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Abstract

In the Black-Cox model, a firm defaults when its value hits an exponential barrier. Here, we

propose an hybrid model that generalizes this framework. The default intensity can take two

different values and switches when the firm value crosses a barrier. Of course, the intensity level

is higher below the barrier. We get an analytic formula for the Laplace transform of the default

time and present numerical methods to numerically recover its distribution. We explain how this

model can be calibrated to Credit Default Swap prices and show its tractability on different kinds

of data. Last, we discuss the extension to multiple barriers and intensity levels.
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1 Introduction and model setup

Modelling firm defaults is one of the fundamental matter of interest in finance. It has
stimulated research over the past decades. Clearly, the recent worldwide financial crisis
and its bunch of resounding bankruptcies have underlined once again the need to better
understand credit risk. In this paper, we focus on the modelling of a single default. Usu-
ally, these models are divided into two main categories: structural and reduced form (or
intensity) models.

Structural models aim at explaining the default time with economic variables. In his
pathbreaking work, Merton [14] connects the default of a firm with its ability to pay back
its debt. The firm value is defined as the sum of the equity value and the debt value, and
is supposed to be a geometric Brownian motion. At the bond maturity, default occurs if
the debtholders cannot be reimbursed. In this framework, the equity value is seen as a
call option on the firm value. Then, Black and Cox [4] have extended this framework by
triggering the default as soon as the firm value goes below some critical barrier. Thus, the
default can occur at any time and not only at the bond maturity. Many extensions of the
Black Cox model, based on first passage time, have been proposed in the literature. We
refer to the book of Bielecki and Rutkowski [3] for a nice presentation. Recently, attention
has be paid to the calibration of these models to Credit Default Swap (CDS in short) data
(Brigo and Morini [5], Dorfleitner and al. [11]). However, though economically sounded,
these models can hardly be used intensively on markets to manage portfolios especially for
hedging. Unless considering dynamics with jumps (see Zhou [18] for example), their major
drawback is that the default time is predictable and no default can occur when the firm
value is clearly above the barrier. In other words, they understimate default probabilities
and credit spreads for short maturities.

The principle of reduced form models is to describe the dynamics of the instantaneous
probability of default that is also called intensity. This intensity is described by some
autonomous dynamics and the default event is thus not related to any criterion on the
solvency of the firm. We refer to the book of Bielecki and Rutkowski [3] for an overview
of these models. In general, they are designed for being easily calibrated to CDS market
data and are in practice more tractable to manage portfolios.

However, none of these two kinds of model is fully satisfactory. In first passage time
models, the default intensity is zero away from the barrier and the default event can be
forecasted. Intensity models are in line with CDS market data, but remain disconnected
to the rationales of the firm like its debt and equity values. Thus, they cannot exploit the
information available on equity markets. To overcome this shortcoming, and to provide a
unified framework for pricing equity and credit products, hybrid models have been intro-
duced, assuming that the default intensity is a (decreasing) function of the stock. Here,
We mention the works of Atlan and Leblanc [2], and Carr and Linetsky [6] who consider
the case of a defaultable constant elasticity model.

In this paper, we propose an hybrid model, which extends the Black-Cox model and
in which the default intensity depends on the firm value. Let us present it in detail. We
consider the usual framework when dealing with credit risk and firm value models. Namely,
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we assume that we are under the risk-neutral probability measure and that the (riskless)
short interest rate is constant and equal to r > 0. We denote by (Ft, t ≥ 0) the default-
free filtration and consider a (Ft)-Brownian motion (Wt, t ≥ 0). We assume that the firm
value (Vt, t ≥ 0) evolves according to the Black-Scholes model and therefore satisfies the
following dynamics:

dVt = rVtdt + σVtdWt, t ≥ 0, (1)

where σ > 0 is the volatility coefficient. To model the default event, we assume that the
default intensity has the following form:

λt = µ21{Vt≤C eαt} + µ11{Vt>C eαt}, (2)

where C > 0, α ∈ R, and µ2 > µ1 ≥ 0. This means that the firm has an instantaneous
probability of default equal to µ2 or µ1 depending on whether its value is below the time-
varying barrier C eαt or above. More precisely, let ξ denote an exponential random variable
of parameter 1 independent of the filtration F . Then, we define the instant of default of
the firm by:

τ = inf{t ≥ 0,
∫ t

0
λsds ≥ ξ}. (3)

As usual, we also introduce (Ht, t ≥ 0) the filtration generated by the process (τ ∧ t, t ≥ 0)
and define Gt = Ft ∨ Ht, so that (Gt, t ≥ 0) embeds both default-free and defaultable
information.

This framework is a natural extension of the pioneering Black-Cox model introduced
in [4], which can indeed be simply seen as the limiting case of our model when µ1 = 0
and µ2 → +∞. In the work of Black and Cox, bankruptcy can in addition happen at the
maturity date of the bonds issued by the firm when the firm value is below some level. Here,
we do not consider this possibility, even though it is technically feasible, because it would
make the default predictable in some cases. In the Black-Cox model, the barrier C eαt is
meant to be a safety covenant under which debtholders can ask for being reimbursed. Here,
default can happen either above or below the barrier, which represents instead the border
between two credit grades. Let us briefly explain what typical parameter configurations
could be for this model. For a very safe firm, we expect that its value start above the
barrier with µ1 very close to 0. The parameter µ2 should also be rather small since its
cannot be downgraded too drastically. Instead, for firms that are close to bankruptcy, we
expect to have C < V0 and a high intensity of default µ2. Then, the parameters should be
such that the firm is progressively drifted to the less risky region (i.e. r −σ2/2−α > 0). In
fact, the CDS prices often reflect two possible outcomes in such critical situations. Either
the firm makes bankruptcy in the next future, or it survives and is then strengthened (see
Brigo and Morini [5] for the Parmalat crisis case).

Now, we present the main theoretical result of this paper which gives the explicit
formula for the Laplace transform of the default time.

Theorem 1.1. Let us set b = 1
σ

log(C/V0), m = 1
σ
(r − α − σ2/2) and µb = µ21{b>0} +

µ11{b≤0}. The default cumulative distribution function P (τ ≤ t) is a function of t, b, m,
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µ1 and µ2 and is fully characterized by its Laplace transform defined for z ∈ C+ := {z ∈
C, Re (z) > 0},

∫ ∞

0
e−zt P (τ ≤ t)dt = emb−|b|

√
2(z+µb)+m2

(
1

z + µ1

− 1

z + µ2

)
×


− 1{b>0} (4)

+
−m +

√
2(z + µ2) + m2

√
2(z + µ1) + m2 +

√
2(z + µ2) + m2



+

1

z
− 1

z + µb

.

Theorem 1.1 can actually fit in the framework of Theorem 4.1 in the particular case of
one barrier (n = 1). Hence, we refer the reader to Section 4 for a proof of Theorem 1.1. Let
us mention here that other Black-Cox extensions based on analytical formulas for Parisian
type options have been proposed in the recent past. Namely, Chen and Suchanecki [8],
Moraux [15] and Yu [17] have considered the case where the default is triggered when the
stock has spent a certain amount of time in a row or not under the barrier. Nonetheless,
both extensions present the drawback that the default is actually predictable and the
default intensity is either 0 or non-finite. This does not hold in our framework.

The paper is structured as follows. First, we present in Section 2 two methods to
numerically invert the Laplace transform of the default cumulative distribution function
given by Theorem 1.1. For each method, we state in a precise way its accuracy which
heavily relies on the regularity of the function to be recovered. The required regularity
assumptions are actually proved to be satisfied by the default cumulative distribution
function, in Appendix A. Then, our main purpose is to explain how this closed formula
for the Laplace transform combined with an efficient inversion technique can be exploited
in a fast calibration procedure to CDS market data. Section 3 is devoted to practical
applications of the theoretical results obtained before. We present a calibration procedure
for the model and show on different practical settings how the model can fit the market
data. The results are rather encouraging even if the meaning of the calibrated parameters
can be discussed in a few examples. Last, in Section 4 we extend Theorem 1.1 to the case
of multiple barriers with one intensity of default per slice.

2 Numerical methods for Laplace inversion

From Theorem 1.1, we know that the default time distribution is tractable using the
semi-analytical formula for its Laplace transform. In this section, we are investigating
different ways of inverting this Laplace transform to recover the cumulative distribution
function of the default time τ , and also its first order derivatives with respect to each
parameter. Recovering these derivatives enables us to quickly compute the sensitivities
with respect to the different parameters, which is of great importance for the calibration
procedure, if one wants to use a gradient descent to minimize some distance between the
real and theoretical prices.
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In this section, f : R → R is a real valued function that vanishes on R− and such that
f(t) e−γt is integrable for some γ > 0. We will denote by f̂(z) =

∫∞
0 e−zt f(t)dt its Laplace

transform for z ∈ C when the integral is well-defined, i.e at least when Re (z) ≥ γ. The

scope of this section is to present numerical methods to recover f from f̂ and analyze their
accuracies. Basically in our model, f will be either P(τ ≤ t) or its derivative w.r.t. one of
the model parameters.

