU S - C/s o o dB
v ¢ 2/ vhY o
vt | 251
s OV ebtezp(f/ dBu,i/ ———du)
ov 2 t ’thjv 2 ¢ 41}u’
81}2’1) b(s—t) & s 1 62 s 1
= e Y Vexp(= ——dB, — — —du
v p(Q/t N 8 /f vh? )
o t,v ) t,v %fg édBu—é fs —du
Us ( Vo )—1 _ e—b(s—a)e o m o vy
ov * Ov

Then we obtain :

T T
v C v —b(s—a
Bin) = 5 [ B0&) [ e dsda
c (T b(a—t 1 b(T—a)
= 5 ; (v —a)e bt —I—a)g(l — e YT~ dqy
= SGT=8) =~ T = BT
T ”b%a(efb(ﬂft) _ Tty %(1 _embT=B)Y)

And g1(t, z,v) has an explicit form :

ceSK=rT=1d, N'(dy) (v —2a
BE((M)7) b

E(t7x7v) = -

(1= e™T=0) 4 (T = t)(a = (v — a)e™"T~D))
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2.1.2. Computation of go(t,z,v). For go(t,z,v), it is given by :

eK—'r(T—t) o
go(t = qo(t ———(dod; — 1)N'(d2)V Mt
gO( ,CE,’U) gO( 7377/0) + 8E(<Mt’v>T)%( 201 ) ( 2) ar(( >T)
Go(t,z,v) = € N(dy)— e T IN(dy)

Then we need to know the value of the variance of (M%%)r, so E({M%*)2,)

T
E((M)2) = E(( / ot du)?)

T T
IE(/ / vb bt dudw)
/ / t v t U dudw

for u < w

by = vff’—i—/ b(a —vh )ds+c/ vy dB,
u u

— ,Uitjve—b(w—u) +ab/ e_b(w_s)d8+0/ e—b(w s) tvdB
Hence :
E('Ut Wyt v) _ efb(wfu)E((,thjv)Q) + a(l _ efb(wfu))E(vfjv)

The calculation of E((v};¥)?) is necessary . We obtain with v5,? = ve (=% 4 q(1 —

e—b(u—t)) + Cftu e—b(u—s) \/’IFdBS

E((Ui7v)2) _ (Ue—b(u—t)+a(1_e—b(u—t)))2+c2/ 6_2b(u_s)]E(’U?v)dS
t

efb(uft) _ 672b(u7t)

= (ve 7 4 g(1 — e PuD))2 4 (2 ((U —a)

a
(1= —2b(u—t)
+ 2b( e )

Then, we have :

E(’Ut gt v) efb(wfu)E((thjv)Q) + a(l _ efb(wfu))E(UZ,v)

1

= 27)(2 P(mw=ut28) 2 4 o g b(t—w) ;g b(—w—ut2t)p,

_ 9 ba2eb(t7w) +2 eb(7w7u+2t)ba2 —9 eb(7w7u+2 t)Cv
+ eb(—w—u+2 t) 2Cl +2 026b(t—w)v + eb(—w+u)02a

— 22 g 4 2 ettt g — 2 h2ebt1) 49 baz)
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We can compute E((M%?)2,) dividing the formula according to u < w and w < w.

E(<Mt’v>%) — / / tv tv dudw
T ,T

/ / vh t”duder/ / E(vlvobY) dudw
t w

—2b(T—t)

2b3(20 v+ 2002 + Zae 2T 2 c2pe

— 42etT0h 4 g2 BT 19026 2b(T—1)p 1 913,272

— 4b2a®T — 4b%a®tT + 4b%0vaT + 8vae T =Vb + 2 2aTb + 4 b%a’t
+ dotte P Ty — 4at?e " TDp 4+ 4b%vate T

— 4b%a%te T — 4yae 2T Y — 4bva — 4 b%vat + 2a%e 20Ty
— 2batc® 4+ 2ba® — 5Pa+ 4Pae T 4 2830242 — 4 Pve Ty
+ 4c2ae TP — 40ae T2 T 4 4 a2 P (T=Dp%T)

Then for the variance of (M"")p

Var((M"")r) = E(M"")3) — (E(M"")1))?
2
= o (2v +4vte” UT=1)p _ 9 ye=20(T—1) 4 qe=2b(T—t) 4 4 qe=b(T—1)

+ 2abT + 4ae *T=9T — 4ate™*T=b — 40e " T=DpT — 2abt — 5a)

2.1.3. Computation of Put and Hedging. We have for the put in Heston model :
Peap(0, 2,05 p) = tezp(0, 2, v; p) — So + e~ which gives us immediatly the result.
For the hedging :

ho(t,z,v) = emN(dl(tJS, E((Mtvﬁ)))
E(c)
hi(t,z,v) = _K-r(T-1) 1_d§ N’ (do 2, VE(ME) g ¢3
(t.2.0 (1= BIN'(d) 1,2, VRN 1)) e s o

ho(t, x,v) is explicit and for hy(t,z,v) we just have to compute E(c! <. T]) which
has been already made for gy (¢, z,v) :

v €@ v—a b7 v—2a e
E(c ftT]) = §(E(T_t)_ (T — )T t)+b72(1_e BT
Then the calculation of d.,,, and d,,,, are explicit.
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3. STEIN AND STEIN MODEL

