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1 Introduction

Asian options, options for which the payoff depends on the arithmetic average value of the
asset price over some time period, have had a very large success in the last years, because
they reduce the possibility of market manipulation near the expiry date and offer a better
hedge to firms having a stream of positions.

Actually there is no closed form solution for the price of this option because in the
usual Black-Scholes framework, the arithmetic average is a sum of correlated lognormal
distributions for which there is no recognizable density function. Several tentatives have
been done:
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• Monte Carlo simulation with different variance reduction techniques, e.g. Kemna
and Vorst[20], Clelow and Carverhill [6] and Dufresne [11];

• to assume a given form for the density of the average in order to obtain closed
form solution, Turnbull and Wakeman [33], Levy [21], Vorst [34] and the references
therein, Milevsky and Posner [25], Dufresne [12];

• to include the path-dependent variables into the state space and cast the pricing
problem into the Black-Scholes framework, and to solve an augmented and degener-
ate parabolic PDE, as in Barraquand and Pudet [4] or in Zvan and al. [39];

• to scale the problem and reduce the PDE to a one-dimensional problem as in Rogers
and Shi [28] and Alziary and al. [3];

• binomial trees, Hull and White [18];

• to use the Laplace transform with respect to time to maturity of the option price as
in Geman and Yor [17];

• to give lower and upper bounds for the option price using a conditioning technique
as in Curran [7], [8], Rogers and Shi [28] and more recently Thompson [31].

In the present paper we examine in greater detail the methods based on the moments,
i.e. assuming as unique information the moments of the average propose different approxi-
mations. The underlying framework is always a Black-Scholes world where the underlying
asset evolves following a Geometric Brownian Motion process. We can mainly distinguish
the following approaches:

i) using the first two algebraic moments of the average, fit a lognormal density, Levy
[21].;

ii) using the first four algebraic moments of the average, approximate the density using
an Edgeworth series expansion around a lognormal density, Turnbull and Wakeman [33]
and Ritchken and al. [27];

iii) using the first two algebraic moments of the average fit a reciprocal gamma density,
Milevsky and Posner [25];

iv) using the first four logarithmic moments of the average, approximate the density
using an Edgeworth series expansion around a normal density as in Fusai and Tagliani[14],

v) always using the logarithmic moments of the average, Fusai and Tagliani[14] propose
a Maximum Entropy approximation.

vi) using the moments of the reciprocal of the average, Dufresne approximates the
density using a Laguerre series expansion.

In using different approximations based on the moments, we would like that:
a) the true density is uniquely determined by the infinite sequence of moments (the so

called moments problem);
b) for a given number of moments, the approximated distribution should be positive,
c) for a given number of moments, a bound to the error made in pricing Asian options

is provided;
d) increasing the number of moments considered, the sequence of approximants is

converging to the true distribution in some norm and the same happens for the Asian
option price.

We remark that as proved in Fusai and Tagliani[14] only the Maximum Entropy approx-
imation satisfies all the above requirements. Property a) is satisfied if we use logarithmic
moments [14] or the moments of the reciprocal, Dufresne [12], whilst no result is available



about arithmetic moments. Property b) is usually not guaranteed when we approximate
the true density with an Edgeworth or Laguerre series expansion. Property c) has never
been discussed in the literature except in Fusai and Tagliani[14] that give a bound to the
error in terms of the number of moments considered. Property d) is a delicate question
when we use Edgeworth series, indeed in practical work, the Edgeworth series converges
for a small number of terms and then diverges.

Finally, in order to have a reference point for comparing the different approximations
we use:

1. the lower and upper bounds given in Rogers and Shi [28] and in Thompson [31].

2. the numerical inversion of the Laplace transform given in Geman and Yor, [17],

3. the numerical solution of the reduced PDE given in Rogers and Shi [28].

We do not consider MonteCarlo simulation because, although there are a number of
techniques for variance reduction that allow to limit the number of simulations, it is still
quite time consuming requiring in every case several thousands of simulations.

In section 1 we describe the Black-Scholes framework underlying the Asian option
problem. In section 2 we discuss Gemany-Yor Laplace transform approach and the related
numerical inversion using the Dubner Abate method as discussed in Abate and Whitt, [1].
In section 3 we present the lower and upper bounds given in Rogers and Shi [28] and
in Thompson [31]. In section 4 we discuss the general moment problem recalling some
basic fact useful when we want approximate a distribution using its moments. Then
we describe different approximations based on the moments. We distinguish approaches
based on a) algebraic moments of the arithmetic average, b) moments of the reciprocal of
arithmetic average, c) moments of the logarithm of the arithmetic average and illustrate
the main properties of the different methods. Finally in section 6, we compare the different
approximations and then we draw some conclusion. In Appendix A we give some more
details about the derivation of the Geman-Yor formula.

