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1 Derivative products

We note B(t, T ) the value of a zero coupon bond at time t with maturity T .
We suppose the following date structure {Tn = T0 + nτ ; n = 1..M}
the foward swap rate starting at date Ts and ending at TM is given by

S(t, Ts, TM ) =
B(t, Ts)−B(t, TM )∑M

j=s+1 τB(t, Tj)

the spot swap rate is S(Ts, Ts, Tn) = S(Ts, TM ).
We note L(t, Ti, τ) the forward rate which set at time Ti the cash flow re-

ceived at time Ti + τ . Arbitrage leads to

1 + τL(t, Ti, τ) =
B(t, Ti)

B(t, Ti+1)
(1)

spot libor rate is given by

1 + τL(Ti, Ti, τ) =
1

B(Ti, Ti+1)
(2)

remark: it is a simple rate.
Main products of interest for the libor Market Model
Caplet and floorlet suppose that t < TM < TM+1

• we note Cplt(t, TM ,K, τ, N) the european caplet with maturity TM , strike
K on the spot libor rate L(t, t, τ) with nominal value N then at time
TM+1 = TM + τ the payoff is given by

Nτ(L(TM , TM , τ)−K)+

• we note Flt(t, TM ,K, τ, N) the european floorlet with maturity TM , strike
K on the spot libor rate L(t, t, τ) with nominal value N then at time
TM+1 = TM + τ the payoff is given by

Nτ(K − L(TM , TM , τ))+

the cash flow at time TM+1 = TM + τ is fixed at time TM

Cap and floor suppose that t = T0 < T1 < .. < TM

• we note Cap(t, Ts, TM , K, τ,N) the european cap with maturity TM , strike
K on the spot rate L(t, t, τ) then at times Ts+1, ..., TM the option leads the
cash flows Nτ(L(Ts, Ts, τ)−K)+, Nτ(L(Ts+1, Ts+1, τ)−K)+, .., Nτ(L(TM−1, TM−1, τ)−
K)+ ie

at Ti cash flow Nτ(L(Ti−1, Ti−1, τ)−K)+
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• we note Floor(t, Ts, TM ,K, τ, N) the european floor with maturity TM ,
strike K on the spot libor rate L(t, t, τ) then at times Ts+1, ..., TM the op-
tion leads the cash flows Nτ(K−L(Ts, Ts, τ))+, Nτ(K−L(Ts+11, Ts+1, τ))+, .., Nτ(K−
L(TM−1, TM−1, τ))+

at Ti cash flow Nτ(K − L(Ti−1, Ti−1, τ))+

1. a cap is a portfolio of caplets

Cap(t, Ts, TM , K, τ,N) =
M−1∑

i=s

Cplt(t, Ti,K, τ, N)

2. a floor is a portfolio of floorlets

Floor(t, Ts, TM ,K, τ, N) =
M−1∑

i=s

Flt(t, Ti,K, τ, N)

Swaption we suppose that t < T0 < T1 < .. < TM and we note S(t, t, TM )
the swap rate with maturity TM

• we note Swpt(t, Ts, TM ,K, τ, N) the european payer swaption with matu-
rity Ts = T , strike K and nominal N on the swap rate S(t, t, TM ) then at
Ts the exercise leads the cash flows:

at Ti cash flow Nτ(S(Ts, Ts, TM )−K)+ for i = s + 1..M

• we note Swpt(t, Ts, TM ,K, τ, N) the european receiver swaption with ma-
turity Ts = T , strike K and nominal N on the swap rate S(t, t, TM ) then
at Ts the exercise leads the cash flows:

at Ti cash flow Nτ(S(Ts, Ts, TM )−K)+ for i = s + 1..M
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2 Libor Market Model

We suppose t ≤ T0 < T1 < .. < TM with Ti = T0 + iτ and Ti+1 − Ti = τ
Recall that

1 + τL(t, Ti, τ) =
B(t, Ti)

B(t, Ti+1)

and

S(t, Ts, TM ) =
B(t, Ts)−B(t, TM )∑M

j=s+1 τB(t, Tj)

B(t, Ti)
B(t, Ts)

=
i−1∏

j=s

1
1 + τL(t, Tj , τ)

as such the forward swap rate as a function of the forward rates is given by
the relation

S(t, Ts, TM ) =
1−∏M−1

j=s
1

1+τL(t,Tj ,τ)∑M
j=s+1 τ

∏j−1
k=s

1
1+τL(t,Tk,τ)

(3)

In the libor market model we suppose the following dynamic for the forward
Libor rates

dL(t, Ti, τ) = L(t, Ti, τ)γ(t, Ti, τ)dWQTi+1

where {WQTi+1

t ; t ≥ 0} is a d dimensional brownian motion under the for-
ward probability QTi+1 associated with the numeraire B(t, Ti+1) and γ(t, Ti, τ)
is a deterministic function.

Furthermore we know that

d

(
B(t, Ti)

B(t, Ti+1)

)
=

(
B(t, Ti)

B(t, Ti+1)

)
(σB(t, Ti)− σB(t, Ti+1))dWQTi+1

t

where σB(t, T ) stands for the volatility of the zero coupon bond so from

dL(t, Ti, τ)
L(t, Ti, τ)

=
1 + τL(t, Ti, τ)

τL(t, Ti, τ)
(σB(t, Ti)− σB(t, Ti+1))dWQTi+1

t

we get the relation

γ(t, Ti, τ)τL(t, Ti, τ)
1 + τL(t, Ti, τ)

= σB(t, Ti)− σB(t, Ti+1) (4)
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this equation leads from (4) we have for j > i

σB(t, Tj)− σB(t, Ti) = −
j−1∑

k=i

γ(t, Tk, τ)τL(t, Tk, τ)
1 + τL(t, Tk, τ)

it is well known that

dWQTi

t + σB(t, Ti)dt = dWQTj

t + σB(t, Tj)dt

changing from zero coupon bond volatilities to forward rate volatilities we
have for j > i

dWQTi

t = dWQTj

t −
j−1∑

k=i

γ(t, Tk, τ)τL(t, Tk, τ)
1 + τL(t, Tk, τ)

dt

2.1 Pricing a caplet in the LMM framework

Within the LMM the forward libor rate L(t, Ti, τ) follows the dynamic

dL(t, Ti, τ) = L(t, Ti, τ)γ(t, Ti, τ)dWQTi+1

t

suppose t < Tj < Tj+1 and Cplt(t, Tj ,K, τ, N) a european caplet with ma-
turity Tj , strike K, nominal N on the spot libor rate L(t, t, τ) then at time
Tj+1 = Tj + τ the cash flow is

τ(L(Tj , Tj , τ)−K)+N

Cplt(t, Tj , K, τ, N) = EQ
t

[
B(t)

B(Tj+1)
τ(L(Tj , Tj , τ)−K)+N

]

= EQTj+1

t

[
B(t, Tj+1)

B(Tj+1, Tj+1)
τ(L(Tj , Tj , τ)−K)+N

]

= B(t, Tj+1)NτEQTj+1

t [(L(Tj , Tj , τ)−K)+]
= NτB(t, Tj+1) (L(t, Tj , τ)N(d1)−KN(d2))

d1 =
ln

L(t,Tj ,τ)
K + 1

2

∫ Tj

t
γ(u, Tj , τ)2du√∫ Tj

t
γ(u, Tj , τ)2du

d2 = d1 −
√∫ Tj

t

γ(u, Tj , τ)2du

we get a formula consistent with market practice which quotes option through
black volatility
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2.2 Pricing a swaption in the LMM framework

We briefly present the pricing of a swaption within the LMM framework and
refer to [2]. Recall that

Swpt(t, Ts, TM ,K, τ) =
M∑

i=s+1

EQ
t

[
B(t)
B(Ti)

τ(S(Ts, Ts, TM )−K)+

]

= τ

M∑

i=s+1

B(t, Ti)E
QTi

t [L(Ts, Ti−1, τ)1D]

− τ

M∑

i=s+1

B(t, Ti)E
QTi

t [K1D]

where

1D = 1(S(Ts,Ts,TM )>K)

= 1(1>B(Ts,TM )+K
PM

i=s+1 B(Ts,Ti))
= 1(1>

PM
i=s+1 ciB(Ts,Ti))

= 1�
1>
PM

j=s+1 cj

Qj−1
k=0

1
1+τL(Ts,Tj,τ)

�
under QTi we have

dL(t, Ti−1, τ) = L(t, Ti−1, τ)γ(t, Ti−1, τ)dWQTi

t

for i > j + 1

dL(t, Tj , τ)
L(t, Tj , τ)

= γ(t, Tj , τ)dWQTi

t −
i−1∑

k=j+1

τL(t, Tk, τ)γ(t, Tk, τ)γ(t, Tj , τ)
1 + τL(t, Tk, τ)

dt

for j ≥ i

dL(t, Tj , τ)
L(t, Tj , τ)

= γ(t, Tj , τ)dWQTi

t +
j∑

k=i

τL(t, Tk, τ)γ(t, Tk, τ)γ(t, Tj , τ)
1 + τL(t, Tk, τ)

dt

Computing EQTi

t [L(Ts, Ti−1, τ)1D]: Brace, Gatarek and Musiela [2] pro-
pose to freeze the drift: under QTi for i > j + 1 and u ∈ [t Ts]

dL(u, Tj , τ)
L(u, Tj , τ)

