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Abstract

We consider the problem of hedging a contingent claim, in a market

where prices of traded assets can undergo jumps, by trading in the un-

derlying asset and a set of traded options. We give a general expression

for the hedging strategy which minimizes the variance of the hedging er-

ror, in terms of integral representations of the options involved. This

formula is then applied to compute hedge ratios for common options in

various models with jumps, leading to easily computable expressions. The

performance of these hedging strategies is assessed through numerical ex-

periments.

Keywords: quadratic hedging, option pricing, barrier option, integro-differential
equations, Markov processes with jumps, Lévy process.

1 Introduction

The Black-Scholes model and generalizations of it where the dynamics of prices
Xt = (X1

t , . . . , X
m
t ) of several assets is described by a diffusion process driven

by Brownian motion

dXt = Xtσ(t,Xt)dWt +Xtµtdt (1)

have strongly influenced risk management practices in derivatives markets since
the 1970s. In such models, the question of hedging a given contingent claim with
payoff Y paid at a future date T can be theoretically tackled via a representa-
tion theorem for Brownian martingales: by switching to a (unique) equivalent
martingale measure Q, we obtain a unique self-financing strategy φt such that

Y = EQ[Y |F0] +

∫ T

0

φtdXt Q− a.s. (2)

This representation then holds almost surely under any measure equivalent toQ,
thus yielding a strategy φt with initial capital c = EQ[Y |F0] which “replicates”
the terminal payoff Y almost-surely. On the computational side, φt can be
computed by differentiating the option price C(t, St) = EQ[Y |Ft] with respect
to the underlying asset(s) Xt. These ideas are central to the use of diffusion
models in option pricing and hedging.
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Stochastic processes with discontinuous trajectories are being increasingly
considered, both in the research literature and in practice, as realistic alter-
natives to the Black-Scholes model and its diffusion-based generalizations. A
natural question is therefore to examine what becomes of the above assertions in
presence of discontinuities in asset prices. It is known that, except in very special
cases [25], martingales with respect to the filtration of a discontinuous process
X cannot be represented in the form (2), leading to market incompleteness. Far
from being a shortcoming of models with jumps, this property corresponds to a
genuine feature of real markets: the impossibility of “replicating” an option by
trading in the underlying asset.

A natural extension, due to Föllmer and Sondermann [18], has been to ap-
proximate the target payoff Y by optimally choosing the initial capital c and a
self-financing trading strategy (φ1

t , . . . , φ
m
t ) in the assets X1, . . . , Xm in order

to minimize the quadratic hedging error [7, 18]:

minimize E

(

c+
m
∑

i=1

∫ T

0

φitdX
i
t − Y

)2

, (3)

Unlike approaches based on other (non-quadratic) loss functions, quadratic
hedging has the (great) advantage of yielding linear hedging rules, which corre-
spond to observed market practices.

The expectation in (3) can be understood either as being computed under an
“objective” measure meant as a statistical model of price fluctuations [2, 17, 19,
27] or as being computed under a martingale (”risk-adjusted”) measure [6, 7,
16, 18, 24]. Whereas the first choice may seem more natural, there are practical
and theoretical motivations for using a risk-adjusted (martingale) measure fitted
to market prices of options for computing the hedging performance.

• When X is a martingale, problem (3) is related to the Kunita-Watanabe
decomposition of Y , which has well-known properties guaranteeing the
existence of a solution under mild conditions [22]. By contrast, quadratic
hedging with discontinuous processes under an arbitrary measure may lead
to negative “prices” or not have a solution in general [2].

• Ideally, the probability measure used to compute expectations in (3) should
reflect future uncertainty over the lifetime of the option. When using the
“statistical” measure as estimated from historical data, this only holds
if increments are stationary. On the other hand, the risk-adjusted mea-
sure retrieved from quoted option prices using a “calibration” procedure
[4, 9, 10] is naturally interpreted as encapsulating the market anticipation
of future scenarios.

• More generally, the use of “statistical” measures of risk such as vari-
ances or quantiles computed with “statistical” models has been ques-
tioned by Aı̈t-Sahalia and Lo [1], who advocate instead the use of cor-
responding quantities computed using a risk-adjusted measure, estimated
non-parametrically from prices of options observed in the market. These
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quantities, they argue, not only reflect probabilities of occurrence but also
the risk premia attached to them by the market so are more natural as
criteria for measuring risk.

The purpose of this work is to study the quadratic hedging problem (3) when
underlying asset prices are modeled by a process with jumps. In accordance with
the above remarks, we will assume that the expectation in (3) is computed using
a martingale measure estimated from observed prices of options. With respect
to the existing literature, our contribution can be seen as follows:

• Though quadratic hedging with the underlying asset in presence of jumps
has been previously studied by several authors, the corresponding expres-
sions for hedging strategies are not always explicit and involve for instance
the carré-du-champ operator [7], the Malliavin derivative [6] or various
Laplace transforms and path-dependent quantities [20].

• While previous work has focused on hedging with the underlying asset(s),
we will see in section 4, switching from naive delta-hedging to the optimal
quadratic hedging strategy reduces the risk only marginally and leads
to an important residual risk. By contrast, we study hedging strategies
combining underlying assets with a set of available options that allow to
further reduce the residual risk.

