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Functional Quantization with applications to
option pricing.

Functional quantization (FQ) means quantization of stochastic processes
viewed as infinite dimensional space valued random variables, e.g. the stan-
dart Brownian {Wt}t∈[0,T ] motion on [0, T ] viewed as an L2

T
= L2([0, T ])-

valued random variable. Its aim is to provide tools for the numerical integra-
tion of stochastic processes, e.g. the expectation of a mean value in time of
a process. In a Gaussian framework, it relies mainly on the Karhunen-Loève
(K-L) expansion which can be written in the case of {Wt} as

W (ω, t)
L2

T=
∑

k≥1

√
λk ξk(ω)e

W

k (t) P(dω)-a.s., (0.1)

where

e
W

k (t) :=

√
2

T
sin

(
π(k − 1/2)

t

T

)
, λk :=

(
T

π(k − 1/2)

)2

, k ≥ 1,

(0.2)
and where {ξk}k≥1 is a sequence of iid normal valued random variables.
Spatial discretization is then achieved thanks to vectorial quantization of
the normal valued random variables ξk. Once an integer N ≥ 1 have been
given, two types of spatial discretization are proposed in this current version:
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• We have to choose first an integer d
N

in order to truncate the sum in
(0.1). Then Wt is replaced by

ŴN
prod(t) =

d
N∑

k=1

√
λkξ̂ke

W

k (t), (0.3)

where ξ̂k is the Nk-optimal quantizer of the one-dimensional Normal
distribution where N1 × · · · × Nd

N
= N . Such a quantizer is called a

product-quantizer. This method and in particular the way the integers
d

N
and Nk, 1 ≤ k ≤ d

N
are chosen is described in the paper which

follows (see subsection 5.1). From a practical point of view, (0.3) can
be written as the collection of the trajectories

ϕN
i1,...,in

(t) =

√
2

T

d
N∑

k=1

T

π(k − 1
2)

sin

(
π

(
k − 1

2

)
t

T

)
x

(Nk)
ik

, 1 ≤ ik ≤ Nk, 1 ≤ k ≤ d
N
,

weighted by

αN
i1,...,in

=

d
N∏

k=1

α
(Nk)
ik

,

where (x
(Nk)
ik

, α
(Nk)
ik

)1≤ik≤Nk
denotes the optimal (weighted)Nk-quantizer

of the one-dimensional Normal distribution. Two grids are provided as
examples with the C routine: N = 966 = 23 × 7 × 3 × 2 and N = 96 =
12×4×2. They have been constructed using the one dimensional quan-
tizers of the Normal distributions (see http://quantize.maths-fi.com/

for download).

• Wt is replaced by

ŴN
opti(t) =

dopti

N∑

k=1

(X̂N )ke
W

k (t), (0.4)

where (X̂N )k denotes the coordinates of X̂N which is the dopti
N

-dimensional
N -quantization of N (0, Id) with respect to the norm:

y 7→ ‖y‖W =




dopti

N∑

k=1

λk y
2
k




1/2

.

>From a practical point of view, (0.4) can be replaced by the collection
of the trajectories
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weighted by αi, where {αi, {xi,k}
1≤k≤dopti

N

}1≤i≤N denotes the optimal

(weighted) N -quantizer which defines X̂N and its ditribution. Two ex-
amples of grids are provided here, namely for N = 400 with dopti

N
= 6

and N = 100 with dopti
N

= 4. They have been obatined using optimiza-
tion techniques.

Optimal quantization needs in the applications less points than prod-
uct quantization for the same level of accuracy. This is why it has
been set by default in Premia. Although this way of discretization is
not explained in the following paper, some explanations can be found
in http://quantize.maths-fi.com/NMF06.pdf.
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Abstract

We investigate in this paper the numerical performances of quadratic
functional quantization with some applications to Finance. We em-
phasize the rôle played by the so-called product quantizers and the
Karhunen-Loève expansion of Gaussian processes, in particular the
Brownian motion. We show how to build some efficient functional
quantizers for Brownian diffusions. We propose a quadrature formula
based on a Romberg log-extrapolation of “crude" functional quantiza-
tion which speeds up significantly the method. Numerical experiments
are carried out on two European option pricing problems: vanilla and
Asian Call options in a Heston stochastic volatility model. It suggests
that functional quantization is a very efficient integration method for
various path-dependent functionals of a diffusion processes: it pro-
duces deterministic results which outperforms Monte Carlo simulation
for usual accuracy levels.

Key words: Functional quantization, Product quantizers, Romberg extrap-
olation, Karhunen-Loève expansion, Brownian motion, SDE, Asian option,
stochastic volatility, Heston model.

2001 AMS classification: 60E99, 60H10.

1 Introduction

This paper is an attempt to investigate the numerical aspects of functional
quantization of stochastic processes and their applications to the pricing
of derivatives through numerical integration on path-spaces; we will mainly
focus on the Brownian motion and the Brownian diffusions viewed as square
integrable random vectors defined on a probability space (Ω,A,P) taking
their values in the Hilbert space L2

T
:= L2

R
([0, T ], dt) endowed with the

usual norm defined by |g|L2
T

= (
∫ T

0 g2(t)dt)1/2.
Abstract Quadratic quantization theory consists in studying the best ap-

proximation of X in (L2
H

(Ω,P), ‖ . ‖2) by H-valued random vectors taking
at most N values and all the induced questions: optimization of the values,
asymptotic rate of the quantization error bounds, explicit construction of
nearly optimal quantizers. The historical framework is the Euclidean one
(H = Rd) comes from Information Theory and Signal processing and was
introduced in the late 1940’s. Its aim is to provide an optimal spatial dis-
cretization of a random vector-valued signal X with distribution P

X
by a

random vector taking N values in the codebook {x1, . . . , xN
} (the N -tuple

(x1, . . . , xN
) is called a N -quantizer). Then, instead of transmitting the com-

plete signal X(ω) itself, one first selects the nearest codebook xi in the code-
book and transmits its (binary coded) label i. After reception, a proxy X̂(ω)
of X(ω) is reconstructed using the codebook correspondence i 7→ xi (called
the codebook bible). For a given N , there is (at least) one N -quantizer which
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minimizes over (Rd)N the quadratic quantization error ‖X − X̂‖2 induced
by replacing X by X̂. In d-dimension, this lowest quantization error goes to
zero at a N− 1

d -rate as N → +∞. Stochastic optimization procedure based
on simulation have been devised to compute these optimal quantizers. For
an expository of mathematical aspects of quantization in finite dimension we
refer to [6] and the references therein. For Signal processing and algorithmic
aspects, we refer to [5], [4] and [19].

In the early 1990’, optimal quantization has been introduced in Numeri-
cal Probability to devise some quadrature integration formulæ with respect
to the distribution P

X
on Rd using that EF (X) ≈ EF (X̂) if N is large

enough. This approach is efficient in medium dimensions (see [15], [16]
and [19]) especially when many integrals need to be computed with respect
to the same distribution P

X
: tables of the optimal weighted N -tuples can be

computed and kept off-line like for Gauss points on the unit interval. Later,
optimal quantization has been used to design some tree methods in order
to solve multi-dimensional non-linear problems involving the computation
of many conditional expectations: American option pricing, non-linear fil-
tering for stochastic volatility models, portfolio optimization (see [18] for a
review of applications to computational Finance).

More recently the infinite dimensional setting has been extensively in-
vestigated from a theoretical viewpoint with a special attention paid to
functional quantization (FQ) i.e. the quantization of stochastic processes
viewed as random vectors taking values in their path spaces such as L2

T
:=

L2([0, T ], dt) (see [3],[11],[12], etc).
In this paper we aim to develop some first numerical applications of

FQ. As concerns theoretical background we partially rely on [13]. We
also provide some new numerically-oriented ingredients. We will focus on a
financial framework: the pricing of path-dependent derivatives in a Heston
stochastic volatility model.

More generally what our approach can be applied to the computation
of the expectation E(F (X)) where X is a Brownian diffusion (with explicit
coefficients) and F is an additive (integral) functional defined on L2

T
by

ξ 7→ F (ξ) :=
∫ T

0 f(t, ξ(t)) dt.
In practice, true optimal quantizers of a process X are out of reach

for numerical use, but some “rate optimal" sequences of quantizers do have
some semi-closed form. So the starting point for numerics is to compute
these “efficient" quantizers as well as the distribution of both their induced
quantizations X̂ and quantization errors ‖X − X̂‖2 (another property –
stationarity – will be needed, see sections 3.2 and 4.1.2 further on). Then,
the quadrature formulæ involving these N -quantizers make up an efficient
deterministic alternative to Monte Carlo simulation for the computation of
EF (X).

As concerns Gaussian processes, this can be done by using an expansion
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of X on its Karhunen-Loève (K-L) orthonormal basis. For Brownian dif-
fusions, one maps the Brownian quantizers by solving an integral equation
system (see section 4.3 for a presentation or [13]).

Let us give an example of such a rate optimal sequence of stationary
quantizers in the simpler case whereX = B is the standard Brownian motion
on [0, T ]. Given N , we produce some optimal values d

N
and (Nk)1≤k≤d

N
–

in a sense to be specified in subsection 4.1.1 – such that N1 × · · ·Nn ≤ N .
Then, the quantizer used for B (at level N) is

ϕN
i1,...,in

(t) =

√
2

T

d
N∑

k=1

T

π(k − 1
2)

sin

(
π

(
k − 1

2

)
t

T

)
x

(Nk)
ik

, 1 ≤ ik ≤ Nk, 1 ≤ k ≤ d
N
,

and its weight is

αN
i1,...,in

=

d
N∏

k=1

α
(Nk)
ik

,

where (x
(Nk)
ik

, α
(Nk)
ik

)1≤ik≤Nk
denotes the optimal (weighted) Nk-quantizer of

the one-dimensional Normal distribution (see some examples at http://perso-math.univ-mlv.fr/users/printems.jacques/Fquantiz

Then EF (X) is approximated by the weighted sum by

∑

i1,...,in

αN
i1,...,in

∫ T

0
f(t, ϕi1,...,in(t)) dt.

However, “crude" FQ theoretically converges at a rather poor rate, usu-
ally (logN)−θ for some θ depending on the pathwise regularity of the process
X (e.g. θ = 1/2 for the Brownian motion). So, hoping to compete success-
fully with Monte Carlo simulations needs to bet on its performances for
“reasonably low" values of N (say N≤10 000). In fact to help winning this
bet, we will introduce two speeding up procedures based on specific prop-
erties of FQ: one is stationarity, the other is a Romberg like extrapolation
which is introduced in section 5.2.

The paper is organized as follows: in Section 2 we provide some back-
ground on functional quantization of (Gaussian) processes X viewed as
L2

T
-valued random vectors. Section 3.1 is devoted to stationarity and its

first computational applications (one-dimensional optimal quantizers, etc).
In Section 3.2 some new weighted quadrature formulæ are established for
EF (X) when F is a | . |L2

T
smooth functional. In Section 4 we give several

examples of efficient quantizers: first for Gaussian processes the Karhunen-
Loève product quantizers and some of their “non-Voronoi" variants (sec-
tions 4.1.1 and 4.2); then some explicit rate optimal sequences of quantizers
are proposed for Brownian diffusions. A procedure is described to tabulate
the optimal product quantizers. In Section 5.1, the computation procedure
of K-L product quantizers for the Brownian motion are described (as well as
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an extract of the tables available on the web). In Section 5.2, the speeding
up Romberg log-extrapolation method is made explicit. In Section 6 the
results of two numerical experiments are presented: the pricing of vanilla
calls in a Heston stochastic volatility model (as a benchmark since an FFT -
semi-closed form is available) and the pricing of an Asian option in the
same model. The results are quite promising (although we decided not to
implemented any of the usual “variance reducer"). In particular, we point
out the efficiency of the Romberg log-extrapolation (sometimes combined
with a linear interpolation method) which numerically outperforms Monte
Carlo simulation in both examples (within the range of tested values). In
Section 7, we outline an FQ-MC method to integrate irregular functionals
F (X): then FQ becomes a control variate random variable.

2 Preliminaries on quadratic functional quantiza-
tion

Let (H, (. | .)
H

) be a separable Hilbert space and X : (Ω,A,P) → H be a
square integrable H-valued random vector with distribution P

X
defined on

H endowed with its Borel σ-field Bor(H). One denotes by ‖ . ‖2 the usual

quadratic norm on L2
H

(Ω,P) defined by ‖X‖2 =
√
E(|X|2

H
).

