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1 Dual algorithm for multi-dimensional Bermudan options

1.1 Theoretical aspects

In this part, we describe the dual approach for pricing American options as independently
introduced by Rogers [1] and Haugh & Kogan [2].

Proposition 1. In the dual approach, the following bound holds for the option price Qt at

initial time t = 0 :

Q0 = inf
πǫH

{
πt0

+ E

[
max

tǫ{t0,...,tN }
(B (0, t) ϕ (St) − πt)

]}
, (1)

where H is the set of martingale processes that satisfy

{
E

[
sup

tǫ{t0,...,tN }
|πt|

]
< ∞

}
.

Like previously,
Q0 = sup

τǫℑ0,N

E [B (0, τ) ϕ (Sτ )] .

For any martingale πǫH,

Q0 = πt0
+ sup

τǫℑ0,N

E [B (0, τ) ϕ (Sτ ) − πτ ]

6 πt0
+ E

[
sup

tǫ{t0,...,tN }
(B (0, t) ϕ (St) − πt)

]
.

Taking the infimum over all πǫH proves that Q0 is bounded above by the right-hand side
of (1).

The dual problem is then equivalent to finding the best martingale process in H that
minimizes the duality gap to the option’s true price Q0.

To find a possible candidate, we can use the Doob-Meyer decomposition of the Snell
envelope process (B (0, t) Qt)t>0, which is the smallest supermartingale that dominates the
actualized payoff (B (0, t) ϕ (St))t>0.
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This leads to two processes (At)t>0 an increasing process such that A0 = 0, and (Mt)t>0

a martingale process, that satisfy:

∀t > 0, B (0, t) Qt = Mt − At.

Hence, using the martingale process (Mt)t>0, the dual inequality verifies:

Q0 6 Q0 + E

[
max

tǫ{t0,...,tN }
(B (0, t) ϕ (St) − B (0, t) Qt − At)

]
6 Q0,

where the second inequality is given by ϕ (St) 6 Qt and At > 0.
The equality holds consequently when we take the martingale part of the true price process

(B (0, t) Qt)t>0.

1.2 Basic principle

Andersen & Broadie [3] proposed a way to use a primal algorithm as a basis to build the
martingale π.

Thus let’s consider a sub-optimal exercice strategy obtained with one of the previous
primal procedures.

According to this strategy, at each exercise date we build the indicator process (lt)tǫ{t0,...,tN }

which is equal to 1 when the strategy advises to exercise at time t, 0 if it asks to continue.
We introduce the sequence of stopping times (τt)tǫ{t0,...,tN }, defined by:

τt = inf {u ∈ {t0,..., tN } ∩ [t, T ] : lu = 1} . (2)

Then we consider the lower bound price process (Lt)tǫ{t0,...,tN } according to this strategy,
such that:

B (0, t) Lt = E [B (0, τt) ϕ (Sτt) |Ft] .

The process (Lt)tǫ{t0,...,tN } is used to extract the martingale π thanks to the following
steps: πt0

= Lt0
, and for t1 6 tj 6 tN ,

πtj
= πtj−1

+ B (0, tj) Ltj
− B (0, tj−1) Ltj−1

−ltj−1
E

[
B (0, tj) Ltj

− B (0, tj−1) Ltj−1
|Ftj−1

]
.

One can easily check the process (πt)t06t6tN
is a martingale, as we have:

• If ltj−1
= 0, i.e. the strategy indicates a continuation at time tj−1, τtj−1

> tj and by (2)
τtj−1

= τtj
.

This leads to:

B (0, tj−1) Ltj−1
= E

[
B

(
0, τtj−1

)
ϕ

(
Sτtj−1

)
|Ftj−1

]

= E
[
E

[
B

(
0, τtj−1

)
ϕ

(
Sτtj−1

)
|Ftj

]
|Ftj−1

]

= E
[
B (0, tj) Ltj

|Ftj−1

]
.

So, πtj−1
= E

[
πtj

|Ftj−1

]
: π is a martingale process in the continuation zone;
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• If the strategy recommends to exercise at time tj−1 (i.e. ltj−1
= 1),

E
[
πtj

|Ftj−1

]
= πtj−1

+ E
[
B (0, tj) Ltj

− B (0, tj−1) Ltj−1
|Ftj−1

]

−E
[
B (0, tj) Ltj

− B (0, tj−1) Ltj−1
|Ftj−1

]

= πtj−1
.