= γ(u, Tj , τ)dWQTi

u −
i−1∑

k=j+1

τL(t, Tk, τ)γ(u, Tk, τ)γ(u, Tj , τ)
1 + τL(t, Tk, τ)

du

under QTi for i ≤ j and u ∈ [t Ts]
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dL(u, Tj , τ)
L(u, Tj , τ)

= γ(u, Tj , τ)dWQTi

u +
j∑

k=i

τL(t, Tk, τ)γ(u, Tk, τ)γ(u, Tj , τ)
1 + τL(t, Tk, τ)

dt

under this assumption the forward rates are lognormal
for i > j + 1

L(Ts, Tj , τ) = L(t, Tj , τ)e
R Ts

t
γ(u,Tj ,τ)dW QTi

u − 1
2

R Ts
t

γ(u,Tj ,τ)2du

e
−Pi−1

k=j+1
τL(t,Tk,τ)

1+τL(t,Tk,τ)

R Ts
t

γ(u,Tk,τ)γ(u,Tj ,τ)du

for j ≥ i

L(Ts, Tj , τ) = L(t, Tj , τ)e
R Ts

t
γ(u,Tj ,τ)dW QTi

u − 1
2

R Ts
t

γ(u,Tj ,τ)2du

e
+
Pj

k=i

τL(t,Tk,τ)
1+τL(t,Tk,τ)

R Ts
t

γ(u,Tk,τ)γ(u,Tj ,τ)du
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we can write

L(Ts, Tj , τ) = L(t, Tj , τ)e
R Ts

t
γ(u,Tj ,τ)dW QTi

u − 1
2

R Ts
t

γ(u,Tj ,τ)2du

+ e
Pi−1

k=1
τL(t,Tk,τ)

1+τL(t,Tk,τ)

R Ts
t

γ(u,Tk,τ)γ(u,Tj ,τ)du
e
−Pj

k=1
τL(t,Tk,τ)

1+τL(t,Tk,τ)

R Ts
t

γ(u,Tk,τ)γ(u,Tj ,τ)du

ξi
j =

∫ Ts

t

γ(u, Tj , τ)dWQTi

u

νkj =
∫ Ts

t

γ(u, Tk, τ)γ(u, Tj , τ)du

βi
j =

i∑

k=1

τL(t, Tk, τ)
1 + τL(t, Tk, τ)

∫ Ts

t

γ(u, Tk, τ)γ(u, Tj , τ)du

L(Ts, Tj , τ) = L(t, Tj , τ)eξi
j− 1

2 νjj+βi−1
j −βj

j

ν = (νkj) is variance covariance of the rates.
Rank one approximation
There is a vector α = (αs+1, αs+2, .., αM )t with αj ≥ 0 such that ν ∼ ααt

then

ξi
j ∼ αjX with X N (0, 1)

νkj ∼ αkαj

βi
j ∼ αj

i∑

k=1

τL(t, Tk, τ)
1 + τL(t, Tk, τ)

αk

∼ αjd
i

L(Ts, Tj , τ) = L(t, Tj , τ)eαjX− 1
2 αjj+αj(d

i−1−dj)

EQTi

t [L(Ts, Ti−1, τ)1D] =

EQTi

t

[
L(t, Ti−1, τ)eαi−1X− 1

2 αi−1αi−11�
1>
PM

j=1 cj

Qj−1
k=0

1
1+τL(t,Tk,τ) eαkX− 1

2 αkαk+αk(di−1−dk)
�]

we note

φi−1(x) =
M∑

j=1

cj

j−1∏

k=0

1
1 + τL(t, Tk, τ)

eαkx− 1
2 αkk+αk(di−1−dk)

recall that ck ≥ 0 and cM > 1
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lim
x→−∞

φi−1(x) = 0

lim
x→+∞

φi−1(x) = +∞
φ′i−1(x) > 0

so there is a unique x̄i−1 such that φi−1(x̄i−1) = 1, finally the expectation
is given by

EQTi

t [L(T, Ti−1, τ)1D] =
∫ +∞

x̄i−1

L(t, Ti−1, τ)eαi−1x− 1
2 αi−1αi−1

1√
2π

e−
x2
2 dx

and we have x̄i = x̄i−1 + di−1 − di

It is possible to use a rank k approximation, see Brace [1].

The spot measure In the HJM framework, where interest rates are contin-
uously coumpounded, one usually uses the cash as risk free asset which follows
the dynamic

dB(t) = B(t)r(t)dt

In the LMM framework we deal with simple interest rates as such it is
possible to define the discret tenor bank account noted Bd(t) as follow:

η(t) such that η(t) = n if t ∈ [Tn−1 Tn[

Bd(0) = 1

Bd(t) =
η(t)∏

j=0

(1 + τL(Tj , Tj , τ))B(t, Tη(t))

which is an asset with unit value at time t = 0 and discretly compounded in
the spot rates

using Bd(t) as numeraire we can define the “spot libor measure” Qd under
which L(t, Ti, τ) follows the dynamic

dL(t, Ti, τ)
L(t, Ti, τ)

=
i∑

k=η(t)

τL(t, Tk, τ)γ(t, Tk, τ)γ(t, Ti, τ)
1 + τL(t, Tk, τ)

dt + γ(t, Ti, τ)dWQd

t

Pricing under Qd : the value at time t = 0 of a security paying ξ at Tn is
given by

π(0) = EQd

[
Bd(0)
Bd(Tn)

ξ

]

Remark: suppose ξ = 1 then π(0) = B(0, Tn)
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B(0, Tn) = EQd

[
n−1∏

i=0

1
(1 + τL(Ti, Ti, τ))

]

one should recover bond values from the forwards.
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3 Bushy Tree Technique

The bushy technique consists in using a non-recombining tree to estimate the
evolution of the libor vector needed to price a fixed income derivative(Swaption,
Cap, Floor, Bermudean Swaption). The feature of the tree method is clear
when we need to compute American contract. Actually, in this case we need
to compare between the exercise and the continuation strategies, and in order
to compute the continuation value we must compute a conditional expectation
for each realization of the libor vector, and here a tree method seems to be the
easiest to establish.
The Libor Market Model is path dependent model, this appears in the drift,
then we cannot use recombining tree methods. The disadvantage is that the
number of nodes explodes with the number of time step and since we must
enlarge the time step number to make the discontinuous process converge to
the continuous one we are very quickly limited by the calculation time and by
the finite memory size in the PC. This study is based on the [?] and [?]. In
the first the author gives a method to establish the transition matrix and also
proposes a recursive algorithm to construct the Libor tree in order to compute
the price. In the second article the authors present an non exploding bushy tree
technique. It consists in choosing at a time step some number of nodes form
which the tree continues diffusing and interpolate to get the value on the others.

3.1 Optimal simplex alignment

A tree is defined by its transition matrix which gives the probability of the
underlying to move from one realization at time t to another one at time t+dt.
We must also define the realizations on the tree or more simply, we must know
the possible realizations that the underlying can do form one node. For example
in the trinomial tree we must choose or compute the (u,m,d) parameters. In
many cases methods are proposed to fit the first and second moment of the
underlying. It is much careful to consider directly the gaussian variable since it
is the source of randomness. For example :

S(1) =
( −1

1

)

S(2) =



−

√
3
2 −

√
1
2√

3
2 −

√
1
2

0
√

2




For a m dimension general case we define the simplex S(m) as : S
(m)
ij =




−
√

m+1
(j+1)j for j ≥ i√
m+1

(j+1)j for j = i− 1

0 for j < i− 1

Given the uncorrelated covariance matrix A after

a Cholesky decomposition we can define the branching matrix

B = A.ST

and construct the bushy tree of the libor. the recursive algorithm for a European
swaption is called by Recurse(0) :

double Recurse(long h){
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long i,k;

double tmp=0;

double ProdLibor=1,SumLibor=0.0,SwapRate,Bsi=1,SumBsi=0.0,res=0.0;

if (h==NSteps){

for(i=0;i<NRates;i++)

{

ProdLibor*=(1+EvolvedFra[h][i]*period);

SumLibor += period/ProdLibor;

}

SwapRate=(1-(1/ProdLibor))/(SumLibor);

for(i=0;i<NRates;i++)

{

Bsi*=1.0/(1+period*EvolvedFra[h][i]);

SumBsi += Bsi;

}

res = (B0*SumBsi*period*MAX(type*(SwapRate-strike),0.0));

return res;

}

for (i=0;i<NRates;i++){ // Calculate the drift for all rates and store them.

mu_dT[h][i] = 0.;

for (k=NumeraireIndex;k<=i;k++)

mu_dT[h][i] += C[h][i][k] * EvolvedFra[h][k] * period / ( 1. + EvolvedFra[h][k] * (period) );

}

for (k=0;k<NBranches;k++){ // Loop over all branches.

for (i=0;i<NRates;i++){

EvolvedFra[h+1][i] = EvolvedFra[h][i] * exp( mu_dT[h][i]*(Tau[h+1]-Tau[h]) +

LogShiftOfBranch[h][k][i] );

}

tmp += Recurse(h+1); // Sum up the results from all of the branches.