2.1 The Fourier series approximation

From the formulas obtained for the Laplace transform of the default time, it is clear that
these Laplace transforms are analytical in the complex half-plane C+. Thanks to [16], we
know how to recover a function from its Laplace transform.

Theorem 2.1. Let f be a continuous function defined on R+ and γ a positive number. If
the function f(t) e−γt is integrable, then its Laplace transform f̂(z) =

∫∞
0 e−zt f(t)dt is well

defined on {z ∈ C, Re (z) ≥ γ}, and f can be recovered from the contour integral

f(t) =
1

2πi

∫ γ+i∞

γ−i∞
est f̂(s)ds =

eγt

2π

∫ +∞

−∞
e−ist f̂(γ − is)ds, t > 0. (5)

For any real valued function satisfying the hypotheses of Theorem 2.1, we introduce
the following discretisation of Equation (5) with step h > 0

fh(t) =
h eγt

2π

∞∑

k=−∞
e−ikht f̂ (γ − ikh) . (6)

From [1, Theorem 5], one can prove using the Poisson summation formula that

Proposition 2.2. If f is a continuous bounded function satisfying f(t) = 0 for t < 0, we
have

∀t < 2π/h, |f(t) − fh(t)| ≤ ‖f‖∞
e−2πγ/h

1 − e−2πγ/h
. (7)

2.2 The fast Fourier transform approach

In this section, we focus on the inversion using an FFT based algorithm. First, let us
recall that for a given integer N ∈ N

∗, the forward discrete Fourier transform (DFT) of
(xk, k = 0, . . . , N − 1) is defined by

x̂l =
N−1∑

k=0

e−2iπkl/N xk, for l = 0, . . . , N − 1.

It is well known that there are Fast Fourier Transform algorithms that enable to compute
(x̂l, l = 0, . . . , N − 1) with a time complexity proportional to N log(N). In their path-
breaking paper, Cooley and Tukey [10] have given such an algorithm for the special case
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where N is a power of 2. Many improvements of this algorithm have been proposed in
the literature relaxing this constraint on N . In finance, the use of the FFT for option
pricing has been popularized by Carr and Madan [7]. Here, we use the FFT algorithm in a
different manner to compute the cdf of τ and its derivatives with respect to each parameter
up to some time T > 0.

Let us assume that we want to recover the function f on the interval [0, T ]. Typically,
T will represent the largest maturity of the CDS that one wishes to consider. We set
h < 2π/T , so that h < 2π/t for any t ∈ (0, T ] and we can therefore control the error
between the Fourier series fh and f thanks to Proposition 2.2:

∀t ∈ (0, T ], |f(t) − fh(t)| ≤ ‖f‖∞
e−2πγ/h

1 − e−2πγ/h
.

Since f is real valued, f̂(z̄) = f̂(z), and we obtain

fh(t) =
h eγt

2π
f̂(γ) +

h eγt

π
Re

( ∞∑

k=1

e−ikht f̂ (γ − ikh)

)
, (8)

that we want to approximate by the following finite sum

fN
h (t) =

h eγt

2π
f̂(γ) +

h eγt

π
Re

(
N∑

k=1

e−ikht f̂ (γ − ikh)

)
. (9)

For 1 ≤ l ≤ N , we set tl = 2πl/(Nh) to get

fN
h (tl) =

h eγtl

2π
f̂(γ) +

h eγtl

π
Re

(
N∑

k=1

e−2iπkl/N f̂ (γ − ikh)

)

=
h eγtl

2π
f̂(γ) +

h eγtl

π
Re

(
e−2iπ(l−1)/N

N∑

k=1

e−2iπ(k−1)(l−1)/N e−2ikπ/N f̂ (γ − ikh)

)
.

Therefore, (fN
h (tl), l = 1, . . . , N) can be computed easily using the direct FFT algorithm

on the vector (e−2ikπ/N f̂ (γ − ikh) , k = 1, . . . , N).
Now, let us analyze the error induced by approximating (f(tl))l by (fN

h (tl))l. The
following proposition gives an upper bound of the error involved in the truncation of the
series appearing in fh.

Proposition 2.3. Let f be a function of class C3 on R+ such that there exists ǫ > 0
satisfying ∀k ≤ 3, f (k)(s) = O(e(γ−ǫ)s). Let us assume moreover that f(0) = 0. Let
A ∈ (0, 2π). Then, there exists a constant K > 0 independent of t such that:

∀t ∈ (0, A/h], |fN
h (t) − fh(t)| ≤ K(1 + 1/t)

eγt

N2
. (10)
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Proof. From three successive integrations by parts, we get:

f̂ (γ − ikh) =
∫ ∞

0
e(ikh−γ)u f(u)du

=
−f ′(0)

(ikh − γ)2
+

f ′′(0)

(ikh − γ)3
−
∫ ∞

0

f (3)(u)

(ikh − γ)3
e(ikh−γ)u du.

We set Ek =
∑k−1

j=0 e−ijht = (1 − e−ikht)/(1 − e−iht) and get by a summation by parts

N∑

k=0

e−ikht

(ikh − γ)2
=

EN+1

(iNh − γ)2
+

N∑

k=1

Ek
h(2γ + i(2k − 1)h)

(ikh − γ)2(i(k − 1)h − γ)2
− 1

γ2
.

Therefore, we deduce that:

2π

heγt
(fN

h (t) − fh(t)) = 2f ′(0) Re


 EN+1

(iNh − γ)2
+

∞∑

k=N+1

Ek
h(2γ + i(2k − 1)h)

(ikh − γ)2(i(k − 1)h − γ)2




+2 Re




∞∑

k=N+1

e−ikht f ′′(0) − ∫∞
0 f (3)(u) e(−γ+ikh)u du

(ikh − γ)3
du


 .

Then, using that for any k ∈ N |Ek| ≤ 2/|1 − e−iht|, we get:

∣∣∣∣
2π

heγt
(fN

h (t) − fh(t))
∣∣∣∣ ≤ 4|f ′(0)|

|1 − e−iht|


 1

γ2 + (Nh)2
+

∞∑

k=N+1

h

√
(2γ)2 + ((2k − 1)h)2

(γ2 + (kh)2)(γ2 + ((k − 1)h)2)




+2(|f ′′(0)| + C/ǫ)
∞∑

k=N+1

1

(γ2 + (kh)2)3/2
,

where C = supt≥0 |f (3)(t) e(ǫ−γ)t |. The result follows form noticing that supy∈[0,A]
y

|1−e−iy | <
∞.

Remark 2.4. When b 6= 0, the functions Pb,m,µ1,µ2(t) and ∂pPb,m,µ1,µ2(t) for p ∈ {b, m, µ1, µ2}
satisfy the above assumption thanks to Proposition A.3.

When b = 0, we can check from (31) that there exist some constants c and cp for
p ∈ {m, µ1, µ2} such that the following expansions hold when k → +∞:

L0,m,µ1,µ2(γ−ikh) =
c

(γ − ikh)2
+O(1/k3), and ∂pL0,m,µ1,µ2(γ−ikh) =

cp

(γ − ikh)2
+O(1/k3).

Therefore, we can use the same proof as in Proposition 2.3 to bound the truncation error
by K(1 + 1/t) eγt

N2 . On the contrary, the derivative with respect to b satisfies ∂bL0,m,µ1,µ2(γ −
ikh) = (m +

√
2(γ − ikh + µ1) + m2)L0,m,µ1,µ2(γ − ikh) = cb

(γ−ikh)3/2 + O(1/k5/2). Thus,

the same proof only gives a truncation error bounded by K(1 + 1/t) eγt

N3/2 in this case, which
however still goes to zero when N is large enough.
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Corollary 2.5. Let f be a bounded function of class C3 on R+ such that there exists ǫ > 0
satisfying ∀k ≤ 3, f (k)(s) = O(e(γ−ǫ)s). Let A ∈ (0, 2π) and h ≤ A/T .

Then, there exists a constant K > 0 such that

∀l ≥ 1, tl ≤ T, |fN
h (tl) − f(tl)| ≤ K max

(
eγT

N2
,

h

2πN

)
+ ‖f‖∞

e−2πγ/h

1 − e−2πγ/h
.

Proof. It is sufficient to use Propositions 2.2 and 2.3, and to remark that maxt∈[t1,T ](e
γt /t) ≤

max(eγt1 /t1, eγT /T ).