As we previously set πt0
= Lt0

, the martingale process π satisfies the dual inequality:

Q0 6 Lt0
+ E

[
max

tǫ{t0,...,tN }
(B (0, t) ϕ (St) − πt)

]
.

Finally, we introduce ∆0 = E

[
max

tǫ{t0,...,tN }
(B (0, t) ϕ (St) − πt)

]
, the duality gap associated

with the martingale process π.

1.3 Pricing algorithm

To compute ∆0, Andersen & Broadie recommend using Monte-Carlo simulations in order to
build the martingale π.

We choose to estimate the lower bound L̂t0
of the true option’s price thanks to the

Lonsgtaff-Schwartz algorithm, from which we keep in memory the set of regression factors
αj = (αj

l , 1 6 l 6 k) ∈ R
k obtained for each time step tj where 1 6 j 6 N − 1.

As proposed by Andersen & Broadie, for a path
(
Stj

)
06j6N

of the underlying assets,

independent of the ones used in the Lonsgtaff-Schwartz procedure, the suboptimal strategy
is then defined by:

τt = inf
{

u ∈ {t0,..., tN } ∩ [t, T ] : ϕ (Su) > C̃V u

}
,

where we choose to directly approximate at time t1 6 tj 6 tN−1 the option’s

continuation value in the regression basis gj = (gj
l , 1 6 l 6 k) ∈ R

k by C̃V tj
=

〈
αj , gj

〉 (
Stj

)

and set C̃V tN
= 0.

The upper bound is computed by the following algorithm:

1. Simulate a trajectory of the d stocks:

S0 =
(
S1

t0
, ..., Sd

t0

)
, ..., SN =

(
S1

tN
, ..., Sd

tN

)
;

2. Set πt0
= L̂t0

, then for each exercise date t1 6 tj 6 tN :

• Compute Ltj
= max

(
C̃V tj

, ϕ
(
Stj

))
and memorize it;
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• If ϕ
(
Stj−1

)
6 C̃V tj−1

(case ltj−1
= 0), compute:

πtj
= πtj−1

+ B (0, tj) Ltj
− B (0, tj−1) Ltj−1

;

• Otherwise (case ltj−1
= 1), calculate E

[
B (0, tj) Ltj

|Stj−1

]
.

Here, we sample Ninternal one step paths of Stj
, starting from Stj−1

.

Then, for each inner simulation, we use again the regression factors to approximate
the option’s continuation value C̃V

m

tj
at time tj and compute the option’s lower

bound value Lm
tj

= max
(
C̃V

m

tj
, ϕ

(
Sm

tj

))
for each internal trajectory 1 6 m 6

Ninternal.

We finally evaluate E
[
B (0, tj) Ltj

|Stj−1

]
with its standard estimator:

E
[
B (0, tj) Ltj

|Stj−1

]
≃

1

Ninternal

Ninternal∑

m=1

B (0, tj) Lm
tj

.

Then compute:

πtj
= πtj−1

+ B (0, tj) Ltj
−

1

Ninternal

Ninternal∑

m=1

B (0, tj) Lm
tj

;

3. Finally, compute the dual gap for the trajectory:

max
tǫ{t0,...,tN }

(B (0, t) ϕ (St) − πt) ;

4. Repeat steps (1)-(2)-(3) for Ndual independent trajectories indexed by i and estimate
∆0 thanks to the Monte-Carlo estimator ∆̂0:

∆̂0 =
1

Ndual

Ndual∑

i=1

[
max

tǫ{t0,...,tN }

(
B (0, t) ϕ

(
Si

t

)
− πi

t

)]
.

1.4 Algorithm improvements

As introduced by Braodie & Cao [4], several improvements of the dual algorithm are imple-
mentable to speed up the basic dual procedure.

1.4.1 Sub-optimality checking

In the previous section, we choose to use the regression basis generated by the Longstaff-
Schwartz algorithm to compute the approximations of the option’s continuation value at each
time step.

To limit the impact of these approximations, which can directly imply incorrect launches
of inner simulations, we use a theoretical lower bound of the option’s continuation value to
prevent some of these incorrect decisions.
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We consider logically the corresponding option’s European price Et as a lower bound of the
continuation value. If the European price is luckily given by a close formula or by close form
approximations, the computation cost will also be negligible in comparason to the calculation
time saved.