In the generalized Stein and Stein model, the stochastic volatility is described
by means of Ornstein-Uhlenbeck process, hence :

bV = v+ /ts b(a — vh?")du + /ts cdB, (42a)
S =e” 4 /t L (rdu + o) dZ, (42b)
So :
flo) = v, p(v) = bla — ), n(v) = ¢
F@) =1 W) =-b, () =0

Then we obtain :

S
e, = [ty
¢
The stochastic volatility follows a Vasicek’s model, so we have :

’Ué’v — e bt ta(l- e—b(s—t)) 4 ocets /s ebudBu
t
,Uefb(sft) + CL(]. . efb(sft))
2 1— —b(T—t)
<a2 + C) (T —1t) +2a(v— a)eT

&=
—~
—~

3

<

~

~—
Il

20

2\ 1 — e—26(T—1)

And for a < s

2
E(U?vvgv) _ (a + (’U o a)efb(aft))(a + (’U - a)efb(sft)) + ;ﬁb(efb(sfa) _ efb[(ocft)Jr(sft)])

a,Ut,'u b

Zis o b

= €
ov
T T
CEE}T] = c/ Uﬁ;”/ vh et dsda
, 5 o

3.1. Computation of gi(t,z,v). We can compute gi (¢, z,v) which is given by :

— —r(T— d2Nl(d2) Tt —b(s— tow,t
gi(t,z,v,p) = —ce T t)iv/ / e PETIR (L) dsda
E((M")r) Ji Ja
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The computation of g1(t, z,v, p) is a double integral which is elementary and we
can obtain an explicit and analytical expression.

K—rr—t) d2N'(d2) 1
E((MtY)p )4b3

b2 (T — 1) (1 — e 2T =D) — 2p2(T — 1)~ 2T (42 + 42) 4 dabv(1 — e 2T)2
+ 4a20*(T — ) (e P T=D £ 1) + (1 — e oTY)
o2 e—b(T—t)) -~ 3a2b(e—2b(T—t) 1 e b(T=1) _ 3)}

q(t,z,v,p) = —ce [ 4ab®o(T — t) (e PT=1) — o=26(T=1))y

+

3.2. Computation of gy(t,z,v). To compute go(t,z,v) we just need to have
Var((M“")r) , so
E(((M"")1)?) -

B = (f (o 2du)?

/ / tU tU dudw

To compute E((v;"v5?)?) we use the fact that (v”);<u<7 is a Gaussian process.
For w <u

2(1 _ ,—2b(u—t)
to —b(u—t) | _ emblu—t)y € (1—e )
iV ~ N(ve +a(l—e ), T

b Uefb(uft) + a(l _ efb(uft))
(Jiﬁv) ~ NQ (,Ueb(wt) + (1(1 o efb(wft))’ by
where :

2 1— _2b(u—t)) %e—b(u—&-w) (ewa _ eth)
)

o[
<2b —b(u+1z))( 2bw eth) %(1 _ €—2b(w—t)

If we have :
X 0 (fa b
()G )

Then cov(Y — 25, X) =
Our problem is to compute E((z + X)?(y + Y)?)
And we have :

E((z+X)2(y+Y)?) = E(@=®+22X + X3y +2yY +Y?))
= 2%y® + 2%c+ dayb + y?a + ac + 2b°
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Then we can compute without any problem E((v5?v%7)?) for u < w and w < u
replacing x, y, X, Y with the corresponding terms. Just with the separation of an
integral we obtain E(((M"V)7)?) and then Var((M"")r) .

Var((M"")p) = ;bf 32 b%vate 20Tt _ 2e=40(T—1)
+ 16vae 3Ty 4 402 40T =p 4 1602 20T =027 — 16 b2a’te 2T~
— 112a%be T 4 48 ba%e 20Tt _ 16 p2p2te20(T—1)
— 162 3Ty 4 16 a2 2P T2 4 402 42T —0p — Spae~*UT—1p
—  32b%ate P T 4 8 Pte 20T — 8 Pe 20T =0T 4 5% — 4 2e20(T—1)
+  76ba® + 320%a%t + 4c2bt — 40%b + 48 abve ™" TV — 32 avbe 20T — 320%a2T
— 40T — 24 avb 4 32vae " T=IP2T 4 32020 te (T~

— 32a%e PTOT — 32 pae 2 b(T_t)bQT]
3.3. Computation of Put and Hedging. We have for the put in Stein and Stein
model :

Peap(0, 2,05 p) = Uerp(0,7,v; p) — So + X~ which gives us immediatly the result.