}

return tmp/NBranches;

}

The author proposes also a method to rotate the branching matrix in order to fill

the space in a best way and take benefit out of the use of more branches. Sm Rm

→ S
′m

such that

S
′(m)
ij = −S

′(m)
m+2−ij for m even and j = 1 . . .

m

2
(5)

S
′(m)
ij = −S

′(m)
m+2−ij for m odd and j = 1 . . .

m + 1

2
(6)

This can be done using some optimization technique. In the space Rm a rotation can
be construct by a composition of m(m−1)

2
rotation in a each hyperplane. Then we can

write
Rm = Rm(θ1) . . . Rm(θ m(m−1)

2
) (7)

The problem is to find the m(m−1)
2

unknown variables θ in order to get a rotated
matrix S that solve the system (5). We used a MCO criteria that we minimized
using a newton method based on BFGS algorithm. This procedure can be done before
calling the pricing routine and we do it only one time for all the tree and for all the
product to price. We recall that in our approach we construct a tree for the gaussian
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random variable and this is independent from the volatility structure and from the
other parameters of the BGM model, then we plug it in our model to get a tree that
corresponds to our specific model.

3.2 Remarks

The non recombining tree method is huge time consuming and the time of calculation
explodes very fast with the number of time step that leading to maturity. This method
can not be used to price a non path dependent product since the Monte-Carlo method
is much simpler to implement and is very fast. For path dependent product the non
recombining tree can give an indicative price and is suitable for these products but
it falls down with the limitation of the number of time step. For the non exploding
bushy tree we can price with more number of time step. The only limitation is the
interpolation on the nodes where the tree does not continue diffusing. The problem is
that this method is very sensitive to the moneyness of the product. Actually suppose

that we have a vector of nodes with a their real corresponding values

26666664
5
4
0
0
0
0

37777775
on a uniform distributed tree the average is 1.5. On a non exploding bushy tree
suppose that we used only the first and the last nodes to continue the expansion of

the tree and interpolate on the 4 interior nodes, we get

26666664
5
4
3
2
1
0

37777775
and the average is 2.5 which is much bigger than the real value. This is only an
illustrative example, but this is what it happens on the non exploding bushy tree. If
our product is deep in the money we get a quite reasonable error. If the product is out
of the money the error is too big and we can not accept this method. In the figures (1) ,
(3) ,(2),(4) the sign + means with and the sign − means without. The figure (7) shows
the exponential growth of the computation time with the bushy tree and with the non
exploding bushy tree. We see that we can use the bushy tree technique up to 20 time
steps and we can go further up to 30 steps using the non exploding bushy tree. The
problem is the using a tree to model a diffusion we must use a large number of time
step to get the convergence of our scheme to the continuous model. With the bushy
tree technique this can not be fulfill since we are limited by the exponential growth of
the computation time. Figures (5),(6) shows the impact of rotating the simplex on the
Bushy tree techniques. This is similar to using a less discrepancy random generator
in the Quasi Monte-Carlo approach. Also here, rotating the simplex is efficient when
we deal with large dimension problem and this is shown on the following figures.
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4 Bermudan swaption pricing in the Libor Mar-
ket Model

While in section 2.2 we introduced the most common vanilla interest rate products,
namely Caps, Floors and European Swaptions, the aim of the present one is to de-
scribe some exotic products which undergo the name of Bermudan Swaptions.

Let us consider as before a tenor structure T0, . . . , TM and define an ending date
Te and a starting date Ts such that T0 ≤ Ts ≤ Te ≤ TM . There are (at least) two
possibility of setting up a Bermudan Swaption agreement: one with fixed-maturity and
one with fixed-lenght. A fixed-maturity Bermudan Swaption is an agreement which
gives the owner the right of chosing, at each Ti with s ≤ i ≤ e, whether to enter or
not into an European Swaption over [Ti, Te], while a Bermudan Swaption with a fixed
lenght of m ∈ N tenor periods, will give the owner the right to enter into an European
Swaption over [Ti, Ti+m]. From now on, we will restrict to the case of fixed-maturity
Bermudan Swaptions, extension to fixed-lenght ones being straightforward1.

Entering a payer [Ti, Te]-European Swaption with strike K and nominal value N ,
means to be payed at time Ti the quantity2

Swpt(Ti; Ti, Te)
.
=

 
e−1X

j=i+1

N τB(Tj , Te)

!
(S(Ti, Ti, Te)−K)+ (8)

where S(Ti, Ti, Te) is the swap rate corresponding to the chosen swap agreement.
Thus, price at time t < Ts of a Bermudan swaption with starting date Ts and fixed-
maturity Te, is given, under the measure QY corresponding to a given price process Y
as numeraire, by

U(t) = sup
τ̄∈T s,e−1

EY
t

�
Y (t)

Y (τ̄)
Swpt(τ̄ ; τ̄ , Te)

�
, (9)

where T s,e−1 is the set of stopping times τ̄ taking values in {Ts, . . . , Te−1}. Standard
theory of optimal stopping time [7] ensures us that U(0) is the solution of the following
dynamic programming problem:8>>>>><>>>>>:

Ue−1 = Swpt(Te−1; Te−1, Te)

Ui = max

�
Swpt(Ti; Ti, Te), E

Y
Ti

�
Y (Ti)

Y (Ti+1)
Ui+1

��
,∀ i = s, . . . , e− 2

U0 = EY
T0

�
Us

Y (Ts)

� (10)

where for simplicity of notation we set U(Ti) = Ui. The dynamic programming for-
mulation is clearly less synthetic than the optimal stopping time one but is of easier
implementation.

4.1 Monte Carlo Pricing of Bermudan Swaptions with the
Longstaff-Schwartz Algorithm

Due to the necessity of comparing at each time Ti the exercise value Swpt(Ti; Ti, Te) to

the continuation value Vi
.
= EY

Ti

h
Y (Ti)

Y (Ti+1)
Ui+1

i
, pricing of early excercise derivatives on

1See for instance [8] for details.
2For simplicity of notation, we omit functional dependence on K and N , considered as

fixed throughout the following.
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high dimensional underlying (here the forward rates) is usually performed via Monte
Carlo simulations or by means of trees methods. In Premia we implement the MC
algorithm which was firstly introduced by Longstaff and Schwartz in 2001 and which
is based on a least squares approach. As this algorithm is widely described in the
PremiaDoc section devoted to Monte Carlo methods for asset derivatives, here we will
only report main ideas for self-consistency.
Let us take a look to equation (10): in order to price a Bermudan Swaption, it is
clear that we must be able to evaluate continuation values, a task which a priori is
nor easy nor straightforward. However, by definition of conditional expectation, each
continuation value Vi can be seen as the best L2-approximation of the discounted
Ti+1 price Y (Ti)Ui+1/Y (Ti+1) among the FTi -measurable random variables. Thus,
following the authors, we choose an F-adapted and square integrable stochastic process
X(t) together with a set of basis functions e = (e1, . . . , em) such that E[e2

i (X(t))] < ∞
for all t ≤ Te and we set

Vi ≈ ai · e(X(Ti))

ai = arg min
a∈RM

E

�
Y (Ti)

Y (Ti+1)
Ui+1 − a · e(X(Ti))

�2
.

(11)

In other words, for all i = s, . . . , e− 1 we find the best approximation of

Y (Ti)Ui+1/Y (Ti+1)

in the m-dimensional subset of L2 spanned by {e1(X(Ti), . . . , em(X(Ti))}. The good-
ness of such an approximation will rely on the “explanatory power” of X and on
the choice of the basis functions. The Longstaff and Schwartz algorithm is then
based on finding an approximated solution to the least squares problem (11) by
considering N independent samples of the forward rates stochastic process L(t) =
{L(t, T0, τ), . . . , L(t, Te−1, τ)} and of the explanatory variable X(t). It is then natural
to approximate regression coefficients ai by

ai ≈ aN
i = arg min

a∈RM

1

N

NX
n=1

�
B(n)(Ti)

B(n)(Ti+1)
U

(n)
i+1 − a · e(X(n)(Ti))

�2
(12)

where the superscript (n) stand for the n-th Monte Carlo call. Finally, the dynamic
programming problem (10) rewrites,8>>>>><>>>>>:

U
N,(n)
e−1 = Swpt(n)(Te−1; Te−1, Te)

U
N,(n)
i = max

n
Swpt(n)(Ti; Ti, Te), a

N
i · e(X(n)(Ti))

o
,∀ i = s, . . . , e− 2

UN
0 =

1

N

NX
n=1

"
U

(n)
s

B(n)(Ts)

# (13)

Clément, Lamberton and Protter [3] have proved convergence of such an algorithm to
the original problem when N and m go to +∞. In particular, when N →∞, a central
limit theorem holds.

4.2 Premia Implementation

Implementing the Longstaff ans Schwartz algorithm, require the choice of a set of basis
functions and of an explanatory variable.
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Concerning the basis functions, Premia algorithm allow for two options: a canon-
ical polynomial basis and an Hermite polynomial basis. At each timestep Ti, op-
timal coefficients aN

i , are found by regressing the B(n)(Ti)U
(n)
i+1/B(n)(Ti+1) over the

X(n)(Ti). Moreover, for early steps of backward dynamic programming (regression
for Te−2, Te−3, . . .) the price will not be very different from excercice value. With our
algorithm it is thus possible to include the early excercise value in the regression basis,
that is to set for the first basis function e1(X

(n)(Ti)) = Swpt(n)(Ti; Ti, Te) for all i
greater than a given ī.