• While previous work has exclusively focused on European options without
path-dependence (calls and puts), hedging exotic options is often more
important in practice than hedging call and puts. We provide easy to
compute expressions for hedge ratios for Asian and barrier options.

• We implement numerically the proposed hedging strategies and compare
their performance based on Monte Carlo simulations.

The paper is structured as follows. In Section 2 we derive a general ex-
pression for the strategy which minimizes the variance of the hedging error,
as computed under a risk-adjusted measure, in the general framework of Itô
processes with jumps. Section 3 explains how the problem of hedging with
options fits into the framework described in section 2: we provide sufficient
conditions under which the prices of various options possess the representation
needed to apply the hedging formula. Finally, in Section 4 we apply the general
hedging formula of Section 2 to construct hedging strategies for some common
options and give numerical examples of their performance.

2 Minimal variance hedging in the jump-diffusion

framework

2.1 Model setup

Consider a d-dimensional Brownian motion W and a Poisson random measure
J on [0,∞)×R with intensity measure dt×ν(dx) defined on a probability space
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(Ω,F , P ), where ν is a positive measure on R such that
∫

R
(1 ∧ x2)ν(dx) < ∞.

J̃ denotes the compensated version of J :

J̃(dt× dz) = J(dt× dz) − dtν(dz).

Let (Ft)t≥0 stand for the natural filtration of W and J completed with null sets.
We consider a market consisting ofm traded assetsX i, i = 1, . . . ,m that can

be used for hedging a contingent claim Y ∈ FT with E[Y 2] < ∞. We suppose
that the prices of traded assets are expressed using the money market account,
continuously compounded at the risk-free rate, as numeraire. We assume that,
using market prices of options, we have identified a pricing measure under which
the prices of traded assets X1, . . . , Xm are local martingales. This can be done
using for instance methods described in [4, 9]. The evolution of prices under
this probability measure will be described by the following stochastic integrals:

Xt = X0 +

∫ t

0

σsdWs +

∫

[0,t]×R

γs(z)J̃(ds× dz). (4)

We denote Yt = E[Y |Ft] the value of the option and assume that Yt can be
represented by a stochastic integral:

Yt = Y0 +

∫ t∧τ

0

σ0
sdWs +

∫

[0,t∧τ ]×R

γ0
s (z)J̃(ds× dz). (5)

The initial valuesX0 and Y0 are deterministic, τ is a stopping time which denotes
the (possibly random) termination time of the contract (to account for path-
dependent features such as barriers). Such a representation can be formally
obtained by expressing the option price Yt = f(t,Xt) applying an Ito formula
to the function f . In section 3, we will give various condition under which such
a representation can indeed be derived, the main obstacle being the smoothness
of f .

We assume the coefficients satisfy the following assumptions:

(i) σ : [0,∞) → R
m ⊗ R

d and σ0 : [0,∞) → R
d are càglàd Ft-adapted

processes.

(ii) γ : [0,∞) × R → R
m and γ0 : [0,∞) × R → R are càglàd Ft-adapted

processes such that

∀t ∈ [0, T ], ∀z ∈ R
d, ‖γs(z)‖

2 ≤ ρ(z)As and |γis(z)γ
0
s (z)| ≤ ρ(z)As

hold almost surely for some finite-valued adapted process A and some
deterministic function ρ satisfying

∫

R
ρ(z)ν(dz) <∞.

(iii) We fix a time horizon T and assume

E

∫ T

0

(‖σs‖
2 +As)ds <∞
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These assumptions imply in particular that the stochastic integrals (4)–(5) exist
and define square-integrable martingales. Below we give several examples of
stock price models satisfying (4) and the assumptions (i)–(iii) and in section 3
we will show that European and many exotic options can indeed be represented
in the form (5).

Example 1 (Exponential Lévy models). Let L be a Lévy process with char-
acteristic triplet (σ, ν, γ). For eL to be a martingale, the characteristic triplet
must satisfy

∫

|y|>1

eyν(dy) <∞, and γ +
σ2

2
+

∫

(ey − 1 − y1|y|≤1)ν(dy) = 0.

In this case, Xt = X0e
Lt satisfies the following stochastic differential equation:

Xt = X0 +

∫ t

0

σXsdWs +

∫

[0,t]×R

Xs−(ez − 1)J̃L(ds× dz),

where J̃L is the compensated jump measure of L. From the Lévy-Khinchin
formula,

E[X2
t ] = X2

0 exp{tσ2 + t

∫

R

(ex − 1)2ν(dx)},

hence, Xt is square integrable if
∫

|x|≥1
e2xν(dx) <∞.

Example 2 (Markov jump diffusions). Let σ : [0,∞) × R
m → R

m ⊗ R
d and

γ : [0,∞) × R × R
m → R

m be deterministic functions satisfying the conditions
of Lipschitz continuity and sublinear growth (see [23, Theorem III.2.32]). Then
the following stochastic differential equation

Xt = X0 +

∫ t

0

σ(s,Xs−)dWs +

∫

[0,t]×R

γ(s, z,Xs−)J̃(ds× dz), (6)

admits a unique strong solution X satisfying the assumptions (i)–(iii) above.
Processes of this type are referred to as (martingale) Markov jump diffusions.