Moreover, one can generally use the value of any option which is dominated by the Amer-
ican option or the maximum among the values of all dominated options.

We now introduce the adjusted approximate continuation value, defined by:

C̃V t = max
(
C̃V t, Et

)
, ∀tǫ {t0,..., tN } ,

where Et is the European lower bound at time t and C̃V t the approximation of the
option’s continuation value as introduced in the previous section.

As a consequence, the indicator process (lt)tǫ{t0,...,tN } in the basic dual algorithm is now
turned into:

∀t ∈ {t0,..., tN }:

• lt = 1 if ϕ (St) > C̃V t;

• lt = 0 otherwise.

Even if this strategy is simple and generates sub-optimal exercise rules, it limits the
exercise strategy misunderstandings due to errors of approximations. This brings strong
computational improvements especially for OTM and ATM options.

For example, two kinds of payoff are available in PREMIA for American options on a
basket of stocks:

• Call or Put on the average of a basket: we use the approximation of the corresponding
European price generated by the formulas of Carmona & Durrleman;

• Call on the maximum of a basket: as proposed by Braodie & Cao, we find a lower
bound to the continuation value by averaging the prices of the corresponding single
stock European vanilla calls of the basket.

1.4.2 Boundary distance grouping

Definition of an alternative dual estimator

Broadie & Cao proposed another procedure to reduce the computation time of the dual
algorithm.

They try to quantify the distance of an option to the "exercise boundary". We define this
boundary as the surface in the state space where the option holder, based on the exercise
policy, is indifferent between holding and exercising the option. Mathematically spreaking,
this is the set of states at which the adjusted approximate continuation value is equal to the

exercise payoff
{

ωt, C̃V t = ϕ (St)
}

.

We introduce the distance measure dt =
∣∣∣C̃V t − ϕ (St)

∣∣∣, which determines how the option

is close to the "exercise boundary".
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In the boundary distance grouping procedure, Broadie & Cao separate the simulated paths
in two groups, according to the distance of each path to the "exercise boundary". Intuitively,
simulations such that the distance to the boundary gets smaller than a threshold during
the option’s life are placed into the group Z called ‘non-zero’, because one can hope their
contribution to the upper bound increment is not null. All other simulated paths are placed
into the ‘zero’ group Z.

The two groups are consequently defined by:





Z =
{

ω : ∀t ∈ Γ, dt(ω) > δ or ϕ (St) 6 C̃V t

}

Z =
{

ω : ∃t ∈ Γ, dt(ω) < δ and ϕ (St) > C̃V t

} .

We separate the sample paths between the two groups:

ω1, ..., ωn
Z

∈ Z and ωn
Z

+1, ..., ωNDual
∈ Z.

And we also introduce p
Z

, the probability that a sample path belongs
to group ’non-zero’,

p
Z

= P
(
ω ∈ Z

)
= P

({
ω : ∃t ∈ Γ, dt(w) < δ and ϕ (St) > C̃V t

})
,

and µZ = E [∆i|Z] , σ2
Z = V ar [∆i|Z] , µZ = E

[
∆i|Z

]
, σ2

Z
= V ar

[
∆i|Z

]
.

Braodie & Cao propose an alternative estimator to evaluate the dual increment ∆0:

∆̃0 =
1

Ndual




n
Z∑

i=1

∆i +
Ndual − n

Z

lZ

n
Z

+lZ∑

i=n
Z

+1

∆i


 ,

where n
Z

is the number of trajectories in the group Z and lZ a random number of paths
chosen in "zero" group such that lZ ≪ Ndual − n

Z
(for example, we consider the lZ first

paths belonging to group Z).