For the hedging :

holt,@,0) 1= "N (da(t,, E(M 7)) )
E( t,v )
rv) = —eK-T@=(1 _ 2\N' T t,v ¢
hy (t, 2, v) (1= BN (o)t 2, VEAM 1)) i 3

ho(t,z,v) is explicit and for hy(t,x,v) we just have to compute E(c! < T]) which
is easily computable as in g1 (¢, z,v) :

E(ciy) = / / et dsda
4ab2 ( t)( —b(T—t) 7672b(T7t))

43 [
bA(T — £)(1 — =270~ (T — )e?HT= (62 4 a2) + dabu(1 — T =1))?
4a°0*(T — t) (e PT= 4 1) + b?(1 — e T71)

_ 02(1 - e—b(T—t)) _ 3a2b(e—2b(T—t) + Job(T—t) _ 3)

Then the calculation of 6,

+
+

and &

penp aT€ explicit.

Cexp
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4. HuLL AND WHITE MODEL

In the Hull and White model, the stochastic volatility is described by :

vl :v—i—/ /wfj”du—i-/ cvlVdB, (55a)
t t
SLr =t + / Spe " (rdu + v} dZ, (55b)
t
So,
flv) = o, p(v) = po, n(v) = cv
flo) = 1, () = p, ' (v) =c

vh? follows the Black and Scholes’s model, then :
—  pelb—F)u—t)+cB.)

(Whv)? = 22t (=) +(20) B — 222 (u—t)
S
B(M')) = B([ ("))
t

_ / T p2elnte) ) gy
t

2
— U (e@u+e)(s=t) _ 1)

2+ 2

0'2 . . . .
using the fact that : eB+~% " is a martingale for B, a Brownian motion.

4.1. Computation of gi(t,z,v). We can compute easily gy (¢, z,v) since we have
the expression of v%".

_eK—T(T—t) d2N/(d2) ]E(Ct,v )

gi(t,x,v) = E((Mtv)7) [t,T]

And cft’f’T] is given by :
T T
Ghr = ¢ / vy" / (05" dsda
: 5 .

t,v t,v
ovy vl

because

v v
And for E(v?(vhv)?) we have, when o < s :

2
vb = obVexp(p(s — ) — %(s — ) + ¢By)

, 9c?
(0h") 2k = vdezp((&t +3¢%) (o~ 1) = =-(a — 1) +3¢(Bo — By

+ (2u+c*) (s —a) +2¢(Bs — By) — 2¢*(s — a)>

E(vy"(v;")?) = v’eap((3u+3¢%)(a —t) + (2u + ¢*)(s — a))
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So, we have :

doN'(d (3u+3c%)(T—t) 9 2
Gtaw) = —cok—rr—n_BN'(@) ( 2+ )

E((MEv)7) \ (1 +2¢2) (3 + 3¢?)

e2utc)(T—1) N 1 3
A+ 2¢? 3+ 3c% | 2u+ 2

4.2. Computation of go(t,x,v). The problem is the same as in the two previous
models : the variance of (M%?)p

T
E(M*)7)?) = E(( / (0)2)?)

/ / tvtv )dsda

/ / oty )dsda+ATATE((vgvgv))dsda

a<s
Calculation of E((viv5)?) for v < s :
2
vbv = ohlexp(p(s — ) — 5(5 —a) + ¢By)
(vhvul)? = wlexp((4p + 6¢%)(a —t) — 8c*(a —t) +4¢(By — Ba) + (2u + ) (s — a) — 2¢%(s — a) + 2¢
E((vEovb)?) = vleap((4p + 6¢*) (o —t) + (21 + ¢*)(s — )

04 (20 + 5e2 — (4 + 6c2)eCrte)(T=1) 4 (2 4 (2)e(4nt6e*)(T—1)
(2p +5¢2)(2p + ) (2p + 3¢?)

E((M"")7)?) =

Then, we have :

Var((M"")r) = E((M"")7)?) = E(M"")7)?
which can be computed explicity. And the result is :

Go(t,z,v) = €*N(dy)— X TDN(dy)
eK—'r'(T—t)

W(dz(h — 1)N'(d2)Var({M"")7)

4.3. Computation of Put and Hedging. We have for the put in Hull and White
model :
Peap(0, 2,05 p) = tezp(0,2,v; p) — So + e~ which gives us immediatly the result.

For the hedging :
ho(t,z,v) = exN<d1(t7337 E(<Mtv>T)))

t,v
E(C[t7T])

rov) = —eKr(T=t ] _ g2\ N x tv P
h1(t, , ) (1 d2)N (dg)(t, s ]E(<M >T))(E(<Mt’v>T))%
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ho(t,z,v) is explicit and for hq(t,z,v) we just have to compute ]E(c’[ffT]) which
is easily computable as in g1(t, z,v) :

y cv3 6(3;A+302)(T—t)(2u + C2) e(2u+62)(T—t) 1
(ctim) = 2p + 2 ( (W+22)Bu+3c2) p+2e * 3u+ 302>
Then the calculation of d.,,, and d,,,, are explicit.
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