Some authors define jump-diffusions by allowing the intensity measure ν
to depend on the state [14]. However, whenever the intensity measure ν in
Equation (6) is infinite and has no atom, a model with state-dependent intensity
measure can be transformed to the form (6) by choosing appropriate coefficients
[21, Theorem 14.80].

Example 3 (Barndorff-Nielsen and Shephard stochastic volatility model). Un-
der the martingale probability the stochastic volatility model proposed by Barndorff-
Nielsen and Shephard [3] has the following form:

dYt = (−l(ρ) −
1

2
σ2
t )dt+ σtdWt + ρdZt (7)

dσ2
t = −λσ2

t dt+ dZt, σ2
0 > 0 (8)
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where l(θ) = logE(eθZ1), ρ ≤ 0, λ > 0 are constant parameters,W is a standard
Brownian motion and Z is a subordinator without drift, independent from W .
The stock price process Xt = X0e

Yt satisfies the following :

Xt = X0 +

∫ t

0

σsXsdWs +

∫ t

0

∫

R

Xs−(eρz − 1)J̃(ds× dz),

where J̃ is the compensated jump measure of Z. To check the integrability of
X , we use the formula for the Laplace transform of Yt [8, p. 489]:

E[X2
t ] = X2

0E[e2Yt ] = X2
0 exp

(

−2l(ρ)t+ σ2
0ε(λ, t) +

∫ t

0

l(2ρ+ ε(λ, t− s))ds

)

where ε(λ, t) = 1−e−λt

λ . A sufficient condition for this to be finite is

l(2ρ+ 1/λ) <∞ ⇐⇒

∫ ∞

1

e(2ρ+1/λ)xν(dx) <∞,

where ν is the Lévy measure of Z. Under this condition Barndorff-Nielsen and
Shephard’s stochastic volatility model satisfies the hypotheses (i)–(iii) above.

2.2 Minimal variance hedging

Consider an agent who has sold at t = 0 the contingent claim with terminal
payoff Y for the price c and wants to hedge the associated risk by trading in
assets (X1, . . . , Xm) = X . We call an admissible hedging strategy a predictable
process φ : Ω×[0, T ] → R

m such that
∫ ·
0
φtdXt is a square integrable martingale.

Denote by A the set of such strategies. The residual hedging error of φ ∈ A at
time T is then given by

εT (c, φ) = c− Y +

∫ T

0

φtdXt. (9)

Proposition 1. Let X and Y be as in (4) and (5) satisfying the hypotheses
(i)–(iii) on page 4 and suppose in addition that the matrix

Mt = σtσ
∗
t +

∫

R

ν(dz)γt(z)γt(z)
∗

is almost surely nonsingular for all t ∈ [0, T ], where the star denotes the matrix

transposition. Then the minimal variance hedge (ĉ, φ̂), solution of

E[εT (ĉ, φ̂)2] = inf
(c,φ)∈R×A

E[(εT (c, φ))2]

is given by

ĉ = E[Y ] = Y0 (10)

φ̂t = M−1
t

(

σ0
t σ

∗
t +

∫

R

ν(dz)γ0
t (z)γt(z)

∗
)

1[0,τ ](t). (11)
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Proof. First, for every admissible strategy φ,

E[(εT (φ))2] = (c−E[Y ])2 +E

(

E[Y ] − Y +

∫ T

0

φtdXt

)2

.

This shows that the initial capital is given by ĉ = E[Y ]. Substituting c = ĉ
yields

E[ε(φ)2T ] =

∫ T∧τ

0

E‖φtσt − σ0
t ‖

2dt+

∫ T

T∧τ
E‖φtσt‖

2dt

+

∫ T∧τ

0

dt

∫

R

ν(dz)E(φtγt(z) − γ0
t (z))

2

+

∫ T

T∧τ
dt

∫

R

ν(dz)E(φtγt(z))
2.

This expression is clearly minimized by the strategy φ̂. Moreover, under the
assumptions of this proposition, almost surely, (φ̂t)0≤t≤T is càglàd and therefore
admissible.

Remark 1. The left-continuity of hedging strategies in other settings, in par-
ticular when explicit representations are not available, is discussed in [24].

Remark 2 (Tikhonov regularization). Although in the above result we suppose
that the matrix Mt is nonsingular, in some cases it may be badly conditionned
leading to numerically unstable results. To avoid this problem, one can regu-
larize M by adding to it some fraction of the unit matrix: this corresponds to
minimizing

J(φ) = E[(εT (φ))2] + αE

∫ T

0

‖φt‖
2dt

for some α > 0. It is easy to check that the solution to the minimization problem
is then given by

φ̂regt (ω) = {Mt + αI}−1 ×

(

σ0
t σ

∗
t +

∫

R

ν(dz)γ0
t (z)γt(z)

∗
)

.

This procedure is also equivalent to adding α to each eigenvalue of M . Following
the literature on regularization of inverse problems [15], we choose the regular-
ization parameter α in such way that the hedging error with the regularized
strategy E[(εT (φ̂reg))2] is at its highest acceptable level.

