
PRICING PARISIAN OPTIONS

CÉLINE LABART AND JÉRÔME LELONG

Abstract. In this work, we propose to price Parisian options using Laplace transforms. Not only, do
we compute the Laplace transforms of all the different Parisian options, but we also explain how to
invert them numerically. We discuss the accuracy of the numerical inversion and present the evolution
of the Greeks through a few graphs.

1. Introduction

With the development of stock exchanges around the world, more and more people have become in-
terested in derivatives and especially in options. Standard options provide its owner with the right to
buy or sell a number of stocks for a fixed amount of money at a given time, called the maturity time.
There are more complex options, known under the name of exotic or also path-dependent options. These
options are valuable only if the stock price has satisfied certain conditions before the maturity time, this
is precisely this kind of options we are going to study. More precisely, we will deal with options that give
their owners the right to buy (call options) or sell (put options) a number of stocks for a fixed amount
of money (the strike) if the stock price has stayed below (or above) a certain level (the barrier) for a
certain time (the option window) before the maturity time. This option is called a Parisian down-and-in
option (or alternatively a Parisian up-and-in option). This is only one example of all the different Parisian
options. Basically, we will only consider European style options, which means that one can only exercise
his option at the maturity time. Parisian options are, to some extent, a kind of barrier options. One
could influence the value of a barrier option by buying a lot of stocks or on the contrary by selling a lot of
them. For instance, let us imagine that we own a lot of up-and-in barrier options which haven not been
knocked in yet. If the maturity time is close, then we could be tempted to buy a lot of stocks to have the
option knocked in. If we consider a Parisian up-and-in option, this is no longer possible since the asset
price has to remain above the level for a much longer period (several days). Therefore, Parisian options
can be seen as a guarantee against easy arbitrage.

As one will discover later on, there exist a lot of different Parisian options. There are two different ways
of measuring the time spent above or below the barrier. Either, one only counts the time spent in a row
and starts counting from 0 each time the stock price crosses the barrier, this type is referred to as the
continuous Parisian options, or one adds the time spent below or above the barrier without resuming
the counting from 0 each time the stock price crosses the barrier, these options are called cumulative
Parisian options. In practice, these two kinds of Parisian options raise different questions about the paths
of Brownian motion. Therefore, we will only stick to the continuous style options.

There already exist several studies on the Parisian Options. Basically, two techniques can be used to price
Parisian options either Laplace transforms or partial differential equations. The Laplace transform tech-
nique was first introduced by [Chesney et al.(1997)Chesney, Jeanblanc-Picqué, and Yor]. [Schröder(2003)]
has also tackled these options using Laplace transforms. The PDE method was developed by [Haber et al.(1999)Haber, Schon
and [Wilmott(1998)].
In this article, we present a way of computing the prices of Parisian Options. The real issue in pricing
options is to be able to hedge them. This can only be done if we are able to compute the prices at
any time t smaller than the maturity time. The computation of the prices at time 0 requires to study
a little of the excursion theory of Brownian motion. The most complex proofs will only be given in the
Appendix. The pricing technique, we expose here, is based on Laplace transforms. In this work, we
compute the Laplace transforms of all the different Parisian options and we also discuss in detail the
accuracy of the numerical technique used to invert the Laplace transform. The numerical inversion is
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based on [Abate et al.(1999)Abate, Choudhury, and Whitt].

The article is divided as follows. First of all in Section 2 we give some definitions concerning Brownian
Motions and hitting time. We also explain how to write the price of such options in terms of hitting
times. In Section 3, we explain how to compute the Laplace transform of the price of a Parisian Down
Call at time 0. Section 4 is devoted to the computation of the Laplace transform of the prices of Parisian
Up Calls still at time 0. Some parity relationships are given in Section 5 to deduce the prices of Parisian
Puts. At that stage we are able to price any Parisian Options at time 0. In Section 6, we show how to
compute the prices at some time t relying on the prices at time 0.
Then, in Section 6 we will expose an algorithm to invert numerically a Laplace transform and we will
also discuss its accuracy and efficiency. This method is extremely accurate and fast compared with the
PDE method.
To conclude this article we present a few graphs to try to better understand these options. We also give
a few hedging simulations.
We have implemented in C the technique presented here. All the prices were computed using this pro-
gram. The different graphs concerning the hedging of such options were generated using the C code we
wrote.

A part of this work was done during an internship at TUDelft University in the Netherlands in 2003.

In this article, we will use the following notations:

S the process representing the asset price,
K the strike,
T the maturity of the option,
L the barrier level for process S,
D the option window,
x the initial value of process S,
r the interest rate,
δ the dividend rate,
σ the volatility,
k 1/σ ln(K/x),
b 1/σ ln(L/x) (i.e. the barrier level for the Brownian motion),
λ the Laplace variable,

θ
√

2λ,

d
b− k√
D

,

m
1

σ

(
r − δ − σ2

2

)
.

2. Definitions

First, we will give a few definitions and notations used in the rest of the article. Then, we will present
the features of such options. We only focus on the down-and-in and down-and-out calls in this section
since the features of the other Parisian options can easily be deduced from these two.

2.1. Some notations. Let us describe an excursion at (or away from) level L for an Itô process S. We
define

gSL,t = sup{u ≤ t | Su = L}, dSL,t = inf{u ≥ t | Su = L}.
The trajectory of S between gSL, t and dSL, t is the excursion at level L, straddling time t.

Let S = {St, t ≥ 0} denote the price of the underlying asset. We suppose that under the risk neutral
measure Q, the dynamics of S is given by

dSt = St((r − δ)dt+ σdWt), S0 = x

where W = {Wt, t ≥ 0} is a Q Brownian motion and x > 0. It follows that

St = x exp

(
(r − δ − σ2

2
)t+ σWt

)
.
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Figure 1. Dynamic of an asset

Let us introduce the following notations

m =
1

σ

(
r − δ − σ2

2

)
, b =

1

σ
ln

(
L

x

)

where L is the excursion level. Under Q, the dynamics of the asset is given by St = x exp (σ(mt+Wt)).
From now on, we will consider that every option has a maturity time T . Relying on the Cameron-Martin-
Girsanov theorem, we can introduce a new probability P, which makes Z = {Zt = Wt +mt, 0 ≤ t ≤ T}
a P-Brownian motion and

dP
dQ |FT

= emZT − m2

2 T . Thus, S rewrites St = x eσZt .

2.2. The Parisian down-and-out call. A down-and-out Parisian option becomes worthless if S reaches
L and remains constantly below level L for a time interval longer than D before maturity time T , which
is exactly the same as saying that Brownian motion Z makes an excursion below b older than D.
Let us introduce

Tb = inf {t > 0 | Zt = b},
gbt = sup {u ≤ t | Zu = b},
T−
b = inf {t > 0 | (t− gbt ) 1{{Zt<b}} > D}.

One should notice that referring to the previous notations gbt = gSL,t .

The price of a down-and-out option at time 0 with payoff φ(ST ), in an arbitrage free model, is given by

e−rtTEQ
(
φ(ST )1{{T−

b
>T}}

)
= e−(r+ m2

2 )TEP
(

1{{T−
b
>T}}φ(xeσZT )emZT

)
. (2.1)

Let us denote by PDOC(x, T ;K,L; r, δ) the value of a Parisian down-and-out call. From (2.1), we have

PDOC(x, T ;K,L; r, δ) = e−(r+ 1
2m

2)TEP(1{{T−
b
>T}}(xeσZT −K)+emZT ).

In many formulae involving a function Π of maturity T , as in (2.1), the discount factor
exp [−(r + 1

2m
2)T ] appears. In order to give more concise formulae, we introduce the following notation:

∗Π(T ) = e(r+ 1
2m

2)TΠ(T ). (2.2)

Hence, we will compute the Laplace transform of ∗Π rather than the one of Π. Any way the following
obvious relation between their Laplace transforms hold

Π̂(λ) = ∗̂Π(λ+ (r +
1

2
m2)). (2.3)
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Figure 2. Excursion of Brownian Motion

Since the functions Π we will consider will stand for option prices, they are bounded. This remark will
enable us to state the accuracy of the numerical inversion in Section 7.
Using notation (2.2), we obtain

∗PDOC(x, T ;K,L; r, δ) = EP(1{{T−
b
>T}}(xeσZT −K)+emZT ).

2.3. The Parisian down-and-in call. The owner of a down-and-in option receives the pay-off if S
makes an excursion below level L older than D before maturity time T , which is exactly the same as
saying that Brownian motion Z makes an excursion below b older than D. The price of a down-and-in
option at time 0 with payoff φ(ST ) is given by

e−rTEQ
(
φ(ST )1{{T−

b
<T}}

)
= e−(r+ m2

2 )TEP
(

1{{T−
b
<T}}φ(xeσZT )emZT

)
. (2.4)

Let us denote by PDIC(x, T ;K,L; r, δ) the value of a Parisian down-and-in call. From (2.4), we have

PDIC(x, T ;K,L; r, δ) = e−(r+ 1
2m

2)TEP(1{{T−
b
<T}}(xeσZT −K)+emZT ).

Using notation (2.2), we obtain

∗PDIC(x, T ;K,L; r, δ) = EP(1{{T−
b
<T}}(xeσZT −K)+emZT ).

The following scheme explains how to deduce the prices of the different kinds of Parisian options one
from the others.
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Figure 3. Organigram of how to deduce the prices one from the others
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3. The Parisian Down Calls

As shown in the previous scheme, all the different prices are deduced from their Laplace transforms. Now,
we will explain how to compute these Laplace transforms. In this section, we will only deal with down
version of the calls. We will follow exactly the previous scheme to deduce step by step all the needed
Laplace transforms.

3.1. The valuation of a Parisian down-and-in call with b ≤ 0. We want to compute
∗PDIC(x, T ;K,L; r, δ). Let us denote by Ft = σ(Zs, s ≤ t) the natural filtration of Brownian motion
Z = {Zt; t ≥ 0}. One notices that T−

b is an Ft-stopping time. We have

∗PDIC(x, T ;K,L; r, δ) = EP(1{{T−
b
<T}}(xeσZT −K)+emZT ),

= EP(1{{T−
b
<T}}EP [(xeσZT −K)+emZT |FT−

b

])

and we can write

∗PDIC(x, T ;K,L; r, δ) = EP(1{{T−
b
<T}}EP [xe

σ(ZT −Z
T

−
b

+Z
T

−
b

)
−K)+e

m(ZT −Z
T

−
b

+Z
T

−
b

)
|FT−

b

]).

EP

[
(xe

σ(ZT −Z
T

−
b

+Z
T

−
b

)
−K)+e

m(ZT −Z
T

−
b

+Z
T

−
b

)
|FT−

b

]
=

EP

[
(xe

σ(ZT −Z
T

−
b

+z)
−K)+e

m(ZT −Z
T

−
b

+z)
|FT−

b

]

|z=Z
T

−
b

. (3.1)

Let Wt denote Zt+T−
b

− ZT−
b

. Relying on the strong Markov property, Wt is independent of FT−
b

and

WT−T−
b

= ZT −ZT−
b

. Let Yt denote (xeσ(WT −t+z) −K)+em(WT −t+z), Yt is independent of FT−
b

. Then, a

well-known result on conditional expectations, states that E(YT−
b

|FT−
b

) = E(Yt)|t=T−
b

. So, we obtain

EP

[
(xe

σ(ZT −Z
T

−
b

+Z
T

−
b

)
−K)+e

m(ZT −Z
T

−
b

+Z
T

−
b

)
|FT−

b

]
=

EP
[
(xeσ(WT −τ +z) −K)+em(WT −τ +z)

]
|z=Z

T
−
b

, τ=T−
b

. (3.2)

EP
[
(xeσ(WT−τ+z) −K)+em(WT −τ +z)

]
=

1√
2π(T − τ)

(∫ ∞

−∞
emu(xeσu −K)+ exp

(
− (u− z)2

2(T − τ)

)
du

)
.