2 The general framework

We assume that under the martingale measure the underlying asset price evolves according
to a Geometric Brownian Motion:

dSt = rStdt + σStdWt

St = S0e

(

r− σ2

2

)

t+σWt

(1)

where r is the instantaneous risk free rate, σ is the instantaneous volatility and Wt is a
Wiener process. If the asset pays a continuous dividend yield q the risk free rate becomes
r − q. Assuming that the average is computed continuously in time in the period (0, t),
we define:

At =

∫ t

0
e((r−σ2/2)w+σWw)dw (2)

and the payoff at time t of a Asian option is given by max[AtS0/t − K, 0] for a call option
and by max[K − AtS0/t, 0] for a put option. For numerical reasons, it is convenient to
consider the case of an Asian put option for which the price is computed as:

E0 [K − At]
+ =

∫ K

0
(K − xS0/t)fAt(x; t)dx (3)

where fAt denotes the density of At. Then the pricing problem is essentially related to
the determination of this density.



3 The Laplace transform (Geman-Yor)

In this section we briefly review the analytical result due to Geman and Yor, [17]. Using
the fact that a Geometric Brownian Motion is a time-changed squared Bessel process and
the stability by additivity of this process, Geman and Yor [17] have been able to provide
the Laplace transform of the Asian call option1. If we define:

cgy =
e−rt

t

4S

σ2
c (h, q) (4)

the Laplace transform wrto h =σ2t/4 of the function c (h, q) is given by:

C (λ, q) =

∫ +∞

0
e−λhc (h, q) dh =

∫ 1/(2q)
0 e−xx

1

2
(µ−v)−2 (1 − 2qx)

1

2
(µ+v)+1 dx

λ (λ − 2 − 2v) Γ
(

1
2 (µ − v) − 1

) (5)

where:

v =
2r

σ2
− 1; q =

σ2t

4

K

S
; µ =

√

2λ + v2

The same result has been obtained recently by Lipton [24] reducing the augmented
Black-Scholes PDE through the use of a non-dimensional variable and then solving it using
the Laplace transform.

Although there are numerous and well understood techniques for the Laplace Trans-
form inversion, in Finance this technique has received a very limited attention, mainly
because it is reputed, against the evidence, to be a method slow and difficult to imple-
ment accurately. In the case of Asian option we are aware only of a work by Fu and al.
[13], and among the different routines tested we agree with them in using the algorithm
due to Dubner and Abate [10] and described in detail in Abate and Whitt [1].

The inversion algorithm is essentially a trapezoidal rule approximation to the Bromwich
inversion formula. Since the trapezoidal rule is a quite simple integration procedure, its use
can appear surprising. It turns out to be surprisingly effective in this context with periodic
and oscillating integrands, because the errors tend to cancel. In particular, it turns out
to be better than familiar alternatives such as Simpson’s rule for inversion integrals. Two
features of the method are: a) the expression for the maximum error in the computed
inverse transform and b) the use of the Euler summation algorithm in order to exploit
the alternating character of the series and accelerate its convergence, for details compare
Abate and Whitt [1]. The inversion formula is then given by:

cda (h, q) ≈
m
∑

k=0

(

m

k

)

2−msn+k (h)

where:

sn (h) =
eA/2

2h
Re

(

C

(

A

2h
, q

))

+
eA/2

h

n
∑

k=1

(−1)k Re

(

C

(

A + 2kπi

2h
, q

))

(6)

The algorithm requires the specification of three parameters: A, n and m: a good choice
results to be A = 18.4, m= 15, n= 11, except when σ = 0.1 where we have used m= 35,
n= 15. The algorithm has been implemented in Microsoft Visual C++ Version 5.0 and all
the calculations have been done on a Compaq Presario with Pentium 133 processor. The
integral in (5) has been computed using Gaussian quadrature (Legendre) with 100 nodes.
In table 1 we report the results of the inversion and the lower and upper bound due to
Thompson [31] and to Rogers and Shi [28]. More results can be found in tables 5a-5c.

1A similar result has been obtained recently by Lipton [24] reducing the augmented Black-Scholes PDE
through the use of a non-dimensional variable and then solving it using the Laplace transform.



Table1: Laplace Inversion and Bounds
on the Asian Option Price

σ
√

t rt K Lower AW Upper

0.1 0.09 100 4.91508 4.91512 4.91541

0.2 0.09 100 6.77700 6.77735 6.77866

0.3 0.09 100 8.82755 8.82876 8.83329

0.4 0.09 100 10.92090 10.92377 10.93596

0.5 0.09 100 13.02253 13.02816 13.05680

The inversion did not present problems except for low volatility levels (σ
√

t < 0.08)
when we had numerical problems in the computation of the integral in (5), due to finite
precision of computers (double precision provides 16 decimal places). The same problem
has been noticed in solving the related PDE with finite difference schemes. Viceversa, in
this case Monte Carlo simulation results to be very effective.

Geman and Eydeland [15] suggest to replace e−z/2q in (5) using a series expansion
and the relationship between beta and gamma functions. Then they obtain the following
approximate expression for the Laplace transform2:

1

λ (λ − 2v − 2)

M
∑

i=0

1

i!

(

− 1

2q

)1+δ+i Γ ((µ − v) /2 − 1 + i) Γ ((µ + v) /2 + 2)

Γ (µ + 1 + i) Γ ((µ − v) /2 − 1)

where M is the number of terms used in the series expansion. For the numerical inversion
they apply the Fast Fourier Transform. However, we have applied to this expression the
AW algorithm described above and the inversion was accurate if σ

√
T > 0.3 with M=40.