3 Martingale representations for option prices

In this section we obtain martingale representations of type (4) for the prices of
various options. This will allow us to apply the general formula for hedge ratios
(11) in the case when the asset to be hedged and / or the traded assets used for
hedging are options on other assets.
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To obtain explicit formulas for martingale representations, we assume that
the price process X is a Markov process of the form (6). When we need to
mention explicitly the starting value of a Markov process, we denote by (Xx

t )t≥0

the process started from the initial value X0 = x and by (X
(τ,x)
t )t≥τ the same

process started from the value Xτ = x at time t = τ .
In some cases (Asian options, stochastic volatility, . . . ), one has to introduce

additional non-traded factors X̃ ∈ R
m̃ such that the extended state process

(X, X̃) is Markovian:

Xt = X0 +

∫ t

0

σ(s,Xs−, X̃s−)dWs +

∫

[0,t]×R

γ(s, z,Xs−, X̃s−)J̃(ds× dz),

X̃t = X̃0 +

∫ t

0

µ̃(s,Xs, X̃s)ds+

∫ t

0

σ̃(s,Xs−, X̃s−)dWs

+

∫

[0,t]×{z:|z|≤1}
γ̃(s, z,Xs−, X̃s−)J̃(ds× dz)

+

∫

[0,t]×{z:|z|>1}
γ̃(s, z,Xs−, X̃s−)J(ds× dz).

Note that the components of X̃ are not necessarily martingales because they do
not represent prices of tradables. For simplicity, unless otherwise mentioned,
in the rest of this section we assume there are no non-traded factors and that
the price process is one-dimensional (m = 1). We treat separately the case of
general Markov jump diffusions and the case of Lévy processes.

3.1 European options

Let X be defined by (6) and H be a measurable function with E[H(XT )2] <∞.
The price of a European-type contingent claim is then a deterministic function
of time t and state Xt:

Ct = E[H(XT )|Ft] = C(t,Xt), (12)

where C(t, x) = E[H(X
(t,x)
T )].

Suppose that the option price C(t, x) is continuously differentiable with re-
spect to t and twice continuously differentiable with respect to x. The Itô for-
mula can then be applied to show that the price of a European option satisfies
a stochastic differential equation of type (6):

dCt =
∂C(t,Xt)

∂x
σ(t,Xt)dWt +

∫

R

(C(t,Xt− + γ(t, z,Xt−)) − C(t,Xt−))J̃(dt× dz)

+

{

∂C(t,Xt)

∂t
+

1

2
σ(t,Xt)

2 ∂
2C(t,Xt)

∂x2

+

∫

R

(

C(t,Xt + γ(t, z,Xt)) − C(t,Xt) − γ(t, z,Xt)
∂C(t,Xt)

∂x

)

ν(dz)

}

dt

(13)
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Note that the first line of the above expression is a local martingale. On the
other hand, from (12), Ct itself is a martingale. Therefore, the sum of the second
and the third line is a finite variation continuous local martingale. This means
that it is zero and we obtain the following martingale representation for Ct:

C(T,XT ) ≡ H(XT ) = C(0, X0) +

∫ T

0

∂C(t,Xt)

∂x
σ(t,Xt)dWt

+

∫ T

0

∫

R

(C(t,Xt− + γ(t, z,Xt−)) − C(t,Xt−))J̃(dt× dz). (14)

Despite the simplicity of this heuristic argument, a rigorous proof of this formula
requires some work. We start with the case of Lévy processes and discontinuous
payoffs.

Proposition 2. Let H be a measurable function with at most polynomial growth:
∃p ≥ 0, |H(x)| ≤ K(1+|x|p), and X be a Lévy process with characteristic triplet
(σ, ν, γ) satisfying the following conditions:

(i) σ > 0 or ∃β ∈ (0, 2), lim inf
ε↓0

1

ε2−β

∫ ε

−ε
|y|2ν(dy) > 0; (15)

(ii)

∫

|y|>1

|y|p+1ν(dy) <∞. (16)

Denote Xx
t ≡ x+Xt. Then

1. The European option price C(t, x) = E[H(Xx
T−t)] belongs to the class

C∞([0, T )× R) with
∣

∣

∣

∂n+mC
∂xn∂tm (x)

∣

∣

∣
≤ K(1 + |x|p), for all n,m ≥ 0.1

2. Suppose in addition that the set of discontinuities of H has Lebesgue mea-
sure zero and that

∫

|y|>1

|y|2pν(dy) <∞. (17)

Then the process (C(t,Xx
t ))0≤t≤T is a square integrable martingale with

the following representation

C(t,Xx
t ) = C(0, x) +

∫ t

0

∂C(s,Xx
s )

∂x
σdWs

+

∫ t

0

∫

R

(C(s,Xx
s− + z) − C(s,Xx

s−))J̃(ds× dz). (18)

Proof. Part 1. Let φt(u) = E[eiuXt ]. Condition (15) implies

|φt(u)| ≤ K1 exp(−K2|u|
α) (19)

1Here and in the proof, K denotes a constant which may depend on n, m et τ and vary

from line to line.
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for some positive constants K1,K2, α and all t > 0, and therefore that Xt has a
C∞ density pt(x) for all t > 0. For σ > 0 this is straightforward and for σ = 0
see [26, proposition 28.3].