So, we get

∗PDIC(x, T ;K,L; r, δ) = EP(1{{T−
b
<T}}PT−T−

b

(fx)(ZT−
b

)),

with

fx(z) = emz(eσz −K)+,

and

Pt(fx)(z) =
1√
2πt

∫ ∞

−∞
fx(u) exp

(
− (u− z)2

2t

)
du.

As recalled in Appendix C, the random variables ZT−
b

and T−
b are independent. By denoting the law of

ZT−
b

by ν(dz), we obtain

∗PDIC(x, T ;K,L; r, δ) =

∫ ∞

−∞
EP(1{{T−

b
<T}}PT−T−

b

(fx)(z))ν(dz),

=

∫ ∞

−∞
fx(y)hb(T, y)dy, (3.3)

where

hb(t, y) =

∫ ∞

−∞
EP


1{{T−

b
<t}}

exp
(

− (z−y)2

2(t−T−
b

)

)

√
2π(t− T−

b )


 ν(dz).



PRICING PARISIAN OPTIONS 7

Since we consider the case b < 0, we can use the following expression for the law of ZT−
b

,as it is proved

in Appendix C

P(ZT−
b

∈ dx) =
dx

D
(b− x) exp

(
− (x− b)2

2D

)
1{{x≤b}}. (3.4)

3.1.1. The Laplace transform of ∗PDIC(x, T ;K,L; r, δ). We can calculate ∗PDIC(x, T ;K,L; r, δ) by us-

ing a Laplace transform. Let ̂∗PDIC(x, λ;K,L; r, δ) denote the Laplace transform of ∗PDIC(x, T ;K,L; r, δ)
for any λ with Re(λ) large enough such as all the integrals discussed below are convergent. This condition

implies that m+ σ −
√

2λ < 0. We have

̂∗PDIC(x, λ;K,L; r, δ) =

∫ ∞

0

e−λt
∫ ∞

−∞
fx(y)hb(t, y)dydt,

=

∫ ∞

−∞
fx(y)

∫ ∞

0

e−λthb(t, y)dtdy. (3.5)

The Laplace transform of hb(T, y). We would like to compute

ĥb(λ, y) =

∫ ∞

0

e−λthb(t, y)dt.

We know that :

hb(t, y) =

∫ b

−∞

b− z

D
exp

(
− (z − b)2

2D

)
EP


1{{T−

b
<t}}

exp
(

− (z−y)2

2(t−T−
b

)

)

√
2π(t− T−

b )


 dz.

We can write

hb(t, y) =

∫ b

−∞

b− z

D
exp

(
− (z − b)2

2D

)
γ(t, z − y)dz,

where

γ(t, x) = EP


1{{T−

b
<t}}

exp
(

− x2

2(t−T−
b

)

)

√
2π(t− T−

b )


 ,

and we have

ĥb(λ, y) =

∫ b

−∞

b− z

D
exp

(
− (z − b)2

2D

)∫ ∞

0

e−λtγ(t, z − y)dt dz. (3.6)

So, we need to compute the Laplace transform of γ(t, x)

∫ ∞

0

e−λtγ(t, x)dt = EP



∫ ∞

T−
b

e−λt
exp

(
− x2

2(t−T−
b

)

)

√
2π(t− T−

b )
dt


 .

The change of variables u = t− T−
b gives

∫ ∞

0

e−λtγ(t, x)dt = EP(e−λT−
b )

∫ ∞

0

e−λu
exp

(
−x2

2u

)

√
2πu

du.

Using results from Appendix A and B, we get
∫ ∞

0

e−λtγ(t, x)dt =
exp [−(|x| − b)θ]

θψ(θ
√
D)

.

Thanks to (3.6), we can rewrite

ĥb(λ, y) =
ebθ

Dθψ(θ
√
D)

∫ b

−∞
(b− z) exp

(
− (z − b)2

2D
− |z − y|θ

)
dz.

By changing variables x = b− z, we have

ĥb(λ, y) =
ebθ

Dθψ(θ
√
D)

∫ ∞

0

x exp

(
− x2

2D
− |b− x− y|θ

)
dx. (3.7)
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Let Kλ,D(b− y) denote

∫ +∞

0

x exp

(
− x2

2D
− |b− x− y|θ

)
dx.

valuation of Kλ,D(b − y). Relying on the definition of fx(y), we know that y is always bigger than
1

σ
ln

(
K

x

)
.

◮ Let us consider the case K ≥ L. In this case we have y − b ≥ 1
σ ln(KL ), then y − b ≥ 0. So we get

Kλ,D(b− y) =

∫ ∞

0

x exp

(
− x2

2D
+ (b− x− y)θ

)
dx

because x ≥ 0 and y − b ≥ 0.

Kλ,D(b− y) = e(b−y)θ

∫ ∞

0

x exp

(
− x2

2D
− xθ

)
dx,

= De(b−y)θψ(−θ
√
D).

From (3.7) we obtain

ĥb(λ, y) =
ψ(−θ

√
D)

ψ(θ
√
D)

exp[(2b− y)θ]

θ
. (3.8)

If we fill in (3.5) with the expression of ĥb(λ, y), we get

̂∗PDIC(x, λ;K,L; r, δ) =
ψ(−θ

√
D)e2bθ

θψ(θ
√
D)

∫ ∞

1
σ

ln( K
x

)

e−yθemy(xeσy −K)dy. (3.9)

Let k denote
1

σ
ln

(
K

x

)
.

We come up with the following formula for ̂∗PDIC(x, λ;K,L; r, δ).

̂∗PDIC(x, λ;K,L; r, δ) =
ψ(−θ

√
D)e2bθ

θψ(θ
√
D)

Ke(m−θ)k

(
1

m− θ
− 1

m+ σ − θ

)
,

for K > L and x ≥ L.

◮ Let us consider the case K ≤ L. In this case we have k < b. We also have

̂∗PDIC(x, λ;K,L; r, δ) =
e2bθ

θDψ(θ
√
D)

∫ +∞

k

emy(xeσy −K)Kλ,D(b− y)dy

where

Kλ,D(b− y) =

∫ +∞

0

z exp

(
− z2

2D
− |b− z − y|θ

)
dz.

For y ∈ [b,+∞[ we have b − y ≤ 0. Kλ,D(b − y) has already been computed in this case. For y ∈ [k, b],
we have b− y ≥ 0. We have to compute Kλ,D in such a case. Let a denote b− y, a > 0.

Kλ,D(a) =

∫ ∞

0

z exp

(
− z2

2D
− | a− z | θ

)
dz,

=

∫ a

0

z exp

(
− z2

2D
− (a− z)θ

)
dz

︸ ︷︷ ︸
A

+

∫ +∞

a

z exp

(
− z2

2D
+ (a− z)θ

)
dz

︸ ︷︷ ︸
B

.

✄ The valuation of B
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∫ +∞

a

ze

(
− z2

2D
+(a−z)θ

)
dz = eaθ

∫ +∞

a

ze

(
− z2

2D
−zθ
)
dz,

= eaθ
∫ +∞

a

D
( z
D

+ θ − θ
)
e

(
− z2

2D
−zθ
)
dz,

= eaθD

[
−e
(

− z2

2D
−zθ
)]+∞

a

− eaθθD

∫ +∞

a

e

(
− z2

2D
−zθ
)
dz,

= eaθDe− a2

2D
−aθ − eaθθD

∫ +∞

a

e
− 1

2

(
z√
D

+θ
√
D
)2

+λD
dz,

= De− a2

2D − eaθθDeλD
∫ +∞

a

e
− 1

2

(
z√
D

+θ
√
D
)2

dz.

By changing variables u =
z√
D

+ θ
√
D, we get

B = De− a2

2D − eaθθDeλD
√
D

∫ +∞

a√
D

+θ
√
D

e− 1
2u

2

du,

= De− a2

2D − eaθθDeλD
√

2πD(1 − N
(

a√
D

+ θ
√
D

)
.

We finally obtain :

B = D

[
e− a2

2D − eaθθ
√

2πDeλD
(

1 − N
(

a√
D

+ θ
√
D

))]
. (3.10)

✄ The valuation of A
∫ a

0

z exp

(
− z2

2D
− (a− z)θ

)
dz = e−aθ

∫ a

0

ze− z2

2D
+zθdz,

= e−aθ
∫ a

0

D(
z

D
+ θ − θ)e− z2

2D
+zθdz,

= e−aθD
[
−e− z2

2D
+zθ
]a

0
+Dθe−aθ

∫ a

0

e− z2

2D
+zθdz,

= −De− a2

2D +De−aθ +DθeλDe−aθ
∫ a

0

e
− 1

2 ( z√
D

−θ
√
D)2

dz,

= −De− a2

2D +De−aθ +DθeλDe−aθ√D
∫ a√

D
−θ

√
D

−θ
√
D

e− u2

2 du.

By changing variables u =
z√
D

, we get

A = D

(
e−aθ − e− a2

2D +
√

2πDθeλDe−aθ
(

N
(

a√
D

− θ
√
D

)
− N (−θ

√
D)

))
.

Finally, in the case a = b− y ≥ 0 we get

Kλ,D(a) = D

[
e−aθ + eλDθ

√
2πD

(
e−aθ

[
N
(

a√
D

− θ
√
D

)
− N (−θ

√
D)

]

−eaθ
[
1 − N

(
a√
D

+ θ
√
D

)])]
. (3.11)

So, we find

̂∗PDIC(x, λ;K,L; r, δ) =

e2bθ

θψ(θ
√
D)

[∫ b

k

emy(xeσy −K)

[
e−(b−y)θ + θ

√
2πDeλD

(
e−(b−y)θ

[
N
(
b− y√
D

− θ
√
D

)
− N (−θ

√
D)

]

−e(b−y)θ

[
1 − N (

b− y√
D

+ θ
√
D)

])]
dy +

∫ +∞

b

emy(xeσy −K)e(b−y)θψ(θ
√
D)dy

]
.

After doing long but not difficult computations we get, for K ≤ L ≤ x,
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̂∗PDIC(x, λ;K,L) =
e(m+θ)b

ψ(θ
√
D)

(
2K

m2 − θ2

[
ψ(−

√
Dm) +

√
2πDe

Dm
2

2 mN (−d−
√
Dm)

]

− 2L

(m+ σ)2 − θ2

[
ψ(−

√
D(m+ σ)) +

√
2πDe

D

2 (m+σ)2

(m+ σ)N
(

−d−
√
D(m+ σ)

)])

+
Ke(m+θ)k

θψ(θ
√
D)

(
1

m+ θ
− 1

m+ σ + θ

) [
ψ(−θ

√
D) + θeλD

√
2πDN (d− θ

√
D)
]

+
eλD

√
2πD

ψ(θ
√
D)

Ke2bθe(m−θ)kN (−d− θ
√
D)

(
1

m+ σ − θ
− 1

m− θ

)
, (3.12)

where d = b−k√
D

.

3.2. The valuation of a Parisian down-and-out call with b ≤ 0. To find the valuation of a Parisian
down-and-out call we can use the relation between
∗PDIC(x, T ;K,L; r, δ), ∗PDOC(x, T ;K,L; r, δ) and the Black-Scholes price of an European call

∗PDOC(x, T ;K,L; r, δ) = ∗BSC(x, T ;K; r, δ) − ∗PDIC(x, T ;K,L; r, δ),

where

∗BSC(x, T ;K; r, δ) = EP(emZT (xeσZT −K)+).

Therefore, we obtain

̂∗PDOC(x, λ;K,L; r, δ) = ∗̂BSC(x, λ;K; r, δ) − ̂∗PDIC(x, λ;K,L; r, δ).