If σ
√

T < 0.3 the numerical inversion results to be completely inaccurate, independently
on the number of terms in the series expansion.

4 The upper and lower bounds for the price (Thompson,
Rogers and Shi)

A different approach to the problem of Asian option price is to find a lower and upper
bound for the price and practically they result to be surprisingly accurate, i.e. the size of
the interval results to be small and in general the Asian option price will be near the lower
bound. The idea of finding the bounds is due to Curran [7], [8] and to Rogers and Shi [28].
These bounds have been improved by Thompson [31], [32] that was able to simplify the
computation of the lower bound given in Rogers and Shi. Moreover, Thompson gives an
upper bound for the option price, much more stronger than the one obtained by Rogers
and Shi. Using a lower and upper bound can give us some better feeling in choosing
the different methods described above and then understand the limits of the different
approaches.

The Asian option price is obtained through the computation of the quantity

E

(

S

t

∫ t

0
e(r−σ2/2)s+σWsds − K

)+

.

Making the substitution h = s/t and using the scaling property of the BM:

1

t

∫ t

0
e(r−σ2/2)s+σWsds =

∫ 1

0
e(r−σ2/2)T h+σWT hdh

=

∫ 1

0
e(r−σ2/2)T h+σ

√
T Whdh

2We need to remark that in the Geman and Eydeland paper there are several typographical errors, so
some attention has to be taken.



we can always consider the case with time to expiry equal to 1 and set the interest rate
equal to rt and the volatility equal to σ

√
t. So in the following we will assume that the

residual life of the option is equal to 1 and the risk-free rate r stands for rt and the
volatility σ stands for σ

√
t. Moreover we set:

X =

∫ 1

0
e(r−σ2/2)th+σ

√
tWhdh − K

and the option price is given by EX+.
Using the iterated conditional expectation and the fact that X+ ≥ X and that X+ is

a positive quantity, then:

E
(

X+
)

= E
[

E
(

X+ |Z
)]

≥ E
[

E (X |Z )+
]

and the accuracy of the lower bound can be estimated from the quite general bounds:

0 ≤ E
(

X+
)

− E
[

E (X |Z )+
]

≤ 1

2
E

[

√

V ar (X |Z )

]

The method can be very successfully if the conditioning variable Z is chosen to make
the conditional variance small. Rogers and Shi realize that a good choice results to be

Z =
∫ t

0 Wsds and then they are able to give an expression to E
[

E (X |Z )+
]

as a double

integral:

c ≥ clow ≡ e−r
∫ +∞

−∞

√
3φ
(√

3z
)

[∫ 1

0
S0e3σξ(1−ξ/2)z+αξ+ 1

2
σ2(ξ−3ξ2(1−ξ/2)2)dξ − K

]+

dz

where α =
(

r − σ2/2
)

, and where φ (x) is the normal density.
Thompson gives a simpler version of the above formula, trying to approximate the event

that the option makes a positive payout with a simpler event. If A = {
∫ 1

0 Stdt > K}, we
have for any event A∗:

E

[∫ 1

0
Sudu − K

]+

≥ E

[(∫ 1

0
Sudu − K

)

1A∗

]

=

∫ t

0
E (Su − K; A∗) du (7)

and a natural choice is A∗ = {
∫ t

0 Wudu > γ} where γ is chosen in an optimal way max-
iminizing the rhs in (7). The optimal value of γ, γ∗, results to be the unique solution
to:

∫ 1

0
S0 exp

(

3γ∗σξ (1 − ξ/2) + αξ +
1

2
σ2
(

ξ − 3ξ2 (1 − ξ/2)2
)

)

dξ = K (8)

and the lower bound is:

e−r
∫ 1

0
E



Su − K; 1(∫ 1

0
Wudu>γ∗

)



 dt

i.e.:

clow = e−r
∫ 1

0
S0eαξ+ 1

2
σ2ξΦ

(

−γ∗ + σξ (1 − ξ/2)

1/
√

3

)

dξ − KΦ

(

−γ∗

1/
√

3

)

(9)

where Φ is the normal distribution function.
Thompson shows also the lower bound is the same as the one given in Rogers and

Shi with the advantage of being expressed as a single integral. The computation of the
optimal value of γ can be done very quickly with standard optimization routines, such as
bisection or Newton search.



The upper bound given in Thompson is:

c ≤ cup ≡ e−r
∫ 1

0

∫ +∞

−∞
2vϕ (w)

[

a (t, x) Φ

(

a (t, x)

b (t, x)

)

+ b (t, x) ϕ

(

a (t, x)

b (t, x)

)]

dwdv

where v =
√

t, w = x/
√

t,

a (t, x) = S0 exp (σx + αt) − K (µt + σx) + Kσ (1 − t/2) x

b (t, x) = Kσ

√

1

3
− t (1 − t/2)2

µt =
1

K
(S0 exp (αt) + γ

√
vt)

vt = c2
t t + 2 (Kσ) ctt (1 − t/2) + (Kσ)2 /3

ct = S0 exp (αt) σ − Kσ

γ = (K − S0 (eα − 1) /α) /

∫ 1

0

√
vtdt

This upper bound results to be tighter than the one given in Rogers and Shi [28].