The derivatives of C can now be estimated as follows (we denote τ = T − t)
∣

∣

∣

∣

∂n+mC(t, x)

∂xn∂tm

∣

∣

∣

∣

≤

∫

|H(x+ z)|

∣

∣

∣

∣

∂n+mpτ (z)

∂zn∂τm

∣

∣

∣

∣

dz

≤ K

∫

(1 + |x+ z|p)

∣

∣

∣

∣

∂n+mpτ (z)

∂zn∂τm

∣

∣

∣

∣

dz

≤ K(1 + |x|p)

∥

∥

∥

∥

(1 + |z|p)
∂n+mpτ (z)

∂zn∂τm

∥

∥

∥

∥

L1

≤ K(1 + |x|p)

∥

∥

∥

∥

1

1 + |z|

∥

∥

∥

∥

L2

∥

∥

∥

∥

(1 + |z|p+1)
∂n+mpτ (z)

∂zn∂τm

∥

∥

∥

∥

L2

≤ K(1 + |x|p)

(∥

∥

∥

∥

un
∂mφτ (u)

∂τm

∥

∥

∥

∥

L2

+

∥

∥

∥

∥

un
∂p+1+mφτ (u)

∂up+1∂τm

∥

∥

∥

∥

L2

)

(20)

From the Lévy-Khinchin formula, φt(u) = etψ(u) with |ψ(u)| ≤ K(1 + |u|2).
Moreover,

ψ′(u) = −σ2u+ iγ +

∫

iy(eiyu − 1|y|≤1)ν(dy),

ψ′′(u) = −σ2 +

∫

(iy)2eiyuν(dy),

ψ(k)(u) =

∫

(iy)keiyuν(dy), 3 ≤ k ≤ p+ 1.

Due to the condition (16), the integrals in the above expressions are finite and
we have |ψ′(u)| ≤ K1(1 + |u|) and |ψ(q)(u)| ≤ Kq, 2 ≤ q ≤ p+ 1. Therefore,

∣

∣

∣

∣

∂p+1+mφτ (u)

∂up+1∂τm

∣

∣

∣

∣

≤ K(1 + |u|p+1+2m)|φτ (u)|

and by (19), both terms in (20) are finite.
Part 2. By Part 1, representation (18) is valid for every t < T . By Corollary

25.8 in [26], (17) implies that E[H2(Xx
T )] <∞. Denote

Mt =

∫ t

0

∂C(s,Xx
s )

∂x
σdWs +

∫ t

0

∫

R

(C(s,Xx
s− + z) − C(s,Xx

s−))J̃(ds× dz).

Then, by Jensen’s inequality,

E〈M〉t = E (C(t,Xx
t ) − C(0, x))

2
≤ 2E[H2(Xx

T )].

This implies that the stochastic integrals

∫ T

0

∂C(s,Xx
s )

∂x
σdWs and

∫ T

0

∫

R

(C(s,Xx
s− + z) − C(s,Xx

s−))J̃(ds× dz)
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exist and since X has no jumps at fixed times, Mt →MT a.s. when t→ T and
one can pass to the limit t→ T in the right-hand side of (18).

It remains to prove that limt→T C(t,Xx
t ) = C(T,Xx

T ) ≡ H(Xx
T ) a.s. Let

Z be a Lévy process independent from FT and with the same law as X . We
need to show limt→T E[H(Xt + ZT−t)|FT ] = H(XT ). Since X has no jumps
at fixed times, Xt + ZT−t → XT a.s. Recalling from part 1 that XT has
an absolutely continuous density and since the set of discontinuities of H has
Lebesgue measure zero, we see that H(Xt + ZT−t) → H(XT ) a.s. Now the
polynomial bound on H enables us to use the dominated convergence theorem
and conclude that limt→T E[H(Xt + ZT−t)|FT ] = H(XT ) a.s.

The above result covers, for example, digital and put options in exponential
Lévy models with either a non-zero diffusion component or stable-like behavior
of small jumps (e.g. the tempered stable process [8]) and can be trivially ex-
tended to call options using the put-call parity. To treat other exponential Lévy
models more regularity is needed for the payoff. The following result applies to
Lévy processes with no diffusion component and finite second moment, but also
to more general Markov processes with jumps:

Proposition 3. Let X be as in (6) with m = 1, σ(s, x) ≡ 0 and γ(s, z, x)
satisfying

|γ(s, z, x) − γ(s, z, x′)| ≤ ρ(z)|x− x′| with

∫

R

ρ2(z)ν(dz) <∞

|γ(s, z, x)| ≤ ρ(z)(1 + |x|).

Suppose that the payoff function H is Lipschitz continuous: |H(x) − H(y)| ≤

K|x − y|. Then the process (C(t,Xx
t ))0≤t≤T with C(t, x) = E[H(X

(t,x)
T )], is a

square integrable martingale with the representation

C(t,Xx
t ) = C(0, x) +

∫ T

0

∫

R

(C(t,Xx
t− + γ(t, z,Xx

t−)) − C(t,Xx
t−))J̃(dt× dz).