Let x := (x1, . . . , xN
) ∈ HN be an N -quantizer and let Projx : H →

{x1, . . . , xN
} be a projection following the nearest neighbour rule. It means

that the Borel partition made of the so-called Voronoi cells Ci(x) := Proj−1
x ({xi}), i =

1, . . . , N , of H satisfies

Proj−1
x ({xi}) ⊂ {ξ∈ H | |xi − ξ|

H
= min

1≤j≤N
|xj − ξ|

H
}, 1 ≤ i ≤ N.

The partition(Ci(x))i=1,...,N is called a Voronoi tessellation of H induced by
x. One defines the Voronoi quantization of X induced by x by

X̂x := Projx(X).

(the exponent x will often be dropped or replaced by its size N ). It is the best
L2(P)-approximation of X by {x1, . . . , xN

}-valued random vectors since, for
any random vector X ′ : Ω → {x1, . . . , xN

},

‖X−X ′‖2
2

=

∫

Ω
|X(ω)−X ′(ω)|2

H
P(dω) ≥

∫
min

1≤i≤N
|X(ω)−xi|2HP(dω) = ‖X−X̂x‖2

2

There are infinitely many Voronoi tessellations, all producing the same
quadratic quantization error ‖X − X̂x‖2 . In fact the boundaries of any
Voronoi tessellation are contained in the union of finitely many median hy-
perplanes Hij ≡ (xi−xj | xi+xj

2 −. )
H

= 0 (xi 6= xj). Hence, if the distribution

P
X

weights no hyperplane, then X̂x is P-a.s. uniquely defined.
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The second step of the optimization procedure is to find an N -tuple
x ∈ HN , if any, which minimizes the quantization error over HN . In fact
one checks by the triangular inequality that the function

QX
N

: (x1, . . . , xN
) 7→ ‖X − X̂x‖2 = ‖ min

1≤i≤N
|X − xi|H

‖2

is Lipschitz continuous on HN . When N = 1, Q2
1
(x) = E|X − x|2

H
is a

strictly convex function which reaches its minimum Var(|X|
H

) at x∗ := EX.
Then, one shows by induction on N (see [11] for details), that QX

N
always

reaches a minimum at some optimal N -quantizer x∗ := (x∗
1, . . . , x

∗
N

). As
soon as |suppP

X
| ≥ N , any such optimal N -quantizer has pairwise distinct

components. The key argument is that the function QX
N

is weakly lower
semi-continuous on HN . (If H = R and P

X
has a log-concave density, the

optimal N -quantizer is unique, up to a permutation of its components).
One shows using an everywhere dense sequence in H that minHN (QX

N
)2

goes to 0 as N goes to ∞. Elucidating the rate of this convergence is a
much more demanding problem, even in finite dimension. It is elucidated
for non-singular Rd-valued random vectors by the so-called Zador Theorem
(see [6]).

Theorem 1. (Zador, Bucklew & Wise, Graf & Luschgy) Assume that X∈
L2+η
Rd (Ω,P) for some η > 0. Let f denote the density of the absolutely

continuous part of P
X

(which can be possibly 0). Then

min
(Rd)N

(QX
N

)2 = min
x∈(Rd)N

‖X−X̂x‖2
2

=
J2,d

N2/d

(∫

Rd
f

d
d+2 (ξ)dξ

)1+2/d

+o

(
1

N
2
d

)
as N → +∞.

When f 6≡ 0, this yields a sharp rate for the quadratic quantization error
since the integral in the right hand side is always finite under the assump-
tion of the theorem. When f ≡ 0, this no longer provides a sharp rate,
although such sharp rates can be established for some special distributions
(self-similar distributions on fractal sets, etc). The true value of J2,d – which
corresponds to the uniform distribution over [0, 1]d – is unknown although
one knows that J2,d = d/(2πe) + o(d).

3 Numerical integration using (functional) quan-
tization

In this section, we first recall what stationarity of an N -quantizer is, then
we provide some quadrature formulæ (some of them are new) and finally we
describe in details the log-Romberg speeding up procedure (which remains
partially heuristic given the present state of the art.
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3.1 Stationarity quantizers

Definition 1. An N -quantizer x := (x1, . . . , xN
) ∈ HN is stationary if it

satisfies

∀ i 6= j, xi 6= xj and P(X∈ ∪i∂Ci(x)) = 0 (3.1)

(P
X

-negligible boundary of the Voronoi cells) and

E(X | X̂x) = X̂x. (3.2)

The random vector X̂x is called a stationary N -quantization of X.

In particular, any stationary quantizer satisfies E(X) = E(X̂x). Since
the σ-fields generated by X̂x and {{X ∈ Ci(x)}, i = 1, . . . , N} coincide,
Equation (3.2) also reads

xi =
E(1Ci(x)(X)X)

P(X∈ Ci(x))
= E(X | {X∈ Ci(x)}), i = 1, . . . , N. (3.3)

provided P(X∈ Ci(x)) > 0, i = 1, . . . , N .
In fact stationary quantizers are the critical points of (the square of)

quadratic quantization error: The function x 7→ DX
N

(x) := ‖X − X̂x‖2
2

is
continuously differentiable at any N -quantizer x satisfying (3.1) and

∂DX
N

∂xi
(x) := 2E(1Ci(x)(X)(xi −X)) = 2

∫

Ci(x)
(xi − ξ)P

X
(dξ), 1 ≤ i ≤ N.

(3.4)
Consequently, any (local) minimum of the quantization error function

is stationary. Optimal N -quantizer(s) are usually not the only stationary
quantizers (see Proposition 4 below about Karhunen-Loève product quantiz-
ers). However, in 1-dimension for log-concave one-dimensional p.d.f., there
is a unique stationary N -quantizer (the optimal one).

Note that owing to (3.2) the quantization error has then a simpler ex-
pressions

E|X − X̂x|2
H

= E|X|2
H

− E|X̂x|2
H

= E|X|2
H

−
N∑

i=1

|xi|2HP(X∈ Ci(x)). (3.5)

Similar equalities hold with the variances σ2(|X|
H

) and σ2(|X̂x|
H

) of X and
X̂x since their first moments coincide. We will see further on (Sections 3.2, 4
and 5.2) that stationary quantizers are an important class of quantizers for
numerics.

In finite dimension, several numerical methods to compute (locally) opti-
mal quantizers are based on the stationary equation. In 1-dimension the sta-
tionary quantizers are obtained by a Newton-Raphson procedure. In higher
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dimension, we turn to stochastic gradient procedure. We refer to ([19]) for
detailed explanations. Thus, a tabulation of optimal N -quantizers of the
N (0; 1) distribution has been carried out and kept off-line. Files can be can
be downloaded at any of the following the URL’s

www.proba.jussieu.fr/pageperso/pages.html or perso-math.univ-mlv.fr/users/printems.jacques/n01/

It contains, for every N ∈ {1, . . . , 400},

– the (unique) optimal N -quantizer xN ,

– the P
ξ
-masses Pξ(Ci(x

N )), i = 1, . . . , N , of its Voronoi cells (i.e. the

distribution of ξ̂xN

, ξ∼N (0; 1)),

– the induced quadratic quantization error ‖ξ − ξ̂xN ‖2 (using (3.5)),

When X is a bi-measurable process and H = L2
T

, the stationarity con-
dition in its form (3.3) has consequences on the pathwise regularity of the
elementary quantizers xi : they have (at least) the regularity of t 7→ Xt

from [0, T ] into L2(Ω,A,P) (see [11, 12] for details).Furthermore, if X is
a centered Gaussian process, one shows that stationary quantizers lie in
the self-reproducing space of X (see [11]), like the Cameron-Martin space
H1 := {h ∈ L2

T
/ h(t)=

∫ t
0 ḣ(s)ds, ḣ∈ L2

T
} for the Brownian motion.

3.2 Quadrature formulæ for numerical integration

The basic idea is that, on the one hand, a good quantization X̂x is close to X
in distribution and, on the other hand, for every Borel functional F : H → R
and every x = (x1, . . . , xN

)∈ HN ,

EF (X̂x) =
∑

1≤i≤N

P
X

(Ci(x))F (xi). (3.6)

So if one has a numerical access to both the N -quantizer x and its “com-
panion" distribution (P

X
(Ci(x)))1≤i≤N , the computation in (3.6) is straight-

forward. In the proposition below are established some error bounds for
EF (X) −EF (X̂x) based on Lp-quantization errors ‖X − X̂x‖p (with p = 2
or 4).

Item (a) devoted to Lipschitz continuous functionals is classical, item (b)
extends a second order quadrature formula involving stationary quantizers
coming from [15] (see also [19]). Other quadrature formulæ based on Lp-
quantization, p 6= 2, can be derived.

Proposition 1. Let X∈ L2
H(Ω,P) and let F : H → R be a Borel functional

defined on H

(a) First order quadrature formula: If F is Lipschitz continuous,
then

|EF (X) − EF (X̂x)| ≤ [F ]
Lip

‖X − X̂x‖2
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for every N -quantizer x ∈ HN . In particular, if (xN )N≥1 denotes a se-
quence of quantizers such that lim

N
‖X − X̂xN ‖2 = 0, then the distribution

N∑

i=1

P
X

(Ci(x
N ))δxN

i
of X̂xN

weakly converges to the distribution P
X

of X as

N → +∞.

(b) Second order quadrature formulæ: Assume that x is a stationary
quantizer for X.

– Let θ : H → R+ be a nonnegative convex function. If θ(X) ∈ L2(P)
and if F is locally Lipschitz with at most θ-growth, i.e. |F (x) − F (y)| ≤
[F ]

Liploc
|x− y| (θ(x) + θ(y)), then F (X)∈ L1(P) and

|EF (X) − EF (X̂x)| ≤ 2[F ]
Liploc

‖X − X̂x‖2‖θ(X)‖2 . (3.7)

– If F is differentiable on H with an α-Hölder differential DF (α∈ (0, 1]),
then

|EF (X) − EF (X̂x)| ≤ [DF ]α‖X − X̂x‖1+α
2

. (3.8)

When F is twice differentiable and D2F is bounded then, one may replace
[DF ]1 = [DF ]

Lip
by 1

2‖D2F‖∞ in (3.8).

– If DF is is locally Lipschitz with at most θ-growth, θ convex, θ(X) ∈
L4(P), then

|EF (X) − EF (X̂x)| ≤ 3[DF ]
Liploc

‖X − X̂x‖2
4
‖θ(X)‖4 . (3.9)

(c) An inequality for convex functionals: Assume that x is a sta-
tionary quantizer. Then for any convex functional F : H → R

EF (X̂x) ≤ EF (X). (3.10)

The proofs of these quadrature formulæ are postponed to an annex.

Remark: The error bound (3.9) involves ‖X − X̂x‖4 about which very
little is known when x is a stationary (or even optimal) quadratic quantizer
of X: its rate of convergence as N goes to infinity is not elucidated. So
one often uses a less elegant (and probably less sharp) bound: assume that
θ(X)∈ Lp(P) for every p ≥ 1, then, for every ε∈ (0, 1],

|EF (X) − EF (X̂x)| ≤ [DF ]
Liploc

‖X − X̂x‖2−ε
2

‖X − X̂x‖ε
4
(1 + 3‖θ(X)‖ 1

ε

).

(3.11)
Examples: • The typical regular functionals defined on (L2

T
, | . |

L2
T

) (most

important example for stochastic processes) are the integral functionals F
defined by

∀ ξ ∈ L2
T
, F (ξ) =

∫ T

0
f(t, ξ(t)) dt



?? pages 12

where f : [0, T ] × R → R is a Borel function with at most linear growth in
x uniformly in t. In particular, F is Lipschitz continuous as soon as f(t, .)
is (uniformly in t), convex if f(t, .) is for every t, etc; in particular F is
differentiable with an α-Hölder differential as soon as f(t, .) is differentiable
for every t ∈ [0, T ] with an α-Hölder partial differential ∂f

∂x (t, .) (uniformly
in t). Then

∀ ξ ∈ L2
T
, DF (ξ) =

∫ T

0

∂f

∂x
(t, ξ(t))dt.