Practical implementation in our model. Now, let us explain how to choose the
parameters in our model in order to achieve a precision of order ε > 0. First, let us notice
that we can take γ > 0 as close to 0 as we wish thanks to Proposition A.3. The following
conditions

h < 2π/T,
2πγ

h
= log(1 + 1/ε), N > max


 h

2πε
,

√
eγT

ε


 (11)

ensure by Corollary 2.5 that supl≥1,tl≤T |fN
h (tl) − f(tl)| is of order ε.

In practice, it is important to make the time grid (tl, l = 1 . . . N) on which we recover
the cdf (and its derivatives) coincide with the payment dates of all the products considered.
Typically, this grid should encompass the quarterly time grid to easily compute the CDS
prices and their sensitivities. More precisely, we will compute the integrals defining default
and payment leg prices in (14) and (15) using the Simpson rule, which is very efficient since
the integrated functions are regular enough (namely C4) as stated by Proposition A.3. To
do so, we need a time grid at least twice thinner than the payment grid, and therefore 1/8
has to be a multiple of t1 = 2π

Nh
. Since in this paper we consider CDS up to T = 10 years,

we make the following choice:

T = 10, h =
5π

8T
, γ =

h

2π
log(1 + 1/ε), N = max


2

⌈
log2

(
max

(
h

2πε
,

√
eγT

ε

))⌉

, 27


 , (12)

which automatically guarantees the latter condition: 1/8 is clearly a multiple of t1 = 16/N .

2.3 The Euler summation

The Laplace inversion based on the FFT is very efficient and enables to very quickly
compute the c.d.f. and its derivatives on the whole time interval. However, the time
grid has to be regular, which may be a possible drawback when dealing with bespoke
products that have unusual payment dates. Here, we present another method to recover
the function f from its Laplace transform at a given time t ≥ 0.

Unlike the FFT approach, we can here choose h as a function of t, and the trick consists
in choosing h = π/t to get an alternating series in (8):

fπ/t(t) =
eγt

2t
f̂(γ) +

eγt

t

∞∑

k=1

(−1)k Re

(
f̂

(
γ + i

kπ

t

))
. (13)
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Rather than simply truncating the series like in the FFT algorithm, we use the Euler
summation technique as described by [1], which consists in computing the binomial average
of q terms from the N -th term of the series appearing in (13). The following proposition
describes the convergence rate of the binomial average to the infinite series fπ/t(t) when p
goes to ∞. Its proof can be found in Labart and Lelong [13].

Proposition 2.6. Let q ∈ N
∗ and f be a function of class Cq+4 such that there exists ǫ > 0

satisfying ∀k ≤ q+4, f (k)(s) = O(e(γ−ǫ)s). We consider the truncation of the series in (13)

fN
π/t(t) =

eγt

2t
f̂(γ) +

eγt

t

N∑

k=1

(−1)k Re

(
f̂

(
γ + i

πk

t

))
,

and E(q, N, t) =
∑q

k=0

(
q
k

)
2−qfN+k

π/t (t). Then,

∣∣∣fπ/t(t) − E(q, N, t)
∣∣∣ ≤ t eγt |f ′(0) − γf(0)|

π2

N ! (q + 1)!

2q (N + q + 2)!
+ O

(
1

N q+3

)

when N goes to infinity.

In practice, for q = N = 15 and γ = 11.5/t, we have eγt N ! (q+1)!
2q (N+q+2)!

≈ 3.13 × 10−10, and

it is therefore sufficient to make the summation accurate up to the 9th decimal place. On
the other hand, we have |fπ/t(t) − f(t)| ≤ ‖f‖∞

e−2γt

1−e−2γt from (2.2), which is of order 10−10.
Finally, the overall error is of order 10−10. Note that, for a fixed t, the computation cost
of E(q, N, t) is proportional to N + q.

3 Calibration to CDS data and numerical results

In this section, we want to illustrate how the model presented in this paper can be calibrated
to the CDS market data. Here, our aim is not to provide the ultimate calibration procedure
for the model. This task requires to have a market feedback, and we let it to practitioners.
We have decided instead to make one of the simplest choice, and we minimize the Euclidean
distance between the theoretical and market CDS prices. Thus, we want to illustrate on
market data picked from the past in which cases the model seems to give a rather good fit.

First, we will recall briefly what is a Credit Default Swap and give its theoretical price
under the model. Then, we will explain in detail our calibration procedure. Last, we will
discuss the calibration results on several cases.

3.1 Pricing of CDS

Credit Default Swaps are products that provide a financial protection on a given period
in exchange of regular payments if a firm goes bankrupt. Here, we describe a synthetic
CDS on a unit notional value that starts at time 0, with a maturity T and a payment grid
T0 = 0 < T1 < · · · < Tn = T . Usually, payments occur quarterly. For t ∈ [0, T ), β(t)
denotes the index in {1, . . . , n} of the next payment date, i.e. such that Tβ(t)−1 ≤ t < Tβ(t).
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If the default happens before T , the default leg pays the fraction LGD of the notional
that is not recovered (loss given default). For sake of simplicity, we assume that LGD ∈
[0, 1] is deterministic. Since we also consider a constant interest rate r > 0, the default leg
price is then given by

DL(0, T ) = E[e−rτ 1{τ≤T }LGD] = LGD

[
e−rT

P(τ ≤ T ) +
∫ T

0
r e−ru

P(τ ≤ u)du

]
. (14)

The payment leg consists in regular (time-proportional) payments up to time τ ∧ T .
This means that they occur until the maturity T as long as the firm has not defaulted yet.
The rate R of these payments is decided at the beginning of the CDS contract, and the
price at time 0 of the payment leg is given by:

PL(0, T ) = R × E

[
n∑

i=1

(Ti − Ti−1) e−rTi 1{τ>Ti} + (τ − Tβ(τ)−1) e−rτ 1{τ≤T }

]
.

By integrating by parts, we get that

E[(τ − Tβ(τ)−1) e−rτ 1{τ≤T }] = −
∫ T

0
e−ru(u − Tβ(u)−1)dP(τ > u)

= −
n∑

i=1

e−rTi(Ti − Ti−1)P(τ > Ti) +
∫ T

0
e−ru

P(τ > u)du

−
∫ T

0
r e−ru(u − Tβ(u)−1)P(τ > u)du,

and therefore, we obtain that

PL(0, T ) = R

[∫ T

0
e−ru

P(τ > u)du −
∫ T

0
r e−ru(u − Tβ(u)−1)P(τ > u)du

]
. (15)

The second term in the bracket can often be neglected in practice, but we have not made
this approximation for our numerical experiments. We remark also that this is the only
term that depends on the time-grid structure. This is the reason why we do not recall this
dependency in our notations for the payment leg that mainly depends on the starting and
ending dates.

Up to now1, the market practice has been to quote the fair CDS spread R(0, T ) that
makes both legs equal:

R(0, T ) = LGD
e−rT

P(τ ≤ T ) +
∫ T

0 r e−ru
P(τ ≤ u)du

∫ T
0 e−ru P(τ > u)du − ∫ T

0 r e−ru(u − Tβ(u)−1)P(τ > u)du
. (16)

This rate depends on the default time only through its cumulative distribution function
(P(τ ≤ t), t ∈ [0, T ]). In our model, we get the following result.

1The ISDA has recommended in early 2009 to switch and to quote CDS through the upfront
value U(0, T ) such that U(0, T ) + PL(0, T ) = DL(0, T ). The CDS spread R is then standardized to
some specific values. (see www.cdsmodel.com/information/cds-model)



A closed-form extension to the Black-Cox model 11

Proposition 3.1. With a deterministic interest rate r > 0 and a deterministic recovery
rate 1 − LGD ∈ [0, 1], the CDS price with the intensity model (2) is given by:

Rmodel(0, T ) = LGD
e−rT Pb,m,µ1,µ2(T ) +

∫ T
0 r e−ru Pb,m,µ1,µ2(u)du

∫ T
0 e−ru P c

b,m,µ1,µ2
(u)du − ∫ T

0 r e−ru(u − Tβ(u)−1)P c
b,m,µ1,µ2

(u)du
,

where b = 1
σ

log(C/V0) and m = 1
σ
(r−α−σ2/2). Moreover, if we neglect the second integral

in the denominator this rate is nondecreasing with respect to C, α, µ1 and µ2, and we get
the following bounds:

µ1 .
Rmodel(0, T )

LGD
. µ2. (17)

Proof. The monotonicity properties is a direct consequence of Proposition A.1. Let us
prove (17). From (2), we clearly have µ1 ≤ λt ≤ µ2 for any t ≥ 0. From (3), we have

P c
b,m,µ1,µ2

(t) = E[e−
∫ t

0
λsds] and then:

e−µ2t ≤ P c
b,m,µ1,µ2

(t) ≤ e−µ1t, 1 − e−µ1t ≤ Pb,m,µ1,µ2(t) ≤ 1 − e−µ2t .