On the other side, the choice of an explicatory variable is more tricky and con-
strained by the necessity of keeping m quite small in order to make regression fast. Let
us recall that the swap rate S(Ti, Ti, Te) is indeed a function of L(Ti, Ti, τ), . . . , L(Ti, Te−1, τ)
and then the more natural explanatory variable would be the Libor state vector L(t).
However, imagine to consider a Bermudan swaptions with τ = 0.5 years, Ts = 3.0
yars, Te = 8.0 years. Following above reasoning, we would need two Libors for re-
gressing at time Te−2 but we would need nine libors to regress at time Ts. Thus,
for maturities close to Ts we must have m ≈ 10 to take into account all relevant Li-
bors. Whenever considering long maturity swaptions, things get even worse. That is
why Pieterz et al. [9] suggest to regress directly on the Notional Paying Value (NPV)
Swpt(·, ·, Te) while Pedersen [8] do test regression on the Numeraire, the fixed leg value

K
�Pe−1

j=i+1N τB(Tj , Te)
�

and the prices of some European options embedded in the

Bermudan contract. Pedersen concludes that the European prices are not relevant
and that a quadratic function in the Numeraire and in the fixed leg value is accurate
enough.

Premia users can set the explanatory variable to be

• the notional paying value

• the underlying Brownian motion

• the Numeraire.

In table 3 we report Premia pricing results and compare them to the ones obtained by
Pietersz. et al. [9] with a Longstaff and Schwartz algorithm and their drift approxi-
mation method. In particular, we take a 1-Factor model with flat volatility (15%) and
initial forward rate values (5%); the tenor τ is 0.5 years and the SDE is discretized with
10 timesteps for each tenor period. We price At-The-Money Bermudan swaptions for
various choices of starting and ending times Ts and Te and changing the explanatory
variable (Brownian, NPV, Numeraire). Regression basis is four dimensional (m = 4)
and we used 10000 Monte Carlo calls.

REMARK We strongly reccomend to include NPV in regression basis when regress-
ing onto the Brownian motion or the Numeraire, expecially for short lenght swaption,
in which the difference between the european and the bermudan contract is small. On
the other side, when regressing on the NVP, take care NOT to include the payoff into
regression3 because it is likely to waste the performance of regression (Cholesky routine
used for regression could return errors). For instance, regressing on the Numeraire, a
choice Tī = 5 years is good enough either for a swaption with (Ts, Te) = (5, 8) and for
a (1, 8) swaption. When the lenght of the longest swaption (Ts, Te) is short, regres-
sion on Brownian motion seems to be more stable with respect to changes in Tī than
regression on the Numeraire.

3It is sufficient to set Tī = Te−1.
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Pietersz et al. Premia
[Ts, Te] Drift L-S Std

Approx Err
1,2 29.40 28.85 0.42
1,3 64.33 62.78 0.83
1,4 101.66 101.51 1.29
3,4 44.09 43.59 0.70
1,6 182.16 179.48 2.22
3,6 134.88 136.43 2.01
5,6 50.93 50.79 0.86
1,8 266.63 266.35 3.15
3,8 226.55 226.94 3.14
5,8 151.23 151.13 2.38
7,8 54.20 53.70 0.96

Brown. Numer. NPV

29,36 28,91 29,35
64,66 63,61 64,75
102,98 102,36 103,14
43,74 43,70 43,74
185.65 184,59 185,67
134,84 132,40 134.96
49,66 49,65 49,66
264,00 262,11 263,83
223.85 219,54 223,94
148.07 148.10 148,13
52.50 52.48 52,49

Table 1: Fixed-maturity Bermudan Swaptions prices for different starting and
ending time. Pietersz, Pelsser and von Mortengel [9] Drift Approximation and
Longstaff-Schwartz 1 Factor results compared to Premia 1-factor Longstaff-
Schwartz with different choices for the explanatory variable.

4.3 List Of Inputs

Inputs required by the algorithm are

• double the tenor τ (in yrs)

• double the starting date Ts, called “swaption maturity” (yrs)

• double the ending date Te, called “swap maturity” (yrs)

• int the number of maturities (that is Te/τ)

• double the payoff as regressor Tī: the time after which regression will include
the NPV in the basis

• char* the pricing measure. Numeraire can be either the Jamshidian 1997’s roll-
over money account J(Ti) = 1/(

Qi−1
l=0 B(Ti, Ti+1)) (spot measure) or the bond

B(·, Te) (terminal forward measure).

• char* the explanatory variable: Numeraire, NPV or Brownian Motion

• long the number of Monte Carlo calls for pricing and regression

• char* the regression basis: canonical or Hermite polynomials

• int the dimension m of the regression basis e(·)
• int the number of step to be used for SDE discretization over [Ti, Ti+1]

• double the number of factors

• double the strike K

See “lmm bermudatest.c” for an example.

4.4 Programming interface

4.4.1 C API of the pricer

We define a simpler interface to the bermudan swaption pricer as follow:
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double lmm_swaption_payer_bermudan_LS_pricer(tenor ,numberTimeStep,

numFac, swaptionMat, swapMat, payoff_as_Regressor, numberMCPaths,

Regr_Basis_Dimension, basis_name , measure_name , Explanatory , K)

Arguments description:

• tenor is the period in years of the rate (usually 3 or 6 months); type:double

• numberT imeStep number of time steps in the euler scheme; type:int

• numFac is the number of factors max 2; type: int

• swaptionMat is the swaption maturity in years; type: double

• swapMat is the swap maturity in years ; type: double

• numberMCPaths number of monte carlo paths; type:long

• payoff as Regressor in (years) maturity after which payoff is included in re-
gression

• Regr Basis Dimension finite-dimensional approximation of L2 ; type: int

• basis name basis name; type: char*

• measure name measure name: type: char*

• Explanatory Explanatory variable for regression B=Brownian, S=Nominal Swap
Paying Value, N=Numeraire;

• K strike; type:double

Remarks:

1. To price a caplet just call the function with swapMat = swaptionMat + tenor

2. swapMat must be equal to k ∗ tenor with k an integer

3. swaptionMat must be equal to k ∗ tenor with k an integer

4. payoff as Regressor must be equal to k ∗ tenor with k an integer

4.4.2 calling the bermudan swaption pricer from a C program

************************************************

* Bermudean Swaptions Pricer

*

* -Spot Probability Measure (Numeraire=Roll-Over Bond)

* -Possibility to include Martingale Discretization

* -Bermudean with fixed ending date.

* Nicola Moreni, August 2004

*

****************************************************/

#include<stdio.h>

#include"lmm_header.h"

#include"lmm_volatility.h"

#include"lmm_libor.h"

#include"lmm_random_generator.h"

#include"lmm_products.h"

#include"lmm_numerical.h"

#include"lmm_zero_bond.h"

#include"lmm_bermudaprice.h"
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/*REMINDER:

-lmm_header.h contains structures definition: volatility, libor, swaption

-lmm_vol.c lmm_products.c lmm_libor.c contain allocation/initialization routines

-lmm_numerical.c contains evolution routines, european swaption pricers

-lmm_mathtools.c contains random number generator, cholesky sqrt....

In the present file file all parametres are given an initial value and pricing routine

is called

*/

int main()

{

float tenor=0.5; // tenor is the lenght of the rate usually 3 months or 6 months

int numberTimeStep=10;

int numFac=2;

double swaptionMat=1.0; //(years)

double swapMat=8.0; //(years)

double payoff_as_Regressor=5.0; //(years) Maturity after which payoff is included in regression

double priceVal=0.20;

double K=0.05; //strike

long numberMCPaths=10000;

int Regr_Basis_Dimension=4 ; //finite-dimensional approx. of L

char Explanatory=’N’; //Explanatory variable for regression B=Brownian,

// S=Nominal Swap Paying Value, N=Numeraire;

char* basis_name="HerD"; //Hermite basis

char* measure_name="Spot" ; // spot " " " "

double p;

p=lmm_swaption_payer_bermudan_LS_pricer(tenor ,numberTimeStep, numFac, swaptionMat , swapMat ,

payoff_as_Regressor , numberMCPaths , Regr_Basis_Dimension , basis_name ,

measure_name , Explanatory , K);

printf("Bermudean swaption with terminal time %f and exercise\n",swapMat);

printf("each %f year starting from %f ,is, under %s measure\n %f bps.\n",tenor,swaptionMat

, measure_name , p*10000);

return(EXIT_SUCCESS);

}

we obtain the following result for a 2 factors model, the first one flat equal to 20%
(volatility structure different from the one used for other numerical examples).

$lmm_bermuda_example

WARNING: following errors found

Bermudean swaption with terminal time 8.000000 and exercise

each 0.500000 year starting from 1.000000 ,is, under Spot measure

426.344032 bps.