• The functional F defined for every ξ∈ L2
T

by

F (ξ) :=

∫ T

0
eσξ(t)+ρtdt (ρ∈ R)

is convex, locally Lipschitz with θ-linear growth, infinitely differentiable.
Furthermore, using that |eu − ev| ≤ |u− v|(eu + ev) and Schwarz inequality,
one derives that

[F ]
Liploc

:= σeρ+ T and θ(ξ) = |eσξ|
L2

T

. (3.12)

4 Functional quantization revisited from the nu-
merical viewpoint

In this section several results on functional quantization are re-visited to
emphasize all the combinatorial and computational aspects that make pos-
sible numerical applications. Of course, among all gaussian processes, the
Brownian motion plays a central rôle. So, from now on, we will assume
that X is a bi-measurable process defined on a probability space (Ω,A,P)
satisfying

E |X|2L2
T

=

∫ T

0
E(X2

s )ds < +∞

so that it can be viewed as an L2
T

-valued random vector (up to a P-negligible
set). However many results below remain true in an abstract Hilbert frame-
work.

4.1 Gaussian processes

For convenience in this section we will assume from now on that all random
processes X are centered i.e.

EX = 0
H
.
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4.1.1 Karhunen-Loève product quantizers

Let (en)n≥1 be an ortho-normal basis of L2
T

. One may expand the paths of
(Xt)t∈[0,T ] on this basis i.e.

X(ω)
L2

T=
∑

n≥1

(X(ω)|en)L2
T
en P(dω)-a.s. (4.13)

Since X is a Gaussian process, the sequence ((X|en))n≥1 is a Gaussian se-
quence of random variables so that (4.13) can be written

X(ω)
L2

T=
∑

n≥1

√
cn ξn(ω)en P(dω)-a.s. (4.14)

where cn = Var((X|en)) and(ξn)n≥1 is a Gaussian sequence of N (0; 1)-
distributed random variables, usually not mutually independent. However
there is a basis which plays a special rôle with respect to the process X: its
Karhunen-Loève (denoted K-L) basis (e

X

n )n≥1 which achieves the infinite
dimensional PCA of its covariance operator Γ

X
defined by

∀ f ∈ L2
T
, Γ

X
(f) :=

(
t 7→

∫ T

0
f(s)E(XtXs)ds

)
.

The operator Γ
X

is a non-negative self-adjoint compact operator, so it can

be diagonalized in an orthonormal basis – the K-L basis – (e
X

n )n≥1 of L2
T

:

Γ
X

(e
X

n ) = λne
X

n , n≥ 1,

where the eigenvalues λn make up a nonincreasing sequence of nonnegative
real numbers satisfying

∑

n≥1

λn = E |X|2L2
T

< +∞.

Without loss of generality one may assume that

∀n ≥ 1, λn > 0 (4.15)

since otherwise suppX 6= H. Then, the K-L eigenbasis is unique. (In case
X is a finite dimensional Gaussian vector, most of what follows remains true
by setting d := max{n ≥ 1 : λn > 0} and considering {1, . . . , d} instead of
{1, . . . , n, . . .} as an index set.)

Then, it follows from the so-called “reproducing property" that

∀ f, g∈ L2
T
, Cov

(
(f |X)L2

T
, (g|X)L2

T

)
=

∫

[0,T ]2
f(t)g(s)E(XtXs)ds dt = (f |Γ

X
(g))L2

T

(4.16)
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so that

c2
n = E (X|eX

n )2
L2

T

) =
(
e

X

n |Γ
X

(e
X

n )
)

L2
T

= λn (4.17)

Cov((X|eX

n )L2
T
, (X|eX

m)L2
T

) = (e
X

n |Γ
X

(e
X

m))L2
T

= δn,mλn (4.18)

where δn,m is for Kronecker symbol. Consequently

X(ω)
L2

T=
∑

n≥1

√
λn ξn(ω)e

X

n P(dω)-a.s. (4.19)

where the sequence

ξn :=
(X|eX

n )L2
T√

Var((X|eX

n )L2
T

)
, n ≥ 1

is now i.i.d. and N (0; 1)-distributed. Expansion (4.19) is known as the
K-L expansion of X. It combines both orthonormality of the K-L basis
(e

X

n )n≥1 and the mutual independence of its coordinates ξn. Furthermore,
the equality (4.19) holds in L2(dP ⊗ dt). In particular it holds P(dω)-a.s.
at dt-almost every time t ∈ [0, T ]. It is the PCA of the process X in
that all d dimensional truncations of (4.19) produce the best d-dimensional
approximation of X in the least square sense.

A very natural way to produce a functional quantization for Gaussian
processes in L2

T
using at most N elementary quantizers is to use a product

quantizer of the form
X̂t =

∑

n≥1

√
λn ξ̂n e

X

n (t) (4.20)

where ξ̂n := ξ̂x(Nn)

n = Projx(Nn)(ξn) is an optimal Nn-quantization of ξn and
N1 × · · · ×Nn ≤ N, N1, . . . , Nn ≥ 1. Note that for large enough n, Nn = 1
so that ξ̂n = 0 which makes the above series a finite sum. Also keep in
mind that the p.d.f. of normal distribution being log-concave the optimal

Nn quantizer x(Nn) := (x
(Nn)
1 , . . . , x

(Nn)
Nn

) is unique (and already tabulated
as mentioned above).

The N1 × · · · × Nn-quantizer χ that produces the above Voronoi quan-
tization (4.20) is of the form

χ
i
(t) =

∑

n≥1

√
λn x

(Nn)
in

e
X

n (t), i = (i1, . . . , in, . . .)∈
∏

n≥1

{1, . . . , Nn}.

(4.21)

Definition 2. A quantizer χ defined by (4.21) is called a K-L product
quantizer. For convenience and when there is no ambiguity concerning the
reference basis we will often denote χ by

χ =
√
λ⊗ x with x =

∏

n≥1

x(Nn).
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Furthermore, one denote by Opq(X,N) the set

Opq(X,N) := {χ/ χ K-L product quantizer of size at most N as defined by (4.21)}
The proposition below describes the geometric structure

Proposition 2. Let χ =
√
λ ⊗ x be a K-L product quantizer as defined

by (4.21). Let dx := max{k : Nk > 1} ∈ N denote the “quantization
dimension" (highest non-trivially quantized dimension).

(a) Then, the quadratic quantization error induced by χ satisfies

‖X − X̂χ‖2
2

=
∑

n≥1

λn ‖ξn − ξ̂Nn
n ‖2

2
= E|X|2L2

T

+
dx∑

n=1

λn (‖ξk − ξ̂Nn

k ‖2
2

− 1).(4.22)

(b) For every multi-index i∈
∏

n≥1

{1, . . . , Nn}, the associated Voronoi cell of

χ is
Ci(χ) =

∏

n≥1

(
√
λnCin(x(Nn))). (4.23)

Remark. In fact, both claims only rely on the orthonormality of the basis
(e

X

n )n≥1 and do not make use of the specificity of the K-L basis.

Proof. (a) One notes that ‖X − X̂χ‖2
2

= Emin
i

|X − χ
i
|2 where χ

i
is given

by (4.21). Then

Emin
i

|X − χ
i
|2 = E


 min

1≤i1≤N1,··· ,1≤idx ≤Ndx

∣∣∣∣∣∣
∑

n≥1

√
λn ξnen −

dx∑

n=1

√
λn x

(Nn)
in

en

∣∣∣∣∣∣

2



= E


 min

1≤i1≤N1,··· ,1≤idx ≤Ndx

dx∑

n=1

λn |ξn − x
(Nn)
in

|2 +
∑

n≥dx+1

λn ξ
2
n




=
dx∑

n=1

λn E

(
min

1≤in≤Nn

|ξn − x
(Nn)
in

|2
)

+
∑

n≥dx+1

λn

=
dx∑

n=1

λn E

(
min

1≤in≤Nn

|ξn − x
(Nn)
in

|2
)

+ E|X|L2
T

−
dx∑

n=1

λn

The first equality follows from the fact that, for every n > dx, x(Nn) =
E(ξn) = 0.

(b) One may assume without loss of generality that, for every n ≥ 1, the

components of x(Nn) are in an ascending order i.e. i 7→ x
(Nn)
i is nonde-

creasing. Let i := (i1, . . . , idx
, 1, . . .) and j := (j1, . . . , jdx

, 1, . . .). Then, if
ζ =

∑
n ζnen ∈ H, |ζ − χ

i
|2 < |ζ − χ

j
|2 if and only if

dx∑

n=1

√
λn

2
(
x

(Nn)
in

− x
(Nn)
jn

)

 ζn√

λn
−
x

(Nn)
in

+ x
(Nn)
jn

2


 < 0.
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Then, for every fixed n, setting jn = in±1 and jn′ = in′ if n′ 6= n implies
that

x
(Nn)
in

+ x
(Nn)
in−1

2
<

ζn√
λn

<
x

(Nn)
in+1 + x

(Nn)
in

2
i.e.

ζn√
λn

∈ Cin(x(Nn)).

One checks that this condition is sufficient. ♦

Then the lowest quadratic quantization error induced by K-L product
quantizers having at most N codebooks is obtained as the solution of the
following optimization problem

min





d∑

n=1

λn min
RNn

‖ξ − ξ̂Nn ‖2
2

+
∑

n≥d+1

λn, N1×· · ·×Nn ≤ N, N1, . . . , Nm ≥ 2, d ≥ 1



 .

(4.24)
This provides an upper-bound for the lowest quantization error over all
quantizers with at most N codebooks. This approach is the starting point
for theoretical estimation of the rate of convergence of the quantization
error in [11] (and in [12] with d-dimensional marginal blocks instead of
1-dimensional ones; this holds for any orthonormal basis of L2

T
which is

extensively exploited in these references).
Solving numerically the optimization problem (4.24) for a wide range of

values of N when it is possible is a first step to use functional quantization
for numerics (see Section 5.1 for the Brownian motion).

Now, let us come to the specific feature of the K-L expansion which
makes possible numerical implementation of the quadrature formulæ estab-
lished in Section 3.2. A closed formula is available for the distribution of
X̂χ when χ is a K-L product quantizer, namely

∀ i ∈
∏

n≥1

{1, . . . , Nn}, P(X̂χ = χ
i
) =

∏

n≥1

P(ξ ∈ Cin(x(Nn))), ξ ∼ N (0; 1).

(4.25)
This follows from the combination of parallelepipedic shape (4.23) of the
Voronoi cells Ci and the independence of the normal random variables
ξn, n ≥ 1 in the expansion (4.19) since

P(X̂χ = χ
i
) = P

(
∩n≥1{

√
λnξn ∈

√
λnCin(x(Nn)}

)
=
∏

n≥1

P(ξn ∈ Cin(x(Nn)).

The weight vector (P(ξ ∈ Ci(x
(Nn))))i=1,...,Nn is simply the distribution of

the optimal Nn-quantization ξ̂Nn := ξx(Nn)
, ξ ∼ N (0; 1)). hence, if one

denotes by erf the distribution function of N (0; 1), one has

P(ξ ∈ Ci(x
(Nn))) = erf

(
x

(Nn)
i+1/2

)
− erf

(
x

(Nn)
i−1/2

)
, i = 1, . . . , Nn
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with x
(Nn)
i+1/2 :=

x
(Nn)
i+1 +x

(Nn)
i

2 , i = 1, . . . , Nn − 1, x
(Nn)
1/2 = −∞, x

(Nn)
Nn+1/2 = +∞

(They are available at the formerly given URL’s). For our purposes here,
no higher values than 100 are necessary for Nn.

Practical rule for numerical implementation: Numerical implemen-
tation of the functional quantization of a Gaussian process X is possible as
soon as closed form is available for the eigensystem (e

X

n , λn)n≥1.

The most important example of an explicit K-L system is of course the
Brownian motion (Wt)t∈[0,T ] whose K-L eigensystem is given by

e
W

n (t) :=

√
2

T
sin

(
π(n− 1/2)

t

T

)
, λn :=

(
T

π(n− 1/2)

)2

, n ≥ 1.

(4.26)
Other common Gaussian processes have explicit K-L expansions like the
Brownian bridge (e

X

n (t) := 2/T sin
(
πn t

T

)
and λn := (T/(π n))2). The sta-

tionary Ornstein-Uhlenbeck process admits a semi-closed form for its K-L
system (see e.g. [8], p.195).