Plugging these inequalities in (14) and (15), we get:

µ1

r + µ1

(1 − e−(r+µ1)T ) ≤ DLmodel(T ) ≤ µ2

r + µ2

(1 − e−(r+µ2)T ),

1

r + µ1

(1 − e−(r+µ2)T ) . PLmodel(T ) .
1

r + µ2

(1 − e−(r+µ1)T ),

neglecting
∫ T

0 r e−ru(u − Tβ(u)−1)P
c
b,m,µ1,µ2

(u)du. Then, we easily get (17).

3.2 The Calibration procedure

Now, we want to describe the calibration method we have used in our numerical ex-
periments. We denote by T (1) < · · · < T (ν) the maturities of the quoted CDS, and
Rmarket(0, T (1)), . . . , Rmarket(0, T (ν)) their market prices. In practice, we have ν = 8 mar-
ket data sets for

T (1) = 0.5, T (2) = 1, T (3) = 2, T (4) = 3, T (5) = 4, T (6) = 5, T (7) = 7 and T (8) = 10 years,
(18)

and quarterly payments. Our goal is to minimize the following distance between model
and market prices:

min
b,m∈R,0<µ1<µ2

ν∑

i=1

(Rmodel(0, T (i)) − Rmarket(0, T (i)))2. (19)

As already mentioned, there are probably better criteria to be minimized according to the
market data and the purpose of the calibration. Here, we do not wish to discuss this point,
but we rather want to qualitatively show what kind of CDS rate curves T 7→ Rmarket(0, T )
the model can fit. That is why we have chosen a very simple criterion to minimize.
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To minimize (19), we simply use a gradient algorithm, which is very fast and takes ad-
vantage of the closed formula (4) and the Laplace inversion methods presented in Section 2.
To do so, we need to compute the CDS prices Rmodel(0, T (i)) and their derivatives with
respect to each parameter p ∈ {b, m, µ1, µ2}. In Section 2.2, we have explained in detail
how to recover Pb,m,µ1,µ2(t) on a time-grid from its Laplace transform (4) using the FFT.
More precisely, we have used the FFT parameters given by (12) with ε = 10−5. Similarly,
we obtain by FFT the derivatives ∂pPb,m,µ1,µ2(t) on the same time-grid. Their Laplace
transforms can be obtained by simply differentiating formula (4). However, we have no-
ticed that finite differences can also be used as a good proxy of the derivatives. Then, it is
easy to compute the default and payment legs and their sensitivities with respect to each
parameter. Numerical integration is performed using Simpson’s rule. This is very efficient
thanks to the regularity of the cdf (Proposition A.3). Last, we compute CDS prices and
their derivatives.

To test this calibration procedure, we have computed CDS prices in our model consid-
ering them as Market data, and then we have try to find the parameters back by minimiz-
ing (19). The minimization is really fast and takes very few seconds. Thanks to (17), we
start the gradient algorithm from the point

b = 0, m = 0, µ1 = min
i=1,...,ν

Rmarket(0, T (i))/LGD, µ2 = max
i=1,...,ν

Rmarket(0, T (i))/LGD.

Unfortunately, it sometimes fails and the gradient algorithm is trapped in local minima.
This is partly due to a rather sensitive dependency between the parameters b and m. Then,
it can be worth starting the gradient algorithm from a point where these parameters are
both non zero. However, it is difficult to have a guess on the values of b and m. We have
used the following way to get a prior on (b, m).

• We take a finite set S ⊂ R
2, typically S = {−B + 2iB/n, i = 0, . . . , n} × {−M +

2iM/n, i = 0, . . . , n} for some B, M > 0, n ∈ N
∗. For (b, m) ∈ S, we minimize the

criterion (19) with respect to µ1 and µ2, keeping b and m constant. In practice, we
have mostly taken B, M ∈ {1, 2} and n = 8.

• Then, we select the couple (b, m) ∈ S that achieves the smallest score and use it (with
the optimized parameters µ1 and µ2) as the initial point of the gradient algorithm
for (19).

This procedure generally improves the basic one. However, our minimization problem
is ill-posed and significantly different parameters can lead to rather close CDS rates. Let
us take the case of a constant intensity model λ > 0, which leads to a flat CDS rate
curve from (17). This case corresponds to many different sets of parameters in our model,
namely:

1. µ1 = µ2 = λ, with b, λ ∈ R arbitrarily chosen,

2. µ1 = λ, b → −∞, with m ∈ R and µ2 > µ1 arbitrarily chosen,

3. µ2 = λ, b → +∞, with m ∈ R and µ2 > µ1 arbitrarily chosen.
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Figure 1: In the l.h.s. picture are plotted the CDS prices as function of the maturities (18).
Prices are given in basis points (10−4) with LGD = 1 and r = 5%. The r.h.s picture shows
the corresponding cumulative distribution functions. The dashed line is obtained with
b = −0.2, m = 0.6, µ1 = 0.005 and µ2 = 0.3 and the solid line is with b = 2.168849,
m = 0.912237, µ1 = 0.008414 and µ2 = 0.067515.

Thus, calibrating very flat CDS spreads can lead to many different satisfactory parameter
configurations. We have found other less trivial examples when testing our calibration
procedure. In Figure 1, are given two sets of parameters which give CDS prices which
are close up to a 1% relative error but have very similar cdfs. This shows that simply
calibrating the model to the only CDS prices (that only depend on the default cdf) can be
insufficient to determine parameters in an univocal manner. Further information on the
dependency between the firm value and the default event can be necessary in some cases
for that.

3.3 Calibration on Market data

Now, we want to give calibration results under very different CDS rate data. Here, we
chose to calibrate all the four parameters (b, m, µ1, µ2) to check if they are sufficient to
fit the market data well. However, some of these parameters have an economic meaning.
For example, the firm value can be related to its balance sheet and any other relevant
information available in practice. In that case, one would like to fix some parameters or
restrict them to lie in some interval. Here, for the sake of simplicity, we only consider the
information given by the CDS prices and leave a more elaborated calibration for further
research.

We have picked up very different examples from 2006 to 2009 on Crédit Agricole (bank,
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CA in short), PSA, Ford (car companies) and Saint-Gobain (glass maker, SG in short).
In all our examples, we have set LGD = 0.6, except for Crédit Agricole for which we
have taken LGD = 0.8 as it is commonly done for bank companies. We have also taken
r = 5% for the sake of simplicity, since r has anyway a rather minor impact on the CDS
spread values. The maturities observed on the market are the one listed in (18). In all the
figures, we have plotted in dotted lines the CDS market data and in solid lines the CDS
prices obtained with the calibrated model. Prices are given in basis points (10−4). For
each example, we give the calibrated parameters (b, m, µ1, µ2). To interpret them into the
original firm value framework, we have also indicated the corresponding values of V0/C
and α using (26), taking the one-year at-the-money implied volatility as a proxy of the
firm value volatility. However, as pointed in Section 3.2, significantly different parameters
can lead to analogous CDS prices. The calibration to CDS prices only allows to fit the
default cdf. This is why we have added in each case a subplot of the calibrated cdf,
(Pb,m,µ1,µ2(t), t ∈ [0, T (8)]).

We have split the results into three classes.

• The curve T 7→ Rmarket(0, T ) is mostly increasing. Roughly speaking, it happens
when the firm’s future is more unsure than its present.

• The curve T 7→ Rmarket(0, T ) is mostly decreasing. This usually means that the firm
is in a critical period. If it overcomes this time, its future will be less risky.

• Most of the market data correspond to the two previous cases. However, when a firm
switches from one regime to the other, the CDS curve tends to be flat, keeping often
however a gentle slope.

3.3.1 Increasing CDS spreads

We start with data before the subprime crisis on companies that presented a low risk
profile. Their calibration are plotted in Figure 2. Not surprisingly, in this case the model
is able to fit the prices well, with a relative error of a few percents. As one could expect,
the firm value starts in both cases above the threshold C in the “µ2 region” and is drifted
to the “µ1 region” since the parameter m is negative (or equivalently, α > r − σ2/2).

We have also considered increasing patterns with a higher level of risk, and the cal-
ibrating results are drawn in Figure 3. The Ford curve (left) is really well fitted. The
Saint-Gobain rates (left) are globally well captured, but some irregularities are smoothed
by the calibrated curve. Once again, the firm value starts above the threshold in the safer
side, which confirms the heuristic interpretation made above on increasing CDS curves.