Now, we need to find the valuation of ∗̂BSC(x, λ;K,L; r, δ)

∗BSC(x, T ;K; r, δ) = EP(emZT (xeσZT −K)+),

=

∫ +∞

−∞
emz(xeσz −K)+ 1√

2πT
e− z2

2T dz.

∗̂BSC(x, λ;K; r, δ) =

∫ +∞

−∞
emz(xeσz −K)+

∫ +∞

0

e−λt
√

2πt
e− z2

2t dt dz.

Thanks to Appendix B we have ∫ +∞

0

e−λt
√

2πt
e− z2

2t dt =
e−|z|θ

θ
.

Then, we can write

∗̂BSC(x, λ;K; r, δ) =

∫ +∞

−∞
emz(xeσz −K)+ e

−|z|
√

2λ

θ
dz,

=

∫ +∞

1
σ

ln( K
x

)

emz(xeσz −K)
e−|z|θ

θ
dz.

3.2.1. case K ≥ x. In this case, we can easily compute ∗̂BSC(x, λ;K). Using the previous notations we
have

∗̂BSC(x, λ;K; r, δ) =

∫ +∞

k

emz(xeσz −K)
e−|z|θ

θ
dz

and in this case
1

σ
ln

(
K

x

)
≥ 0, so we get

∗̂BSC(x, λ;K; r, δ) =

∫ +∞

k

emz(xeσz −K)
e−zθ

θ
dz,

=
1

θ

∫ +∞

k

e(m+σ−θ)zdz − K

θ

∫ +∞

k

xe(m−θ)zdz,

= −K

θ

e(m−θ)k

m+ σ − θ
+
K

θ

e(m−θ)k

m− θ
. (3.13)
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Then, we get the formula for the Laplace transform of the Black-Scholes call in the case K ≥ x:

∗̂BSC(x, λ;K; r, δ) =
K

θ
e(m−θ)k

(
1

m− θ
− 1

m+ σ − θ

)
, for K ≥ x.

To obtain ̂∗PDOC(x, λ;K,L; r, δ) we only need to subtract ̂∗PDIC(x, λ;K,L; r, δ).

̂∗PDOC(x, λ;K,L; r, δ) =
K

θ
e(m−θ)k

(
1

m− θ
− 1

m+ σ − θ

)
− ψ(−θ

√
D)e2bθ

θψ(θ
√
D)

Ke(m−θ)k

(
1

m− θ
− 1

m+ σ − θ

)
,

=

(
1

m− θ
− 1

m+ σ − θ

)
K

θ
e(m−θ)k

[
1 − e2bθψ(−θ

√
D)

ψ(θ
√
D)

]
. (3.14)

Furthermore,

ψ(−θ
√
D) = ψ(θ

√
D) − θ

√
2πDeλD. (3.15)

So, the following formula holds

̂∗PDOC(x, λ;K,L; r, δ) =

[
1 − e2bθ +

θe2bθ
√

2πDeλD

ψ(θ
√
D)

]
K

θ
e(m−θ)k

(
1

m− θ
− 1

m+ σ − θ

)
for K ≥ x ≥ L. (3.16)

3.2.2. case K ≤ x. In this case the integral has to be split.

∗̂BSC(x, λ;K; r, δ) =

∫ +∞

1
σ

ln( K
x

)

emz(xeσz −K)
e−|z|θ

θ
dz,

=

∫ 0

k

emz(xeσz −K)
ezθ

θ
dz +

∫ +∞

0

emz(xeσz −K)
e−zθ

θ
dz,

=
1

θ

(∫ 0

k

xe(m+σ+θ)z −Ke(m+θ)zdz +

∫ +∞

0

xe(m+σ−θ)z −Ke(m−θ)zdz

)
,

=
1

θ

(
x

m+ σ + θ
− K

m+ θ
− Ke(m+θ)k

m+ σ + θ
+
Ke(m+θ)k

m+ θ
− x

m+ σ − θ
+

K

m+ θ

)
,

=
2K

m2 − θ2
− 2x

(m+ σ)2 − θ2
+
Ke(m+θ)k

θ

(
1

m+ θ
− 1

m+ σ + θ

)
. (3.17)

So, we get

∗̂BSC(x, λ;K; r, δ) =
2K

m2 − θ2
− 2x

(m+ σ)2 − θ2
+
Ke(m+θ)k

θ(
1

m+ θ
− 1

m+ σ + θ

)
, for K ≤ x. (3.18)

Finally, we come up with the following formula for the valuation of a Parisian down-and-out call with
b ≤ 0
◮ Case K ≥ L.

̂∗PDOC(x, λ;K,L; r, δ)

=
2K

m2 − θ2
− 2x

(m+ σ)2 − θ2
+
Ke(m+θ)k

θ

(
1

m+ θ
− 1

m+ σ + θ

)

−ψ(−θ
√
D)e2bθ

θψ(θ
√
D)

Ke(m−θ)k

(
1

m− θ
− 1

m+ σ − θ

)
, for x ≥ K ≥ L. (3.19)
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◮ Case K ≤ L.

̂∗PDOC(x, λ;K,L) =

2K

m2 − θ2

[
1 − e(m+θ)b

ψ(θ
√
D)

(
ψ(−

√
Dm) +

√
2πDe

Dm
2

2 mN (−d−
√
Dm)

)]

− 2

(m+ σ2) − θ2

[
x− Le(m+θ)b

ψ(θ
√
D)

(
ψ(−

√
D(m+ σ)) +

√
2πDe

D(m+σ)2

2

(m+ σ)N (−d−
√
D(m+ σ))

)]

+
Ke(m+θ)k

θ
(

1

m+ θ
− 1

m+ θ + σ
)

[
1 − 1

ψ(θ
√
D)

(
ψ(−θ

√
D) + θeλD

√
2πDN (d− θ

√
D)
)]

−e
λD

√
2πD

ψ(θ
√
D)

Ke2bθe(m−θ)kN (−d− θ
√
D)

(
1

m− θ + σ
− 1

m− θ

)
,

for K ≤ L ≤ x.

3.3. The valuation of a Parisian down-and-out call with b > 0.

3.3.1. reduction to the case b = 0. If b is positive and T−
b ≥ T ≥ D, then Tb ≤ D.

Therefore, the discounted value of a down-and-out call in the case L > x is

∗ PDOC(x, T ;K,L; r, δ) = EP(1{{T−
b

≥T}}1{{Tb≤D}}[xeσZT −K]+emZT ). (3.20)

We can also write :

∗ PDOC(x, T ;K,L; r, δ) = EP
(
EP [1{{T−

b
≥T}}1{{Tb≤D}}[xeσ(ZT −ZTb

+b) −K]+em(ZT −ZTb
+b) | FTb

]
)
.

We have FTb
= {A ∈ A,∀t ≥ 0, A

⋂{Tb ≤ t} ∈ Ft}, then {Tb ≤ D} ∈ FTb
, because

{Tb ≤ D}
⋂

{Tb ≤ t} = {Tb ≤ D ∧ t}
and

{Tb ≤ D ∧ t} ∈ Ft∧D ⊂ Ft.
Therefore 1{{Tb≤D}} is FTb

-measurable.
So we get

∗PDOC(x, T ;K,L; r, δ) = EP
(

1{{Tb≤D}}EP [1{{T−
b

−Tb≥T−Tb}}[xeσZT −ZTb
+b −K]+em(ZT −ZTb

+b) | FTb
]
)
.

Relying on the strong Markov property we can write that T−
b − Tb

law
= T−

0 .
Hence

∗PDOC(x, T ;K,L; r, δ) = EP
(

1{{Tb≤D}}EP [1{{T−
0 ≥T−Tb}}[xeσ(ZT −ZTb

+b) −K]+em(ZT −ZTb
+b) | FTb

]
)
.

Let Wt denote ZTb+t − ZTb
, relying on the strong Markov property Wt is independent of FTb

.
Let Yt denote 1{{T−

0 ≥T−t}}[xeσ(WT −t+b) −K]+em(WT −t+b).

• Yt is independent of FTb
,

• Tb is FTb
-measurable so we can write E[YTb

|FTb
] = E[Yt]|t=Tb

.

Hence we have
∗PDOC(x, T ;K,L; r, δ) = E[1{{Tb≤D}}E[Yt]|t=Tb

],

=

∫ ∞

−∞
1{{u≤D}}EP [Yu]µb(du)

where µb(du) is the law of Tb recalled in Appendix A. We get

∗PDOC(x, T ;K,L; r, δ) =

∫ D

0

EP
(

1{{T−
0 ≥T−u}}[xeσ(WT −u+b) −K]+em(WT −u+b)

)
µb(du).

So, we have

∗PDOC(x, T ;K,L; r, δ) = emb
∫ D

0

EP
(

1{{T−
0 ≥T−u}}[xeσbeσWT −u −K]+emWT −u

)
µb(du).



PRICING PARISIAN OPTIONS 13

As b = 1
σ ln

(
L
x

)
, we get

∗PDOC(x, T ;K,L; r, δ) = Lemb
∫ D

0

EP
(

1{{T−
0 ≥T−u}}[eσWT −u −K/L]+emWT −u

)
µb(du).

The price of a Parisian down-and-out call in the case b > 0 is given by

∗ PDOC(x, T ;K,L; r, δ) = Lemb
∫ D

0

∗PDOC0(T − u;K/L; r, δ)µb(du) (3.21)

where

∗PDOC0(T ;K; r, δ) = EP
(

1{{T−
0 ≥T}}[eσZT −K]+emZT

)
.

3.3.2. The Laplace transform of ∗PDOC(x, T ;K,L; r, δ). If we consider the Laplace transform of
∗PDOC(x, T ;K,L; r, δ) with respect to T , we get

̂∗PDOC(x, λ;K,L; r, δ) =

∫ +∞

0

e−λt Lemb
∫ D

0

∗PDOC0(t− u;K/L; r, δ)µb(du)1{{t−u>0}}dt,

= Lemb
∫ D

0

µb(du)

∫ +∞

u

e−λt ∗ PDOC0(t− u;K/L; r, δ) dt,

we change variables (v, u) = (t− u, u)

= Lemb
∫ D

0

µb(du)e−λu
∫ +∞

0

e−λv ∗ PDOC0(v;K/L; r, δ) dv,

= Lemb
∫ D

0

µb(du)e−λu ̂∗PDOC
0
(λ;K/L; r, δ).

If we compute

∫ D

0

µb(du)e−λu, we find e−θbN
(
θ
√
D − b√

D

)
+ eθbN

(
−

√
Dθ − b√

D

)
as proved in Ap-

pendix A, where N denotes the standard normal cumulative distribution. Finally, we come up with the
following formula

̂∗PDOC(x, λ;K,L; r, δ) = L

[
e(m−θ)bN

(√
Dθ − b√

D

)
+

e(m+θ)bN
(

−
√
Dθ − b√

D

)]
̂∗PDOC0

(λ;K/L; r, δ), for L ≥ x. (3.22)

◮ Case K ≥ L. ̂∗PDOC
0
(λ;K/L) has already been computed in (3.16), and we had found

̂∗PDOC
0
(λ;K/L; r, δ) =

√
2πDeλD

ψ(θ
√
D)

K

L
e(m−θ)k

(
1

m− θ
− 1

m+ σ − θ

)
, for K > L.

Then, we now have an explicit formula for the Laplace transform of ∗PDOC(x, T ;K,L; r, δ) whenK > L.