As a conclusion to this chapter let us cite an upper-bound obtained
in [11] by solving the optimization problem (4.24). This yields the follow-
ing theoretical rate of convergence for the quantization error of a Gaussian
process X.

Proposition 3. Let X be a Gaussian process with a K-L eigensystem
(e

X

n , λn)n≥1. Assume that λn ≤ c∗ n−b, b > 1, c∗ > 0. Then

min
{

‖X−X̂χ‖2 , χ∈ Opq(X,N)
}

≤
(
c∗
(
b

2

)b−1( 1

b− 1
+4CN (0;1)

))1/2
1

(logN)
b−1

2

(4.27)

where CN (0;1) := sup
N≥1

(
N2 min

x∈RN
‖ξ − ξ̂x‖2

)
. In particular, for the standard

Brownian motion W ,

min
{

‖W−Ŵχ‖2 , χ∈ Opq(W,N)
}

≤ 2T

π

(
1 + 4CN (0;1)

)1/2 1

(logN)
1
2

.

Furthermore, it is also established in [11] using entropy methods that
the above rate is the true one: if λn ≥ c∗n−b (c∗ > 0) for every n ≥ 1 , then
there is some real c′

∗ > 0 such that

min
x∈HN

‖X − X̂x‖2 ≥ c′
∗(logN)− b−1

2 , N ≥ 1. (4.28)

Consequently the O(logN)− 1
2 )-rate is optimal for the Brownian motion and
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There exists some rate optimal sequences (χ
N

)N≥1 of K-L product quantizers for W .

Remarks. • A sharp rate based on a product quantization of X by d-
dimensional marginal blocks instead of 1-dimensional ones is established
in [12] when λn = c

λ
n−b + o(n−b) (c∗ > 0):

min
x∈HN

‖X − X̂x‖2 =
c

1
2
λ b

b
2

2
b−1

2 (b− 1)
1
2

(logN)− b−1
2 + o

(
(logN)− b−1

2

)
. (4.29)

• A conjecture confirmed by numerical experiments is that CN (0;1) = lim
N

(
N2 min

x∈RN
‖ξ − ξ̂x‖2

)
=

π

2

√
3 (the second equality follows from Zador’s Theorem, see [12] for more

details).

Extensions. • The upper-bound (4.27) remains true if one replaces mutatis
mutandis the K-L eigensystem by any system (en, c

2
n)n≥1 where (en)n≥1 is

an orthonormal basis of L2
T

and c2
n = Var((X | en)L2

T
) (but there no explicit

formula for the distribution of these product quantizations). This is a way
to get the quantization error rates for many Gaussian processes like the
fractional Brownian motion using e.g. the Haar basis (see [11] for some
examples).

• The upper-bound (4.27) also remains true if one considers a system (en, c
2
n)n≥1

such that
∑

n≥1 cnξnen converges to X in which en is no longer orthogonal
(but still normed) provided that the random variables ξn in (4.19) remain
independent. This follows from the independence of ξn − ξ̂Nn

n , n ≥ 1 and the
stationarity property satisfied by ξ̂Nn

n , n ≥ 1 (see Section 4.2 below).

4.1.2 Stationarity of K-L product quantizer

The following proposition emphasizes a new important and typical feature
of the K-L basis: that K-L product quantizers are stationary. It is an
important asset for numerical purposes since one may then apply the second
order quadrature formulæ established in Proposition 1(b).

Proposition 4. Let χ∈ Opq(X,N) be a K-L product quantizer of X. Then
χ is stationary for X.

Proof (See also [6], Lemma 4.8). Let χ =
√
λ ⊗ x. The ξn being indepen-

dent in the K-L expansion (4.19), then the ξ̂n are independent in (4.20)
as well. Furthermore, it is obvious from (4.20) and the identity ξ̂n =
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(X̂χ|eX

n )L2
T
/
√
λn, n ≥ 1, that σ(X̂χ) = σ(ξ̂n, n ≥ 1). Consequently

E(X | X̂χ) =
∑

n

√
λn E(ξn | ξ̂m, m≥ 1) e

X

n =
∑

n

√
λn E(ξn | ξ̂n, ξ̂m, m ≥ 1, m 6= n) e

X

n

=
∑

n

√
λn E(ξn| ξ̂n)e

X

n =
∑

n

√
λn ξ̂ne

X

n (stationarity of ξ̂n),

= X̂χ. ♦

4.2 An example of computable non-Voronoi rate optimal
quantizers: the antiderivative of the Brownian motion

We will illustrate in this short paragraph how rate optimal product quantiz-
ers of the Brownian motion can produce (non Voronoi) rate optimal quan-
tizers of its antiderivative (nevertheless with an explicit distribution).

First note that one can integrate a Karhunen-Loève expansion of the
Brownian motion. In fact, h 7→ ∫ .

0 h(s)ds being a Lipschitz continuous func-
tion from L2

T
into (C([0, T ]), ‖ . ‖sup), one has, in L2

(C([0,T ]),‖.‖sup)(P) (and

P-a.s. in L2
T

):

∫ t

0
Wsds

L2
T=

∑

n≥1

λn ξn

√
2

T

(
1 − cos

(
t√
λn

))
with λn :=

(
T

π(n− 1/2)

)2

, n ≥ 1,(4.30)

= 2

√
2

T

∑

n≥1

λn ξn sin2
(

t

2
√
λn

)
(4.31)

where: – (ξn)n≥1 is i.i.d., normally distributed (and comes from the K-L
expansion of W ),

– the sequence
(
t 7→

√
2
T

(
1 − cos

(
t√
λn

)))
n≥1

is not orthonormal in L2
T

.

In fact, the expansion (4.30) converges P-a.s. and in L1(P), uniformly
in t∈ [0, T ], since

sup
t∈[0,T ]

∣∣∣∣∣∣
∑

n≥1

λn ξn sin2
(

t

2
√
λn

)∣∣∣∣∣∣
≤
∑

n≥1

λn|ξn|.

The series on the right hand of the inequality lies in L1(P) since
∑

n≥1 λn <
+∞ and ξn ∼ ξ1 ∈ L1(P). The same uniform L1(P)- convergence holds for
the integrated product quantizer expansion, that is

∫̃ .

0
Wsds :=

∫ .

0
Ŵχ

s ds = 2

√
2

T

∑

n≥1

λn ξ̂n sin2
(

t

2
√
λn

)
(4.32)

since, by stationarity of the quantizer x(Nn) of ξn, E|ξ̂n| ≤ E|ξn| for every
n ≥ 1 (the P-a.s. convergence is trivial since ξ̂n = 0 for large enough n).
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One has to be aware that ˜
∫ .

0 Wsds
χ

is not a Voronoi quantization since it is
defined on the Voronoi tessellation of the Brownian motion. For this very
reason it is easy to compute and furthermore it satisfies a kind of stationary

equation: one checks that σ( ˜
∫ .

0 Wsds) = σ(Ŵ ) = σ(ξn, n ≥ 1) so that,
h 7→ ∫ .

0 h(s)ds being continuous and linear on L2
T

,

E

(∫ .

0
Wsds |

∫̃ .

0
Wsds

)
= E

(∫ .

0
Wsds | Ŵχ

)
=

∫̃ .

0
Wsds.

Proposition 5. Let χN ∈ Opq(W,N), N ≥ 1, let λn be defined by (4.30)

and let ˜
∫ .

0 Wsds
N

:=
∫ .

0 Ŵs
χN

ds be defined by (4.32).

(a) The quadratic quantization error is given by

∥∥∥∥∥∥

∫ .

0
Wsds−

∫̃ .

0
Wsds

χN∥∥∥∥∥∥

2

2

= 3
∑

n≥1

λ2
n

(
1 − (−1)n−1 4

√
λn

3T

)
min

x∈RNn

‖ξ − ξ̂x‖2
2
.

(4.33)

If (χN )N≥1 is rate optimal for W then

∥∥∥∥∥
∫ .

0Wsds− ˜
∫ .

0Wsds
χN
∥∥∥∥∥

2

= O((logN)−1)

which is not rate optimal. There is a rate optimal sequence ζN ∈ Opq(W,N)
for

∫ .
0 Wsds i.e. such that

∥∥∥∥∥∥

∫ .

0
Wsds−

˜
∫ .

0
Wsds

ζN∥∥∥∥∥∥
2

= O((logN)− 3
2 ).

(b) Furthermore, the L1(P)-mean ‖ . ‖sup-quantization error satisfies

E


 sup

t∈[0,T ]

∣∣∣∣∣∣∣

∫ t

0
Wsds−

˜∫ t

0
Wsds

χN
∣∣∣∣∣∣∣


 ≤ 2

√
2

T

∑

n≥1

λn min
x∈RNn

‖ξ − ξ̂x‖2 . (4.34)

Proof: (a) Temporarily set En(t) = 1−cos
(

t√
λn

)
. Then |En|2

L2
T

= T
(

3
2 − 2(−1)n−1

√
λn

T

)

and

∣∣∣∣∣∣

∫ .

0
Wsds−

∫̃ .

0
Wsds

χN ∣∣∣∣∣∣

2

L2
T

=
2

T

∑

n,m≥1

λnλmE(ξn − ξ̂n)(ξm − ξ̂m) (En |Em)L2
T

so that

∥∥∥∥∥∥

∫ .

0
Wsds−

∫̃ .

0
Wsds

χN∥∥∥∥∥∥

2

2

=
2

T

∑

n≥1

λ2
n E(ξn − ξ̂n)2|En|2

L2
T

.

The above equality follows from the fact that the random variables ξn −
ξ̂n, n ≥ 1, are independent and centered since E(ξn − ξ̂n) = E(E(ξn|ξ̂n) −
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ξ̂n) = 0. The first rate follows from the optimal size allocation for W
in (4.24) then plugged in the right hand side of (4.33). The second follows
from the optimal size allocation directly in (4.33). We refer to [11] for details.

(b) easily follows from

sup
t∈[0,T ]

∣∣∣∣∣∣∣

∫ t

0
Wsds−

˜∫ t

0
Wsds

χN
∣∣∣∣∣∣∣

= 2

√
2

T
sup

t∈[0,T ]

∣∣∣∣∣∣
∑

n≥1

λn(ξn − ξ̂n) sin2
(

t

2
√
λn

)∣∣∣∣∣∣
≤ 2

√
2

T

∑

n≥1

λn |ξn−ξ̂n|. ♦

Remarks. • One derives similarly from (4.34) in claim (b) that the lowest

L1(P)-mean L∞(dt)-quantization error goes to zero at (least at) aO
(
(log(N))−1

)
-

rate (this is not rate optimal, see [14]).

• Some rates can be obtained for higher iterated integrals (and the Brownian
bridge too).

4.3 Explicit non-Voronoi rate optimal quantization of Brow-
nian diffusions

In [13] the exact quantization error rate for a class of Brownian diffusions
(including most 1-dimensional ones) is established (see also [2]). It is a con-
structive approach based on the Lamperti transform and stochastic calculus
techniques. This rate is O((logN)− 1

2 ) like for the Brownian motion as soon
as the diffusion coefficient is not too degenerate. We shortly describe below
how to construct an explicit (non-Voronoi) quantizer sequence that yields
the rate. Let

dXt = b(Xt)dt+ σ(Xt)dWt, X0 = x0 (4.35)

be a Brownian diffusion where σ is a nonvanishing function. Let (χN )N≥1 be
a sequence of rate optimal K-L product quantizers of the Brownian motion.
The components of χN are explicit C∞ functions. Some quantizers for X
can be designed from the sequence (χN )N≥1 as follows: let L denote the
Lamperti transform defined by

L(y) :=

∫ y

0

dξ

σ(ξ)

(assumed to be real-valued and increasing). Then, Yt := L(Xt) satisfies an
SDE

dYt = β(Yt)dt+ dWt, Y0 = L(x0)

with a linear Brownian perturbation term (and an explicit function β spec-
ified in [13]). Then, one defines, an N -quantizer of X by setting

xN
i (t) = L−1(uN

i (t)) where uN
i (t) = L(v0)+

∫ t

0
β(uN

i (t))dt+χN
i (t), i = 1, . . . , N
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(for notational convenience, we temporarily switch to the simpler notation
i for the index rather than i: here, the multi-index feature plays no rôle).
Elementary computations show that xN = (xN

i )1≤i≤N is solution of the
system of integral equations

xN
i (t) = v0+

∫ t

0
[b(xN

i (s))−1

2
σσ′(xN

i (s))]ds+

∫ t

0
σ(xN

i (s))dχN
i (s), i = 1, . . . , N.