3.3.2 Decreasing CDS spreads

Now, we want to test if the model is also able to fit decreasing CDS curves. As already
mentioned, it happens when a firm goes through a difficult period. We give in Figure 4
two stressed examples on Ford company, taken at the climax of its crisis in November 2008
(left) and in February 2009 (right). Both curves are correctly fitted. The most significant
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Figure 2: Left, CA 08/31/06: b = −2.3415, m = −0.2172, µ1 = 2.164 × 10−4, µ2 =
5.597 × 10−3, V0/C = 1.753, α = −1.78 × 10−2. Right, PSA 05/03/06: b = −2.3878, m =
−0.3745, µ1 = 5.581 × 10−4, µ2 = 2.214 × 10−2, V0/C = 1.757, α = 2.038 × 10−2.
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Figure 3: Left, Ford 11/30/06: b = −1.734, m = −1.363, µ1 = 1.2 × 10−2, µ2 = 7.05 ×
10−2, V0/C = 2.173, α = 0.436. Right, SG 10/08/08: b = −1.897, m = 0.1725, µ1 =
2.135 × 10−2, µ2 = 0.652, V0/C = 2.8506, α = −0.3213.
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Figure 4: Left, Ford 11/24/08: b = 0.209, m = 0.344, µ1 = 0.2014, µ2 = 1.986, V0/C =
0.716, α = −1.3. Right, Ford 02/25/09: b = 0.8517, m = 0.5277, µ1 = 6.85 × 10−2, µ2 =
0.7806, V0/C = 0.3355, α = −1.2676

relative difference between market and model prices is equal to 6% on November data and
2% on February data. As expected, in both cases, the firm value starts below the threshold
in the “µ2 region” and goes gradually to the “µ1 region” since m > 0 (or equivalently,
α < r − σ2/2).

Now, we want to test the model on decreasing but less stressed patterns. We also want
to see if it can in addition fit an initial bump. Indeed, it happens quite often on decreasing
curves that the 6-month rate is however lower than the one-year rate. Roughly speaking,
this means that the firm is in difficulty but the market however believes that it has some
guarantee to live in the very short future. We have drawn in Figure 5 two examples on
PSA (left) and Saint-Gobain (right). In the first case, the model does not seem able to
replicate the initial bump, but the remaining part of the curve is well fitted. The bump
is approximated by a flat curve in between. Doing this, the gradient algorithm explores
rather large and unrealistic parameters for b and m. Instead, on the Saint-Gobain example,
the whole shape is well fitted with very rational parameters.

3.3.3 Almost flat CDS spreads

Last, we give two examples of rather flat CDS rate curves. This kind of pattern is more
uncommon and is observed in particular when a firm switches from an increasing to a
decreasing curve like Saint-Gobain between 10/08/08 (Fig. 3) and 12/01/08 (Fig. 5). Flat
curves are a priori not very difficult to fit since a constant intensity model can already
give a first possible approximation. We show in Figure 6 the transition made by the Saint-
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Figure 5: Left, PSA 03/06/09: b = 15.55, m = 4.889, µ1 = 6.055 × 10−2, µ2 =
0.104, V0/C = 6.32×10−5, α = −3.3. Right, SG 12/01/08: b = −0.268, m = 0.567, µ1 =
5.46 × 10−2, µ2 = 0.154, V0/C = 1.1837, α = −0.6213.

Gobain curve. On these flat shapes, the fitting is really good and the relative error on
prices does not exceed 1%.
Let us draw a short conclusion on these calibration results. The model is able to fit a wide
range of CDS data, from a very low risk level (Fig. 2) to highly stressed spreads (Fig. 4) as
well as intermediate settings (Fig. 3, 5, 6) that are more frequently observed. Of course,
not all the prices are perfectly matched, but the spread curves are globally well captured.
Concerning the meaning of the parameters, one has to be careful since only calibrating to
the CDS rates is a priori unsufficient to determine them (see Fig. 1). However, at least
in the extreme settings, the values of V0/C and α that we have obtained are as expected
greater (resp. lower) than 1 and r − σ2/2 in Fig. 2 (resp. Fig. 4), which means that the
firm value gradually shifts from the µ1 (resp. µ2) to the µ2 (resp. µ1) zone.

4 Extension to multiple barriers and default intensi-

ties

In this section, we consider an extension to multiple barriers. More precisely, let us set
n ≥ 2, C0 = +∞ > C1 > · · · > Cn = 0, 0 ≤ µ1 < µ2 < · · · < µn and consider a model with
the following default intensity:

λt =
n∑

i=1

µi1{Ci eαt≤Vt<Ci−1 eαt}.
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Figure 6: Left, SG 10/21/08: b = −1.032, m = 0.493, µ1 = 4.75 × 10−2, µ2 = 9.23 ×
10−2, V0/C = 1.83, α = −0.531. Right, SG 10/31/08: b = −3.42 × 10−2, m = 4.69 ×
10−2, µ1 = 1.45 × 10−2, µ2 = 9.295 × 10−2, V0/C = 1.021, α = −0.282.

This means that the default intensity is increased (resp. decreased) each time it crosses
downward (resp. upward) a barrier. Heuristically, these constant intensities can be related
to the credit grades of the firm. For a firm in difficulty, crossing downward the barriers
can also represent the different credit events that precede a bankruptcy.

Theorem 4.1. We set x = 1
σ

log(V0) and xi = 1
σ

log(Ci) for i = 0, . . . , n. In the above
setting, P(τ ≤ t) is a function of t, x, (xi)i=1,...,n−1, m and (µi)i=1,...,n. It is characterized
by its Laplace transform that is defined for z ∈ C+:

Lbi,m,µi
(z) =

n∑

i=1

1{xi≤x<xi−1}

{
1

z
− 1

z + µi

− β+
i eR+(µi)x −β−

i eR−(µi)x

}
,

where R±(µ) = −m ±
√

m2 + 2(z + µ). The coefficients βi = [β−
i β+

i ]′ are uniquely
determined by the induction:

βi = Πi−1β1 + vi−1, i = 1 . . . , n

and the conditions β+
1 = β−

n = 0. Here, Π0 = Id and Πi = Pi × · · · × P1, v0 = 0 and

vi = A−1(µi+1, xi)
[

1
z+µi

− 1
z+µi+1

0
]′

+ Pivi−1 with:

Pi =
1

[R+(µi+1) − R−(µi+1)]
× (20)

[
(R+(µi+1) − R−(µi)) exi(R−(µi)−R−(µi+1)) (R+(µi+1) − R+(µi)) exi(R+(µi)−R−(µi+1))

(R−(µi) − R−(µi+1)) exi(R−(µi)−R+(µi+1)) (R+(µi) − R−(µi+1)) exi(R+(µi)−R+(µi+1))

]
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and

A−1(µi+1, xi) =
1

R+(µi+1) − R−(µi+1)

[
R+(µi+1) e−R−(µi+1)xi − e−R−(µi+1)xi

−R−(µi+1) e−R+(µi+1)xi e−R+(µi+1)xi

]
.

Proof. We introduce for t ≥ 0, Xx
t = 1

σ
ln(Vt e−αt), where x = 1

σ
ln(V0) denotes its starting

point. We have dXx
t = dWt + mdt and therefore Xx

t is a drifted Brownian motion. The
default intensity can then be written as a function of Xt:

λt =
n∑

i=1

µi1{xi≤Xt<xi−1} =: λ(Xt).

Let us introduce the survival probabilities p(t, x) = P(τ > t) = E[exp(− ∫ t
0 λ(Xx

s )ds)]. Now,
we use a result from Kac ([12], Theorem 4.9 p.271), using in addition the Girsanov theorem
when m 6= 0. It comes out that for z > 0, the Laplace transform Lc(z, x) =

∫∞
0 e−zt p(t, x)dt

is C1 and piecewise C2 w.r.t. x, and solves:

∀i,
1

σ
ln(Ci) ≤ x <

1

σ
ln(Ci−1), 1 − (z + µi)L

c(z, x) + m∂xLc(z, x) +
1

2
∂2

xLc(z, x) = 0. (21)

This is an affine ODE of order 2 which admits the following solutions:

xi ≤ x < xi−1, Lc(z, x) =
1

z + µi

+ β−
i eR−(µi)x +β+

i eR+(µi)x .

Now, we write that the Laplace transform is C1 at xi for i = 1, . . . , n − 1:




β−
i eR−(µi)xi +β+

i eR+(µi)xi = 1
z+µi+1

− 1
z+µi

+ β−
i+1 eR−(µi+1)xi +β+

i+1 eR+(µi+1)xi

β−
i R−(µi) eR−(µi)xi +β+

i R+(µi) eR+(µi)xi = β−
i+1R−(µi+1) eR−(µi+1)xi +β+

i+1R+(µi+1) eR+(µi+1)xi .