5 The moment problem

Before describing in detail the different approaches that make use of the moments, we
review some questions related to the determination of the distribution of the average
using the moments technique.

1. There is some initial reason to think that matching moments will give a good
approximation. For example, Lindsay and Roeder [23] show that if two distributions
functions have the same first n moments, then they must cross each other at least n
times. Moreover, Akhiezer [2], page 66, shows that the possible error can be bounded,
and establishes the relevant relationships of the difference between two distributions that
share the same 2m moments. However more recently, Lindsay and Basak [22] show that
this bound results to be quite strict only in the tails of the distribution.

2. When the random variable assumes only positive values, the distribution recovering
from its moments (the so called Stieltjes moment problem) arises both existence and de-
terminacy questions. We consider uniquely the latter one. In Stieltjes moment problem an
infinite sequence of moments determines a unique distribution iff this distribution decays
asymptotically as an exponential exp(−αxλ), α > 0, λ ≥ 1/2. For example, this does
not happen in the case of the lognormal density, that is, there are multiple distributions
with exactly the same moments3. This distribution has indeed tails decaying slower than
exp(−αxλ).

3. In the case the given information is represented uniquely by the sequence of mo-
ments, there are sufficient conditions for the moment problem to be determinate or inde-
terminate. The following two sufficient criteria can be useful

a) the popular Carleman’s criterion gives a sufficient condition that can be used to
verify if the infinite sequence of moments determines uniquely a distribution. The criterion
requires that:

∞
∑

n=1

1

µ
1

2n
n

= +∞ (10)

3For a proof compare Stoyanov [30], pagg.102-4, where there are also examples of distributions with
the same moments as the lognormal density.



b) the Krein condition, compare Akhiezer [2], requires the distribution function to be
absolutely continuous with density f (x) > 0, x > 0 (and f (x) = 0, x ≤ 0) and the
moments of all order exist. If :

∫ ∞

0

− ln f (x)

1 + x2
dx < ∞

then the distribution function is not determined by its moments.
c) In Shohat-Tamarkin, [29] it is possible to find a necessary and sufficient condition

for the determinacy problem, but this condition seems too complicated to be very useful.
In next subsections, we review the different moment based approximations that have

been proposed in the literature for solving the Asian option pricing problem.

5.1 Approximations based on the moments of
_

AT

On a practical side, the most used approximations in pricing Asian options are those based
on the tentative of recovering the density of the average from its moments. In order to
use this method, we need an expression for the moments of the arithmetic average. They
can be found in Geman and Yor [17], page 359, and are given by the following expression:

µn := E
[ _
AT

n]

=
n!

λ2n







n
∑

j=0

d
(v/λ)
j exp

[(

λ2j2

2
+ λjv

)

t

]







(11)

where:

d
(β)
j = 2n

∏

i6=j
0≤i≤n

[

(β + j)2 − (β + i)2
]−1

λ = σ; v =
(

r − σ2/2
)

/σ

and in particular for n = 1, we have:

µ1 =
e2(v+1)t − 1

2 (v + 1)

For the fact that the moment problem for the lognormal density is undeterminate,
in the case of the arithmetic average one might expect that approximations based on
a sequence of algebraic moments might either fail to converge, or converge to another
distribution with the same moments. A difficult proof would no doubt be required and
maybe a similar approximation could be numerically very unstable for more than a few
moments. On the other hand, in the case of the arithmetic average we have a convolution
of an infinite number of lognormal distributions and this convolution can change the
distribution from a heavy tail density (the lognormal) to a light-tail density (the arithmetic
average) and so there could a (little) possibility that the moments determine uniquely the
distribution. But we need to remark that the effect of averaging can just reduce the value
of the constant α, so that at finite values of x the tails seem decay fast, but for very
large values of x the term xλ in the product αxλ becomes again important. Geman and
Yor [17], page 359, have shown that the Carleman’s criterion is not satisfied in the case
of the average of the geometric Brownian motion4 and so nothing can be said about the
determinacy problem.

4However, Geman and Yor use a criterion that has to be used for the so called Hamburger’s moment
problem, i.e. when the r.v. is defined over the entire real axis, whilst in the present case the r.v. is defined
over the positive axis. This implies that in (10) we need to use µn and not µ2n as they do.



Although the determinacy problem in this case is unsolved, there are several appro-
ximations based on trying to recover the density of

_
AT using the information content of

its algebraic moments. For these approximations there exists no analytical bound for the
error term as a function of the number of moments included in the approximation. Then
for a fixed number of moments, the relative size of the error needs to be examined using
numerical analysis and so nothing can be said about convergence.

5.1.1 The lognormal approximation (Levy)

To use a lognormal density as approximating density of the average is a very common ap-
proximation among the practitioners and it has been suggested in Turnbull and Wakeman
[33] and in Levy [21].