$
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4.4.3 A Scilab function for the bermudan swaption pricer

We defined a scilab function (in file lmm scilab.sci) for the swaption bermuda pricer
which interface is as follow:

lmm_bermuda_LS_sci(period , nb_fac , swpt_maturity , swp_maturity , strike , payoff_Reg ,Regr_basis_dim )

It returns the price in bps of the swaption and the input parameters are

• period is the period length of the rate; type:double

• nb fac is the number of factors; type: int

• swpt maturity is the swpation maturity in years; type: double

• swp maturity is th swap maturity in years; type: double

• strike is the strike; type:double

• payoff Reg is the time after which regression will include the NPV in the basis;
type: double

• Regr basis dim is the dimension of the regression basis

we obtained the following result from scilab-2.7:

-->b=lmm_bermuda_LS_sci(0.5, 2, 1.,8., 0.05, 5. , 4)

shared archive loaded

Link done

b =

426.40389

-->
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5 Libor market model: a stochastic volatility
extension

This section presents a stochastic volatility extension of the libor market model, we
recall the main equations of the article within the notation of this document

5.1 The model

Under the risk neutral measure Q the zero coupon bond follows the dynamic

dB(t, T )

B(t, T )
= r(t)dt +

√
VtσB(t, T )′dWt

dVt = κ(θ − Vt)dt + ε
√

VtdZt

where (Wt; t ≥ 0) is a d dimensional brownian motion under Q, (Zt; t ≥ 0) is a 1
dimensional brownian motion under Q, and σB(t, T ) is a 1 ∗ d vector. If we choose
σB(t, T ) deterministic then we get the model proposed by Collin-Dufresne and Gold-
stein [4].

we have

dL(t, Tj , τ)

L(t, Tj , τ)
=

√
Vtγ(t, Tj , τ)′[dW Q

t −√VtσB(t, Tj+1)dt]

dVt = κ(θ − Vt)dt + ε
√

VtdZt

with

γ(t, Tj , τ) =
1 + τL(t, Tj , τ)

τL(t, Tj , τ)
[σB(t, Tj)− σB(t, Tj+1)] (14)

In the libor market model we make the hypothesis that

{γ(t, Tj , τ); t ≥ 0; j = 1..M} are deterministic functions.

We note γ(t, Tj , τ) = (γ1(t, Tj , τ), γ2(t, Tj , τ), .., γd(t, Tj , τ))

From (14) and under the hypothesis σB(t, T1) = 0 we obtain

σB(t, Tj+1) = −
jX

k=1

1 + τL(t, Tj , τ)

τL(t, Tj , τ)
γ(t, Tk, τ)

the correlation between the forward rate factors and the volatility factor is given
by

γ(t, Tj , τ)′dWt

||γ(t, Tj , τ)|| dZt = ρj(t)dt

If we note Wt = (W 1
t , .., W d

t ) and dW i
t dZt = ρidt we have

||γ(t, Tj , τ)||ρj(t)dt = γ(t, Tj , τ)′dWtdZt (15)

=

dX
i=1

ρiγi(t, Tj , τ)dt (16)
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if we note QTj+1 the probability measure associated with B(t, Tj+1) as numeraire
then we have 8<: dL(t,Tj ,τ)

L(t,Tj ,τ)
=
√

Vtγ(t, Tj , τ)′dW Q
Tj+1

t

dVt = κ(θ − (1 + ε
κ
ξj(t))Vt)dt + ε

√
VtdZ

Q
Tj+1

t

where W Q
Tj+1

t resp. ZQ
Tj+1

t is a 1 ∗ d resp. 1 dimensional brownian motion under
QTj+1 and

ξj(t) =

jX
k=1

τL(t, Tk, τ)

1 + τL(t, Tk, τ)
ρk(t)||γ(t, Tk, τ)||

the authors propose to freeze this stochastic process and define

ξ0
j (t) =

jX
k=1

τL(0, Tk, τ)

1 + τL(0, Tk, τ)
ρk(t)||γ(t, Tk, τ)||

ξ̃j(t) = 1 +
ε

κ
ξj(t)

ξ̃0
j (t) = 1 +

ε

κ
ξ0

j (t)

thus the dynamic is given by8<: dL(t,Tj ,τ)

L(t,Tj ,τ)
=
√

Vtγ(t, Tj , τ)′dW Q
Tj+1

t

dVt = κ(θ − ξ̃0
j (t)Vt)dt + ε

√
VtdZ

Q
Tj+1

t

5.1.1 Moment generating function for the caplet

Computing the moment generating function for Xu = ln
L(u,Tj ,τ)

L(t,Tj ,τ)
, define

φ(t, Xt, Vt, z) = EQ
Tj+1

h
e

zXTj |Ft

i
The function φ(t, x, V, z) satisfies the pde8<: ∂tφ + κ(θ − ξ̃0

j (t)V )∂V φ− 1
2
||γ(t, Tj , τ)||2V ∂xφ

+ 1
2
ε2V ∂2

V V φ + ερj(t)V ||γ(t, Tj , τ)||∂2
V xφ + 1

2
||γ(t, Tj , τ)||2V ∂2

xxφ = 0
φ(T, x, V, z) = ezx

we define the function

φT (z) = φ(t, 0, Vt, z) (17)
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5.1.2 Moment generating function for the swaption

For the swaption pricing: recall

S(t, Ts, TM ) =
B(t, Ts)−B(t, TM )PM

j=s+1 τB(t, Tj)

=
1−QM−1

j=s
1

1+τL(t,Tj ,τ)PM
j=s+1 τ

Qj−1
k=0

1
1+τL(t,Tk,τ)

using Ito’s lemma we deduce that

dS(t, Ts, TM ) =

M−1X
j=s

∂S(t, Ts, TM )

∂L(t, Tj , τ)
L(t, Tj , τ)

√
Vtγ(t, Tj , τ)′[dWt −

√
VtσS(t)dt]

dVt = κ(θ − ξ̃S(t)Vt)dt + ε
√

Vt[dZt + ξS(t)dt]

with

σS(t) =

M−1X
j=s

αj(t)σB(t, Tj+1)

ξ̃S(t) = 1 +
ε

κ

M−1X
j=s

αj(t)ξj(t)

αj(t) =
τB(t, Tj+1)PM−1

j=s τB(t, Tj+1)

∂S(t, Ts, TM )

∂L(t, Tj , τ)
=

τS(t, Ts, TM )

(1 + τL(t, Tj , τ))

 
B(t, TM )

B(t, Ts)−B(t, TM )
+

PM
k=j+1 τB(t, Tk)PM
j=s+1 τB(t, Tj)

!
the dynamic of the forward swap rate is given by(

dS(t, Ts, TM ) =
PM−1

j=s
∂S(t,Ts,TM )
∂L(t,Tj ,τ)

L(t, Tj , τ)
√

Vtγ(t, Tj , τ)′dW QS

t

dVt = κ(θ − ξ̃S(t)Vt)dt + ε
√

VtdZ
QS

t

with

dW QS

t = dWt −
√

VtσS(t)dt

dZQS

t = dZt −
√

VtξS(t)dt

where W QS

t resp. ZQS

t is a 1∗d dimensional resp 1 dimensionnal brownian motion
under QS .

freezing the volatility for the forward swap rate and the drift of the volatility we
get (

dS(t,Ts,TM )
S(t,Ts,TM )

=
PM−1

j=s ωj(0)
√

Vtγ(t, Tj , τ)′dW QS

t

dVt = κ(θ − ξ̃0
S(t)Vt)dt + ε

√
VtdZ

QS

t

ωj(0) =
∂S(0, Ts, TM )

∂L(0, Tj , τ)

L(0, Tj , τ)

S(0, Ts, TM )

ξ̃0
S(t) = 1 +

ε

κ

M−1X
j=s

αj(0)ξ0
j (t)
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Computing the moment generating function for Xu = lnS(u,Ts,TM )
S(t,Ts,TM )

, define

φ(t, Xt, Vt, z) = EQS
h
ezXT |Ft

i
The function φ(t, x, V, z) satisfies the pde8<: ∂tφ + κ(θ − ξ̃0

S(t)V )∂V φ− 1
2
||γs,M (t)||2V ∂xφ

+ 1
2
ε2V ∂2

V V φ + ερS(t)V ||γs,M (t)||∂2
V xφ + 1

2
||γs,M (t)||2V ∂2

xxφ = 0
φ(T, x, V, z) = ezx

with

γs,M (t) =

M−1X
j=s

ωj(0)γ(t, Tj , τ)

ρS(t) =

PM−1
j=s ωj(0)||γ(t, Tj , τ)||ρj(t)

||γs,M (t)||
furthermore the authors suggest, arguing a calibration objective not presented in

the paper, to approximate

ρS(t) ∼
M−1X
j=s

ωj(0)ρj(t)

In fact, this approximation is useless because only ρS(t)||γs,M (t)|| is needed and
(16) is used.