(4.36)
Let us note that the Ito correction term −1

2σσ
′ would disappear if (4.35)

was written in the Stratonovich sense.
When b and σ are both Lipschitz continuous the sequence (xN )N≥1 is

rate optimal in Lp
L2

T

(Ω,P) for every p∈ [1, 2) (see Theorems 1 and 2 in [13]).

More precisely, the sequence of non-Voronoi N -quantizations

X̃xN

t :=
∑

1≤i≤N

xN
i (t)1Ci(χN )(W ), N ≥ 1,

satisfies
‖ |X − X̃xN |

L2
T

‖p = O((logN)−1/2), p∈ [1, 2).

When p = 2 an easy adaptation of the proof of Theorem 1 in [13] yields

a O((logN)− 1
2

+ε)-rate in Lp
L2

T

(Ω,P) for every ε > 0.

The quantization X̃xN

is not Voronoi since it is defined on the Voronoi
tessellation of W , but its distribution is simply the P

W
-weights of the cells

Ci(χ
N ) which are known by (4.25). Numerical implementation of these

quantizers needs to use a discretization scheme of the integral system (4.36).
This is done in Section 6.1 to price options in a Heston stochastic volatility
model.

This approach to functional quantization of diffusion heavily relies on
the Lamperti transform which is structurally 1-dimensional. However an
extension to multi-dimensional diffusions is possible e.g. if

σ(x) = (DS(x))−1

where S is C2-diffeomorphism on Rd (see Section 5 in [13] for details). Other
specific multi-dimensional settings can be dealt with in a constructive way
as it will be seen in Section 6.2 with the stochastic volatility Heston model:
some stochastic integrals

∫ t
0 f(Zs)dWs will be approximated by functional

quantization when Z is a 1-dimensional diffusion process independent with
the Brownian motion W .
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5 Toward numerical implementation

5.1 Optimal product quantizers: the “blind" optimization
procedure

Assume that closed forms are available for both components of the K-L
eigensystem (e

X

n , λn)n≥1 of a Gaussian process X as it is the case for the
Brownian motion (or the Brownian bridge).

Then, we are in the position to solve numerically the optimization prob-
lem (4.24) which yields for every N ∈ {1, . . . , Nmax} the best product quan-

tizer χN
rec and its “companion parameters" (distribution of X̂χN

rec , quantiza-

tion error ‖X − X̂χN
rec‖2). The reason for implementing such a blind opti-

mization procedure is that the theoretical values which produce the exact
asymptotic rate are not efficient within the range of values of of numerical
interest. Furthermore, this “blind" optimization procedure is reasonably fast
and its results can be kept off line. It is carried out in two steps.

Phase 1 (Optimization phase at fixed N): Producing the K-L product
N -quantizer χN

opt =
√
λ ⊗ xopt with minimal quadratic quantization error

among all product quantizers of size exactly N .
This phase is carried out by using the “library" storing the optimal Nn-

quantizers x(Nn) and their own companion parameters of the N (0; 1) distri-
bution.

In practice, Nn ≤ 100 is enough for values of N as high as 106 since
decompositions (dx too small) involving not enough factors will clearly be
far from optimality.

Phase 2 (Record Selection phase): Storing for everyN ∈ {1, . . . , Nmax},

– the size Nrec := Nrec(N) ∈ {1, . . . , N} which produces the lowest
quadratic quantization error,

– the optimal decomposition Nrec = N rec
1 ×· · ·×N rec

n ×· · ·×N rec
drec

, (with
n 7→ N rec

n non-increasing and N rec
drec

≥ 2, N rec
drec+1 = 1),

from which one retrieves instantly

– the K-L product quantizer χN
rec = χNrec

opt which solves the optimization
problem (4.24) at level N .

– the distribution of its related quantization X̂χN
rec (using formula (4.25)),

– the corresponding quantization error by (4.22).

Table 1 below provides Nrec, the quantization error and the record
decomposition first for several typical values of N , namely N = 1, 10,
100, 1 000, 10 000 (the full record table, the record quantizer list including
the distributions are available at the same URL). Figure 8 show the K-L
product quantizers of the Brownian motion on [0, 1] for N = 10, 48 and for
the “record value" of N = 100 that is Nrec = 96.
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N Nrec Quantiz. Error Nrec Decomposition

1 1 0.7071 1
10 10 0.3138 5 – 2
100 96 0.2264 12 – 4 – 2

1 000 966 0.1881 23 – 7 – 3 – 2
10 000 9 984 0.1626 26 – 8 – 4 – 3 – 2 – 2
100 000 97 920 0.1461 34 – 10 – 6 – 4 – 3 – 2 – 2

Table 1. Brownian motion: Some typical “record" values for numerical implementations
Figure 2 shows the graphs of both N 7→ ‖W − ŴχN

rec‖2
2

and N 7→ ‖W −
ŴχN

opt‖2
2

for N ∈ {1, . . . , 1 000}. Figure 3 depicts N 7→ ‖W − ŴχN
rec‖−2

2
in a

log-log scale which emphasizes the logN behaviour of the distortion. The
coefficients obtained by a linear regression yield

‖W−ŴχN
opt‖−2

2
≈ 4 logN+2 i.e. ‖W−ŴχN

rec‖2
2

≈ 0.25

logN + 0.5
, 1 ≤ N ≤ 10 000.

The lower and upper bounds provided by (4.28) and (4.27) respectively are
on [0, 1],

1

π2

22

22−1(2 − 1)
=

2

π2
≈ 0.2026 < 0.25 < 1.2040 ≈ 1

π2
(1 + 2π

√
3). (5.37)

confirm the above bound (5.37).
Firstly, we shortly describe the operating optimization procedure to ob-

tain optimal product quantizers of size at most N for every N ≤ Nmax.
Then, we propose a Romberg like extrapolation method which speeds up
the convergence of the functional quantization method so that it produces
very accurate results for moderate values of N , say less than 10 000. We
include it in this section since it still relies on some conjectures concerning
F -K product quantizers.

5.2 The Romberg log-extrapolation

For convenience we will only consider the case of the Brownian motion
since we have a sharp rate for its quadratic quantization error rate, but
the method works with any other process for which such a result holds. Let
Ψ : (L2

T
, | . |

L2
T

) → R be a three times differentiable functional such that D2Ψ

is bounded and Lipschitz. Let (χN )N≥1 denote a sequence of rate optimal

K-L product quantizers of the Brownian motion W and let ŴN := ŴχN

denote the related Voronoi quantizations. First note that by Proposition 4
(stationarity)

E(DΨ(ŴN ) | W − ŴN )L2
T

= E(DΨ(ŴN ) | E(W | ŴN ) − ŴN )L2
T

= 0.
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Then, it follows from the Taylor formula that there is some bounded random
vector ζ such that

E(Ψ(W )) = E(Ψ(ŴN ))+
1

2
E(D2Ψ(ŴN ).(W−ŴN )⊗2)+E(ζ.(W−ŴN )⊗3).

(5.38)
The sequence (χN )N being rate optimal E(D2Ψ(ŴN ).(W − ŴN )⊗2) =
O
(
(logN)−1

)
. However, recent finite dimensional results (see [1], Theo-

rem 6) as well as several numerical experiments suggest a true expansion:
this means conjecturing the existence of a real constant κ

Ψ
>0 such that

E(D2Ψ(ŴN ).(W − ŴN )⊗2) = 2κ
Ψ

(logN)−1 + o((logN)−1) as N → ∞.
(5.39)

If one also assumes that E|W − ŴN |3
L2

T

= o((logN)−1) (which also holds

as a conjecture), then a speeding up Romberg log-extrapolation can be im-
plemented as follows: one computes E(Ψ(ŴM )) and E(Ψ(ŴN )) for some
M = M(N) < N , M(N) ≍ N r, r∈ (0, 1). Then solving the linear system

E(Ψ(W )) = E(Ψ(ŴM))+
κ

Ψ

logM
+o((logM)−1), E(Ψ(W )) = E(Ψ(ŴN))+

κ
Ψ

logN
+o((logN)−1)

yields the Romberg log-extrapolation formula

E(Ψ(W )) =
logN×E(Ψ(ŴN )) − logM×E(Ψ(ŴM ))

logN − logM
+ o

(
(logN)−1

)
.

(5.40)
So we passed from a O((logN)−1)-rate to an o

(
(logN)−1

)
-rate. The conjec-

ture (supported by numerical simulations not reproduced here) concerning

E|W − ŴN |3
L2

T

is that a o
(
(logN)−( 3

2
−ε)
)
, ε > 0, rate holds. In fact very

little is known on the Lp′
-quantization error induced by Lp-optimal quantiz-

ers when p′ > p even in 1-dimension. If the same rate holds in (5.39), then

a o
(
(logN)−( 3

2
−ε)
)
-rate holds in (5.40).

An alternative to this approach can be to replace logN by ‖W−ŴχN
opt‖−2

2

in (5.40) (and idem for M), as suggested by B. Wilbertz [23]. Some tests
in [23] show that it often improves the accuracy of the extrapolation and
has a stabilizing effect on the choice of the couples (N,M).

6 Numerical experiments using a Heston stochas-
tic volatility model

In this section we use the functional quantization based quadrature formulæ
to price vanilla Calls and Asian Calls in a Heston model. This is a stochastic
volatility model introduced by Heston in 1993 (see [7]) in which the squared
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volatility process is driven by a CIR process. Namely, the dynamics of the
“risky" asset price process is given by
{
dSt = St(r dt+

√
vt) dW

1
t , S0 = s0 > 0,

∗[.4em]dvt = k(a− vt)dt+ ϑ
√
vt dW

2
t , v0 > 0, with <W 1,W 2>t= ρ t, ρ∈ [−1, 1],

where r denotes the (constant) interest rate and (vt) denotes the square
stochastic volatility process and a, k, ϑ are non-negative real parameters.
The equation for the (vt) has a unique (strong) pathwise continuous solution
living in R+ (see e.g. [10] and [9], p.235). Note that in this section, we
emphasize the numerical aspects and that in many situations we have no
proof yet to support rigorously the results that we observe. This is due to
the fact that the volatility process has a non Lipschitz diffusion coefficient.
In particular the assumptions required in [13] to get some error rates for
functional quantization of diffusion are not satisfied (except in some special
cases as pointed out below).

6.1 A benchmark: pricing vanilla options in a Heston model

The pricing of vanilla calls and puts is simply a benchmark to evaluate
the efficiency of the method since a quasi-closed form for their premium is
available (based on an FFT). It involves some integrals of the characteristic
function the couple (vt,

∫ t
0 vsds) for which a true closed form is available

(see e.g. [10] or [7]). We use it to compute the reference premia in our
experiments (its approximate accuracy is 10−2, see [7]). Our aim is to price
by functional quantization (at time 0) European Calls on the underlying
asset (St) with strike price K and maturity T > 0, i.e.

CallHest(S0,K, r) = e−rTE((S
T

−K)+).

As a first step, we follow an approach which works for more general dynamics
of the stochastic volatility. First we project W 1 onto W 2 so that

W 1
t = ρW 2

t +
√

1 − ρ2 W̃ 1
t ,

with W̃ 1 a standard Brownian motion independent of W 2. Then, Itô calcu-
lus shows that

St = s0 exp

(
−ρ2

2
v̄t t+ ρ

∫ t

0

√
vsdW

2
s

)
exp

(
(r − 1 − ρ2

2
v̄t)t+

√
1 − ρ2

∫ t

0

√
vsdW̃

1
s

)

with v̄t = 1
t

∫ t
0vsds. Consequently, using the independence of W̃ 1 and W 2,

one derives that

CallHest(S0,K, r, v0, T ) = E
(
e−rTE

(
(S

T
−K)+ | FW 2

T

))
= E

(
CallBS

(
S

(v)
0 ,K, r,

(
(1 − ρ2)

∗[.4em]with S
(v)
0 = s0 exp

(
−ρ2

2
v̄

T
T + ρ

∫ T

0

√
vsdW

2
s

)
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where CallBS(s0,K, r, σ, T ) denotes the regular (r, σ, T )-Black-Scholes model
premium function (for vanilla calls). Then the equation satisfied by (vt)
yields(1) ∫ t

0

√
vsdW

2
s =

vt − v0 − kt(a− v̄t)

ϑ
(6.41)

so that finally

CallHest(S0,K, r, v0, T ) = E (Φc(vT
− v0, v̄T

)) (6.42)

with Φc(v, v̄) = CallBS

(
s0 exp

(
ρT

[(
k

ϑ
− ρ

2

)
v̄ +

v

Tϑ
− ka

ϑ

])
,K, r,

(
(1 − ρ2)v̄

) 1
2 , T

)
.