If we assume that ln
_

AT has a normal distribution with mean m and variance v2, then,
for any integer n :

Elog

[ _
AT

n]

= enm+0.5n2v2

and where Elog stands for expected value assuming a (risk-neutral) lognormal distribution

for the average. The idea is to choose m and v to fit the true mean and variance of
_

AT /T .
We obtain:

m = 2 log µ1 − 1

2
log µ2 − log T (12)

v2 = log µ2 − 2 log µ1

and the price of the Asian call option is given by a modified Black-Scholes formula:

clog = S0em+v2/2−rT N (d1) − e−rT KN (d2) (13)

where d1 =(ln S0/K+m+v2)/v, d2=d1 − v.

5.1.2 The Edgeworth series approximation (Turnbull and Wakeman)

Using a two-parameters density we can capture the mean and the variance of the distri-
bution, but we could have important differences between the fitted and the true skewness
and kurtosis as we increase the volatility σ or the time to maturity of the option. For this
reason Turnbull and Wakeman [33] and Ritchken and al. [27] propose to use a fourth-order
Edgeworth series expansion. If flog

(

y; m, v2
)

is the lognormal density with parameters m
and v2, then the Edgeworth approximation fedg

(

y; m, v2
)

to the true density is given by:

fedg

(

y; m, v2
)

= flog

(

y; m, v2
)

+
4
∑

i=1

ki

i!

∂iflog

(

y; m, v2
)

∂yi
+ e (y) (14)

where e (y) is the residual error term and ki is the difference between the i-th cumulant of
the exact distribution and the approximate distribution:

ki = χi (f) − χi (l)

and:

χ1 (f) = µ1

χ2 (f) = E
( _
AT −µ1

)2

χ3 (f) = E
( _
AT −µ1

)3

χ4 (f) = E
( _
AT −µ1

)4
− 3χ2 (f)



The first cumulant is the mean, the second the variance, the third a measure of skewness
and the fourth a measure of kurtosis.

No analytical bound for the error term e(y) as a function of the number of terms
included in the approximation exists. If all moments exist, it can be shown that e(y) goes
uniformly to zero in y as the number of moments included in the approximation increases.
For a fixed number of moments, the relative size of the error needs to be examined using
numerical simulations. Moreover, if the error between the lognormal model and the true
one is small, then the approximating technique on average adds noise, although not large
in an absolute sense. For details compare Jarrow and Rudd [19].

Once the parameters m and v2 have been set according to (12) and then k1 = k2 = 0
in the expansion above, the option price formula is given by, compare Jarrow and Rudd
[19]5 page 355:

cedg = clog+e−rT S0

T



−k3

6

∂flog

(

y; m, v2
)

∂y

∣

∣

∣

∣

∣

y=T K/S0

+
k4

24

∂2flog

(

y; m, v2
)

∂y2

∣

∣

∣

∣

∣

y=T K/S0



+e (K)

(15)
where clog is given by (13) and where flog

(

y; m, v2
)

is the lognormal density with param-
eters m and v2.

In figure 1 we compare the transition densities of the underlying asset, of the arithmetic
average obtained using Laplace inversion technique and the two approximations based on
the lognormal density. Note that using the Edgeworth approximation, for high volatility

levels
(

σ
√

T > 0.3
)

the density becomes bimodal and besides it can assume negative values.

The density of the underlying asset, of the arithmetic average (obtained with the Laplace
inversion) and the lognormal and Edgeworth approximations. Note the negative values
assumed by the Edgeworth approximation. Parameters: σ = 0.4, r = 0.09, t = 1.

5.1.3 The reciprocal gamma approximation (Milevsky and Posner)

Milevsky and Posner [25] have proved that the stationary density for the arithmetic average
of a geometric Brownian motion is given by a reciprocal gamma density, i.e. the reciprocal
of the average has a gamma density. The same result, using different techniques, have
been previously obtained by Dufresne [11], De Schepper and al. [9], Yor [36], page 525.

In particular they have shown that
_
A∞= lim

t→∞

_
Athas a density given by:

frg (x; α, β) =
β−αx−1−α

Γ (α)
exp (−1/(xβ))

where α = 1-2r/σ2and β = σ2/2. It is easy to verify that 1/
_
A∞ has a gamma density.

The result is valid provided that r − σ2/2 < 0. Milevsky and Posner [25] state also that,
according to the Kolmogorov-Smirnov criterion, this density is a better fit to the true
density than the lognormal, where the true density has been estimated using Monte Carlo
simulation.

The idea in Milevsky and Posner [25] is to approximate the density of the average
using the stationary density given above, but where the parameters α and β are chosen
in order to match the first two moments of the average. The moments of the reciprocal
gamma distribution are:

Erg

[(

1

A∞

)n]

=
1

β (α − 1) (α − 2) ... (α − n)

5Respect to the formula in Jarrow and Rudd in the present formula does not appear the term involving
the difference between the second-order cumulants because, by construction, it is equal to zero.



and are positive, provided that α > n. Fitting the first two moments to the corresponding
moments of the arithmetic average S0

_
AT /T , the parameters α and β are given by:

α =
S0

T

2µ2 − µ2
1

µ2 − µ2
1

, β =

(

S0

T

)2 µ2 − µ2
1

µ2µ1

and, assuming continuous averaging, the price crg of the Asian option with residual life
equal to T is given by:

crg =
1 − e−rT

rT
S0G

(

1

K
; α − 1, β

)

− e−rT KG

(

1

K
; α, β

)

(16)

where G (x; α, β) is the cumulative density function of the gamma density function and
can be expressed in terms of the incomplete Gamma function, Press and al. [26], page
216. However, in the computation above it is preferable to use numerical integration.