We define the function φT (z) by

φT (z) = φ(t, 0, Vt, z) (18)

5.1.3 Computing the moment generating function

The pdes are identical as such we write both in a compact form8<: ∂tφ + κ(θ − β(t)V )∂V φ− 1
2
λ(t)2V ∂xφ

+ 1
2
ε2V ∂2

V V φ + ερ(t)V λ(t)∂2
V xφ + 1

2
λ(t)2V ∂2

xxφ = 0
φ(T, x, V, z) = ezx

for the caplet

β(t) = ξ̃0
j (t)

λ(t) = ||γ(t, Tj , τ)||
ρ(t) = ρj(t)

ζ(t) = ||γ(t, Tj , τ)||ρj(t)

for the swaption

β(t) = ξ̃0
S(t)

λ(t) = ||γs,M (t)||
ρ(t) = ρS(t)

ζ(t) = ρS(t)||γs,M (t)||
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we emphazis the time dependence of the parameters. Looking for a solution of the
form φ(t, x, V, z) = eA(t,z)+B(t,z)V +zx we obtain the Riccati’s equations

− ∂tA(t, z) = κθB(t, z) (19)

−∂tB(t, z) =
1

2
ε2B(t, z)2 + (ρ(t)ελ(t)z − κβ(t))B(t, z) +

1

2
λ(t)2(z2 − z) (20)

= b2(t)B(t, z)2 + b1(t)B(t, z) + b0(t) (21)

with terminal conditions A(T, z) = 0 and B(T, z) = 0
Under the hypothesis that the volatility is piecewise constant and the maturity of

the option is TN the solution of the above system is given by8<: B(t, z) = B(Ti+1, z) +
−b1+d−2B(Ti+1,z)b2

2b2(1−ge
d(Ti+1−t)

)
(1− ed(Ti+1−t))

A(t, z) = A(Ti+1, z) + a0
2b2

�
(−b1 + d)(Ti+1 − t)− 2ln

�
1−ge

d(Ti+1−t)

1−g

��
for t ∈ [Ti Ti+1] and i ∈ {0..N − 1} with

A(TN , z) = 0

B(TN , z) = 0

a0 = κθ

b1 = ρ(Ti)ελ(Ti)z − κβ(Ti)

b0 =
λ(Ti)

2

2
(z2 − z)

b2 =
ε2

2

d =
√

∆

∆ = b2
1 − 4b0b2

g =
−b1 + d− 2B(Ti+1, z)b2

−b1 − d− 2B(Ti+1, z)b2

Remark: For computational prupose we embed the caplet/floorlet structure in
the swpation structure. In fact we have

L(t, Ti, τ) = S(t, Ti, Ti+1)

as such for pricing a caplet or a swaption we will use the same algorithm.

5.2 Derivatives pricing

For the caplet Cplt(t, TM , K, τ, N) we have

Cplt(t, TM , K, τ, N) = B(t, TM + τ)τNEQTM +τ

t [(L(TM , TM , τ)−K)+]

= B(t, TM + τ)τNL(t, TM , τ)

�
I1 − K

L(t, TM , τ)
I2

�
with
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I1 = EQTM +τ

t

�
e

ln
L(TM ,TM ,τ)

L(t,TM ,τ) 1{L(TM ,TM ,τ)
L(t,TM ,τ) > K

L(t,TM ,τ) }

�
I2 = EQTM +τ

t

�
1{L(TM ,TM ,τ)

L(t,TM ,τ) > K
L(t,TM ,τ) }

�
For the floorlet Flt(t, TM , K, τ, N) we have

Flt(t, TM , K, τ, N) = B(t, TM + τ)τNL(t, TM , τ)

�
(1− I2)

K

L(t, TM , τ)
− (1− I1)

�
For the european payer swaption Swpt(t, Ts, TM , K, τ, N)

Swpt(t, Ts, TM , K, τ, N) =

M−1X
i=s

B(t, Ti+1)τNS(t, Ts, TM )

�
I1 − K

S(t, Ts, TM )
I2

�

I1 = EQS

t

�
e

ln
S(Ts,Ts,TM )
S(t,Ts,TM ) 1{S(Ts,Ts,TM )

S(t,Ts,TM ) > K
S(t,Ts,TM ) }

�
I2 = EQS

t

�
1{S(Ts,Ts,TM )

S(t,Ts,TM ) > K
S(t,Ts,TM ) }

�
For the european receiver swaption Swpt(t, Ts, TM , K, τ, N)

Swpt(t, Ts, TM , K, τ, N) =

M−1X
i=s

τB(t, Ti+1)NS(t, Ts, TM )

�
K

S(t, Ts, TM )
(1− I2)− (1− I2)

�
Computing the integrals
We have the following expressions for I1 and I2

I1 =
1

2
+

1

π

Z +∞

0

Im{e−iuln
�

K
X(t)

�
φT (1 + iu)}

u
du

I2 =
1

2
+

1

π

Z +∞

0

Im{e−iuln
�

K
X(t)

�
φT (iu)}

u
du

where φT (u) is given by (17) or (18) depending on whether a swaption or a caplet
is priced and X(t) = L(t, TM , τ) resp. X(t) = S(t, Ts, TM ) for the caplet/floorlet resp.
the swaption (receiver or payer). It is also possible to compute the price using FFT
method as in Carr, Madan[5], the computation time needed is approximatively twice
faster.

5.3 Numerical examples

For our numerical experiments we choose a two factors model with the following piece-
wise volatility structure: γ(t, Tk, τ) = (γ1(t, Tk, τ), γ2(t, Tk, τ)).

if t ∈ [Tj Tj+1[

γ1(t, Tk, τ) = 0.2

γ2(t, Tk, τ) =
0.01− 0.05e−0.1(j−k)

√
0.04 + 0.00075j
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and

dW 1
t dZt = ρ1dt = 0.5dt

dW 2
t dZt = ρ2dt = 0.2dt

the yield curve is flat at 5%, V0 = 1, ε = 0.6, κ = 1 and θ = 1.

Swaption payer prices in bps
swaption maturity Tenor strike price

1 1 ATM 64.519
1 5 ATM 405.221
1 10 ATM 1179.612
3 1 ATM 116.830
3 5 ATM 739.835
3 10 ATM 2057.297
5 1 ATM 161.735
5 5 ATM 1009.870
5 10 ATM 1904.210

1 1 0.8 ATM 114.683
1 5 0.8 ATM 609.080
1 10 0.8 ATM 1472.062
3 1 0.8 ATM 151.380
3 5 0.8 ATM 869.485
3 10 0.8 ATM 2201.807
5 1 0.8 ATM 185.766
5 5 0.8 ATM 1087.164
5 10 0.8 ATM 2257.460

1 1 1.2 ATM 34.655
1 5 1.2 ATM 267.585
1 10 1.2 ATM 954.980
3 1 1.2 ATM 91.083
3 5 1.2 ATM 636.496
3 10 1.2 ATM 1934.698
5 1 1.2 ATM 142.306
5 5 1.2 ATM 944.592
5 10 1.2 ATM 1623.445

5.4 Programming interface

5.4.1 C API of the pricer

The function name is:

double lmm_swaption_payer_stoVol_pricer(tenor ,numFac ,swaptionMat , swapMat , percent)

Arguments description:

• tenor is the period in years of the rate (usually 3 or 6 months); type:double

• numFac is the number of factors max 2; type: int

• swaptionMat is the swaption maturity in years; type: double

• swapMat is the swap maturity in years ; type: double

• percent the strike will be equal to (1+percent/100)∗atm strike with atm strike
the At The Money strike ; type: double

Remarks:
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1. To price a caplet just call the function with swapMat = swaptionMat + tenor

2. swapMat must be equal to k ∗ tenor with k an integer

3. swaptionMat must be equal to k ∗ tenor with k an integer

5.4.2 calling the stochastic volatility pricer from a C program

/*************************************************************************

*

* example: - using the pricer function in a program

* - stochastic volatility model

*

*

*************************************************************************/

#include"stdio.h"

#include"math.h"

#include"lmm_stochastic_volatility.h"

int main()

{

float tenor=0.5; // period of the rate usually 3 months or 6 months

int numFac=2; // number of factors: dim of the brownian motion of the rates

double swaptionMat=5.; // swpation maturity

double swapMat=10.; // swap maturity -> the tenor of swaption is swapMat - swaptionMat

double percent=-20.; // the strike will be equal to (1+percent/100)*atm_strike

double price;

printf(" Payer swaption with maturity: %lf \n",swaptionMat );

printf(" on a swap rate with maturity: %lf (tenor equal to %lf) \n", swapMat ,

swapMat - swaptionMat);

printf(" the strike is equal to (1+%lf) of the ATM strike \n", percent/100.);

printf(" the period of the underlying libor rate is %lf \n" , tenor );

price=lmm_swaption_payer_stoVol_pricer(tenor ,numFac ,swaptionMat , swapMat , percent);

printf(" the price in bps is : %lf \n", price*10000 ) ;

return(1);

}

we obtain the following result:

$ lmm_stochastic_volatility_example

Payer swaption with maturity: 5.000000

on a swap rate with maturity: 10.000000 (tenor equal to 5.000000)

the strike is equal to (1+-0.200000) of the ATM strike

the period of the underlying libor rate is 0.500000

the price in bps is : 1087.164699

$
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5.4.3 A Scilab function for the stochastic volatility pricer

We defined a scilab function (in file lmm scilab.sci) for the stochastic volatility pricer
which interface is as follow:

lmm_swpt_stovol_sci(period , nb_fac , swpt_mat , swp_mat , perct)

It returns the price in bps of the option and the input parameters are

• period is the period length of the rate; type:double

• nb fac is the number of factors; type: int

• swpt mat is the swpation maturity in years; type: double

• swp mat is th swap maturity in years; type: double

• perct the strike will be equal to (1 + percent/100) ∗ atm strike with atm strike
the At The Money strike; type: double

we obtained the following result from scilab-2.7:

-->b=lmm_swpt_stovol_sci(0.5, 2, 5., 10. , -20.0)

shared archive loaded

Link done

b =

1087.1647

-->
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6 Arbitrage free discretization of the Libor Mar-
ket Model

6.1 Definition of arbirtrage-free discretization

As it has already been said, in the BGM models it is supposed that all the libor
L(t, Ti, τ) under their own foward measure QTi+1 has no drift and deterministic log-
volatility :

∀i = 1, .., M : dL(t, Ti, τ) = L(t, Ti, τ)γi(t).dW Q
Ti+1

t .