An analogous formula holds for PutHest(S0,K, r, v0, T ) by replacing mutatis
mutandis CallBS by PutBS in (6.42). Then function Φc is C∞ on (0,+∞)2.
Note that when ρ = 0, (6.42) only depends on the L2-continuous linear
functional v̄

T
.

Following the quantization procedure described in section 4.3, we set
b(v) = −k(v − a) and σ(v) = ϑ

√
v. Unfortunately, since the function σ is

non-Lipschitz at 0, we cannot rigorously claim from [13] that solutions of
the the integral system (4.36) produce a rate optimal sequence (yN ) for (vt).

However, we will see (when ϑ2

4k < a) that it produces satisfactory numerical
results.

A Setting: a = ϑ2

4k . This special setting will make possible to investigate
the efficiency of functional quantization for smooth functionals since, in this
setting, the solutions of the integral equation (4.36) can be made explicit.
Hence, there is no error due to the time discretization scheme of (4.36).

So, in some way it is more illustrative of the numerical performances
of functional quantization. This follows from a fact pointed out by Rogers
in [21]: one may assume without loss of generality that the process (vt) is
the square of a scalar Ornstein-Uhlenbeck process

dXt = −k

2
Xtdt+

ϑ

2
dW 2

t , X0 =
√
v0. (6.43)

Having in mind that the N -quantizers χN =
√
λ ⊗ x ∈ Opq(W,N) given

by (4.21) read

χN
i (t) =

√
2

T

∑

n≥1

x
(Nn)
in

T

π(n− 1/2)
sin

(
π(n− 1/2)

t

T

)
, i = (i1, . . . , in, . . .)∈

∏

n≥1

{1, . . . , Nn},

1The key point in what follows is to express the stochastic integral
∫ t

0

√
vsdW 2

s as a
functional of vt, v0 and an integral functional of (vs). If the variance process follows a
general diffusion process dvt = b(vt)dt + ϑ(vt)dW 2

t then one may apply under appropriate
regularity assumption, Itô’s formula to the function ϕ(v) :=

√
v/ϑ(v) to get such an

expression.



?? pages 28

the integral system (4.36) associated to X, namely

xi(t) =
√
v0−k

2

∫ t

0
xi(s) ds+

ϑ

2
χN

i (t), i = (i1, . . . , in, . . .)∈
∏

n≥1

{1, . . . , Nn},

(6.44)
has a closed form given by

xN
i (t) = e−kt/2√

v0 +
ϑ

2

∑

n≥1

x
(n)
in
c̃n ϕn(t) with c̃n :=

T 2

(π(n− 1/2))2 + (kT/2)2

and ϕn(t) :=

√
2

T

(
π

T
(n− 1/2) sin

(
π(n− 1/2)

t

T

)
+
k

2

(
cos

(
π(n− 1/2)

t

T

)
− e−kt/2

))
.

Then, following [13], we have for every p∈ [1, 2),

‖X̃N −X‖p ≤ Cp,k,ϑ,T ‖Ŵ 2
χN

−W 2‖2 = O
(
(logN)− 1

2

)
(6.45)

where X̃N is the non-Voronoi quantization defined by

X̃N
t =

N∑

i=1

xN
i (t)1Ci(χN )(W

2) = e−kt/2√
v0 +

ϑ

2

∑

n≥1

ξ̂x(n)

n c̃n ϕn(t), t∈ [0, T ].

One designs a (non-Voronoi) N -quantization for the process (vt) by setting

ṽN
t = (X̃N

t )2 =
∑

i

(xN
i (t))21Ci(χN )(W

2). (6.46)

Then, one derives from (6.45) that, for every p∈ [1, 2],

‖ |ṽN − v|
L2

T

‖p = O
(
(logN)−( 1

2
−ε)
)

for every ε > 0. (6.47)

Finally, a first approximation of CallHest(S0,K, r, v0, T ) is based on (6.42)

ĈrCall
Hest

(s0,K, T, v0, r) := E(Φc(ṽT
− v0, ṽT

)) (6.48)

=
∑

i

Φc

(
(xN

i )2(T ) − v0, (xN
i )2(T )

)
P(Ŵ 2 = χN

i )

where the probability distribution (P(Ŵ 2 = χN
i ))i is given by (4.25). The

notation “Cr" is for “Crude".
The Call-Put parity equation provides a second proxy of the Call by

setting

P̂rCall
Hest

(s0,K, T, v0, r) := s0 − e−rTK + E(Φp(ṽ
T

− v0, ṽT
)). (6.49)

When ρ 6= 0, no error bound is available for these proxies since we do not
know the rate of pointwise quantization of v

T
by the quadratic functional

quantizer ṽ
T

.
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When ρ = 0, Φ̄c(vT
− v0, v̄T

) = Φ̄c(0, v̄T
) does not depend on v

T
and is

clearly Lipschitz in v̄
T

, so the theoretical rate of convergence isO
(
(logN)−( 1

2
−ε)
)

(without any acceleration techniques).
As concerns the Romberg log-extrapolation, one notices that both func-

tions σ 7→ CallBS(s0,K, r, σ, T ) and its Put counterpart are infinitely dif-
ferentiable on (0,+∞) and u 7→ ū

T
:= 1

T

∫ T
0 u(s)ds is an L2

T
-continuous

linear functional. On the other hand, the solution of the integral equation
x(t) = x(0) − k

2

∫ t
0 x(s)ds+ ϑ

2 ξ(t) is also an L2
T

-continuous linear functional
functional of ξ. Consequently, one may write

CallHest(s0,K, T, r) = E(Ψc(W
2)) = s0 − e−rTK + E(Ψp(W 2))

where Ψp and Ψc are infinitely differentiable and Ψp is bounded with all
its differentials which suggests a favourable framework to implement the
Romberg log-extrapolation.

Following the results of former experiments carried out with the Asian
option in a Black & Scholes model (see [20]) we compute time integrals by
the midpoint method with n = 20, i.e.

(xN
i )2 =

1

T

∫ T

0
(xN

i (s))2ds ≈ 1

n

n∑

k=1

(xN
i (tk))2 with tk =

(2k − 1)T

2n
.

The set of parameters of the Heston model is specified as follows

s0 = 50, r = 0.05, T = 1, ρ = 0.5, v0 = a = 0.01, ϑ = 0.1, k = 0.25.

Note that E vt = a, t∈ [0, T ] (and a = ϑ2/(4k)).

We carried out our numerical experiments on a whole vector of strike
prices K ∈ {44, 45, . . . , 55, 56} (with step 1) to evaluate the performances
of the method for in-, at- and out-of-the-money options. The Heston Call
premium vector were computed using:

– a “crude"FQ integration using ĈrCall
Hest

(s0,K) given by formula (6.48)
with optimal product N -quantizer of sizes N = Nrec = 96, 966, 9 984, 97 920.

– a Romberg log-extrapolation ̂RbgCrCall
Hest

(s0,K) based on (5.40) for
the three couples (N,M) = (96, 966), (966, 9984) and (9 984, 97 920). (Since
ρ 6= 0, we have no theoretical evidence that it speeds up the convergence so
this is just a numerical experiment).

– a K-linear interpolation method (which is purely numerical at this

stage): the principle is to interpolate ̂RbgCrCall
Hest

(s0,K) and its coun-

terpart ̂RbgPrCall
Hest

(s0,K) (obtained using the model-free Call-Put parity
equation) by setting for every K∈ {Kmin, . . . ,Kmax}

ÎRCall
Hest

(s0,K) =
(K −Kmin) ̂RbgCrCall

Hest
(s0,K) + (Kmax −K) ̂RbgPrCall

Hest
(s0,K)

Kmax −Kmin
.
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Doing so we put proportionally more weight on the “less random" variable
which tends to make the global error smaller. It means we put more weight
on the Put when K is small, on the Call, when K is large. This is a purely
heuristic approach (2)

– Finally the variance of the Heston Calls were computed (by a Monte
Carlo simulation) in order to compare the accuracy of the FQ approaches
with respect to MC confidence intervals.

The implementation was achieved on a G5 (2.5 Ghz) Apple computer using
MATLAB. The results are reported in Tables 2 below (relative errors) and
in Figure 8 (absolute errors).

Our comments on these first set of results are the following: the rate of
the “Crude FQ" approach is O(1/ log(N)) in accordance with the theoretical
rate (e.g. passing from N = 96 ≈ 100 to N = 9 998 ≈ 1002 divides the error
by two). But its absolute accuracy is not sufficient for financial applications
(see Figure 8(a)).

On the other hand, the results obtained by the Romberg log-extrapolation
method and the (induced) K-interpolation method are outstanding: for both
tested couples the error lies within 0.5 cent (see Figure 8(b)-(c)). For the
couple (M,N) = (966, 9 984) the error induced is lower than 0.2 cent by
Romberg log-extrapolation and lower than 0.1 cent by K-interpolation for
all strike prices (note that the differences with the reference price in Ta-
ble 2 below are only due to rounding effect to the nearest cent). This can
be considered as a good indication on the conjecture (5.39). On this very
example the K-interpolation only yields a slight improvement. Its main
asset is in fact its robustness with respect to time discretization (as empha-
sized in further simulations). From a theoretical viewpoint, these results
plead in favour of the existence of higher order term at rate O((logN)−3/2)
in the expansion (5.40). Furthermore, a comparison between Figures 8(b)
and 8(c) shows the expected effect of the K-linear interpolation of Romberg
log-extrapolations on the values of the absolute errors of the Heston Call
for small values of the strike K (deep in-the-money options), especially in a
rough spatial discretization setting ((M,N) = (96, 966)).

As concerns the comparison with a “crude" Monte Carlo method, we
reported in Table 2 below (third row) 2×Std

N
, where Std

N
denotes the

(relative) standard deviation of a MC estimator (for N = 10 000). This
quantity defines its 95.5%-confidence interval. Note that by “crude” MC,
we simply mean a standard MC estimator without any variance reduction
techniques.

One verifies that 2 ×Std10 000 is slightly higher (say 10 to 30%) than the

2In a standard Monte Carlo method if two r.v. X 6= X ′ have the same expectation
m there is an optimal way to to compute m by considering independent copies of λX +
(1 − λ)X ′, with λ = E((X ′ − X)X ′)/E(X − X ′)2. We have no reason to do so in a FQ
approach so we adopted the linear interpolation.
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relative error induced by “crude"FQ-integration with N = 9 984 (within
brackets, fourth row).

In terms of velocity, computing the whole premium vector (13 strike
prices) by functional quantization for (M,N) = (966, 9 984) including the
Romberg log-extrapolation and the K-interpolation takes (with n = 20) less
than 0.5 second (this outperforms any Monte Carlo simulation but not the
“reference" Inverse Fourier Transform method (second row) but this is not
our aim at this stage since we use this setting as a benchmark).