5.2 Approximations based on the moments of 1
At

.

Recently, Dufresne [12] has proved the following important and surprising result:

Theorem 1. (Dufresne) The distribution of 1/At is determined by its moments.

Exploiting this result, it could be reasonable to recover the density of 1/At and then
the density of At. Indeed, for the computation of the price of the Asian option Dufresne
uses Laguerre expansions of the price in terms of the moments of 1/At. Unfortunately, the
computation of the moments requires to solve numerically a differential-difference equa-
tion for the k-th moment of 1/At and this fact may arise problems in the estimation of
higher order moments. Indeed in order to obtain a good approximation, Dufresne has to
use at least the first 11 moments for volatility levels around 0.3, and the first 5-6 moments
for higher volatility levels. Besides this confirms the fact that a high volatility increases
the accuracy of the approximation methods (Laplace transform, numerical solution of the
PDE). The main advantage of the Dufresne approach is the convergence of the approxi-
mated price to the true one as we increase the number of considered moments. The main
disadvantages are: a) no analytical bound on the error introduced by truncating the series
after n terms is available, b) it is not guaranteed that the density assumes always positive
values (compare figures in the Dufresne paper), c) the approximation works well only for
σ

√
T > 0.28.

5.3 Approximations based on the moments of ln
_

AT

In this section we show that:
a) the distribution of the logarithm of the average is determined by its moments;
b) we then show how to calculate the logarithmic moments;
c) we propose the Edgeworth expansion around a normal density for recovering the

density using the information content of the logarithmic moments.
We have the following result:

Theorem 2. The distribution of the logarithm of the average is determined by its mo-
ments.

Proof : The proof is quite simple once we register the result in Dufresne [12] that

E
[ _
AT

γ]

exists finite for every real value of γ6.This fact implies that the moment generating

6It is important to remember that the existence of all (power) moments is a necessary condition for the
distribution to be determined by its moments. If the moments are not finite it means that the tails do not
have an exponential decaying behavior.



function of ln
_

AT :

E

[

eγ ln
_

AT

]

=

∫ +∞

−∞
eγxf

ln
_

AT
(x) dx =

∫ +∞

0
eγ ln xf _

AT
(x) dx = E

[ _
AT

γ]

exists finite for every real value of γ. Then the density function to be recovered has an
exponentially decaying behavior7 and this is a sufficient condition for moment problem
determinacy�.

This result appears natural if we recall that the logarithm of a lognormal distribution
has a normal distribution that is determined in a unique way from the sequence of its
moments. The distribution of the average should be not very different from a lognor-
mal distribution and so it is natural the result that the logarithm of the average has a
distribution determined entirely from its moments.

The moments of ln
_

AT . In order to calculate the moments of
_

ln AT we use the
expression given8 in Geman and Yor [16] for the moments of

_
AT

n
, n real. If we define:

Dh =

∫ h

0
e2(Ws+vs)ds

we have, by the scaling property of BM:

At =
4

σ2
D σ2t

4

For every n ≥ 0 (n a real number), the Laplace transform of E (Dn
h) with respect to

h, compare Geman and Yor[16], is given by:

Lh (E (Dn
h)) :=

∫+∞
0 e−λhE (Dn

h) dh

= 1
λ

Γ(n+1)Γ((µ+v)/2+1)Γ((µ−v)/2−n)
2nΓ((µ−v)/2)Γ(n+1+(µ+v)/2)

(17)

so we have that:

Lh (E (An
t )) = Lh

(

E

(

4

σ2
Dh

)n)

=

(

4

σ2

)n

Lh (E (Dh)n)

If we differentiate m times the above expression with respect to n and then we set
n = 0, we obtain:

∂mLh (E (An
t ))

∂mn

∣

∣

∣

∣

n=0
= Lh (E (lnm At))

i.e. the Laplace transform of the desired moments. Then the moments are obtained by
inversion. The procedure is the following:

1) For every fixed λ, we compute the m-order derivative of (17) with respect to n.
2) We operate the numerical inversion choosing the values of T , σ and r and so we fix

the corresponding value of h = σ2T/4.
The differentiation can be done numerically applying the Cauchy-Goursat integral

theorem9, compare Churchill and Brown [5]. The inversion has been done using the
Abate-Whitt algorithm with the same parameter settings as for the inversion of the Laplace
transform of the Asian option price. Respect to the inversion of the Asian option price, we
did not have problems for low volatility levels. Moreover, the computation of the Laplace
transform in this case appears much less difficult than respect to the Geman-Yor formula.

7If there exists
∫ +∞

0
eγxfln A (x) dx then fln A (x) has an asymptotic behavior given by e−αx, |α| > |γ|.

8Alternatively, the formula below can be obtained using the same approach described in Appendix A1
for the determination of the Laplace transform of the Asian option price.