Considering a numeraire N(t), we denote by Di the deflated bonds :

∀i = 1, .., M + 1 : Di(t) =
B(t, Ti)

N(t)
.

Important remarks :
The convention for all i = 1, .., M : ∀t > Ti : L(t, Ti, τ) = L(Ti, Ti, τ) will be necessary
which implies γi(t) = 0 for t ≥ Ti .
For better understanding, we will denote u.v the scalar product between 2 vectors and
λ ∗ u the product between scalar and a vector.
To lighten the notations, when no space intervalle is specified for the current time t it
will mean for all t ∈ [0, TM+1].
A sum

P
of no term will be 0 and a product

Q
of no term will be 1.

By definition of a numeraire the deflated bonds are martingale under their correspond-
ing measure QN associated to the numeraire N . This martingale property is of course
for the continuous filtration.
The deflated bonds price can be defined by the libors :

∀t < Ti : Di(t) =
B(t, Tit)

N(t)

i−1Y
j=it

1

1 + τL(t, Tj , τ)
, for i = it, .., M + 1

where it is the unique integer such that Tit−1 ≤ t < Tit .

Definition : A discretisation 0 = t0 < t1 < ... < tn = TM+1 is said to be arbitrage-
free if all the discrete deflated bonds are discrete martingale. In other words, if we
denote D̂i(tj) the computed deflated bond Di in time tj , we must have :

∀i = 1, .., M + 1, j = 0, .., n− 1 : D̂i(tj) = E
h
D̂i(tj+1)/Fj

i
(22)

where Fj is the filtration associed to the discrete brownien process over t0, t1, ..., tn.

Remark : Thus the condition to an arbitrage-free discretisation can be resumed to
these backward decrete relations.

6.2 Two usefull numeraires for arbitrage-free

There are two numeraires that will be usefull to seek arbitrage-free dicretization.
the terminal numeraire :

NT (t) = B(t, TM+1)

and the spot numraire (it such that: Tit−1 ≤ t < Tit):

NS(t) =
B(t, Tit)

B(0, T1)
Qit−1

j=1 B(Tj , Tj+1)
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Both numeraires have the great advantage, for a libor model, to give the expression
of the deflated bonds only with respect to the libors :

Di(t) =

MY
j=i

(1 + τL(t, Tj , τ)) for the terminal numeraire (23)

Di(t) = B(0, T1)

i−1Y
j=1

1

1 + τL(t, Tj , τ)
for the spot numeraire (24)

for all i = 1, ..., M + 1.
Thus in the libors discrete world, denoting for all i = 0, .., n and j = 1, .., M L̂(ti, Tj , τ)
the numerical computed value of the libors, the discrete deflated bonds price are:

D̂i(t) =

MY
j=i

�
1 + τL̂(t, Tj , τ)

�
for the terminal numeraire (25)

D̂i(t) = B(0, T1)

i−1Y
j=1

1

1 + τL̂(t, Tj , τ)
for the spot numeraire (26)

6.3 Continuous martingales versus discrete Martingale

Martingale property of the continuous deflated bonds does not imply the martingale
property of the discrete deflated bonds. For example in a BGM model the libors L̂i

or log-libors log(L̂i) are computed through a standart Euler scheme then the D̂i have
no (discrete) martingale property. For other models like HJM over an Euler scheme
on the forward rate, it is possible to chose a consistent drift adjustement to get an
arbitrage-free discretisation, but for the libors discretisations no drift adjusment can
be found for such an aim (see [6]).
Then other assets associated to the libors by a bijective relation will be discretized to
make the arbitrage-free discretisation true, that is to say to make the discrete deflated
bonds martingale.

6.4 Two new martingale assets

There are two assets that can be be considered.
We denoted them X and Y and they are given by :

Xi(t) = L(t, Ti, τ)

MY
j=i+1

(1 + τL(t, Tj , τ)) ∀i = 1, .., M. (27)

Yi(t) = τL(t, Ti, τ)

iY
j=1

1

1 + τL(t, Tj , τ)
∀i = 1, .., M. (28)

Taking YM+1(t) =
QM

j=1
1

1+τL̂(t,Tj ,τ)
we have the following equalities:

M+1X
j=1

Yj(t) = 1. (29)

The libors can aslo be written with respect to this assets :

Li(t, Ti, τ) =
Xi(t)

1 + τXi+1(t) + .. + τXM (t)
∀i = 1, 2, .., M. (30)

Li(t, Ti, τ) =
Yi(t)

τ(Yi+1(t) + .. + YM+1(t))
∀i = 1, 2, .., M. (31)
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The deflated bonds can also be written with respect to these assets :

Di(t) = 1 + τ

MX
j=i

Xj(t) for terminal numeraire (32)

Di(t) = B(0, T1)

M+1X
j=i

Yj(t) for spot numeraire (33)

and vice versa :

Xi(t) =
1

τ
(Di(t)−Di+1(t)) for terminal numeraire (34)

Yi(t) =
Di(t)−Di+1(t)

B(0, T1)
for spot numeraire (35)

Theorem: The assets X and Y are martingale respectively under the terminal and
spot measure.

Proof : Since the deflated bonds are martingale by definition, thanks to (34) and (35),
it is obvious.

6.5 EDS for assets X and Y

Theorem: Under their measure the EDS verified by X and Y are the following :

dXi(t)

Xi(t)
=

 
γi(t) +

MX
j=i+1

τXj(t) ∗ γj

1 + τXj(t) + ... + τXM (t)

!
.dW QNT ∀i = 1, .., M.(36)

dYi(t)

Yi
=

 
γi +

iX
it

Yj ∗ γj

Yj−1 + .. + Y1 − 1

!
.dW QNS ∀i = 1, .., M + 1. (37)

Proof : For dX, we have under terminal QNS

dL(t, Ti, τ)

L(t, Ti, τ)
= γi(t).

 
MX

j=i+1

τL(t, Tj , τ) ∗ γj(t)

1 + τL(t, Tj , τ)
dt + dW

!
and

dL(t, TM , τ)

L(t, Ti, τ)
= γM (t).dW

Using these equations to compute dD for the terminal numeraire thanks to (23) and
then using dD to compute dX thanks to (34), we check that indeed the drift of dD is
vanishing and that the volatility of X is the one in the theorem.
Idem for dY .

6.6 Implementation of caps and swaptions with X and Y

Theorem With a standart log Euler scheme, the discrete assets X̂ and Ŷ are discrete
martingales.
Proof : The definition relation (22) can be checked quite easyly (see [6]).
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Considering a receiver swaption of a swap rate between Tα and Tβ (α < β < M + 1),
under the numeraire measure QN we have for its price at time t = 0 :

RSα,β

N(0)
= E

"
1

N(Tα)

 
1−B(Tα, Tβ)−K

βX
j=α+1

τB(Tα, Tj)

!#
(38)

RSα,β

N(0)
= E

"
Dα(Tα)−Dβ(Tα)−Kτ

βX
j=α+1

Dj(Tα)

#
(39)

Swaption price for asset X : With equality (32) in (39) we get under terminal
measure :

RSα,β

B(0, TM+1)
= τE

24β−1X
j=α

Xj(Tα)−Kτ

βX
j=α+1

0@1 + τ

MX
k=j

Xk(Tα)

1A35 (40)

Swaption price for asset Y : With equality (33) in (39) we get under spot measure:

RSα,β

NS(0)
= B(0, T1)E

24β−1X
j=α

Yj(Tα)−Kτ

βX
j=α+1

M+1X
k=j

Yk(Tα)

35 (41)

Caplet price for asset X : Using (30) we have for a caplet price over L(Ti, Ti, τ)
under terminal measure :

Capleti

NT (0)
= E

"
Xi(Tα)

1 + τ
PM

j=i Xj(Tα)

1 + τ
PM

j=i+1 Xj(Tα)
−K

 
1 + τ

MX
j=i

Xj(Tα)

!#
(42)

Caplet price for asset Y : Using (31) we have for a caplet price over L(Ti, Ti, τ)
under spot measure :

Capleti

NS(0)
= B(0, T1)E

"
Yi(Tα)

PM+1
j=i Yj(Tα)PM+1

j=i+1 Yj(Tα)
−K

 
1 + τ

M+1X
j=i

Yj(Tα)

!#
(43)

6.7 Simulations results

The zero coupon bonds can be expressed with an expectation. We have

B(0, Ti) = N(0)
B(0, Ti)

N(0)
= N(0)E(Di(Ti)).

Thanks to the exact martingale property of the discrete deflated bonds D̂i we can say
that if we compute the expectation of the previous formula, the error only comes from
noises due to the number of Monte-Carlo draws and will tend to vanish when this
number goes to infinity. See the next figures (8) and (9) .

We can see that the swaption prices simulated with the asset X and the asset Y
(for τ = 0.25 and M = 28 Number of factor=1, γi = 0.15 and L(0, Ti, Ti) = 0.05) are
very similar with a relative precision of 10−2.