(22)
We rewrite this in a matrix form:

A(µi, xi)

[
β−

i

β+
i

]
=

[
1

z+µi+1
− 1

z+µi

0

]
+A(µi+1, xi)

[
β−

i+1

β+
i+1

]
, A(µ, x) =

[
eR−(µ)x eR+(µ)x

R−(µ) eR−(µ)x R+(µ) eR+(µ)x .

]

(23)
We set for i = 1, . . . , n − 1, Pi = A−1(µi+1, xi)A(µi, xi) that is given in explicit form

in (20). We also set

v0 = 0, vi = A−1µi+1, xi)(
[

1
z+µi

− 1
z+µi+1

0
]′

+ Pivi−1 and Π0 = Id, Πi = Pi . . . P1,

for i = 1 . . . n − 1. We have that βn = Πn−1β1 + vn−1. Since Lc(z, +∞) = 1/(z + µ1) and
Lc(z, −∞) = 1/(z+µn), we have β+

1 = 0 and β−
n = 0. In particular, (Πn−1)1,1β

−
1 +(vn−1)1 =

0 which uniquely determines β−
1 and gives that (Πn−1)1,1 6= 0 since Lc(z, x) is the unique

solution of (21) (we can show indeed that (Πn−1)1,1 > 0 because the entries of Pi are
positive). Then, the coefficients βi are also uniquely determined for i = 1, . . . , n. In
particular, when n = 2, we find the formula stated in Theorem 1.1. Last, we point out
that the formula obtained remains valid for z ∈ C+ since it is the only possible analytical
extension.
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Remark 4.2. The law of τ does not depend on V0 and C0, . . . , Cn but only on C0

V0
, . . . , Cn

V0
.

So, we can arbitrary set V0 = 1 provided that the values of the Ci are accordingly modified,
which implies that x = 0 and xi = 1

σ
log(Ci/V0) for i = 0, . . . , n in Theorem 4.1 and hence

the formula for the Laplace transform of P(τ ≤ t) becomes

Lbi,m,µi
(z) =

n∑

i=1

1{xi≤0<xi−1}

{
1

z
− 1

z + µi

− β+
i − β−

i

}
.

This remark implies that in the calibration procedure, there is no need to know σ.

5 Conclusion and further prospects

In this paper, we have proposed a very simple and natural extension of the Black-Cox
model. It is an hybrid model, and contrary to hitting time models, it has a non-zero default
intensity away from the threshold. Besides, the parameters have a clear heuristic meaning.
The strength of this Black-Cox extension is that the cumulative distribution function of
the default time remains known explicitly through its Laplace transform. This allows to
instantaneously compute CDS prices and their sensitivities to the model parameters. It
especially enables to get a quick way to calibrate the parameters to the CDS data. As
shown in Section 3, it can correctly fit a wide range of CDS spread curves. Nonetheless,
one has to be careful because even though this calibration generally leads to a correct fit
of the default distribution, it may happen that the parameters themselves are not correct.
Two significantly different parameter sets can give similar CDS spreads, and one has to
get further information to neatly fit the parameters.

Rajouter des commentaires ici sur des recherches possibles sur d’autres cal-

ibrations: en exploitant le bilan d’une entreprise, en astreignant mu a prendre

des valeurs discrètes corrsespsondant au rating...

As a continuation of this work, it would be interesting to study how this model can be
used in the multi-name setting using the so-called bottom-up approach. More precisely,
let us consider a basket of default times and let us assume that the underlying firm values
follow a multidimensional Black-Scholes model. We have explained in this paper how it
is possible to fit the CDS data of each basket component. Once we have fitted C, α, µ1

and µ2 for each firm, we would like to fit the whole model to multiname products such
as CDO tranches. To do so, one has to calibrate the correlation matrix between the firm
values and, if necessary, the dependency between the exponential variables that trigger the
default times. However, the correlation matrix of the firm values is also closely related to
the one of the stocks. Ideally, one would like to find a calibration procedure that is both
consistent to equity and credit markets. More simply, this kind of model could make a
bridge between these markets and qualitatively compare how they price the dependency
between companies.
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A Mathematical properties of the c.d.f. of τ

The scope of this section is to state some mathematical properties of the cumulative
distribution function of τ . In particular, these properties will ensure the convergence
of the two Laplace inversion algorithms considered in the paper. We will denote by
Π = {(b, m, µ1, µ2), b, m ∈ R, 0 ≤ µ1 < µ2} the set of admissible parameters.

A.1 Basic properties and regularity w.r.t parameters

First, we state a result on the monotonicity with respect to each parameter.

Proposition A.1. For any t ≥ 0, the function Pb,m,µ1,µ2(t) is nondecreasing with respect
to b, µ1 and µ2, and is nonincreasing with respect to m.

Proof. From (3) and (26), it comes that

P c
b,m,µ1,µ2

(t) = E

[
e−
∫ t

0
µ21{Wu+mu≤b}+µ11{Wu+mu>b}du

]
= e−µ1t

E

[
e−
∫ t

0
(µ2−µ−)1{Wu+mu≤b}du

]
.

Using the first equality for µ1 and µ2, and the second one for b and m, we immediately get
the result by pathwise comparison.

In the calculation of the Laplace transform in Section B, we have obtained two different
formulas depending on the sign of b. However, Pb,m,µ1,µ2(t) and its derivatives w.r.t each
parameter are continuous functions of (b, m, µ1, µ2). This feature is important when dealing
with calibration, since we will use a gradient algorithm to minimize some distance between
real and theoretical prices: there is no discontinuity when crossing b = 0.

Proposition A.2. The function Pb,m,µ1,µ2(t) is continuous w.r.t. (b, m, µ1, µ2) ∈ Π, t ≥
0. It has derivative w.r.t. b, m, µ1, µ2, and the functions ∂bPb,m,µ1,µ2(t), ∂mPb,m,µ1,µ2(t),
∂µ1Pb,m,µ1,µ2(t), ∂µ2Pb,m,µ1,µ2(t) are continuous w.r.t. (b, m, µ1, µ2) ∈ Π, t ≥ 0.

Proof. From (28), we have

P c
b,m,µ1,µ2

(t) = e−µ1t
Ẽ[emW̃t−m2t/2 e−(µ2−µ−)

∫ t

0
1{W̃u≤b}du]

= e−µ1t
Ẽ[emW̃t−m2t/2 e

−(µ2−µ−)
∫ b

−∞
ℓ̃t(x)dx

],

where ℓ̃t(x) denotes the local time associated to (W̃t, t ≥ 0) and is continuous with respect
to (t, x). Therefore, it is continuous w.r.t. (b, m, µ1, µ2) ∈ Π and t ≥ 0. Moreover, for each
parameter, we can take the derivative in the expectation using Lebesgue’s theorem and
the derivative is continuous w.r.t. (b, m, µ1, µ2) ∈ Π and t ≥ 0, which yields the result.
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A.2 Time regularity

To study the accuracy of the different algorithms presented in Section 3 to numerically
invert the Laplace transform of τ , it is essential to know how regular the distribution
function can be expected to be.

Proposition A.3. When b 6= 0, the functions Pb,m,µ1,µ2(t) and ∂pPb,m,µ1,µ2(t) for p ∈
{b, m, µ1, µ2} are of class C∞ on [0, ∞). Moreover, for any ε > 0, we have

∀k ∈ N
∗, P

(k)
b,m,µ1,µ2

(t) =
t→∞

O(e(ε−µ1)t) and ∀k ∈ N, ∂pP
(k)
b,m,µ1,µ2

(t) =
t→∞

O(e(ε−µ1)t).

In particular, these functions are bounded on R+ when µ1 > 0.
When b = 0, P0,m,µ1,µ2 is of class C1 on [0, ∞) but not C2 and of class C∞ on (0, ∞).

Remark A.4. Since Pb,m,µ1,µ2 is at least of class C1 on [0, ∞), ∀t < ∞ P(τ = t) = 0.

Proof of Proposition A.3. First, we consider the case b 6= 0.

b 6= 0 : From Theorem 1.1, we know that the Laplace transform of Pb,m,µ1,µ2 is given
by

Lb,m,µ1,µ2(z) = emb−|b|
√

2(z+µb)+m2

(
1

z + µ1

− 1

z + µ2

)
×


− 1{b>0}

+
−m +

√
2(z + µ2) + m2

√
2(z + µ1) + m2 +

√
2(z + µ2) + m2



+

1

z
− 1

z + µb

.

We notice that 1
z

− 1
z+µb

is the Laplace transform of the cumulative density function of the
exponential distribution with parameter µb.