(21)

Proof. By Theorem III.2.32 in [23], the stochastic differential equation (6) ad-
mits a non-explosive solution. Since

E[(Xx
t )2] = x2 +

∫ t

0

E[γ2(s, z,Xs−)]ν(dz)ds ≤ x2 +K

∫ t

0

E[1 + |Xs|
2]ds,

it follows from Gronwall’s inequality that

E[(Xx
t )2] ≤ (x2 +Kt)eKt. (22)

We also note for future use that the same method can be used to obtain

E[(X
(t,x)
T −X

(t,y)
T )2] ≤ (x− y)2eK(T−t). (23)

11



The estimate (22) implies that (C(t,Xx
t ))0≤t≤T is a square integrable martingale

and by Theorems III.4.29, III.2.33 in [23], it admits a martingale representation:
there exists a measurable function Z : Ω × R × [0, T ] → R such that

C(t,Xx
t ) = C(0, x) +

∫ t

0

∫

R

Zs(z)J̃(ds× dz). (24)

If we are able to show the existence of

C̃t = C(0, x) +

∫ t

0

∫

R

(C(s,Xx
s− + γ(s, z,Xx

s−)) − C(s,Xx
s−))J̃(ds× dz), (25)

then (21) will follow since the jumps of (24) and (25) are indistinguishable and
hence C = C̃ (note that this part of the argument does not carry over to the
case σ > 0). By Jensen’s inequality and (23),

(C(t, x) − C(t, y))2 ≤ E[(H(X
(t,x)
T ) −H(X

(t,y)
T ))2]

≤ KE[(X
(t,x)
T −X

(t,y)
T )2] ≤ K(x− y)2.

The existence and square integrability of (25) now follows from

∫ t

0

∫

R

E(C(s,Xx
s + γ(s, z,Xx

s )) − C(s,Xx
s ))2ν(dz)ds

≤

∫ t

0

∫

R

E(γ2(s, z,Xx
s ))ν(dz)ds ≤ K

∫ t

0

(1 + |Xs|)
2ds <∞.

3.2 Asian options

Exotic options can be introduced via the process of non-traded factors X̃ (see
the beginning of this section): for Asian options, one can take

X̃t =

∫ t

0

Xsds

and the option’s price is then given by

Ct = E[H(X̃T )|Ft] = C(t,Xt, X̃t),

that is, the option’s price is now a function of time and (extended) state and
one can use the theory developed for European options.

3.3 Barrier options

The value of a knock-out barrier option can be represented as

CBt = E[H(XT )1τ>T |Ft],

12



where τ is the first exit time of X from an interval B. For example, in the case
of an up-and-out option with barrier b we have τ = inf{t ≥ 0 : Xt > b}. If X is
a Markov jump-diffusion then, conditionally on the event that the barrier has
not been crossed, the price of a knock-out barrier option only depends on time
and state. Therefore, in all cases

CBt = 1τ>tC
B(t,Xt),

where CB(t, x) =

{

0, x /∈ B

E[H(X
(t,x)
T )1τt>T ], x ∈ B

(26)

and τt is defined by τt = inf{s ≥ t : X
(t,x)
s /∈ B}. Furthermore, the above

is equivalent to CBt = CB(t ∧ τ,Xt∧τ ). Supposing that C(t, x) possesses the
required differentiability properties, we can apply the Itô formula up to time τ
obtaining an SDE of type (5):

CBt = CB0 +

∫ t∧τ

0

∂CB(t,Xt)

∂x
σ(t,Xt)dWt

+

∫

[0,t∧τ ]×R

(CB(t,Xt− + γ(t, z,Xt−)) − CB(t,Xt−))J̃(dt× dz). (27)

However, in the case of barrier options the proof of regularity is much more
involved [12] than for European ones. The following result, based on Bensoussan
and Lions [5], allows to obtain a martingale representation for barrier options
under further assumptions:

Proposition 4. Let X be as in (6) with m = 1 and σ and γ satisfying the
following hypotheses:

(i) σ is bounded from below by a positive constant and σ and ∂σ
∂x are uniformly

bounded from above.

(ii) There exists a Radon measure m on R \ {0} such that

∫

R

|z|m(dz) <∞

and ∀A ∈ B(R), ∀(t, x)

m(A) ≥ ν({z : γ(t, z, x) ∈ A})

(iii) B is a bounded open interval on R.

(iv) The payoff function H satisfies H ∈ W 1,p
0 (B), 4 < p < ∞. The space

W 1,p
0 (B) denotes the W 1,p(B)-closure of C∞

0 (B), the space of smooth
functions with compact support in B. This implies that the payoff must
tend to zero as one approaches the barrier.

13



Then the barrier option price CB(t, x) defined by (26) belongs to the space

W 1,2,p = {z ∈ Lp([0, T ]×B) :
∂z

∂t
,
∂z

∂x
,
∂2z

∂x2
∈ Lp([0, T ] ×B)}

and the process (CBt )0≤t≤T is a square integrable martingale satisfying the rep-
resentation (27).