6.8 Programming interface

6.8.1 C API of the pricer

Functions name:
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int lmm_caplet_terminalX_pricer(caplets, maturities, numMat, nb_MC, nb_factors,

nb_time_step, strike, tenor)

int lmm_swaption_payer_terminalX_pricer(&swaption_price, swaption_maturity, swap_maturity,

nb_MC, nb_factors, nb_time_step, strike, tenor)

int lmm_caplet_spotV_pricer( caplets , maturities , numMat , nb_MC , nb_factors ,

nb_time_step , strike , tenor);

int lmm_swaption_payer_spotV_pricer(&swaption_price , swaption_maturity , swap_maturity ,

nb_MC , nb_factors , nb_time_step , strike , tenor);

Arguments description:

• tenor is the period in years of the rate (usually 3 or 6 months); type:double

• numFac is the number of factors max 2; type: int

• swaption maturity is the swaption maturity in years; type: double

• swap maturity is the swap maturity in years ; type: double

• strike strike of the option; type:double

• nb MC number of monte carlo paths; type: int

• nb factors is the number of factors max 2; type: int

• nb time step number of time steps in the euler scheme; type:int

6.8.2 calling the MartingaleX pricer from a C program

/*************************************************************************************

*

*

*

* Example: using Martingale X approach to price caplets and swaptions

*

*

*

*

*************************************************************************************/

#include<stdio.h>

#include"lmm_martingaleX.h"

int main()

{

double tenor=0.5; // period (in years) of the rate usually 3 or 6 months

int numMat;

double *caplets;

int i;

double* maturities;

double swaption_price;

double swaption_maturity=3; // swaption maturity in years

double swap_maturity=7.; // swap maturity in years

int nb_MC =10000; // number of monte carlo paths

int nb_time_step=10; // number of time steps in the euler scheme

double strike=0.05; // strike
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int nb_factors=2; // number of factors

numMat=(int)(swap_maturity/tenor);

caplets=(double*)malloc(numMat*sizeof(double));

maturities=(double*)malloc(numMat*sizeof(double));

lmm_caplet_terminalX_pricer(caplets, maturities, numMat, nb_MC, nb_factors,

nb_time_step, strike, tenor);

lmm_swaption_payer_terminalX_pricer(&swaption_price, swaption_maturity, swap_maturity,

nb_MC, nb_factors, nb_time_step, strike, tenor);

for(i=1;i<numMat;i++)

{

printf("Caplet(Ti=%lf,%lf,K=%lf)=%lf \n",tenor*i,tenor*i + tenor , strike , caplets[i]);

}

printf("Swaption price:\n");

printf("Spt(T=%lf,%lf,K=%lf)=%lf \n",swaption_maturity, swap_maturity, strike, swaption_price);

free(caplets);

free(maturities);

return(1);

}

we obtain the following result:

$ lmm_martingaleX_example

Caplet prices:

Caplet(Ti=0.500000,1.000000,K=0.050000)=0.003621

Caplet(Ti=1.000000,1.500000,K=0.050000)=0.004856

Caplet(Ti=1.500000,2.000000,K=0.050000)=0.005758

Caplet(Ti=2.000000,2.500000,K=0.050000)=0.006413

Caplet(Ti=2.500000,3.000000,K=0.050000)=0.006968

Caplet(Ti=3.000000,3.500000,K=0.050000)=0.007332

Caplet(Ti=3.500000,4.000000,K=0.050000)=0.007569

Caplet(Ti=4.000000,4.500000,K=0.050000)=0.007861

Caplet(Ti=4.500000,5.000000,K=0.050000)=0.008020

Caplet(Ti=5.000000,5.500000,K=0.050000)=0.008182

Caplet(Ti=5.500000,6.000000,K=0.050000)=0.008337

Caplet(Ti=6.000000,6.500000,K=0.050000)=0.008330

Caplet(Ti=6.500000,7.000000,K=0.050000)=0.008264

Swaption price:

Spt(T=3.000000,7.000000,K=0.050000)=0.025182

$

6.8.3 calling the MartingaleV pricer from a C program

/**********************************************************************************************

*

*

*
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* Example: using Martingale V approach to price caplets and swaptions

*

*

*

*

*********************************************************************************************/

#include<stdio.h>

#include"lmm_martingaleV.h"

int main()

{

double tenor=0.5; // period (in years) of the rate usually 3 or 6 months

int numMat;

double *caplets;

int i;

double* maturities;

double swaption_price;

double swaption_maturity=3; // swaption maturity in years

double swap_maturity=7.; // swap maturity in years

int nb_MC =10000; // number of monte carlo paths

int nb_time_step=10; // number of time steps in the euler scheme

double strike=0.05; // strike

int nb_factors=2; // number of factors

numMat=(int)(swap_maturity/tenor);

maturities=(double*)malloc((numMat+1)*sizeof(double));

caplets=(double*)malloc((numMat+1)*sizeof(double));

lmm_caplet_spotV_pricer( caplets , maturities , numMat , nb_MC , nb_factors ,

nb_time_step , strike , tenor);

lmm_swaption_payer_spotV_pricer(&swaption_price , swaption_maturity , swap_maturity ,

nb_MC , nb_factors , nb_time_step , strike , tenor);

for(i=1;i<numMat;i++)

{

printf("Caplet(Ti=%lf,%lf,K=%lf)=%lf \n", tenor*i ,tenor*(i+1) , strike , caplets[i]);

}

printf("Spt(T=%lf,%lf,K=%lf)=%lf \n",swaption_maturity, swap_maturity, strike, swaption_price);

free(caplets);

free(maturities);

return(1);

}

we obtain the following result:

$ lmm_martingaleV_example

Caplet(Ti=0.500000,1.000000,K=0.050000)=0.003631

Caplet(Ti=1.000000,1.500000,K=0.050000)=0.004861
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Caplet(Ti=1.500000,2.000000,K=0.050000)=0.005767

Caplet(Ti=2.000000,2.500000,K=0.050000)=0.006418

Caplet(Ti=2.500000,3.000000,K=0.050000)=0.006967

Caplet(Ti=3.000000,3.500000,K=0.050000)=0.007347

Caplet(Ti=3.500000,4.000000,K=0.050000)=0.007592

Caplet(Ti=4.000000,4.500000,K=0.050000)=0.007895

Caplet(Ti=4.500000,5.000000,K=0.050000)=0.008064

Caplet(Ti=5.000000,5.500000,K=0.050000)=0.008215

Caplet(Ti=5.500000,6.000000,K=0.050000)=0.008379

Caplet(Ti=6.000000,6.500000,K=0.050000)=0.008381

Caplet(Ti=6.500000,7.000000,K=0.050000)=0.008326

Spt(T=3.000000,7.000000,K=0.050000)=0.025197

$

6.8.4 A Scilab function for the MartingaleX and MartingaleV pricers

The scilab functions are given below:

lmm_cap_martX_sci(period , nb_fac , maturity , strike )

lmm_swpt_martX_sci(period , nb_fac , swpt_maturity , swp_maturity , strike )

lmm_cap_spotV_sci(period , nb_fac , maturity , strike )

lmm_swpt_spotV_sci(period , nb_fac , swpt_maturity , swp_maturity , strike )

they can be found in the file lmm scilab.sci, they return the price of the options
and the input parameters are

• period is the period length of the rate; type:double

• nb fac is the number of factors; type: int

• maturity is the maturity used to price all caplets; type: double

• swpt mat is the swpation maturity in years; type: double

• swp mat is th swap maturity in years; type: double

• strike the strike; type: double

we obtained the following results from scilab-2.7:

-->b=lmm_cap_martX_sci(0.5 , 2 , 7 , 0.05)

shared archive loaded

Link done

b =

! 0. 0. !

! 0.0036211 0.5 !

! 0.0048560 1. !

! 0.0057583 1.5 !

! 0.0064130 2. !

! 0.0069682 2.5 !

! 0.0073320 3. !

! 0.0075693 3.5 !

! 0.0078611 4. !

! 0.0080204 4.5 !

! 0.0081819 5. !

! 0.0083375 5.5 !

! 0.0083296 6. !

! 0.0082636 6.5 !

-->
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-->b=lmm_swpt_martX_sci(0.5,2,3,7,0.05)

shared archive loaded

Link done

b =

0.0251820

-->

-->b=lmm_swpt_spotV_sci(0.5,2,3,7,0.05)

shared archive loaded

Link done

b =

0.0251971

-->

The lmmcapspotVsci function leads to failure of the scilab program, we suggest
not to use it.
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Figure 8: Cumputation bonds error with martingale asset X for 10000, 100000
and 1000000 Monte-carlo draws, for τ = 0.25 and M = 28 (Number of factor=1,
γi = 0.15 and L(0, Ti, Ti) = 0.05).
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Figure 9: Cumputation bonds error with martingale asset Y for 10000, 100000
and 1000000 Monte-carlo draws, for τ = 0.25 and M = 28 (Number of factor=1,
γi = 0.15 and L(0, Ti, Ti) = 0.05).
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Figure 10: Swaption prices w.r.t. the time maturity expiring at T = 7 computed
with 100000 Monte-Carlo draws with martingale asset X.
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Figure 11: Swaption prices w.r.t. the time maturity expiring at T = 7 computed
with 100000 Monte-Carlo draws with martingale asset Y.
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