For any ε − µ1 > γ > −µ1, we have

Pb,m,µ1,µ2(t) =(1 − e−µbt)1{t≥0} +
1

2πi

∫ ∞

−∞
e(γ+is)t emb−|b|

√
2(γ+is+µb)+m2

(
1

γ + is + µ1

− 1

γ + is + µ2

)
×


− 1{b>0}

+
−m +

√
2(γ + is + µ2) + m2

√
2(γ + is + µ1) + m2 +

√
2(γ + is + µ2) + m2



ds

The function s 7−→ sk e(γ+is)t emb−|b|
√

2(γ+is+µb)+m2
(

1
γ+is+µ1

− 1
γ+is+µ2

)
×
{

− 1{b>0} +

−m+
√

2(γ+is+µ2)+m2√
2(γ+is+µ1)+m2+

√
2(γ+is+µ2)+m2

}
is integrable and continuous on R for all k ∈ N, since

Re
(√

2(γ + is + µb) + m2
)

∼
|s|→+∞

√
s. Hence, the function Pb,m,µ1,µ2 is of class C∞ which
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implies that the random variable τ admits a density w.r.t Lebesgue’s measure and moreover
for every k ∈ N

∗ and all t ≥ 0

P
(k)
b,m,µ1,µ2

(t) = − (−µb)
k e−µbt +

1

2πi

∫ ∞

−∞
eist(γ + is)k eγt emb−|b|

√
2(γ+is+µb)+m2

(
1

γ + is + µ1

− 1

γ + is + µ2

)
×


− 1{b>0}

+
−m +

√
2(γ + is + µ2) + m2

√
2(γ + is + µ1) + m2 +

√
2(γ + is + µ2) + m2



ds

Using the Riemann-Lebesgue lemma (
∫+∞

−∞ f(s) eist ds →
t→+∞

0 if f is integrable), we get that

P
(k)
b,m,0,µ(t) = O(eγt) when t → ∞. By differentiating this equation with respect to each

parameter, we also get that ∂bP
(k)
b,m,0,µ(t), ∂mP

(k)
b,m,µ1,µ2

(t), ∂µ1P
(k)
b,m,0,µ(t) and ∂µ2P

(k)
b,m,0,µ(t) are

O(eγt).

b = 0 : Whereas when b 6= 0, the proof is based on the integrability of the Laplace
transform given in Theorem 1.1, to treat the case b = 0, we use the expression of P0,m,0,µ

given by Equation (30). The first term in Equation (30) is obviously of class C∞ on [0, ∞).
Using the change of variable s = tu, the second term of Equation (30) can be rewritten

e−m2t/2

π

∫ 1

0

e−µtu

√
u(1 − u)

du

and is therefore of class C∞ on [0, ∞). Let I1, I2, I3, I4 respectively denote the last four
terms of Equation (30) that are between square brackets. Closely looking at the remaining
integrals and performing the same change of variables, it clearly appears that we only have
to consider two different types of integrals. For β, ρ ∈ R, we introduce

J1(β, ρ) =
∫ 1

0

eβtu
√

t√
u

Φ(ρ
√

t
√

1 − u)du (24)

J2(β, ρ) =
∫ 1

0

e−m2tu/2

√
t
√

u3
(1 − e−βtu)Φ(ρ

√
t
√

1 − u)du. (25)

An integration by parts in Equation (24) leads to

J1(β, ρ) =

√
t

2

∫ 1

0

eβtu

√
u

du +
∫ 1

0

(∫ u

0

eβtv

√
v

dv

)
ρt e−ρ2t(1−u)/2

2
√

2π
√

1 − u
du.

We notice that I1 + I4 = e−µt(−J1(−m2/2, m) + J1(−m2/2, −m)). Hence,

I1 + I4 =
−mt e−µt

√
2π

∫ 1

0

(∫ u

0

e−m2tv/2

√
v

dv

)
e−m2t(1−u)/2

√
1 − u

du.
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This new formula makes clear that as a function of t, I1 + I4 is of class C∞ on [0, ∞).
The term J2 is handled by a similar integration by parts:

J2(β, ρ) =
1

2

∫ 1

0

e−m2tu/2(1 − e−βtu)√
t
√

u3
du

+
∫ 1

0

(∫ u

0

e−m2tv/2(1 − e−βtv)√
v3

dv

)
ρ

2
√

2π
√

1 − u
e−ρ2t(1−u)/2 du

As a function of t, the second integral is clearly of class C∞ on [0, ∞) from Lebesgue’s
bounded convergence theorem. Noticing that I2 + I3 = J2(µ, m) + J2(−µ, −m) e−µt,
∫ 1

0
e−m2tu/2(1−e−βtu)√

t
√

u3
du =

∫ t
0

e−m2s/2(1−e−βs)√
s3

ds and

d

dt

(∫ t

0

e−m2s/2(1 − e−µs)√
s3

ds + e−µt
∫ t

0

e−m2s/2(1 − eµs)√
s3

ds

)
= −µ e−µt

2

∫ t

0

e−m2s/2(1 − eµs)√
s3

ds

we get that I2 + I3 is (as a function of t) of class C∞ on (0, ∞) but only of class C1 on
[0, ∞) and not more. Finally, P0,m,0,µ is of class C∞ on (0, ∞), but only of class C1 on the
semi-closed interval [0, ∞).

B Calculation of the Laplace transform of the default

time

While Theorem 1.1 can actually be deduced from Theorem 4.1, we provide in this section
a standalone proof, split into three steps for the sake of clearness. The proof presented
here relies on techniques developed by Chesney and al [9] and Labart and Lelong [13] for
Parisian options. To get this result,

Step 1: Change of the probability measure and reduction to the case µ1 = 0

Since Vu = V0 exp((r− 1
2
σ2)u+σWu), we get 1{Vu≤C eαu} = 1{Wu+ 1

σ
(r−α−σ2/2)u≤ 1

σ
log(C/V0)}.

Let t ≥ 0. We set for an arbitrary T > t,

b =
1

σ
log(C/V0), m =

1

σ
(r − α − σ2/2) (26)

and we introduce a new probability P̃ such that

dP̃

dP

∣∣∣∣
GT

= exp(−mWT − m2T/2).

Thus, (W̃u := Wu + mu, u ∈ [0, T ]) is a standard Brownian motion under P̃, and we have

τ = inf{t ≥ 0,
∫ t

0
µ21{W̃u≤b} + µ11{W̃u>b}du ≥ ξ}. (27)
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It comes out that
P(τ ≥ t) = Ẽ[exp(mW̃t − m2t/2)1{τ≥t}] (28)

is a function of t, b, m, µ1 and µ2. We introduce the following notations:

• for t ∈ R, Pb,m,µ1,µ2(t) = P(τ ≤ t) (resp. P c
b,m,µ1,µ2

(t) = 1 − Pb,m,µ1,µ2(t)),

• for z ∈ C+, Lb,m,µ1,µ2(z) =
∫+∞

0 e−zt Pb,m,µ1,µ2(t)dt (resp. Lc
b,m,µ1,µ2

(z) = 1/z −
Lb,m,µ1,µ2(z)).

Now, we make a simple remark. The default time τ defined by (3) has the same law as
min(ξ1/µ1, inf{t ≥ 0,

∫ t
0(µ2 −µ1)1{Vu≤C eαu}du ≥ ξ2}), where ξ1 and ξ2 are two independent

exponential random variables with parameter 1 that are both independent of the riskless
filtration F . Therefore, we have for t ∈ R and z ∈ C+:

P c
b,m,µ1,µ2

(t) = e−µ1t P c
b,m,0,µ2−µ1

(t) and Lc
b,m,µ1,µ2

(z) = Lc
b,m,0,µ2−µ1

(z + µ1). (29)

Thus, it is sufficient to focus on the case µ1 = 0, and we set µ = µ2 to continue

the proof of Theorem 1.1.

Step 2: The case b = 0, calculation of the probability distribution of τ

For D > 0, we introduce

τD = inf{t ≥ 0,
∫ t

0
1{W̃u≤0}du ≥ D},

which will be helpful for intermediate calculus. Note that the law of τD and τ given that
{ξ/µ = D} are the same since ξ is independent of (Wt, t ≥ 0).

From Chesney and al. [9], we know the joint distribution of (W̃t, A−
t :=

∫ t
0 1{W̃u≤0}du)

for t > 0. For x ∈ R and D > 0, we have:

P̃(W̃t ∈ dx, A−
t ≤ D) = 1{t>D}


1{x<0}


−x

2π

∫ t

t−D

D + s − t√
s3(t − s)3

exp(− x2

2(t − s)
)ds




+1{x>0}



∫ D

0

x exp(− x2

2(t−s)
)

2π
√

s(t − s)3
ds +

∫ t

D

xD exp(− x2

2(t−s)
)

2π
√

s3(t − s)3
ds




+ 1{t≤D}

exp(−x2

2t
)√

2πt
.