̂∗PDOC(x, λ;K,L; r, δ) =

[
e(m−θ)bN

(
θ

√
D − b√

D

)
+ e(m+θ)bN

(
−θ

√
D − b√

D

)]

√
2πDeλD

ψ(θ
√
D)

Ke(m−θ)k

(
1

m− θ
− 1

m+ σ − θ

)
, for K ≥ L ≥ x. (3.23)
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◮ Case K ≤ L. In this case, we have

̂∗PDOC
0
(λ;K/L) =

2K

L(m2 − θ2)

[
1 − 1

ψ(θ
√
D)

(
ψ(−

√
Dm) +

√
2πDe

Dm2

2 mN
(

ln(KL )

σ
√
D

−
√
Dm

))]

− 2

(m+ σ2) − θ2

[
1 − 1

ψ(θ
√
D)

(
ψ(−

√
D(m+ σ))

+
√

2πDe
D(m+σ)2

2 (m+ σ)N
(

ln( K
L

)

σ
√
D

−
√
D(m+ σ)

))]

+
Ke

m+θ
σ

ln( K
L

)

Lθ

(
1

m+ θ
− 1

m+ θ + σ

)

[
1 − 1

ψ(θ
√
D)

(
ψ(−θ

√
D) + θeλD

√
2πDN

(
ln( L

K
)

σ
√
D

− θ
√
D
))]

−eλD
√

2πD

ψ(θ
√
D)

K

L
e

m−θ
σ

ln( K
L

)N
(

ln(KL )

σ
√
D

− θ
√
D

)(
1

m− θ + σ
− 1

m− θ

)
.

Hence,

̂∗PDOC(x, λ;K,L; r, δ) = L
(
e(m−θ)bN

(√
Dθ − b√

D

)
+ e(m+θ)bN

(
−

√
Dθ − b√

D

))
{

2K

L(m2 − θ2)

[
1 − 1

ψ(θ
√
D)

(
ψ(−

√
Dm) +

√
2πDe

Dm
2

2 mN
(

ln(K
L

)

σ
√
D

−
√
Dm

))]

− 2

(m+ σ2) − θ2

[
1 − 1

ψ(θ
√
D)

(
ψ(−

√
D(m+ σ))

+
√

2πDe
D(m+σ)2

2 (m+ σ)N
(

ln( K

L
)

σ
√
D

−
√
D(m+ σ)

))]

+
Ke

m+θ

σ
ln( K

L
)

Lθ

(
1

m+ θ
− 1

m+ θ + σ

)

[
1 − 1

ψ(θ
√
D)

(
ψ(−θ

√
D) + θeλD

√
2πDN (

ln( L

K
)

σ
√
D

− θ
√
D)
)]

−e
λD

√
2πD

ψ(θ
√
D)

K

L
e

m−θ

σ
ln( K

L
)N (

ln(K
L

)

σ
√
D

− θ
√
D)

(
1

m− θ + σ
− 1

m− θ

)}
,

for K ≤ L and x ≤ L.

3.4. The valuation of a Parisian down-and-in call with b > 0. So far, we have managed to find
explicit formulae for the Laplace transforms of the down-and-out call prices with b > 0. Now, we will use
the relationships existing between down-and-out options and down-and-in options to compute the price
of a down-and-in call in the case b > 0. In fact, the following formula holds

̂∗PDIC(x, λ;K,L; r, δ) = ∗̂BSC(x, λ,K, r, δ) − ̂∗PDOC(x, λ;K,L; r, δ)

where ̂∗PDOC(x, λ;K,L; r, δ) has already been computed above in the Section 3.3.2 for b > 0 and

∗̂BSC(x, λ,K, r, δ) has been calculated in (3.18) and (3.14). We simply recall the formula

∗̂BSC(x, λ,K, r, δ) =





K

θ
e(m−θ)k

(
1

m− θ
− 1

m− θ + σ

)
if K ≥ x,

2K

m2 − θ2
− 2x

(m+ σ)2 − θ2
+
K

θ
e(m+θ)k

(
1

m+ θ
− 1

m+ θ + σ

)
if K ≤ x.

If we put all the terms together we find the following formula
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◮ Case K ≥ L.

̂∗PDIC(x, λ;K,L; r, δ) =

K

θ
e(m−θ)k

(
1

m− θ
− 1

m− θ + σ

)

−
(
e(m−θ)bN

(
θ

√
D − b√

D

)
+ e(m+θ)bN

(
−θ

√
D − b√

D

))

√
2πDeλD

ψ(θ
√
D)

Ke(m−θ)k

(
1

m− θ
− 1

m+ σ − θ

)
, for K ≥ L ≥ x.

◮ Case K ≤ L.

̂∗PDIC(x, λ;K,L; r, δ) =
K

θ
e(m−θ)k

(
1

m− θ
− 1

m− θ + σ

)

−L
(
e(m−θ)bN

(√
Dθ − b√

D

)
+ e(m+θ)bN

(
−

√
Dθ − b√

D

))
{

2K

L(m2 − θ2)

[
1 − 1

ψ(θ
√
D)

(
ψ(−

√
Dm) +

√
2πDe

Dm
2

2 mN
(

ln(K
L

)

σ
√
D

−
√
Dm

))]

− 2

(m+ σ2) − θ2[
1 − 1

ψ(θ
√
D)

(
ψ(−

√
D(m+ σ)) +

√
2πDe

D(m+σ)2

2 (m+ σ)N
(

ln(K
L

)

σ
√
D

−
√
D(m+ σ)

))]

+
Ke

m+θ

σ
ln( K

L
)

Lθ

(
1

m+ θ
− 1

m+ θ + σ

)

[
1 − 1

ψ(θ
√
D)

(
ψ(−θ

√
D) + θeλD

√
2πDN

(
ln( L

K
)

σ
√
D

− θ
√
D

))]

−e
λD

√
2πD

ψ(θ
√
D)

K

L
e

m−θ

σ
ln( K

L
)N

(
ln(K

L
)

σ
√
D

− θ
√
D

)(
1

m− θ + σ
− 1

m− θ

)}
, for x ≤ K ≤ L.

̂∗PDIC(x, λ;K,L; r, δ) =
2K

m2 − θ2
− 2x

(m+ σ)2 − θ2
+
K

θ
e(m+θ)k

(
1

m+ θ
− 1

m+ θ + σ

)

−L
(
e(m−θ)bN

(√
Dθ − b√

D

)
+ e(m+θ)bN

(
−

√
Dθ − b√

D

))
{

2K

L(m2 − θ2)

[
1 − 1

ψ(θ
√
D)

(
ψ(−

√
Dm) +

√
2πDe

Dm
2

2 mN
(

ln(K
L

)

σ
√
D

−
√
Dm

))]

− 2

(m+ σ2) − θ2

[
1 − 1

ψ(θ
√
D)

(
ψ(−

√
D(m+ σ))

+
√

2πDe
D(m+σ)2

2 (m+ σ)N
(

ln(K
L

)

σ
√
D

−
√
D(m+ σ)

))]

+
Ke

m+θ

σ
ln( K

L
)

Lθ

(
1

m+ θ
− 1

m+ θ + σ

)

[
1 − 1

ψ(θ
√
D)

(
ψ(−θ

√
D) + θeλD

√
2πDN

(
ln( L

K
)

σ
√
D

− θ
√
D

))]

−e
λD

√
2πD

ψ(θ
√
D)

K

L
e

m−θ

σ
ln( K

L
)N

(
ln(K

L
)

σ
√
D

− θ
√
D

)(
1

m− θ + σ
− 1

m− θ

)}
, for K ≤ x ≤ L.

4. The Parisian Up Calls

This section will go exactly through the same points as the previous one but considering the Up calls
instead of the Down ones this time. Once again the organisation of this section is based on the presen-
tation scheme.
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4.1. The valuation of a Parisian Up-and-in call with b ≥ 0. The owner of an up-and-in option
receives the pay-off if S makes an excursion above the level L older than D before the maturity time T ,
which is exactly the same as saying Brownian motion Z makes an excursion above b older than D. Using
the previous notations we can write :

∗ PUIC(x, T ;K,L; r, δ) = EP(1{{T+
b
<T}}(xeσZT −K)+emZT ), (4.1)

where

T+
b = inf {t > 0|1{{Zt>b}}(t− gbt ) > D}. (4.2)

The computation of ∗PUIC(x, T ;K,L; r, δ) for b > 0 is exactly the same as the computation of
∗PDIC(x, T ;K,L; r, δ) for b < 0. We just have to find the law of T+

b . We have

∗ PUIC(x, T ;K,L; r, δ) =

∫ +∞

−∞
EP(1{{T+

b
<T}}PT−T+

b
(fx)(z))ν(dz), (4.3)

where

• fx(z) = emz(xeσz −K)+,

• Pt(fx)(z) = 1√
2πt

∫ +∞
−∞ fx(u) exp

(
− (u−z)2

2t

)
du,

• ν(dz) is the law of ZT+
b

.

We have

∗ PUIC(x, T ;K,L; r, δ) =

∫ +∞

−∞
fx(y)hb(T, y)dy, (4.4)

where

hb(t, y) =

∫ ∞

−∞
EP


1{{T+

b
<t}}

exp
(

− (z−y)2

2(t−T+
b

)

)

√
2π(t− T+

b )


 ν(dz). (4.5)

Since we consider the case b > 0, we can use the following expression for the law of ZT+
b

,as it is proved

in Appendix C

P(ZT+
b

∈ dx) =
dx

D
(x− b) exp

(
− (x− b)2

2D

)
1{{x≥b}}. (4.6)

4.1.1. The Laplace transform of ∗PUIC(x, T ;K,L; r, δ). We still have

̂∗PUIC(x, λ;K,L; r, δ) =

∫ ∞

−∞
fx(y)

∫ ∞

0

e−λthb(t, y)dtdy. (4.7)

We would like to compute

ĥb(λ, y) =

∫ ∞

0

e−λthb(t, y)dt. (4.8)

We know that

hb(t, y) =

∫ +∞

b

z − b

D
exp

(
− (z − b)2

2D

)
EP


1{{T+

b
<t}}

exp
(

− (z−y)2

2(t−T+
b

)

)

√
2π(t− T+

b )


 dz. (4.9)

We can write

hb(t, y) =

∫ +∞

b

z − b

D
exp

(
− (z − b)2

2D

)
γ(t, z − y)dz,

where

γ(t, x) = EP


1{{T+

b
<t}}

exp
(

− x2

2(t−T+
b

)

)

√
2π(t− T+

b )




and we have

ĥb(λ, y) =

∫ +∞

b

z − b

D
exp

(
− (z − b)2

2D

)∫ ∞

0

e−λtγ(t, z − y)dt dz. (4.10)
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So, we need to compute the Laplace transform of γ(t, x)

∫ ∞

0

e−λtγ(t, x)dt = EP



∫ ∞

T+
b

e−λt
exp

(
− x2

2(t−T+
b

)

)

√
2π(t− T+

b )
dt


 .

By changing variables u = t− T+
b , we get

∫ ∞

0

e−λtγ(t, x)dt = EP(e−λT+
b )

∫ ∞

0

e−λu
exp

(
−x2

2u

)

√
2πu

du.

Using results from Appendix C and B, we come up with
∫ ∞

0

e−λtγ(t, x)dt =
exp [−(|x| + b)θ]

θψ(θ
√
D)

. (4.11)

Thanks to (4.10) we can rewrite

ĥb(λ, y) =
e−bθ

Dθψ(θ
√
D)

∫ ∞

0

x exp

(
− x2

2D
− |b+ x− y|θ

)
dx. (4.12)

Let K1{λ,D}(y − b) denote

∫ +∞

0

x exp

(
− x2

2D
− |b+ x− y|θ

)
dx.

4.1.2. The valuation of K1{λ,D}(y − b). Let c denote y − b.

We have K1{λ,D}(c) =

∫ +∞

0

x exp

(
− x2

2D
− |x− c|θ

)
dx.

◮ Case K ≥ L. In such a case we have, for y ∈ [k,+∞[, y − b ≥ 0.