9In applying the Cauchy integral theorem, note that the real part of the singularities for n are given by
-1, Re-(1+(µ + v)/2)=r0 and by Re((µ + v)/2)=r1>0. We can verify that |r1| < |r0|, so that as contour in
the Cauchy integral we have chosen the circle centered at the origin with radius R <min[1, Re((µ + v)/2)].
The numerical computation of the Cauchy integral is obtained trough the Lyness algorithm that reduces
the computation of the integral along a closed path in the complex plane to the computation of a real
integral over [-π, π] by the trapezoidal rule.



5.3.1 The Edgeworth approximation (Fusai and Tagliani)

Once we have calculated the moments of ln
_

AT we have to choose how many moments
consider for recovering the density of ln

_
AT . In Fusai and Tagliani [14] are discussed three

possible choices: a) the normal distribution, b) an Edgeworth expansion around a normal,
c) a maximum entropy approximation. In this paper we present only the Edgeworth
expansion around a normal density for its greater simplicity, however among the different
moment based methods the maximum entropy method is the preferable.

The idea is to use as density for ln
_

AT an Edgeworth series approximation around a
normal distribution and not, as usually it is done, to approximate the density of

_
AT using

an Edgeworth series around a lognormal distribution.
Then the approximating density for ln

_
AT is given by:

fedgnorm (y) = fnorm

(

y; m, v2
)

+
4
∑

i=1

ki

i!

∂ifnorm
(

y; m, v2
)

∂yi
+ e (y) (18)

m = E
(

ln
_

AT

)

(19)

v2 = E
(

ln2
_

AT

)

− m2 (20)

where fnorm (y) is the normal density with mean m and variance v2, e (y) is the residual
error term and ki is the difference between the i-th cumulant of the exact distribution and
the approximate distribution:

ki = χi (f) − χi (l)

and:

χ1 (f) = µ1 = E
(

ln
_

AT

)

χ2 (f) = E
(

ln
_

AT −µ1

)2

χ3 (f) = E
(

ln
_

AT −µ1

)3

χ4 (f) = E
(

ln
_

AT −µ1

)4
− 3χ2 (f)

The approximating density for
_

AT is given by the following expression:

f _

AT
(y) =

fednorm

(

ln y; m, v2
)

y

Using this density we have computed the price of the Asian call option exploiting the
fact that:

∫+∞
0

(

y S
T − K

)+
f _

AT
(y) dy = S

T

∫+∞
KT/S

(

y − K T
S

)+
f _

AT
(y) dy

= S
T

∫ 1
0

(

KS
T w − K T

S

)+
f _

AT

(

KT
Sw

)

KS
T w2 dw

so that the infinite integration range has been reduced to a finite one.
Obviously this approximation has the limit that there is no expression for bounding

the error and moreover it is not guaranteed the positivity of the density, but respect to the
Edgeworth expansion around a lognormal distribution the current approximation appears
much more robust.



6 A comparison between the different approximations

The scheme below compares the different methods that exploit the information content
of a sequence of moments and the properties of the approximation used for recovering
the density of the average and the option price. Regard to the Edgeworth approximation
using the algebraic moments, the convergence to the true density is not known, because
the determinacy problem is unsolved. Instead using the Edgeworth approximation with
logarithm moments the determinacy problem is positively solved, so that it makes sense
to investigate the convergence of the approximation that is uniform as the number of
moments considered increase.

Moments Determinacy Approximant Convergence Notes

E0 (An
t ) Not known Edgeworth Not known

very simple;
negative densities;
no error bound.

E0

((

1
At

)n)

Yes Laguerre Yes
not very fast;

numerical problems;
no error bound.

E0 (ln An
t ) Yes Edgeworth Yes

simple;
good accuracy;
no error bound.

E0 (ln An
t ) Yes ME Yes

not very fast,
very accurate;
error bound.

The different moments based approximations can be compared in several ways:

1. evaluating with the Kolmogorov-Smirnov criterion the distance between the approx-
imating distribution and the distribution obtained by the Laplace inversion; unfor-
tunately, as we will this measure does not seem to be useful once we consider the
pricing problem.

2. compare the different approximations with the lower and the upper bound to the
option price as given in Rogers and Shi [28] and in Thompson [31]. The lower bound
appears to be very strict, but from this bound we cannot recover easily information
regard to the density function of the average or the Greeks of the contract;

3. evaluate the difference (mean, absolute, percentage) between the option price coming
from the different approximations and the one obtained by the Laplace transform
inversion.

As we can see from table (4) where we report the Kolmogorov Smirnov measure between
the density obtained with the numerical inversion and the different approximations, we
can draw the following conclusions:

a) for low volatility levels (σ
√

T < 0.2), the different approximations perform equally
well and the first two moments seems to be sufficient to recover the density of the average.
The lognormal approximation based on the logarithmic moments does slightly better than
the lognormal approximation based on the power moments. The reciprocal gamma behaves
better than the lognormal. However as we increase the volatility level, it is important to
include higher order moments.



b) if we restrict our attention to approximations based on the moments of the average
the GB2 approximation dominates the Edgeworth approximation. Moreover using the
Edgeworth approximation, for high volatility levels we obtain a bimodal density. Besides
the density can assume negative values. This fact should discourage from using an Edge-
worth approximation when the distribution is not uniquely determined by its moments.

c) In every case the approximations based on the moments of the logarithm of the
average perform better and in this sense the Edgeworth approximation around a normal
and the ME with four moments are very good.

d) although not implemented in Premia, with regard to the ME approximation to use
four moments instead of six seems very reliable.