K 44 45 46 47 48 49

Heston Call(Ref) 8.18 7.26 6.36 5.49 4.68 3.93 3.26

“Crude" Monte Carlo (2 × Std10 000) (0.64%) (0.72%) (0.82%) (0.94%) (1.08%) (1.26%) (1

“crude" F Q (ĈrCall
Hest

(s0, K)) 8.14 7.21 6.31 5.45 4.64 3.89 3
N = 9 984 (0.50%) (0.57%) (0.67%) (0.79%) (0.94%) (1.11%) (1

Romberg on “crude" F Q ( ̂RbgCrCall
Hest

(s0, K)) 8.18 7.25 6.36 5.49 4.68 3.93 3.26

(M,N)=(966-9984) (0.07%) (0.07%) (0.11%) (0.13%) (0.16%) (0.20%) (0

K-interpol. of Romberg F Q (ÎRCall
Hest

(s0, K)) 8.18 7.26 6.36 5.49 4.68 3.93 3.26

(M,N)=(966-9984) (0.00%) (0.00%) (0.02%) (0.05%) (0.08%) (0.11%) (0

K 51 52 53 54 55 56

Heston Call(Ref) 2.68 2.18 1.765 1.42 1.14 0.91

“Crude" Monte Carlo (2 × Std10 000) (1.66%) (1.90%) (2.14%) (2.42%) (2.70%) (3.02%)

“crude" F Q (ĈrCall
Hest

(s0, K)) 2.64 2.14 1.73 1.39 1.11 0.89
N = 9 984 (1.53%) (1.77%) (2.01%) (2.21%) (2.38%) (2.61%)

Romberg on “crude" F Q ( ̂RbgCrCall
Hest

(s0, K)) 2.68 2.18 1.765 1.42 1.14 0.91

(M,N)=(966-9984) (0.28%) (0.32%) (0.33%) (0.29%) (0.18%) (0.10%)

K-interpol. of Romberg F Q (ÎRCall
Hest

(s0, K)) 2.68 2.18 1.765 1.42 1.14 0.91

(M,N)=(966-9984) (0.19%) (0.23%) (0.23%) (0.22%) (0.14%) (0.10%)

Table 2. A setting: Relative Standard deviation of the 10 000 Monte Carlo estimator, Heston Call by
“Crude" Functional Quantization (N = 9 984), Romberg log-extrapolation ((M,N) = (966, 9 984))

and K-linear interpolation.

Concerning the behaviour of the method with other sets of parameters,
numerical experiments not reproduced here (see [20]) show that the smaller
the correlation ρ is (in absolute value), the more efficient functional quan-
tization is (the impact of the non L2

T
-continuous pointwise functional v

T

decreases). Other experiments not reproduced here either show that, as
expected, the error increases (for both FQ and MC) as the volatility ϑ of
the volatility process grows, but remains quite satisfactory until ϑ = 30 %
(when a = 0.01).

B setting: ϑ2/(4k) < a. Any solution (vt) of (6.41) is positive and, once
again an adaptation of the proof of Theorem 1 in [13] would show that

‖ |v− ṽN |
L2

T

‖2 = O((logN)− 1
2

+ε). This time any numerical implementation

of this functional quantization method requires to discretize the integral
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system (4.36) for the process (vt)t defined by the second equation in (6.41).
This means setting b(v) = k(a − v) and σ(v) = ϑ

√
v. We implemented a

(slightly non-homogeneous) Euler scheme defined by: yn,N
i (0) = v0,

yn,N
i (tk+1) = yn,N

i (tk)+k

(
a− ϑ2

4k
− yn,N

i (tk)

)
(∆t)k+ϑ

√
yn,N

i (tk)(χN
i (tk+1)−χN

i (tk)),

(6.50)
k = 0, . . . , n, with t0 = 0, tk = (2k − 1)T/(2n), k = 1, . . . , n, tn+1 = T and
(∆t)k = tk − tk−1. Then, one sets

yn,N
i (t) = yn,N

i (tk), t∈ ((k − 1)T/n, kT/n), k = 1, . . . , n.

This scheme is designed to optimize the computation of the integral below
by a midpoint method. Then, one designs a (non-Voronoi) N -quantization
for the process (vt) by setting

ṽn,N
t =

∑

i

yn,N
i (t)1Ci(χN )(W

2). (6.51)

The integral 1
T

∫ T
0 ṽtdt is then approximated by

1

T

∫ T

0
ṽn,N

t dt =
1

n

n∑

k=1

ṽn,N (tk).

Since the functions yN
i are positive and the functions b, σ and χN are

smooth on (0,+∞), it is classical background in numerical analysis of ODE
that

yN
i − yn,N

i =
ζN

i

n
+Oi(1/n

2)

where ζN
i satisfies an ODE involving b, σ and their higher order derivatives.

This expansion holds for the uniform convergence on compact sets.
This suggests to implement a Romberg time extrapolation to speed up

the convergence of Euler scheme. More precisely, some standard computa-
tions based on a Taylor expansion of Φc show that

2 Φc(y
2n,N
i −v0, y

2n,N
i )−Φc(y

n,N
i −v0, y

n,N
i ) = Φc(y

N
i −v0, y

N
i )+

Cn

n2
(6.52)

with supn E(Cn) < +∞.
The first tested method is to estimate the premium of the Heston Call

by a Romberg log-extrapolation (5.40) of the expectation of the left hand

side of the above equation (6.52), still denoted ̂RbgCrCall
Hest

(s0,K). We
used the same size couples (M,N) and introduced the same K-interpolated
estimator as in A setting (but the “crude" FQ approach was no longer tested
given the results of A setting). For numerical tests we set

s0 = 50, k = 2, r = 0.05, T = 1, ρ = 0.5, v0 = a = 0.01, ϑ = 0.1.
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The time discretization of the integral system was processed with 2n =
64. This is finer than in A setting but this time we do not simply evaluate
some functions at the discretization times, we discretize an integral system.

K 44 45 46 47 48 49

CallHest(FFT Ref. premium) 8.18 7.26 6.38 5.53 4.73 3.99

“Crude" Monte Carlo (2 × Std10 000) (0.35%) (0.40%) (0.51%) (0.57%) (0.63%) (0.68%) (0

Romberg on “crude" F Q ( ̂RbgCrCall
Hest

(s0, K)) 8.18 7.25 6.38 5.53 4.73 3.99

(M,N)=(966-9984) (0.00%) (0.00%) (0.00%) (0.00%) (0.00%) (0.00%) (0

K-interpol. of Romberg F Q (ÎRCall
Hest

(s0, K)) 8.18 7.26 6.38 5.53 4.73 3.99

(966-9984) (0.00%) (0.00%) (0.00%) (0.00%) (0.00%) (0.00%) (0

K 51 52 53 54 55 56

CallHest(FFT Ref. premium) 2.74 2.23 1.795 1.43 1.13 0.89

“Crude" Monte Carlo (2 × Std10 000) (0.75%) (0.75%) (0.77%) (0.77%) (0.77%) (0.77%)

Romberg on “crude" F Q ( ̂RbgCall
Hest

(s0, K)) 2.74 2.23 1.795 1.43 1.13 0.89

(966-9984) (0.00%) (0.00%) (0.00%) (0.01%) (0.04%) (0.11%)

K-interpol. of Romberg F Q (ÎRCall
Hest

(s0, K)) 2.74 2.23 1.795 1.43 1.13 0.89

(966-9984) (0.01%) (0.04%) (0.11%) (0.17%) (0.27%) (0.41%)

Table 3. B setting: Relative Standard deviation of the “crude" 10 000 Monte Carlo estimator,
Heston Call by Romberg log-extrapolation and K-linear interpolation with (M,N) = (966, 9 984).

Additional information of interest are the following:

CPU Time < 0.8 s, mean error (over K) = 5.10−4.

The results reported in Table 3 (relative errors) and Figure 5 (absolute
errors) confirm those obtained in the special A setting. Again the K-linear
interpolation gives better results for lower values of K (deep in-the-money
options) as expected (see Figure 5(b)).

6.2 Pricing “Heston" Asian Call by functional quantization

The Asian Call premium is defined by

AsCallHest = e−rTE

((
1

T

∫ T

0
Ssds−K

)

+

)
.

Note that here the functional is not smoother than Lipschitz and that no
closed form is available for this option. We only consider the more general
case ϑ2/(4k) < a. We adopt the same notations as for the vanilla Call.

First, we approximate the temporal mean by a midpoint quadrature
formula i.e.

1

T

∫ T

0
Ssds ≈ 1

n

n∑

k=1

Stk
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where tk = (2k − 1)T/(2n), k = 1, . . . , n. Following (6.41), we recall that
for every t∈ [0, T ],

St = s0 exp

(
(r − 1

2
v̄t)t+ ρ

∫ t

0

√
vsdW

2
s

)
exp

(√
1 − ρ2

∫ t

0

√
vsdW̃

1
s

)

= s0 exp

(
t

(
(r − ρak

ϑ
) + v̄t(

ρk

ϑ
− 1

2
)

)
+
ρ

ϑ
(vt − v0)

)
exp

(√
1 − ρ2

∫ t

0

√
vsdW̃

1
s

)
.

We start from the chaining rule for conditional expectations to compute this
premium i.e.

AsCallHest(s0,K) = e−rTE

(
E

((
1

T

∫ T

0
Ssds−K

)

+

|σ((vt)0≤t≤T )

))
.

(6.53)
Then one sets

Ŝn,N
t =

∑

i,j

sn,N
i,j (t)1χN

i
(W̃ 1)1χN

j
(W 2) (6.54)

where the multi-indices i and j run over
∏

k≥1{1, . . . , Nk} and

sn,N
i,j (t) = s0 exp

(
t

(
(r − ρak

ϑ
) + ȳn,N

j (t)(
ρk

ϑ
− 1

2
)

)
+
ρ

ϑ
(yn,N

j (t) − v0)

)
exp

(√
1 − ρ2

∫ t

0

√
yn,N

j dχN
i

)

where yn,N
j are obtained as in (6.50). The rest of the procedure is quite simi-

lar to that implemented for the Heston vanilla Call: “crude" functional quan-
tization approach directly based on (6.53) and (6.54) (and a time Romberg
extrapolation). Indeed we set for a given time discretization size n

̂CrAsCall
Hest

(s0,K) = 2E(Φas(s0,K, 2n, χ
N )) − E(Φas(s0,K, n, χ

N )),

where Φas(s0,K, n, χ
N ) = e−rTE



(

1

T

∫ T

0
Ŝn,N

t dt−K

)

+

| FŴ 2

T




= e−rT
∑

i,j

(
1

T

∫ T

0
sn,N

i,j (t)dt−K

)

+

P(W̃ 1 ∈ Ci(χ
N ))1χN

j
(W 2)

so that E(Φas(s0,K, n, χ
N )) = e−rT

∑

i,j

(
1

T

∫ T

0
sn,N

i,j (t)dt−K

)

+

P(W̃ 1 ∈ Ci(χ
N ))P(W 2 ∈ Cj(χN )).

Like for Heston vanilla Calls, its poor (but expected) rate of convergence

leads to introduce a space Romberg log-extrapolation ̂RCrAsCall
Hest

(s0,K)

and, finally, aK-linear interpolation ̂IRAsCall
Hest

(s0,K) between ̂RCrAsCall
Hest

(s0,K)

and its counterpart ̂RPrAsCall
Hest

(s0,K) resulting from the Asian Call-Put
parity equation

AsCallHest(s0,K) − AsPut(s0,K) = s0
1 − e−rT

rT
−Ke−rT .
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The reference price was computed using a Monte Carlo simulation of
size 108 (including a time Romberg extrapolation with 2n = 32 and some
variance reduction techniques).

In this framework the quantization procedure has a greater complexity
since we have to sum over a bivariate functional product quantizer: namely
the complexity of the quantizing procedure is approximately N2 (since M ≪
N), but this is partially balanced by the lower volatility of the Asian pseudo-
asset 1

t

∫ t
0 Ssds compared to the original traded asset (St). Nevertheless, the

comparison with a crude MC simulation (through the computation of the
standard deviation parameter) is made in this framework with respect to
a 106-MC estimator (using the same time Romberg extrapolation but no
variance reduction).

We evaluated the method with both couples (M,N) = (96, 966) and
(M,N) = (966, 9 984). The time discretization size is 2n = 32. The results
are reported in Table 4 below (relative errors for the first couple only) and
are depicted in Figure 6 (absolute errors).