We can use the formula (3.11) to compute K1{λ,D}(c). Then for ĥb(λ, y) we get :

ĥb(λ, y) =
e−bθ

θψ(θ
√
D)

[
e−(y−b)θ + θ

√
2πDeλD

(
e−(y−b)θ[N (

y − b√
D

− θ
√
D) − N (−θ

√
D)]

−e(y−b)θ
(

1 − N (
y − b√
D

+ θ
√
D)

))]
. (4.13)

By plugging this result in(4.7) and by doing long but easy calculations we get:

̂∗PUIC(x, λ;K,L; r, δ) = e(m−θ)b

√
2πD

ψ(θ
√
D)

[
2K

m2 − θ2
e

Dm
2

2 mN (d+
√
Dm)

− 2L

(m+ σ)2 − θ2
e

D(m+σ)2

2 (m+ σ)N (d+
√
D(m+ σ))

]

+
e−2bθ

ψ(θ
√
D)

Ke(m+θ)keλD
√

2πDN (d− θ
√
D)

(
1

m+ σ + θ
− 1

m+ θ

)

+
e(m−θ)k

θψ(θ
√
D)

K

(
1

m− θ
− 1

m+ σ − θ

)(
ψ(−θ

√
D) + θ

√
2πDeλDN (d− θ

√
D)
)
, (4.14)

for x ≤ L ≤ K.
◮ Case K ≤ L. If K ≤ L we have y − b ≥ 0 for y ∈ [b,+∞[ and y − b ≤ 0 for y ∈ [k, b]. So we get

̂∗PUIC(x, λ;K,L; r, δ) =
e−bθ

Dθψ(θ
√
D)

(∫ b

k

emy(xeσy −K)

∫ +∞

0

z exp

(
− z2

2D
− (z + b− y)θ

)
dzdy

+

∫ +∞

b

emy(xeσy −K)

∫ +∞

0

z exp

(
− z2

2D
− |z + b− y|θ

)
dzdy

)
.
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After doing computations we get

̂∗PUIC(x, λ;K,L; r, δ) =
e(m−θ)b

ψ(θ
√
D)

[
2K

m2 − θ2
ψ(

√
Dm) − 2L

(m+ σ)2 − θ2
ψ(

√
D(m+ σ))

]

+
e−2bθψ(−θ

√
D)

θψ(θ
√
D)

Ke(m+ θ)k

(
1

m+ θ
− 1

m+ θ + σ

)
, for K ≤ L and x ≤ L. (4.15)

4.2. The valuation of a Parisian Up-and-out call with b ≥ 0. Thanks to the formula of ̂∗PUIC(x, λ;K,L; r, δ)

we can find ̂∗PUOC(x, λ;K,L; r, δ). By using the relations between ̂∗PUIC and ̂∗PUOC and the Laplace
transform of a Call when x ≤ K ( which has been computed in 3.2.1 ).
So, for x ≤ L ≤ K, we obtain

̂∗PUOC(x, λ;K,L; r, δ) =
K

θ
e(m−θ)k

(
1

m− θ
− 1

m+ σ − θ

)

−e(m−θ)b

√
2πD

ψ(θ
√
D)

[
2K

m2 − θ2
e

Dm
2

2 mN (d+
√
Dm)

− 2L

(m+ σ)2 − θ2
e

D(m+σ)2

2 (m+ σ)N (d+
√
D(m+ σ))

]

− e−2bθ

ψ(θ
√
D)

Ke(m+θ)keλD
√

2πDN (d− θ
√
D)

(
1

m+ σ + θ
− 1

m+ θ

)

− e(m−θ)k

θψ(θ
√
D)

K

(
1

m− θ
− 1

m+ σ − θ

)(
ψ(−θ

√
D) + θ

√
2πDeλDN (d− θ

√
D)
)
,

and for K ≤ x ≤ L, we have

̂∗PUOC(x, λ;K,L; r, δ) =

2K

m2 − θ2
− 2x

(m+ σ)2 − θ2
+
K

θ
e(m+θ)k

(
1

m+ θ
− 1

m+ θ + σ

)

− e(m−θ)b

ψ(θ
√
D)

[
2K

m2 − θ2
ψ(

√
Dm) − 2L

(m+ σ)2 − θ2
ψ(

√
D(m+ σ))

]

−e
−2bθψ(−θ

√
D)

θψ(θ
√
D)

Ke(m+ θ)k

(
1

m+ θ
− 1

m+ θ + σ

)
. (4.16)

Finally, for the case x ≤ K ≤ L we get

̂∗PUOC(x, λ;K,L; r, δ) =

K

θ
e(m−θ)k

(
1

m− θ
− 1

m+ σ − θ

)

− e(m−θ)b

ψ(θ
√
D)

[
2K

m2 − θ2
ψ(

√
Dm) − 2L

(m+ σ)2 − θ2
ψ(

√
D(m+ σ))

]
(4.17)

−e
−2bθψ(−θ

√
D)

θψ(θ
√
D)

Ke(m+ θ)k

(
1

m+ θ
− 1

m+ θ + σ

)
. (4.18)

4.3. The valuation of a Parisian Up-and-out call with b ≤ 0. We proceed exactly the same way as
for the case b ≥ 0.
We have

∗ PUOC(x, T ;K,L; r, δ) = Lemb
∫ D

0

∗PUOC0(1, T − u;K/L, 1; r, δ)µb(du),

and for its Laplace transform we get

̂∗PUOC(x, T ;K,L; r, δ) = Lemb
∫ D

0

µb(du)e−λu ̂∗PUOC
0
(1, λ;K/L, 1; r, δ).
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To compute
∫D

0
µb(du)e−λu, we can refer to Appendix A, but by plugging −b instead of b. So we find

∫ D

0

µb(du)e−λu = eθbN (θ
√
D +

b√
D

) + e−θbN (−θ
√
D +

b√
D

).

Therefore, for L ≤ x we get

̂∗PUOC(x, T ;K,L; r, δ) = L

(
e(m+θ)bN (θ

√
D +

b√
D

)

+e(m−θ)bN (−θ
√
D +

b√
D

)

)
∗ P̂UOC0

(1, λ;
K

L
, 1; r, δ).

Depending on the relative position of K and L, one of the following formula for ̂∗PUOC(x, T ;K,L; r, δ)
holds.
◮ Case K ≥ L.

∗ P̂UOC
0
(1, λ;

K

L
, 1; r, δ) =

K

Lθ
e

m−θ
σ

ln( K
L

)

(
1

m− θ
− 1

m+ σ − θ

)

−
√

2πD

ψ(θ
√
D)

[
2K

L(m2 − θ2)
e

Dm2

2 mN
(

− 1

σ
√
D

ln(
K

L
) +

√
Dm

)

− 2

(m+ σ)2 − θ2
e

D(m+σ)2

2 (m+ σ)N
(

− 1

σ
√
D

ln(
K

L
) +

√
D(m+ σ)

)]

− 1

ψ(θ
√
D)

K

L
e

m+θ
σ

ln( K
L

)eλD
√

2πDN
(

− 1

σ
√
D

ln(
K

L
) − θ

√
D

)(
1

m+ σ + θ
− 1

m+ θ

)

− e
m−θ

σ
ln( K

L
)

θψ(θ
√
D)

K

L

(
1

m− θ
− 1

m+ σ − θ

)(
ψ(−θ

√
D) + θ

√
2πDeλDN

(
1

σ
√
D

ln(
K

L
) − θ

√
D

))
.

̂∗PUOC(x, T ;K,L; r, δ) = L

(
e(m+θ)bN

(
θ

√
D +

b√
D

)
+ e(m−θ)bN (−θ

√
D +

b√
D

)

)

{
K

Lθ
e

m−θ

σ
ln( K

L
)

(
1

m− θ
− 1

m+ σ − θ

)
−

√
2πD

ψ(θ
√
D)

[
2K

L(m2 − θ2)
e

Dm
2

2 m

N
(

− 1

σ
√
D

ln(
K

L
) +

√
Dm

)
− 2

(m+ σ)2 − θ2
e

D(m+σ)2

2 (m+ σ)

N
(

− 1

σ
√
D

ln(
K

L
) +

√
D(m+ σ)

)]
− 1

ψ(θ
√
D)

K

L
e

m+θ

σ
ln( K

L
)eλD

√
2πD

N
(

− 1

σ
√
D

ln(
K

L
) − θ

√
D

)(
1

m+ σ + θ
− 1

m+ θ

)
− e

m−θ

σ
ln( K

L
)

θψ(θ
√
D)

K

L
(

1

m− θ
− 1

m+ σ − θ

)(
ψ(−θ

√
D) + θ

√
2πDeλDN

(
1

σ
√
D

ln(
K

L
) − θ

√
D

))}

for L ≤ K and L ≤ x.

◮ Case K ≤ L.

∗P̂UOC
0
(1, λ;

K

L
, 1; r, δ) =

2K

L(m2 − θ2)
− 2

(m+ σ)2 − θ2
+
K

Lθ
e

m+θ
σ

ln( K
L )
(

1

m+ θ
− 1

m+ θ + σ

)

−
[

1

ψ(θ
√
D)

(
2K

L(m2 − θ2)
ψ(

√
Dm) − 2

(m+ σ)2 − θ2
ψ(

√
D(m+ σ))

)]

−ψ(−θ
√
D)

θψ(θ
√
D)

K

L
e

m+θ
σ

ln( K
L )
(

1

m+ θ
− 1

m+ σ + θ

)
.
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̂∗PUOC(x, T ;K,L; r, δ) =

L

(
e(m+θ)bN (θ

√
D +

b√
D

) + e(m−θ)bN (−θ
√
D +

b√
D

)

)

{
2K

L(m2 − θ2)
− 2

(m+ σ)2 − θ2
+
K

Lθ
e

m+θ

σ
ln( K

L )
(

1

m+ θ
− 1

m+ θ + σ

)

−
[

1

ψ(θ
√
D)

(
2K

L(m2 − θ2)
ψ(

√
Dm) − 2

(m+ σ)2 − θ2
ψ(

√
D(m+ σ))

)]

−ψ(−θ
√
D)

θψ(θ
√
D)

K

L
e

m+θ

σ
ln( K

L )
(

1

m+ θ
− 1

m+ σ + θ

)}
, for K ≤ L ≤ x.

4.4. The valuation of a Parisian Up-and-in call with b ≤ 0. We will also use the relations between
̂∗PUIC(x, λ;K,L; r, δ) and ̂∗PUOC(x, λ;K,L; r, δ). We have

̂∗PUIC(x, λ;K,L; r, δ) = ∗̂BSC(x, λ,K, r, δ) − ̂∗PUOC(x, λ;K,L; r, δ)

where ̂∗PUOC(x, λ;K,L; r, δ) has already been computed above in Section 4.3 for b ≤ 0 and ∗̂BSC(x, λ,K, r, δ)
has been calculated in Section 3.2.1.
So we derive the three following formulae

̂∗PUIC(x, λ;K,L; r, δ) =
K

θ
e(m−θ)k

(
1

m− θ
− 1

m+ σ − θ

)

−L
(
e(m+θ)bN

(
θ

√
D +

b√
D

)
+ e(m−θ)bN

(
−θ

√
D +

b√
D

))

(
K

Lθ
e

m−θ

σ
ln( K

L
)

(
1

m− θ
− 1

m+ σ − θ

)

−
√

2πD

ψ(θ
√
D)

[
2K

L(m2 − θ2)
e

Dm
2

2 mN
(

− 1

σ
√
D

ln(
K

L
) +

√
Dm

)

− 2

(m+ σ)2 − θ2
e

D(m+σ)2

2 (m+ σ)N
(

− 1

σ
√
D

ln(
K

L
) +

√
D(m+ σ)

)]

− 1

ψ(θ
√
D)

K

L
e

m+θ

σ
ln( K

L
)eλD

√
2πDN

(
− 1

σ
√
D

ln(
K

L
) − θ

√
D

)(
1

m+ σ + θ
− 1

m+ θ

)

−e
m−θ

σ
ln( K

L
)

θψ(θ
√
D)

