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Abstract

In this work we present some simple simulation algorithms for CIR and more general
Wishart processes, the main idea being to split the generator and to reduce the problem
to the simulation of the square of a matrix valued Ornstein-Uhlenbeck process to be added
to a deterministic process. In this way we provide weak second order schemes that require
only the simulation of i.i.d. Gaussian r.v.’s.

Premia 18
This work introduces some simple algorithms to simulate a Wishart process. They work

only under some assumptions on the parameters, but they are quite simple to implement
and work well. The Wishart process was introduced in a simpler form in Bru [4] and then
generalized as the solution of
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where (Wt)t≥0 denotes a d × d square matrix of independent standard Brownian motions,
α ∈ R

+, x is symmetric positive semidefinite and a and b are general d× d matrices. Under
the assumption α ≥ d− 1, that we will assume hereafter, existence of a unique weak solution
of the previous equation has been proved (see Bru [4], Cuchiero, Filipović, Mayerhofer and
Teichmann [6] e.g.). A problem analogous to that arising when applying classical simula-
tion schemes to the square root process appears also for the Wishart. In particular being
the Wishart a process defined on the cone of positive semidefinite matrices it may reach the
boundary of the cone where the coefficients are not Lipschitz continuous. As a consequence
strong existence of the solution is not granted by the usual existence theorems and simula-
tion methods such as the Euler-Maruyama scheme are not applicable. For this reason, it is
important to find alternative simulation schemes.

The main reference for the simulation of Wishart processes is Ahdida and Alfonsi [2] where
a simulation method working for every value of α > d − 1 is developed. The methods we
propose here are much simpler but work only under the more restrictive assumption α ≥ d.
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The rule of composition of schemes

If p(1), p(2) are second order transition probabilities of simulation schemes for diffusion
processes with generators L1 and L2 respectively, then the schemes

q(t) = p(1)( t
2) ◦ p(2)(t) ◦ p(1)( t

2) (2)

and
q(t) = 1

2

(
p(1)(t) ◦ p(2)(t) + p(2)(t) ◦ p(1)(t)

)
(3)

are both second order schemes for the diffusion with generator L1 +L2 (see Theorem 1.17 in
Alfonsi [1] which extends ideas of Ninomiya and Victoir [9]).

Let us apply this composition rule to the case of a Wishart process that is solution of (1).
Its generator can be decomposed

L = tr[(αaTa+ bx+ xbT )D] + 2 tr(xDaTaD) =

= tr[(naTa+ bx+ xbT )D] + 2 tr(xDaTaD)︸ ︷︷ ︸
:=L2

+ tr[(α− n)aTaD]︸ ︷︷ ︸
:=L1

where n = ⌊α⌋. A second order transition probability for L1 (which is the generator of a
deterministic motion) is simply the translation

Xti+1
= Xti

+ (α− n)aTa t

As for L2 it is the generator of the square of a n × d Ornstein-Uhlenbeck process. Denoting
h = ti+1 − ti,

C =

∫ h

0
eubaTaeubT

ds

an exact scheme for L2 is given by

Xti+1
=

(
Yti
ehbT

+WC1/2
)T (

Yti
ehbT

+WC1/2
)

where W ∼ N(0d, In×d) and Yti
is any n× d matrix such that Y T

ti
Yti

= Xti
possibly obtained

by taking the square root of the positive defined d×d matrix Xti
and then adding n−d rows

of zeros.
Assume α ≥ d. Thanks to the composition rule all the following are second order schemes

for the Wishart process:

q1(t) = p(1)( t
2) ◦ p(2)(t) ◦ p(1)( t

2) (4)

q2(t) = p(2)( t
2) ◦ p(1)(t) ◦ p(2)( t

2) (5)

q3(t) = 1
2

(
p(1)(t) ◦ p(2)(t) + p(2)(t) ◦ p(1)(t)

)
(6)

and also
q4(t) = p(1)( t

4) ◦ p(2)( t
2) ◦ p(1)( t

2) ◦ p(2)( t
2) ◦ p(1)( t

4) (7)

which turns out to be a second order scheme by application of the composition rule twice.
The condition α ≥ d is necessary in order to ensure that the matrix produced by the

iteration p(1) is positive semi-definite. Note that the schemes above are exact if α is an
integer larger that d and are therefore expected to have a very small bias when α − ⌊α⌋ is
small. This fact is confirmed by the numerical experiments.
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A special subcase: the square root process

The square root or CIR process is the one-dimensional subcase of the Wishart process and
was introduced in finance by Cox, Ingersoll and Ross [5] to model short interest rates. It is
the solution of

dvt = (a− κvt)dt+ σ
√
vtdBt (8)

with v0, σ, a ≥ 0, κ ∈ R, (Bt)t being a standard Brownian motion. Observe that the previous
equation can be written equivalently as

dvt = κ(θ − vt)dt+ σ
√
vtdBt (9)

where κ is the mean reversion parameter, θ the long run and σ is the volatility of variance.
Whenever v0 ≥ 0 and a ≥ σ2

2 the process is always positive.
Define n := ⌊ 4a

σ2 ⌋ and split the generator as
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+
1

2
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4
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+

1

2
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dx2
︸ ︷︷ ︸
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+
(
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σ2

4

) d

dx︸ ︷︷ ︸
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· (10)

where L̃1 is the generator associated to a deterministic process

vti+1
= vti

+
(
a− n

σ2

4

)
h

and L̃2 is the generator of the square of a n×1 Ornstein-Uhlenbeck process. An exact scheme
for it with step h is

vti+1
=

(
Yti
e− κ

2
h +

σ

2

√
ψk(h)W

)T (
Yti
e− κ

2
h +

σ

2

√
ψk(h)W

)

where W is a n × 1 matrix whose entries are independent and N(0, 1) distributed and Yti

denotes any n× 1 matrix such that Y T
ti
Yti

= vti
(see [3] for further details). By using one of

the rules (4)–(7) we obtain again weak second order simulation schemes for the square root
process. The schemes obtained in this way are exact if ⌊ 4a

σ2 ⌋ is an integer number and can be
expected to perform better than the schemes described in the previous paragraph if ⌊ 4a

σ2 ⌋ is
large.

Application to the Heston model

The Heston stochastic volatility model [8] is defined as the solution of

dSt = rStdt+
√
vtdWt

dvt = κ(θ − vt)dt+ σ
√
vtdB

(11)

where the processes W and B are standard Brownian motions with correlation parameter ρ.
We can simulate the volatility vt using one of our schemes, as far as a ≥ σ2

4 and then simulate
the correspondent asset price by a simple Euler- Maruyama scheme or better re-adapting the
scheme suggested in Alfonsi [1], paragraph 4.2.
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Application to the Gourieroux Sufana model

The Gourieroux and Sufana[7] model is the solution of

dSl
t = rSl

tdt+ Sl
t(

√
XtdBt)l

dXt = (αaTa+ bXt +Xtb
T )dt+

√
XtdWta+ aTdW T

t

√
Xt

where the processes W and B are independent standard Brownian motions. It can be con-
sidered as the multidimensional version of the Heston model [8]. We can simulate the process
Xt using one of our schemes, as far as α ≥ d and then simulate the correspondent asset prices
by a simple Euler-Maruyama scheme or better re-adapting the scheme suggested in Alfonsi
[2], paragraph 4.3.
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