Proof. The regularity result is a corollary of theorems 3.4 and 8.2 in [5]. To
obtain the martingale representation, we can approximate CB(t, x) in W 1,2,p

by a sequence of smooth functions (CBn ), apply the Itô formula to each Cn and
then pass to the limit using the inequality (III.7.32) in [5]:

∣

∣

∣

∣

∣

E

[

∫ T

t

f(s,Xs)ds

]∣

∣

∣

∣

∣

≤ CT,p|f |Lp ∀f ∈ Lp(Rd), p > 2, (28)

where X satisfies the hypotheses (i) and (ii) of the above proposition.

Corollary 1. Let X be a Lévy process with σ > 0 and
∫

|x|ν(dx) < ∞, let
B be a bounded open interval and suppose that the payoff function H satisfies
H ∈ W 1,p

0 (B), 4 < p < ∞. Then the barrier option price CB(t, x) defined by
(26) belongs to the space W 1,2,p and the process (CBt )0≤t≤T is a square integrable
martingale satisfying the representation (27).

4 Hedging with options: examples and applica-

tions

In this section we apply the general hedging formula (11) to options and ana-
lyze numerically the performance of the minimal variance hedging strategy in
different settings.

Hedging with the underlying in an exponential Lévy model Suppose
that the price of the underlying asset follows an exponential Lévy model

dXt = XtσdWt +

∫

R

Xt−(ez − 1)J̃(dt× dz).

The European option price (12) can then be written as the expectation of a Lévy
process Zt = log(Xt/X0): C(t, x) = E[H(xeZT−t)]. Supposing that the model
parameters and the new payoff function h(z) = H(ez) of the option satisfy either
the hypotheses of Proposition 2 or those of Proposition 3, we can compute a
martingale representation for C(t,Xt). Applying the general formula (11) we
then obtain the following hedge ratio:

φt =
σ2 ∂C

∂X (t,Xt−) + 1
Xt−

∫

ν(dz)(ez − 1)[C(t,Xt−ez) − C(t,Xt−)]

σ2 +
∫

(ez − 1)2ν(dz)
. (29)

Note that the above equation makes sense in a much more general setting than
for instance the delta-hedging strategy which requires that the option price be
differentiable, a property which can fail in pure-jump models [12].
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Case of a single jump size Assume that the stock price process X1 follows
an exponential Lévy model with a non-zero diffusion component and a single
possible jump size:

dX1
t = X1

t σdWt +X1
t−(ez0 − 1)dÑt,

where Ñ is a compensated Poisson process with intensity λ. We want to hedge
a European option Yt = C(t,X1

t ) with the stock and another European option
X2
t = C∗(t,X1

t ). In this case, Proposition 1 applies due to the presence of a non-
degenerate diffusion component. Denoting ∆X = (ez0 − 1)X and ∆C(t,X) =
C(t,Xez0) − C(t,X) we obtain the following hedge ratios:

φ1
t =

∆C∗(t,X1
t−)

∂C(t,X1
t−)

∂X − ∆C(t,X1
t−)

∂C∗(t,X1
t−)

∂X

∆C∗(t,X1
t−) − ∆X1

t−
∂C∗(t,X1

t−
)

∂X

,

φ2
t =

∆C(t,X1
t−) − ∆X1

t−
∂C(t,X1

t−)

∂X

∆C∗(t,X1
t−) − ∆X1

t−
∂C∗(t,X1

t−)

∂X

.

It is easy to see that with these hedge ratios the residual hedging error ε(φ)T is
equal to zero.

When the jump size ∆X1 is small, the optimal hedge is approximated by
delta-gamma hedge ratios

φ1
t = δt =

∂C(t,X1
t−)

∂X
−
∂C∗(t,X1

t−)

∂X

(

∂2C(t,X1
t−)

∂X2
/
∂2C∗(t,X1

t−)

∂X2

)

φ2
t = γt =

∂2C(t,X1
t−)

∂X2
/
∂2C∗(t,X1

t−)

∂X2
,

obtained by setting to zero the first and the second derivative of the hedged
portfolio with respect to the stock price. Note however that in general (jump
size not small) the delta-gamma hedging strategy does not eliminate the risk
completely, although the optimal quadratic hedging strategy does.

Barndorff-Nielsen and Shephard model Let us reconsider the BNS model
introduced in example 3. This model is not covered by results of section 3 but
we can check the differentiability of the option price directly along the lines of
the proof of proposition 2, using the explicit form of the Fourier transform of
the log-price Y [8, p. 489]:

φt(u) = E{eiuYt} = exp
{

−iut l(ρ)−
σ2

0

2
(iu+ u2)ε(λ, t)

+

∫ t

0

l

(

iρu−
1

2
(iu+ u2)ε(λ, t− s)

)

ds
}

.