The simulation procedure for the dual algorithm, taking into account the boundary dis-
tance grouping procedure, is defined as follows:

1. Preliminairy step: generate Ntest sample paths and compute dual increments thanks
to the original dual algorithm. For each test distance δ, estimate µZ , σ2

Z , µZ , σ2
Z and

p
Z

to get l∗Z , the optimal number of trajectories in groupe Z to be included in the

calculation of ∆̃0; then choose the distance δ∗ that optimizes the efficient measure;

2. Simulate a trajectory of the d stocks:

S0 =
(
S1

t0
, ..., Sd

t0

)
, ..., SN =

(
S1

tN
, ..., Sd

tN

)
;

3. Estimate the boundary distance dt at each exercise opportunity, if ∃tǫ {t0,..., tN } such

that dt < δ∗ and ϕ (St) > C̃V t, the path is assigned to group Z, otherwise put it in
group Z;
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4. If the considered path belongs to group Z or among the first l∗Z trajectories of group Z,
estimate the increment ∆i at the upper bound with the dual algorithm, otherwise skip
the simulation;

5. Repeat steps (2)-(3)-(4) for Ndual sample trajectories and estimate ∆̃0 using the new
formula.

Even if this new algorithm asks a prelimary step that can be very time consuming as
we don’t have an a priori knowledge about the set of test distances δ, it can bring dramatic
computational improvements for ITM options, especially when the preliminary step reaches
a proper distance threshold rapidly.

Preliminary algorithm

To measure the efficiency of their new algorithm, Braodie & Cao introduce an effective
saving factor for the boundary distance grouping procedure. It can be calculated as the ratio
of the efficiency before and after improvement, where the efficiency of simulation is defined
as the product of sample variance and computational time.

We set TP , the expected time spent for generating one simulated path, TI is the expected
time to identify the group the path belongs to, T∆Z

and T∆
Z

are the expected times to estimate

dual increment ∆i from group Z or Z. One can typically suppose that TI , TP ≪ T∆Z
, T∆

Z
.

The total expected time for estimating ∆̃0 is equal to:

T
∆̃0

≈ NdualTP + NdualTI + NdualpZ
T∆

Z
+ lZT∆Z

= Ndual

[
TP + TI + p

Z
T∆

Z

]
+ lZT∆Z

.

For a fixed boundary distance threshold δ > 0, parameters µZ , σ2
Z , µZ , σ2

Z et p
Z

can be
estimated by simulation.

We now maximize the effective saving factor w.r.t. lZ for a first fixed test distance δ and
find an optimal δ∗ from a set of choices selected before:

δ∗ = arg

(
min

δ
V ar

[
∆̃0

]
× T

∆̃0

)
.

Broadie & Cao show that the variance of the alternative estimator to the dual increment
∆̃0 satisfies:

V ar
[
∆̃0

]
=

1

Ndual

σ2

Z
p

Z
+

1

lZ

(
1 − p

Z

)2
σ2

Z +
1

lZNdual

p
Z

(
1 − p

Z

)
σ2

Z

+
1

Ndual

(µZ − µZ)2 p
Z

(
1 − p

Z

)
,

approximated by,

V ar
[
∆̃0

]
≈

1

Ndual

σ2

Z
p

Z
+

1

lZ

(
1 − p

Z

)2
σ2

Z +
1

Ndual

(µZ − µZ)2 p
Z

(
1 − p

Z

)
.

Consequently, we obtain the following formula:

V ar
[
∆̃0

]
× T

∆̃0

=
lZT∆Z

Ndual

σ2

Z
p

Z
+

Ndual

lZ

[
TP + TI + p

Z
T∆

Z

] (
1 − p

Z

)2
σ2

Z

+
lZT∆Z

Ndual

(µZ − µZ)2 p
Z

(
1 − p

Z

)
+ C,
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where C is a constant parameter independent of lZ .
Let’s take the partial derivative w.r.t. lZ ,

∂
(
V ar

[
∆̃0

]
× T

∆̃0

)

∂lZ
=

T∆Z

Ndual

σ2

Z
p

Z
−

Ndual

l∗2
Z

[
TP + TI + p

Z
T∆

Z

] (
1 − p

Z

)2
σ2

Z

+
T∆Z

Ndual

(µZ − µZ)2 p
Z

(
1 − p

Z

)
,

which achieves a unique minimum at:

l∗Z =

√√√√√
(
1 − p

Z

)2
σ2

Z

[
TP + TI + p

Z
T∆

Z

]

p
Z

T∆Z

[
σ2

Z
+ (µZ − µZ)2

(
1 − p

Z

)]Ndual.

As we have already estimated the parameters µZ , σ2
Z , µZ , σ2

Z et p
Z

, we have access to l∗Z
for each fixed distance threshold δ > 0.

We finally choose the first distance δ for which we find the level α inferior to a choosen
threshold (typically 20%) which effectively brings improvements to the dual algorithm.
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