Table 4: Kolmogorov-Smirnov distance between
the true distribution and the different approximations

Volatility Fitlog EdgeLog RGamma GB2 FitNorm EdgeNorm ME4 ME6

0.1 0.03055 0.03301 0.03441 0.03248 0.03053 0.03282 0.03199 0.03168

0.2 0.01327 0.01821 0.01961 0.01569 0.01246 0.01661 0.01656 0.01647

0.3 0.01071 0.01725 0.01549 0.00990 0.00833 0.01123 0.01142 0.01132

0.4 0.01200 0.02530 0.01397 0.00673 0.00801 0.00851 0.00889 0.00886

0.5 0.01470 0.06956 0.01344 0.00617 0.00859 0.00687 0.00746 0.00740

Maximum 0.03055 0.06956 0.03441 0.03248 0.03053 0.03282 0.03199 0.03168

Average 0.01624 0.03266 0.01938 0.01420 0.01358 0.01521 0.01527 0.01514

If we compare the different approximations when we have to price Asian options, we
can see a synthesis of the results in table 5 and in more detail in tables 6 and 6a-6f. In
table 5, using as benchmark the result of the Laplace inversion, we report the average of
the mean squared error (MSE), the average mean absolute error (MAE) and the absolute
maximum error (MAXA), where the average is taken considering the above errors in tables
6a-6f, when we vary the volatility level (σ

√
T = 0.05, 0.1, 0.2, 0.3, 0.4, 0.5). In the case

σ
√

T = 0.05 the column with the Laplace inversion in table 6 has been substituted by the
average of the low and the upper bound, because in this case we had numerical problems
in the computation of the Laplace transform. In table 5 we report also the percentage of
times the price of a given approximation stays inside the lower and upper bound given in
Rogers and Shi [28] and in Thompson [31].

Table 5: Evaluation of different approximations

MSE MAE MAXA %Inside

Abate-Whitt - - - 96.67%

ME4 0.00028 0.00091 0.00380 64.44%

Lower 0.00049 0.00183 0.00647 -

EdgeNormale 0.00083 0.00304 0.01279 31.11%

GB2 0.00203 0.00682 0.03363 31.11%

Upper 0.00235 0.00888 0.03631 -

RecGamma 0.01362 0.05009 0.19608 2.22%

Lognormal 0.01661 0.05933 0.24819 8.89%

Edgeworth 0.01928 0.06085 0.56647 31.11%

We can draw the following conclusions:
a) Comparing tables 6a-6f, we can see the very good results that we can obtain with the

numerical Laplace inversion. Indeed also with a volatility level at 10% when the bounds



to the option price are very tight, the price obtained stays inside this small range: e.g.
when σ

√
t = 0.1, r = 0.05, S0 = 100 and K = 100 the lower bound is 3.64134 and the

upper bound is 3.64157 and the Laplace inversion10 gives 3.64139.
b) A second aspect are the accurate results obtained with the maximum entropy esti-

mate based on four moments. The fact that the percentage of times this estimate stays
inside the bound is only 64.4% is due to the difficulties in estimating the ME distribution
for low volatility levels (σ

√
t = 5%). However, as we increase the volatility, also the ME

estimate stays inside the bounds and the improvement respect to the lognormal approxi-
mation is around 65 times. The maximum error committed with a ME approach with four
moments is equal at 0.0032 when σ=10% and reduces to 0.0015 as σ increases at 50%.

c) The results of the Edgeworth expansion around the normal distribution compared
to the Edgeworth expansion around a lognormal density, confirms the fact that using the
(first four) logarithmic moments is a good choice.

d) Among the approximations that use the power moments, the Edgeworth expansion
around a lognormal distribution performs very badly, mainly as we increase the volatility
level. The use of the Reciprocal Gamma approximation does not seem to improve sig-
nificantly the results respect to the lognormal approximation. Another interesting point
is that also with very low volatility levels the prices obtained with the approximations
based on the power moments stay very often outside the bounds. However the maximum
absolute difference between the lognormal approximation and the Laplace answer is 0.008
for volatility at the 10% level and increases at 0.248 for a volatility at 50%. This non-
enormous absolute error can explain the success of the lognormal approximation among
practitioners.

10In this case the Abate-Whitt algorithm has been used with a total of 50 (35+15) terms, instead than
the usual 26 (15+11) as in the other tables.



7 Conclusion

In the present paper we have given new insights regard the problem of pricing Asian options
using moments. We have showed, both theoretically both empirically, how approximations
based on the moments of the logarithm of the arithmetic average are more reliable than
approximations based on the algebraic moments of the arithmetic average. An important
extension left for future work is to examine if approximations based on the logarithmic
moments are possible also in the case of discrete monitoring of the average and in the case
of floating strike Asian options. Indeed typically traded options are written on baskets of
dividend-paying securities: even the evaluation of moments of the average for which there
exists explicit formulae, becomes difficult beyond order three.
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