Because the diffusion coefficient is bounded from below on any finite time in-
terval,

|φt(u)| ≤ exp
{

−
σ2

0u
2

2
ε(λ, t)+

∫ t

0

l

(

−
1

2
u2ε(λ, t− s)

)

ds
}

≤ exp
{

−
σ2

0u
2

2
ε(λ, t)

}

.
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In addition if
∫∞
0
zm+nν(dz) < ∞, we can show, as in the proof of proposition

2, that
∣

∣

∣

∣

∂m+nφt(u)

∂um∂tn

∣

∣

∣

∣

≤ C(t)(1 + |u|m+2n) exp
{

−
σ2

0u
2

2
ε(λ, t)

}

and this in turn implies that the price of an option whose payoff does not grow
at infinity faster than |x|m−1 will be n times differentiable in t and infinitely
differentiable in x (at every point with σ > 0). Applying Proposition 1 yields
the following optimal ratio for hedging with the underlying:

φt =
σ2
t−

∂C
∂X + 1

Xt−

∫

ν(dz)(eρz − 1)[C(t,Xt−eρz, σ2
t− + z) − C(t,Xt−, σ2

t−)]

σ2
t− +

∫

(eρz − 1)2ν(dz)
.

When there are no jumps in the stock price (ρ = 0) the optimal hedging strategy
is just delta-hedging: φt = ∂C

∂X ; even though there are jumps in the option price,
they cannot be hedged. On the other hand, when ρ 6= 0, the above formula
has the same structure as equation (29) for exponential Lévy models, with the
difference that we also have to take into account the effect of jumps in σ(t) on
the option price. The impact of the stochastic volatility on the optimal hedging
strategy with the underlying asset is thus rather limited: for example, the mean
reversion parameter λ does not appear in the hedging formula.

Numerical example: hedging a European put in Merton’s model In
this example we suppose that the asset X1 follows the Merton (1976) model,

which is an exponential Lévy model with σ > 0 and ν(x) = λ
δ
√

2π
e−

(x−θ)2

2δ2 . We

simulate 10000 trajectories of stock in this model with two different parameter
sets given below:

µ σ λ jump mean jump stddev
Model 1: Risk-neutral — 0.1 5 −0.05 0.1

Bullish market Historical 0.2 0.1 5 −0.05 0.1
Model 2: Risk-neutral — 0.1 10 −0.2 0.2

Fear of crash Historical 0.2 0.1 5 −0.05 0.1

For each price trajectory we compute the residual error for hedging an out-
of-the-money European put with strike K = 1.2 and time to maturity T = 1
with the underlying and one at-the-money European put with strike K = 1
and time to maturity T = 1, using three different hedging strategies: delta
hedging, optimal quadratic hedging with stock only, optimal quadratic hedging
with stock and another option).

It is important to note that, in this and the following example, the hedge
ratios were precomputed on a grid of time and stock price values with formula
(11) before simulating the price trajectories; details of computations can be
found in [11]. The option prices were evaluated using the following result [12]:

Proposition 5. Let the payoff function H verify the Lipschitz condition and
let h(x) = H(S0e

x) have polynomial growth at infinity. Then forward value

fe(t, x) = E[h(x+Xt)]
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Figure 1: Histograms of the residual hedging error for a European put with
strike K = 1.2.

of a European option is a viscosity solution of the Cauchy problem

∂f

∂t
=
σ2

2

[

∂2f

∂x2
−
∂f

∂x

]

+

∫

R

ν(dy)

[

f(x+ y) − f(x) − (ey − 1)
∂f

∂x

]

(30)

with the initial condition f(0, x) = h(x).

We have used a similar representation for the price of a barrier option [12]
and the numerical scheme proposed in [13] for solving the associated PIDE (30).

The histograms of the hedging error are shown in Figure 1, left graph, for
model 1 and in the right graph for model 2. The table below gives the variance
of the residual hedging error for the two models and the three hedging strategies
used.

Bullish market (left) Fear of crash (right)
Delta hedging: 0.0464 0.1974
Optimal 1 asset: 0.0373 0.1762
Optimal 2 assets: 0.0182 0.0319

First, one can observe that the performance of the optimal quadratic hedging
strategy is very similar to that of delta hedging in both models. The performance
of both strategies using the underlying only is very sensitive to the difference
of Lévy measures under the historical and the risk-neutral probability: when
this difference is important as in model 2, both strategies have a very poor
performance. On the other hand, this numerical example shows that using
options for hedging allows to reduce this sensitivity and achieve an acceptable
performance even in presence of an important jump risk premium, that is, when
the Lévy measure is very different under the “objective” and the risk-neutral
probability.

Hedging a barrier option in Merton’s model In this example we con-
tinue to work in Merton’s model and we want to hedge a barrier put with strike
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Figure 2: Left: histograms of the residual hedging error for an up and out
barrier put with strike K = 1 and barrier B = 1.2. Right: option price profiles
at T = 0.5.

K = 1 and barrier at B = 1.2 with the underlying and a European put option.
Figure 2, left graph, depicts the histograms of the residual hedging error for
three strategies: hedging with the underlying asset only; hedging with the un-
derlying asset and a European put with strike at the barrier; hedging with stock
and a European put with strike K = 1. The model parameters correspond to
model 1 of previous example. This example shows that a much better hedging
performance is achieved by using a European option with the same strike as
that of the barrier option. The right graph shows the option price profiles of
these two options at time T = 0.5. Using a European option for hedging allows
to better reproduce the convexity of the barrier option price but it does not
take into account the discontinuity of derivative at the barrier.
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