Observing that
∫∞

0 x emx− x2

2(t−s) dx = (t − s)(1 +
√

2π(t − s)m e(t−s)m2/2 Φ(m
√

t − s)) where
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Φ is the cumulative normal distribution function, we get after simplifications:

P(τD ≥ t) = Ẽ[exp(mW̃t − m2t/2)1{τD≥t}] = Ẽ[exp(mW̃t − m2t/2)1{A−
t ≤D}]

= 1{t≤D} + 1{t>D}


 e−m2t/2


1

2
+

1

π
arctan


 D − t/2√

D(t − D)






+
m√
2π



∫ D

0

e−m2s/2 Φ(m
√

t − s)√
s

ds + D
∫ t

D

e−m2s/2 Φ(m
√

t − s)√
s3

ds

−
∫ t

t−D

(D + s − t) e−m2s/2 Φ(−m
√

t − s)√
s3

ds




.

Now, we are able to compute the cumulative distribution function of τ : P c
0,m,0,µ(t) =

P(τ ≥ t) =
∫+∞

0 P(τ δ ≥ t)µ e−µδ dδ = e−µt +
∫ t

0 P(τ δ ≥ t)µ e−µδ dδ. An integration by parts

yields that
∫ t

0 µ e−µδ arctan
(

δ−t/2√
δ(t−δ)

)
dδ = −π

2
(1 + e−µt) +

∫ t
0

e−µδ√
δ(t−δ)

dδ. Using Fubini’s

theorem for the other integrals and the three following equalities
∫ t

s µ e−µδ dδ = e−µs − e−µt,
∫ s

0 µδ e−µδ dδ = 1−(1+µs) e−µs

µ
and

∫ t
t−s(δ − (t − s))µ e−µδ dδ = e−µ(t−s) 1−(1+µs) e−µs

µ
, we get:

P c
0,m,0,µ(t) = e−µt(1 − e−m2t/2) +

1

π

∫ t

0

e−(µ+m2/2)s

√
s

e−m2(t−s)/2

√
t − s

ds (30)

+
m√
2π


−

∫ t

0

e−(µ+m2/2)s

√
s

Φ(m
√

t − s) e−µ(t−s) ds +
1

µ

∫ t

0

e−m2s/2 − e−(µ+m2/2)s

√
s3

Φ(m
√

t − s) ds

− 1

µ

∫ t

0

e−m2s/2 − e−(µ+m2/2)s

√
s3

e−µ(t−s) Φ(−m
√

t − s)ds +
∫ t

0

e−(µ+m2/2)s

√
s

Φ(−m
√

t − s) e−µ(t−s) ds


.

We recognize convolution products, and use the three following formulas for z ∈ C+,

∫ ∞

0
t−1/2 e−zt dt =

√
π

z
,
∫ ∞

0
e−zt Φ(m

√
t)dt =

1

2z
+

m

2z
√

2z + m2
,

∫ ∞

0
t−3/2 e−zt(1 − e−µt)dt = 2

√
π(

√
z + µ −

√
z),

to get after some simplifications:

Lc
0,m,0,µ(z) =

1

z
+

(
1

z + µ
− 1

z

) −m +
√

2(z + µ) + m2

√
2z + m2 +

√
2(z + µ) + m2

. (31)

Step 3: The cases b < 0 and b > 0

In both cases, we introduce τb = inf{u ≥ 0, W̃u = b}, the first hitting time of the

barrier. We recall that Ẽ[e−zτb ] = e−
√

2z|b| for z ∈ C+.
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b < 0 : Defining τ ′ = inf{t ≥ 0,
∫ t

0 1{W̃τb+u−b≤0}du ≥ ξ/µ}, we have τ = τb + τ ′, and

therefore 1{τ≥t} = 1{τb≥t} + 1{τb<t}1{τ ′≥t−τb}. We have:

P c
b,m,0,µ(t) = Ẽ[exp(mW̃t − m2t/2)1{τb≥t}] + Ẽ[exp(mW̃t − m2t/2)1{τb<t}1{τ ′≥t−τb}]

= 1 − Ẽ[exp(mW̃t − m2t/2)1{τb<t}] + Ẽ[exp(mb − m2τb/2)1{τb<t} exp(m(W̃τb+(t−τb) − b) −
m2(t − τb)/2)1{τ ′≥t−τb}]

Using Doob’s optional sampling theorem for the first expectation and the strong Markov
property in τb for the second one, we get that

P c
b,m,0,µ(t) = 1 − Ẽ[exp(mb − m2τb/2)1{τb<t}] + Ẽ[exp(mb − m2τb/2)1{τb<t}P

c
0,m,0,µ(t − τb)].

Then, it is easy to take the Laplace transform to get:

Lc
b,m,0,µ(z) =

1

z
+ emb+b

√
2z+m2

(
Lc

0,m,0,µ(z) − 1

z

)
for b < 0. (32)

b > 0 : Defining τ ′′ = inf{t ≥ 0,
∫ t

0 1{W̃τb+u−b≤0}du ≥ ξ/µ − τb}, we notice that when

τ ≥ t, we have either τb ≥ t and then ξ/µ ≥ t, or τb < t, and then ξ/µ ≥ τb and τ ′′ ≥ t−τb:

1{τ≥t} = 1{τb≥t}1{ξ/µ≥t} + 1{τb<t}1{ξ/µ≥τb}1{τ ′′≥t−τb}.

With the independence of ξ and (W̃u, u ≥ 0), we get P c
b,m,0,µ(t) = e−µt(1−Ẽ[emb−m2τb/2 1{τb<t}])

+ Ẽ[emb−m2τb/2 1{τb<t}1{ξ/µ≥τb} exp(m(W̃τb+(t−τb) − b) − m2(t − τb)/2)1{τ ′′≥t−τb}]. Now, we
use the strong Markov property in τb and the lack of memory property of the exponential
r.v.: conditioning w.r.t. Fτb

and {ξ ≥ τb}, (W̃τb+u − b, u ≥ 0) and ξ/µ − τb are respectively
a Brownian motion starting from 0 and an exponential r.v. with parameter µ and both
are independent. It comes out that

P c
b,m,0,µ(t) = e−µt(1 − Ẽ[emb−m2τb/2 1{τb<t}]) + Ẽ[emb−m2τb/2 1{τb<t}1{ξ/µ≥τb}P

c
0,m,0,µ(t − τb)]

= e−µt(1 − Ẽ[emb−m2τb/2 1{τb<t}]) + Ẽ[emb−(µ+m2/2)τb 1{τb<t}P
c
0,m,0,µ(t − τb)].

Then, proceeding exactly as in the case b < 0, we obtain

Lc
b,m,0,µ(z) =

1

z + µ
+ emb−b

√
2(z+µ)+m2

(
Lc

0,m,0,µ(z) − 1

z + µ

)
for b > 0, (33)

which concludes the proof of Theorem (1.1).

Remark B.1. We also have an explicit formula for P(τb < τ), the probability that the
default occurs after the firm value has reached the barrier C eαt. From (27), we have
{τb < τ} = {τb < ξ/µb}, setting µb as in Theorem 1.1. Therefore, we get

P(τb < τ) =
∫ ∞

0
µb e−µbt

P(τb < t)dt =
∫ ∞

0
µb e−µbt Ẽ[exp(mW̃t − m2t/2)1{τb<t}]dt

= emb Ẽ[exp((µb + m2/2)τb)] = emb−|b|
√

2µb+m2
.
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Remark B.2. Not surprisingly, we can also easily handle the case where the barrier follows
a geometric Brownian motion, i.e.

λt = µ21{Vt≤C e(α−η2/2)t+ηZt } + µ11{Vt>C e(α−η2/2)t+ηZt }, with 〈W, Z〉t = ρt.

We exclude the trivial case ρ = 1 with η = σ and set ς =
√

σ2 + η2 − 2ρση > 0 so
that Bt = (σWt − ηZt)/ς is a standard Brownian motion. Since 1{Vt≤C e(α−η2/2)t+ηZt } =
1{Bt+ 1

ς
(r−α−(σ2−η2)/2)t≤ 1

ς
log(C/V0)}, we can proceed like in step 1 and we get the Laplace trans-

form of P(τ ≤ t) in that case by simply taking

b =
1

ς
log(C/V0) and m =

1

ς
(r − α − (σ2 − η2)/2)

in formula (4). Said differently, considering a geometric Brownian motion barrier does not
lead to a richer family of default distributions.
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