K

L

(
1

m− θ
− 1

m+ σ − θ

)

(
ψ(−θ

√
D) + θ

√
2πDeλDN

(
1

σ
√
D

ln(
K

L
) − θ

√
D

)))
, for L ≤ x ≤ K,
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̂∗PUIC(x, λ;K,L; r, δ) =

2K

m2 − θ2
− 2x

(m+ σ)2 − θ2
+
K

θ
e(m+θ)k

(
1

m+ θ
− 1

m+ θ + σ

)

− L

(
e(m+θ)bN (θ

√
D +

b√
D

) + e(m−θ)bN (−θ
√
D +

b√
D

)

)

{
K

Lθ
e

m−θ

σ
ln( K

L
)

(
1

m− θ
− 1

m+ σ − θ

)

−
√

2πD

ψ(θ
√
D)

[
2K

L(m2 − θ2)
e

Dm
2

2 mN
(

− 1

σ
√
D

ln(
K

L
) +

√
Dm

)

− 2

(m+ σ)2 − θ2
e

D(m+σ)2

2 (m+ σ)N
(

− 1

σ
√
D

ln(
K

L
) +

√
D(m+ σ)

)]

− 1

ψ(θ
√
D)

K

L
e

m+θ

σ
ln( K

L
)eλD

√
2πDN

(
− 1

σ
√
D

ln(
K

L
) − θ

√
D

)(
1

m+ σ + θ
− 1

m+ θ

)

−e
m−θ

σ
ln( K

L
)

θψ(θ
√
D)

K

L

(
1

m− θ
− 1

m+ σ − θ

)

(
ψ(−θ

√
D) + θ

√
2πDeλDN

(
1

σ
√
D

ln

(
K

L

)
− θ

√
D

))}
, for L ≤ K ≤ x,

̂∗PUIC(x, λ;K,L; r, δ) =
2K

m2 − θ2
− 2x

(m+ σ)2 − θ2

+
K

θ
e(m+θ)k

(
1

m+ θ
− 1

m+ θ + σ

)
− L

(
e(m+θ)bN

(
θ

√
D +

b√
D

)

+e(m−θ)bN
(

−θ
√
D +

b√
D

)){
2K

L(m2 − θ2)
− 2

(m+ σ)2 − θ2
+

K

Lθ
e

m+θ

σ
ln( K

L )
(

1

m+ θ
− 1

m+ θ + σ

)

−
[

1

ψ(θ
√
D)

(
2K

L(m2 − θ2)
ψ(

√
Dm) − 2

(m+ σ)2 − θ2
ψ(

√
D(m+ σ))

)]

−ψ(−θ
√
D)

θψ(θ
√
D)

K

L
e

m+θ

σ
ln( K

L )
(

1

m+ θ
− 1

m+ σ + θ

)}
, for K ≤ L ≤ x.

5. Some parity relationships

Now we will explain how to find all the other prices by simply using the formulae we have established so
far and some parity relationships.

Let us consider a Parisian Down and Out Put.

PDOP (x, T ;K,L,D, r, δ) = E

(
emZT (K − xeσZT )+ 1{{T−

b
>T}}

)
e

−
(
r+ m2

2

)
T
. (5.1)

One notices that the first time the Z Brownian motion makes below b an excursion longer than D is the
same as the first time Brownian motion −Z makes above −b an excursion longer than D. Therefore,
introducing the new Brownian motion W = −Z we can rewrite

PDOP (x, T ;K,L,D, r, δ) = E

(
e−mWT (K − xe−σWT )+ 1{{T+

−b
>T}}

)
e

−
(
r+ m2

2

)
T
,

= Kx E

(
e−(m+σ)WT

(
1

x
eσWT − 1

K

)+

1{{T+
−b
>T}}

)
e

−
(
r+ m2

2

)
T
.
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Let us introduce m′ = −(m + σ), δ′ = r, r′ = δ and b′ = −b. With these relations we easily check that

m′ = 1
σ

(
r′ − δ′ − σ2

2

)
and that r′ + m′2

2 = r+ m2

2 . Moreover, we notice that the barrier L′ corresponding

to b′ = −b is
1

L
. Therefore, E

(
e−(m+σ)WT

(
1

x
eσWT − 1

K

)+

1{{T+
−b
>T}}

)
e

−
(
r+ m2

2

)
T

is in fact the price

of a Up and Out Call PUOC

(
1

x
, T ;

1

K
,

1

L
,D, δ, r

)
. Finally, we come up with the following relation

PDOP (x, T ;K,L,D, r, δ) = xK PUOC

(
1

x
, T ;

1

K
,

1

L
,D, δ, r

)
.

The same relation holds if we replace a call by a put and vice-versa and if we consider In options instead
of Out ones.

PUOP (x, T ;K,L,D, r, δ) = xK PDOC

(
1

x
, T ;

1

K
,

1

L
,D, δ, r

)
,

PUIP (x, T ;K,L,D, r, δ) = xK PDIC

(
1

x
, T ;

1

K
,

1

L
,D, δ, r

)
,

PDIP (x, T ;K,L,D, r, δ) = xK PUIC

(
1

x
, T ;

1

K
,

1

L
,D, δ, r

)
.

In the previous sections we computed the price of all the Down Calls an Up Calls. From these relationships,
we can deduce the prices of all the Parisian Puts. What we still have to find is how to invert the Laplace
transform.

6. Prices at any time t

At this stage we can compute all the prices at time 0, but to be able to hedge such an option we besides
need the prices at some time t ≤ T . So we will consider a Down-and-In option to show how the price
at some time t can be deduced from the prices at time 0 of the Down-and-In options with different
parameters. Relying on this example one can easily prove similar formulae for other options.

6.1. Three different paths for the Brownian motion. The price of a Parisian Down and In Call at
time 0 is given by the formula (2.4). From this formula, we can deduce the price of a Down and In call
at any time t.

PDIC(St, t;x, T ;K,L,D, r, δ) = e−r(T−t)EQ
(

(xeσ(WT +mT ) −K)+ 1{{T−
b

≤T}}|Ft
)
. (6.1)

Now we can change the probability measure as we did at the beginning to make Z = {Wt + mt; t ≥ 0}
a Brownian motion under the new probability we called P, ( E will from now on denote the expectation
under the probability P ) . Then, we can write

PDIC(St, t;x, T ;K,L,D, r, δ) = e−r(T−t)
E

(
emZT − 1

2m
2T (xeσZT −K)+ 1{{T−

b
≤T}}|Ft

)

emZt− 1
2m

2t
,

= e−r(T−t)
E

(
emZtem(ZT −Zt)− 1

2m
2T (xeσZT −K)+ 1{{T−

b
≤T}}|Ft

)

emZt− 1
2m

2t
,

= e−(r+ m2

2 )(T−t)E
(
em(ZT −Zt)(xeσZT −K)+ 1{{T−

b
≤T}}|Ft

)
.

Let us introduce a few notations

T ′ = T − t and b′ =
1

σ
ln

(
L

St

)
, (6.2)

T ′
b′ = inf {s > 0;Zt+s − Zt = b′}. (6.3)

In the case Zt < b, we introduce D′ the time Z has already spent in the excursion.

PDIC(St, t;x, T ;K,L,D, r, δ) = e
−
(
r+ m2

2

)
T ′
E

(
em(ZT −Zt)(Ste

σ(ZT −Zt) −K)+ 1{{T−
b

≤T}}|Ft
)
. (6.4)

The indicator can be split up in several parts depending on which path you are on. On both paths the
excursion has already started. On the red one, the excursion will not last long enough, so the asset still
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Figure 4. Possible evolutions of an asset price

has to do an entirely new excursion below L longer than D, whereas on the green path the process only
has to remain below L for a time longer than D− d. All these remarks enable us to rewrite the indicator
as follows

1{{T−
b

≤T}} = 1{{Zt>b}}1{{T ′−
b′ ≤T ′}}+1{{Zt≤b}}

(
1{{T ′

b′ ≥D−D′}}1{{D−D′≤T ′}} + 1{{T ′
b′<D−D}}1{{T ′−

b′ ≤T ′}}

)
.

(6.5)

PDIC(St, t;x, T ;K,L,D, r, δ)

= e
−
(
r+ m2

2

)
T ′ {

E

(
em(ZT −Zt)(Ste

σ(ZT −Zt) −K)+ 1{{Zt>b}}1{{T ′−
b′ ≤T ′}}|Ft

)
,

+E

(
em(ZT −Zt)(Ste

σ(ZT −Zt) −K)+ 1{{Zt≤b}}1{{T ′
b′ ≥D−d}}1{{D−d≤T−t}}|Ft

)
,

+ E

(
em(ZT −Zt)(Ste

σ(ZT −Zt) −K)+ 1{{Zt≤b}}1{{T ′
b′ ≤D−D′}}1{{T ′−

b′ ≤T−t}}|Ft
)}

,

= e
−
(
r+ m2

2

)
T ′ {

1{{Zt>b}}E
(
em(ZT −Zt)(Ste

σ(ZT −Zt) −K)+ 1{{T ′−
b′ ≤T ′}}|Ft

)
,

+1{{Zt≤b}}1{{D−D′≤T−t}}E
(
em(ZT −Zt)(Ste

σ(ZT −Zt) −K)+ 1{{T ′
b′ ≥D−d}}|Ft

)
,

+ 1{{Zt≤b}}E
(
em(ZT −Zt)(Ste

σ(ZT −Zt) −K)+ 1{{T ′
b′ ≤D−D′}}1{{T ′−

b′ ≤T−t}}|Ft
)}

.

T ′
b′ and T

′−
b′ are both independent of Ft, so we can write
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PDIC(St, t;x, T ;K,L,D, r, δ) = e
−
(
r+ m2

2

)
T ′ {

1{{Zt>b}}E
(
emZT ′ (Ste

σZT ′ −K)+ 1{{T−
b′ ≤T ′}}

)

+1{{Zt≤b}}1{{D−D′≤T ′}}E
(
emZT ′ (Ste

σZT ′ −K)+ 1{{T−
b′ ≥D−D′}}

)

+ 1{{Zt≤b}}E
(
emZT ′ (Ste

σZT ′ −K)+ 1{{Tb′ ≤D−D′}}1{{T−
b′ ≤T ′}}

)}
,

= e
−
(
r+ m2

2

)
T ′





1{{Zt>b}}PDIC(St, T
′;K,L; r, δ)

+1{{Zt≤b}}1{{D−D′≤T ′}} E
(
emZT ′ (Ste

σZT ′ −K)+ 1{{Tb′ ≥D−D′}}
)

︸ ︷︷ ︸
(i)

+ 1{{Zt≤b}} E
(
emZT ′ (Ste

σZT ′ −K)+ 1{{Tb′ ≤D−D′}}1{{T−
b′ ≤T ′}}

)

︸ ︷︷ ︸
(ii)




.

6.2. The computation of the different expectations. Let us calculate (i) in the case D −D′ ≤ T ′

E
(
emZT ′ (Ste

σZT ′ −K)+ 1{{Tb′ ≥D−D′}}
)

= E
(
emZT ′ (Ste

σZT ′ −K)+
)

− E
(
emZT ′ (Ste

σZT ′ −K)+ 1{{Tb′ ≤D−D′}}
)

= ∗BSC(St, T
′;K, r, δ) − E

(
emZT ′ (Ste

σZT ′ −K)+ 1{{Tb′ ≤D−D′}}
)

The last expectation above can be computed by conditioning with respect to FTb′ since D −D′ ≤ T ′.

E
(
emZT ′ (Ste

σZT ′ −K)+ 1{{Tb′ ≤D−D′}}
)

= E
(
E
(
emZT ′ (Ste

σZT ′ −K)+ 1{{Tb′ ≤D−D′}}|FTb′

))
,

= E

(
1{{Tb′ ≤D−D′}}E

(
em(ZT ′ −ZT

b′ )emb
′
(Ste

σb′
e
σ(ZT ′ −ZT ′

b′
) −K)+ |FTb′

))
.