K 44 45 46 47 48 49

Heston Asian Call(108-MC Reference) 6.92 5.97 5.03 4.11 3.245 2.46

“Crude" Monte Carlo (2 × Std106 ) (0.08%) (0.10%) (0.11%) (0.14%) (0.16%) (0.20%)

Romberg on “crude" F Q ( ̂RCrAsCall
Hest

(s0, K)) 6.92 5.97 5.03 4.12 3.25 2.47
(M,N)=(96-966) (0.01%) (0.04%) (0.05%) (0.09%) (0.17%) (0.32%)

K-interpol. of Romberg F Q ( ̂IRAsCall
Hest

(s0, K)) 6.92 5.97 5.03 4.11 3.24 2.46

(M,N)=(96-966) (0.01%) (0.02%) (0.02%) (0.04%) (0.05%) (0.04%)

K 51 52 53 54 55 56

Heston Asian Call(MC Ref) 1.25 0.84 0.54 0.34 0.21 0.125

“Crude" Monte Carlo (2 × Std106 ) (0.31%) (0.39%) (0.50%) (0.63%) (0.81%) (1.04%)

Romberg on “crude" F Q ( ̂RCrAsCall
Hest

(s0, K)) 1.26 0.85 0.56 0.36 0.23 0.15
(M,N)=(96-966) (1.16%) (2.06%) (3.73%) (6.58%) (11.53%) (19.96%)

K-interpol. of Romberg F Q ( ̂IRAsCall
Hest

(s0, K)) 1.25 0.84 0.545 0.34 0.21 0.125

(M,N)=(96-966) (0.17%) (0.37%) (0.78%) (1.37%) (2.15%) (2.84%)

Table 4. B setting: Relative Standard deviation of the 106-Monte Carlo estimator, Heston Asian Call by
Romberg log-extrapolation and the induced K-linear interpolation with (M,N) = (96, 966).

Additional information of interest are the following:

(M,N) = (96, 966), CPU Time < 4.4 s, mean quadratic error (over K) = 7.51 10−4.

The main comments are the following: when (M,N) = (96, 966) the
Romberg log-extrapolated premia are not satisfactory (although the errors
remain within 2 cents and decrease when the options goes out-of-the money
so that the relative error remains bounded). On the other hand, the K-
interpolation method produces premia with an error lying within 0.5 cent
with respect to the Monte Carlo reference price. This is quite satisfactory
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although this may induce non vanishing relative errors for deep out-of-the-
money options (but in practice Asian options are dealt closer to the money
than plain vanilla options). The functional quantization approach is fifteen
times faster than a 106-MC simulation having exactly the same characteris-
tics (in particular a time Romberg extrapolation with 2n = 32): CPU time
is 4.4 seconds with FQ with 13 strike prices versus 66 seconds for MC (on
our device).

When (M,N) = (966, 9 984), the error induced by the Romberg log-
extrapolation lies now within 0.5 cent. As concerns the K-interpolated pre-
mia one observes a little improvement (maximal error within 0.4 cent on
Figure 6(b)) but the computation time is of no interest for application (close
to 430 seconds ≈ 7 mn) but the mean accuracy remains similar (6.35 10−4).
We can see again the efficiency of the K-linear interpolation in the low
discretization setting (96, 966). It gives the same kind of precision as for
(966, 9 984) (compare Figure 6(a)-(b)).

As a conclusion to this section, we would like to insist on the follow-
ing fact: the quantizing sizes have been selected a priori, namely Nrec for
N = 100, 1 000, 10 000, 100 000. For every problem some parameter de-
pendent couples (M,N) produce significantly more accurate results. We
decided not to report these results which are not significant in view of op-
erating applications. However, the next step is to carry on a systematic
search for some possibly globally more performing couples (M,N). This
requires to have more insight on the interaction between M and N in the
log-Romberg extrapolation. Finally, we would like to emphasize that we
decided not to implement the FQ counterpart of any usual “control variate
random variable". When implemented they do improve the results (see [20]
for the case of the Asian option in Black-Scholes model). Note that what
have been proposed here straightforwardly applies to the C.I.R. interest rate
model.

7 FQ as a control variate variable in a FQ-MC

method for non smooth functionals.

Numerical integration on the L2
T

-space by functional quantization turns out
to performs surprisingly well as emphasized on the two formerly investigated
option pricing problems. It provides very accurate deterministic proxies for
medium values of N , say N ≈ 10 000. However, in both cases the underlying
functionals had some regularity on L2

T
. For less regular functionals (like

indicator functions, etc) it can be interesting is to use numerical FQ for
small values of N – say N ≈ 100 – as a control variate random variable in
a Monte Carlo simulation.

We will briefly outline this approach now. Let us consider the case of
a functional F (W ) of the Brownian motion W (but what follows formally
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applies too any Gaussian process with an explicit K-L expansion). In order
to compute E(F (W )), one writes

E(F (W )) = E(F (ŴN )) + E
(
F (W ) − F (ŴN )

)

= E(F (ŴN ))︸ ︷︷ ︸
(a)

+
1

M

M∑

m=1

F (W (m)) − F (Ŵ (m)
N

)

︸ ︷︷ ︸
(b)

+RN,M(7.55)

where (W (m))m=1,...,M are M independent copies of the standard Brown-
ian motion and RN,M is a remainder term defined by (7.55). Term (a)
is computed by quantization and Term (b) is computed by a Monte Carlo
simulation of the K-L expansion of the Brownian motion. Then,

E|RN,M |2L2
T

≤ E|F (W ) − F (ŴN )|2
M

and
√
M RN,M

L−→ N (0; ‖F (W )−F (ŴN )‖2)

as M → +∞ so that if F is simply a Lipschitz functional (e.g. like the
payoff of the Asian Call in a Black-Scholes model) and if (ŴN )N≥1 is a rate
optimal sequence of product quantization, then

‖F (W ) − F (ŴN )‖2 ≤ [F ]LipCW

(logN)
1
2

and ‖ |RN,M |
L2

T

‖2 ≤ [F ]LipCW

(M logN)
1
2

.

The simulation of ŴN from W =
∑

n≥1

√
λn ξne

W
n amounts to solving for

every n = 1, . . . ,m
N

, the nearest neighbour problem for the simulated Gaus-

sian variable ξn into the Nn-quantizer set {x(N1)
1 , . . . , x

(Nn)
Nn

}.

8 Provisional remarks

First let us mention that several speeding up procedures (especially the
Romberg log-extrapolation, etc) remains partially heuristic and subsequently
would need some theoretical support: this means that deeper investigations
on these specific theoretical aspects of functional quantization should be
carried out.

On the other hand, further numerical developments to still improve the
efficiency of quadrature formulæ based on functional quantization could be:

– to search for some (reasonably) “universal" good couples (M,N) that
would improve the performances of our selected couples (some numerical
work is in progress in that direction, see [23]). This needs to have more in-
sight on the interaction between M and N in the Romberg log-extrapolation.

– to investigate the quantization using higher dimensional marginals (see
[23]).

– to replace the Romberg log-extrapolation by a “three step" extrapola-
tion method to cancel two terms instead of one in the expansion of the error
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E(Ψ(W ) −ψ(Ŵ )). This requires some insight on the rate of convergence of
quantities like E(Θ(Ŵ ).(W − Ŵ )⊗3).

– the implementation of an L2
T

-valued extension of the CLV Q pro-
cedure used in finite dimension to get some (locally) optimal quantizers
(see [19]). The CLV Q procedure is the stochastic gradient descent derived in
d-dimension from the integral representation of the distortion gradient func-
tion (see (3.4) and [16] and [19]). However, the bounds obtained in (5.37)
show that the gain to be expected from such a stochastic optimization re-
mains limited.

Finally, let us mention that the K-L expansion of the Brownian motion
W is in fact a.s. converging in (C([0, T ]), ‖ . ‖sup). This follows from the
Kolmogorov criterion and the Lévy-Ito-Nisio Theorem (see e.g. [22] p.104
and p.431 respectively). A.s. uniform convergence holds for the Schauder
basis as well. This suggests to evaluate the performances of K-L product
quantizers for the ‖ . ‖sup-norm (theoretically, see [14], but also numerically):
the family of P

W
-a.s. ‖ . ‖sup-continuous functional is much wider than for

the ‖ . ‖2-norm and contains most natural functionals (supremum, Brownian
hitting times, stopped functionals, etc) involved in path-dependent options
(lookback, barriers, down-and-out, etc).

Acknowledgement: We thank Harald Luschgy for helpful discussions.
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Annex: proof of the quadrature formulæ

(a) This error bounds readily follows from |F (X) − F (X̂x)| ≤ [F ]Lip|X − X̂x|.
(b) Formula (3.7) can be derived as follows:

|F (X) − F (X̂x)| ≤ [F ]Liploc|X − X̂x|(θ(X) + θ(X̂x)).

Hence by the Schwarz inquality

E|F (X) − F (X̂x)| ≤ [F ]Liploc‖X − X̂x‖
2
(‖θ(X)‖

2
+ ‖θ(X̂x)‖

2
).

Now θ2 is convex since θ is and u 7→ u2 is increasing and convex on R+. Conse-
quently

E θ2(X̂x) = E θ2(E(X|X̂x)) ≤ E(E(θ2(X)|X̂x)) = E(θ2(X))

which completes the proof. Concerning (3.8), one starts from a Taylor expansion,
where DF denotes the differential of F and ‖ . ‖ the operator norm on L(H),

|F (X) − F (X̂x) − (DF (X̂x),X − X̂x)| ≤ sup
z∈(X,X̂x)

‖DF (z) −DF (X̂x)‖|X − X̂x|

≤ [DF ]
α
|X − X̂x|1+α.

Consequently
∣∣∣EF (X) − EF (X̂x) − E

(
(DF (X̂x) |X − X̂x)

)∣∣∣ ≤ [DF ]
α
E |X−X̂x|1+α.

Now

E
(

(DF (X̂x) |X − X̂x)
)

= E
((
DF (X̂x) |E(X − X̂x|X̂x)

))
= E

((
DF (X̂x) | 0

H

))
= 0.

To establish the last quadrature formula, one notes, using the convexity of θ that

sup
z∈(X,X̂x)

‖DF (z) −DF (X̂x)‖ ≤ [DF ]Liploc|X − X̂x|(θ(X̂x) + sup
z∈(X,X̂x)

θ(z))

≤ [DF ]Liploc|X − X̂x|(θ(X̂x) + max(θ(X), θ(X̂x)))

≤ [DF ]Liploc|X − X̂x|(2θ(X̂x) + θ(X)).

and one concludes as above by combining Jensen and Schwarz Inequalities. ♦
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Figure 1: The Nrec-quantizer χN
rec =

√
λ⊗x for N = 10 (Nrec = 2×5 = 10),

N = 50 (Nrec = 12 × 4 = 48) and N = 100 (Nrec = 12 × 4 × 2 = 96).
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Figure 4: Heston vanilla Call, A setting (absolute errors): T = 1,
s0 = 50, k = 0.250, a = 0.01, ρ = 0.5, ϑ = 0.1. (a) K 7−→
CallHest(s0,K) − ĈrCall

Hest
(s0,K), K ∈ {44, . . . , 56}. Pricing by “crude"

Functional Quantization (−−◦−−), N = 96, 966, 9 984, 97 920. (b)

K 7−→ CallHest(s0,K) − ̂RbgCrCall
Hest

(s0,K), K ∈ {44, . . . , 56}. Pric-
ing by a Romberg log-extrapolation (−−∗−−) with (M,N)=(96-966), (966-

9984). (c) K 7−→ CallHest(s0,K) − ̂IRCAll
Hest

(s0,K), K ∈ {44, . . . , 56}.
Pricing by K-linear interpolation of Romberg log-extrapolations (−−×−−) with
(M,N)=(96, 966), (966, 9984).
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Figure 5: Heston vanilla Call, B setting (absolute errors): T =
1, s0 = 50, k = 2, a = 0.01, ρ = 0.5, ϑ = 0.1 (a) K 7−→
CallHest(s0,K) − ̂RbgCrCall

Hest
(s0,K), K ∈ {44, . . . , 56}. Pricing by

Romberg log-extrapolation (−−∗−−), (M,N)= (966, 9984). (b) K 7−→
CallHest(s0,K) − ÎRCall

Hest
(s0,K), K ∈ {44, . . . , 56}. Pricing by K-linear

interpolation of Romberg log-extrapolations (−−×−−) with (M,N)= (966, 9984).
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Figure 6: Heston Asian Call, B setting (absolute errors): T = 1,
s0 = 50, k = 2, a = 0.01, ρ = 0.5, ϑ = 0.1 (a) K 7−→
AsCallHest(s0,K) − ̂RbgAsCall

Hest
(s0,K), K ∈ {44, . . . , 56}. Pricing by

Romberg log-extrapolation (−−∗−−), (M,N)=(96, 966), (966, 9984). (b)

K 7−→ AsCallHest(s0,K)− ̂IRAsCall
Hest

(s0,K), K∈ {44, . . . , 56}. Pricing by
K-linear interpolation of Romberg log-extrapolations (−−×−−) with (M,N)=
(96, 966), (966, 9984).
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