If Wt = Zt+T ′
b

− ZTb−′ and Yt denotes emWT ′−t(LeσWT ′−t −K)+, then Yt is independent of FTb′ and Tb′

is FTb′ -measurable

E
(
emZT ′ (Ste

σZT ′ −K)+ 1{{Tb′ ≤D−D′}}
)

= E

(
1{{Tb′ ≤D−D′}}E

(
emWT ′−τ emb

′
(Ste

σb′
eσWT ′−τ −K)+

)
|τ=Tb′

)
,

=

∫ D−D′

0

emb
′
E(emWT ′−u(LeσWT ′−u −K)+)µb′(u)du

︸ ︷︷ ︸
P (L,T ′)

.

Now, we will consider the Laplace transform of P (L, T ′) with respect to T ′
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P̂ (L, λ) =

∫ +∞

0

e−λτ
∫ D−D′

0

emb
′
E(emWτ−u(LeσWτ−u −K)+)µb′(u)du dτ,

=

∫ D−D′

0

∫ +∞

0

e−λτemb
′
E(emWτ−u(LeσWτ−u −K)+)dτ µb′(u)du,

a change of variables (u, ξ) = (u, τ − u) gives

=

∫ D−D′

0

∫ +∞

0

e−λue−λξemb
′
E(emWξ (LeσWξ −K)+)µb′(u)du dξ,

relying on Appendix A we can write

= emb
′
{
e−θ|b′|N

(
θ
√
D −D′ − |b′|√

D −D′

)

+eθ|b′|N
(

−θ
√
D −D′ − |b′|√

D −D′

)}
∗ B̂SC(L, λ;K, r, δ).

Let us now compute (ii). We can condition with respect to FTb′ since T−
b′ is bound to be bigger than

D −D′ so Tb′ is almost surely smaller than T ′

E

(
emZT ′ (Ste

σZT ′ −K)+ 1{{Tb′ ≤D−D′}}1{{T−
b′ ≤T ′}}

)

= E

(
E

(
emZT ′ (Ste

σZT ′ −K)+ 1{{Tb′ ≤D−D′}}1{{T−
b′ ≤T ′}}|FTb′

))
,

= emb
′
E

(
1{{Tb′ ≤D−D′}}E

(
e
m(ZT ′ −ZT ′

b′
)
(Leσ(ZT ′ −ZT

b′ ) −K)+ 1{{T−
0 ≤T ′−Tb′ }}|FTb′

))
.

If Wt = Zt+T ′
b

− ZT ′
b

and Yt denotes emWT ′−t(LeσWT ′−t − K)+ 1{{T−
0 ≤T ′−t}}, Yt is independent of FTb′

and Tb′ is FTb′ -measurable. So E(Yt|FTb′ ) = E(Yt)|t=Tb′ and therefore we can write

E

(
emZT ′ (Ste

σZT ′ −K)+ 1{{Tb′ ≤D−D′}}1{{T−
b′ ≤T ′}}

)

= emb
′
E

(
1{{Tb′ ≤D−D′}}E

(
emWT ′−u(LeσWT ′−u −K)+ 1{{T−

0 ≤T ′−u}}

)
|u=Tb′

)
,

=

∫ D−D′

0

emb
′
E

(
emWT ′−u(LeσWT ′−u −K)+ 1{{T−

0 ≤T ′−u}}

)
µb′(u)du

︸ ︷︷ ︸
Q(L,T ′)

.

Let us consider the Laplace transform of Q(L, T ′) with respect to T ′.

Q̂(L, λ) =

∫ +∞

0

e−λτ
∫ D−D′

0

emb
′
E

(
emWτ−u(LeσWτ−u −K)+ 1{{T−

0 ≤τ−u}}

)
µb′(u)du dτ,

= Lemb
′
∫ +∞

0

e−λτ
∫ D−D′

0

∗PDIC0(1, τ − u,
K

L
, 1,D, r, δ)dτ µb′(u)du,

= Lemb
′
∫ D−D′

0

µb′e−λudu ̂∗PDIC0(1, λ,
K

L
, 1,D, r, δ).

Finally we obtain

̂∗PDIC(St, t;x, T ;K,L,D, r, δ)

= 1{{Zt>b}} ̂∗PDIC(St, T
′,K, L,D, r, δ) + 1{{Zt≤b}}1{{D−D′≤T ′}}(

Lemb
′

∫ D−D′

0

µb′e−λudu

(
̂∗PDIC0(1, λ,

K

L
, 1, D, r, δ)

−∗̂BSC(1, λ,
K

L
, r, δ)

)
+ ∗̂BSC(St, T

′,K, r, δ)

)
.
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If we compute ̂∗PUIC(St, t;x, T ;K,L,D, r, δ) we get exactly the same result by changing
̂∗PDIC0(1, λ, KL , 1,D, r, δ) into ̂∗PUIC0(1, λ, KL , 1,D, r, δ) in the previous formula.

If one wants to value the Put Options, one can rely on the parity relationships given in the previous
section and then use again the price of the Calls at time t.

7. The inverse Laplace transform

This section is devoted to the numerical inversion of the Laplace transforms computed previously. We
recall that the Laplace transforms are computed with respect to the maturity time. We explain how
to recover a function from its Laplace transform using a contour integral. The real problem is how to
numerically evaluate this complex integral. This is done in two separate steps involving two different
errors. First, as explained in Section 7.1 we replace the integral by a series. The first step creates a
discretisation error, which is handled by Proposition 7.1. Secondly, one has to compute a non-finite series.
This can be achieved by simply truncating the series but it leads to a tremendously slow convergence.
Here, we prefer to use the Euler acceleration as presented in Section 7.2. Proposition 7.2 states an upper-
bound for the error due to the accelerated computation of the non finite series. Theorem 7.2 gives a
bound for the global error.

7.1. The Fourier series representation. Thanks to [Widder(1941), Theorem 9.2], we know how to
recover a function from its Laplace transform.

Theorem 7.1. Let f be a continuous function defined on R+ and α a positive number. If the function
f(t) e−αt is integrable, then given the Laplace transform f̂ , f can be recovered from the contour integral

f(t) =
1

2πi

∫ α+i∞

α−i∞
est f̂(s)ds, t > 0. (7.1)

The variable α has to be chosen greater than the abscissa of convergence of f̂ . The abscissa of conver-
gence of the Laplace transforms of the barrier Parisian option prices computed previously is smaller than
(m+ σ)2/2. Hence, α must be chosen strictly greater than (m+ σ)2/2.

For any real valued function satisfying the hypotheses of Theorem 7.1, we introduce a trapezoidal dis-
cretisation of Equation (7.1)

fπ/t(t) =
eαt

2t
f̂(α) +

eαt

t

∞∑

k=1

(−1)k Re

(
f̂

(
α+ i

kπ

t

))
. (7.2)

Proposition 7.1. If f is a continuous bounded function satisfying f(t) = 0 for t < 0, we have

∣∣eπ/t(t)
∣∣ =

∣∣f(t) − fπ/t(t)
∣∣ ≤ ‖f‖∞

e−2αt

1 − e−2αt
. (7.3)

To prove Proposition 7.1,we need the following result adapted from [Abate et al.(1999)Abate, Choudhury, and Whitt,
Theorem 5]

Lemma 7.1. For any continuous and bounded function f such that f(t) = 0 for t < 0, we have

eπ/t(t) = fπ/t(t) − f(t) =
∞∑

k = −∞
k 6= 0

f (t(1 + 2k)) e−2kαt . (7.4)

Proof of Proposition 7.1. By performing a change of variables s = α+ iu in the integral in (7.1), we can
easily obtain an integral of a real variable.

f(t) =
eαt

2π

∫ +∞

−∞
f̂(α+ iu)(cos(ut) + i sin(ut))du.

Moreover, since f is a real valued function, the imaginary part of the integral vanishes

f(t) =
eαt

2π

∫ +∞

−∞
Re
(
f̂(α+ iu)

)
cos(ut) − Im

(
f̂(α+ iu)

)
sin(ut))du.
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We notice that

Im
(
f̂(α+ iu)

)
= − Im

(
f̂(α− iu)

)
, Re

(
f̂(α+ iu)

)
= Re

(
f̂(α− iu)

)
.

So,

f(t) =
eαt

π

∫ +∞

0

Re
(
f̂(α+ iu)

)
cos(ut) − Im

(
f̂(α+ iu)

)
sin(ut))du. (7.5)

Using a trapezoidal integral with a step h = π
t leads to Equation (7.2). Remembering that f(t) = 0 for

t < 0, we can easily deduce from Lemma 7.1 that

eπ/t(t) =

∞∑

k=0

f (t(1 + 2k)) e−2kαt .

Taking the upper bound of f yields (7.3). �

Remark 7.1. For the upper bound in Proposition 7.1 to be smaller than 10−8 ‖f‖∞, one has to choose
2αt = 18.4. In fact, this bound holds for any choice of the discretisation step h satisfying h < 2π/t.

Simply truncating the summation in the definition of fπ/t to compute the trapezoidal integral is far too
rough to provide a fast and accurate numerical inversion. One way to improve the convergence of the
series is to use the Euler summation.

7.2. The Euler summation. To improve the convergence of a series S, we use the Euler summation
technique as described by [Abate et al.(1999)Abate, Choudhury, and Whitt], which consists in computing
the binomial average of q terms from the p-th term of the series S. The binomial average obviously
converges to S as p goes to infinity. The following proposition describes the convergence rate of the
binomial average to the infinite series fπ/t(t) when p goes to ∞.

Proposition 7.2. Let f be a function of class Cq+4 such that there exists ǫ > 0 s.t. ∀k ≤ q+4, f (k)(s) =
O(e(α−ǫ)s). We define sp(t) as the approximation of fπ/t(t) when truncating the non-finite series in (7.2)
to p terms

sp(t) =
eαt

2t
f̂(α) +

eαt

t

p∑

k=1

(−1)k Re

(
f̂

(
α+ i

πk

t

))
, (7.6)

and E(q, p, t) =
∑q
k=0 C

k
q 2−qsp+k(t). Then,

∣∣fπ/t(t) −E(q, p, t)
∣∣ ≤ teαt |f ′(0) − αf(0)|

π2

(p+ 1)! q!

2q−2 (p+ q + 2)!
+ O

(
1

pq+3

)

when p goes to infinity.

Using Propositions 7.1 and 7.2, we get the following result concerning the global error on the numerical
computation of the price of a Parisian call option

Theorem 7.2. Let f be the price of a Parisian call option. Using the notations of Proposition 7.2, we
have

|f(t) − E(q, p, t)| ≤ S0
e−2αt

1 − e−2αt
+
eαtt |f ′(0) − αf(0)| (p+ 1)! q!

π22q−2 (p+ q + 2)!
+ O

(
1

pq+3

)
(7.7)

where α is defined in Theorem 7.1.

Proof of Theorem 7.2. f being the price of a Parisian call option, we know that f is bounded by S0.
Moreover, f is continuous (actually of class C∞, see Appendix E). Hence, Proposition 7.1 yields the first
term on the right-hand side of (7.7).

Relying on Proposition E.1, we know that ⋆f is of class C∞ and ⋆f (k)(t) = O(e
(m+σ)2

2 t), ∀k ≥ 0. Since

f(t) = e−(r+m2/2)t ⋆f(t), it is quite obvious that f is also of class C∞ and f (k)(t) = O
(

e((m+σ)2/2−(r+m2/2))t
)

,

∀k ≥ 0. Since α > (m+σ)2

2 , we can apply Proposition 7.2 to get the result. �

Proof of Proposition 7.2. We compute the difference between two successive terms.

E(q, p+ 1, t) − E(q, p, t) =
eαt

2qt

q∑

k=0

Ckq (−1)p+1+kap+k+1,
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where

ap =

∫ +∞

0

e−αs cos
(p
t
πs
)
f(s)ds. (7.8)

Let g(s) = e−αsf(s). Since g(k)(∞) = 0 for k ≤ q + 3 and g(q+4) is integrable, we can perform (q + 3)
integrations by parts in (7.8) to obtain a Taylor expansion when p goes to infinity

ap =
c2

p2
+
c4

p4
+ · · · +

cq
p2[(q+3)/2]

+ O
(

1

pq+4

)
(7.9)

with c2 =
4t2(f ′(0)−αf(0))

π2 .
We can rewrite (7.9)

ap =
c2

p(p+ 1)
+

c′
3

p(p+ 1)(p+ 2)
+ · · · +

c′
q

p(p+ 1) · · · (p+ q + 2)
+ O

(
1

pq+4

)
.

Some elementary computations show that for j ≥ 1

q∑

k=0

Ckq (−1)p+1+k 1

(p+ k)(p+ k + 1) · · · (p+ k + j)
= (−1)p+1 p! (q + j)!

j!(p+ q + j + 1)!
.

Computing
∑q
k=0 C

k
q (−1)p+1+kap+k+1 leads to

E(q, p+ 1, t) − E(q, p, t) = (−1)p+1c2
eαt

2qt

p! (q + 1)!

(p+ q + 2)!
+ O

(
1

pq+4

)
.

Moreover, p! (q+1)!
(p+q+2)! is decreasing w.r.t p, so

|E(q,∞, t) − E(q, p, t)| ≤ c2
eαt

2qt

p! (q + 1)!

(p+ q + 2)!
+ O

(
1

pq+3

)
.

�

Remark 7.2. Whereas Proposition 7.1 in fact holds for any h < 2π/t, the proof of Proposition 7.2 is
essentially based on the choice of h = π/t since the key point is to be able to write E(q, p+1, t)−E(q, p, t)
as the general term of an alternating series. The impressive convergence rate of E(q, p, t) definitely relies
on the choice of this particular discretisation step. For a general step h, it is much more difficult to study
the convergence rate and one cannot give an explicit upper-bound.

Remark 7.3. For 2αt = 18.4 and q = p = 15, the global error is bounded by S010−8+t |f ′(0) − αf(0)| 10−11.
As one can see, the method we use to invert Laplace transforms provides a very good accuracy with few
computations.

Remark 7.4. Considering the case of call options in Theorem 7.2 is sufficient since put prices are
computed using parity relations and their accuracy is hung up to the one of call prices. Theorem 7.2 also
holds for single barrier Parisian options.
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Appendix A. The valuation of
∫D

0
µb(du)e−λu in the case b > 0

We already know that µb(du) =
| b |√
2πu3

e

(
−b2

2u

)
du.

∫ D

0

e−λuµb(du) =

∫ D

0

e−λu b√
2πu3

e
−b2

2u du

with a change of variable t = 1√
u

we get,

=

∫ +∞

1/
√
D

b

√
2

π
e

−λ

t2 e
−b2t2

2 dt,

=

∫ +∞

1/
√
D

b

√
2

π
e

−λ

t2 e
−b2t2

2 dt,

let θ denote
√

2λ

=

∫ +∞

1/
√
D

b

√
2

π
exp


−θb

2


 1

(
√

b
θ t)

2
+ (

√
b

θ
t)2




dt,

let’s change variable again u =
√

b
θ t

=

∫ +∞

√
b√

θD

√
2bθ

π
exp

(−θb
2

(
1

u2
+ u2

))
du,

=

∫ +∞

√
b√

θD

√
2bθ

π
exp

(
−θb

2

(
1

u
− u

)2
)
e−θbdu,

a new change of variable v = 1
u − u gives

=

√
bθ

2π
e−θb

∫ √
θD

b
−

√
b√

θD

−∞
e

−θb
2 v2

(
1 − v√

v2 + 4

)
dv,

one more change of variable u =
√
θbv provides the following expression

=
1√
2π
e−θb

∫ θ
√
D− b√

D

−∞
e−u2/2

(
1 − u√

u2 + 4θb

)
du,

a last change of variable v =
√
u2 + 4θb ends the calculation

= e−θbN
(
θ
√
D − b√

D

)
+ 1√

2π
e−θb

∫ +∞

θ
√
D+ b√

D

e− v2−4θb
2 dv,

= e−θbN
(
θ
√
D − b√

D

)
+ eθbN

(
−θ

√
D − b√

D

)
.

If we let D go to infinity, we can deduce the Laplace transform of Tb, for any real b

E[e−λTb ] = e−θ|b|.

Appendix B. The valuation of

∫ +∞

0

e−λu
exp

(
−x2

2u

)

√
2πu

du

Once again we introduce θ =
√

2λ.

A change of variable u = |x|t2
θ straightforward gives the new expression

∫ +∞

0

e−λu
exp

(
−x2

2u

)

√
2πu

du =

∫ +∞

0

√
2 | x |
πθ

exp

(
−θ | x |

2

(
1

t2
+ t2

))
dt,

=

√
2 | x |
πθ

e−θ|x|
∫ +∞

0

exp

(
−θ | x |

2

(
1

t
− t

)2
)
dt.

Once again, we can use the change of variable s = u − 1

u
, which maps [0,+∞[ into ] − ∞,+∞[ and we

have du =
ds

2

(
1 +

s√
s2 + 4

)
. The second of the last term is odd, so its integral over R cancels and we

get √
|x|
2πθ

e−θ|x|
∫ +∞

−∞
exp

(
−θ |x|

2
s2

)
ds.
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So finally we obtain

∫ +∞

0

e−λu
exp

(
−x2

2u

)

√
2πu

du =
1

θ
e−θ|x|. (B.1)

Appendix C. The law of (T−
b , ZT−

b

) and (T+
b , ZT+

b
)

In this Section, we recall some useful results on the law of the couples (T−
b , ZT−

b

) and (T+
b , ZT+

b
)

from [Revuz and Yor(1999)] and [Chesney et al.(1997)Chesney, Jeanblanc-Picqué, and Yor].

C.1. Case b = 0. In this case, we denote T− = T−
0 .

The first important result is that T− and ZT− are independent.

P(ZT− ∈ dx) = − x

D
exp

(
− x2

2D

)
1{x<0}dx. (C.1)

E(exp(−1

2
λ2T−)) =

1

ψ(λ
√
D)

. (C.2)

Similarly,

P(ZT+ ∈ dx) =
x

D
exp

(
− x2

2D

)
1{x>0}dx. (C.3)

E(exp(−1

2
λ2T+)) =

1

ψ(λ
√
D)

. (C.4)

C.2. Case b < 0. This case study can be reduced to the previous one, with the help of the stopping time
Tb.
We can write T−

b = Tb + T−(W ), with

T−
0 (W ) = inf{t ≥ 0; 1{Wt≤0}(t− gWt ) ≥ D} law

= T−
0 ,

W = {Wt = ZTb+t − b; t ≥ 0},
gWt = sup{u ≤ t;Wu = 0}.

Moreover using the strong Markov property it is clear that Tb and T−
0 (W ) are independent.

E(exp(−1

2
λ2T−

b )) = E(exp(−1

2
λ2Tb))E(exp(−1

2
λ2T−

0 (W ))).

As E(exp(− 1
2λ

2Tb)) = exp(−|b|λ), we get

E(exp(−1

2
λ2T−

b )) =
exp(bλ)

ψ(λ
√
D)

. (C.5)



PRICING PARISIAN OPTIONS 31

Now, we are trying to find the law of ZT−
b

P(ZT−
b

∈ dx) = P(ZT−
b

−Tb
o θTb

∈ dx),

= E[1{Z
T

−
b

−Tb
o θTb

∈dx}],

= E

[
E[1{{Z

T
−
b

−Tb
o θTb

∈dx}}|FTb
]

]
,

= E

[
Eb[1{{Z

T
−
b

−Tb
∈dx}}|FTb

]

]
,

= E

[
Eb[1{{Z

T
−
b

−Tb
∈dx}}]

]
,

= E

[
Eb[1{{Z

T − ∈dx}}]
]
,

= E
[
Pb[ZT− ∈ dx]

]
,

= E [P[ZT− + b ∈ dx]] ,
= E [P[ZT− ∈ (dx− b)]] ,
= P[ZT− ∈ (dx− b)].

Finally we obtain

P(Z
T

−

b

∈ dx) =
b− x

D
exp

(
−(x− b)2

2D

)
1{{x<b}}dx. (C.6)

C.3. Case b > 0. If b > 0, we can write T+
b = Tb + T+

0 (W ) with

T+
0 (W ) = inf{t ≥ 0; 1{Wt≥0}(t− gWt ) ≥ D} law

= T+
0 ,

W = {Wt = ZTb+t − b; t ≥ 0},
gWt = sup{u ≤ t;Wu = 0}.

It follows, from the independence of Tb and T+
0 (W ) by using the strong Markov property, that

E(exp(−1

2
λ2T+

b )) = E(exp(−1

2
λ2Tb))E(exp(−1

2
λ2T+

0 (W ))).

As E(exp(− 1
2λ

2Tb)) = exp(−|b|λ), we get

E(exp(−1

2
λ2T−

b )) =
exp(−bλ)

ψ(λ
√
D)

. (C.7)

The law of ZT+
b

can be computed in the same way as the law of ZT−
b

P(ZT+
b

∈ dx) = P[ZT+ ∈ (dx− b)].

Finally, we have

P(Z
T

+
b

∈ dx) =
x− b

D
exp

(
−(x− b)2

2D

)
1{{x>b}}dx. (C.8)

Appendix D. Around Brownian Motion

Let us consider a standard Brownian motion W = {Wt; t ≥ 0}. First of all, we recall two results on the
joint law of the Brownian motion and its extrema. A proof can be found in [Revuz and Yor(1994)].

D.1. Law of (Wt, sup
0≤u≤t

Wu).

P(Wt ∈ dx, sup
0≤u≤t

Wu ∈ dy) = 1{{0≤y}}1{{x≤y}}
2(2y − x)√

2πt3
exp

(
−(2y − x)2

2t

)
dxdy.

D.2. Law of (Wt, inf
0≤u≤t

Wu).

P(Wt ∈ dx, inf
0≤u≤t

Wu ∈ dy) = 1{y≤0}1{y≤x}
2(2y − x)√

2πt3
exp

(
−(2y − x)2

2t

)
dxdy
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D.3. Hitting time. The law of the hitting time Tb defined by

Tb = inf{t ≥ 0 | Wt = b}.
is given by

P(Tb ∈ dx) =
| b |√
2πx3

e− b
2

2xdx. (D.1)

D.4. Excursion. Let gt denote the last time before t that W hit the level 0.

gt = sup {u ≤ t | Wu = 0}. (D.2)

The purpose is to find the law of (gt,Wt). Let Px denote the probability starting at level x. The
probability starting at the level 0 is simply denoted by P.
First we would like to calculate Px(Wt ∈ dy, T0 > t), with x > 0 and y > 0.

Px(Wt ∈ dy, T0 > t) = Px(Wt ∈ dy) − Px(Wt ∈ dy, T0 < t). (D.3)

Using the reflexion principle, we can stop the Brownian motion at time T0 and reflect the rest of the
trajectory. So it is the same for the Brownian motion issued from x to cross 0 before time t and to end up
in the neighbourhood of y as to end up in the neighbourhood of −y. Thanks to the almost sure continuity
of the Brownian motion paths we can drop the condition that the Brownian motion has hit 0 before time
t. So we come up with the following equality

P(Wt−Tx
0

∈ −dy, T x0 < t) = Px(Wt ∈ −dy). (D.4)

So, putting all the different terms together and using the law of the Brownian motion at time t, we come
up with the following formula :

Px(Wt ∈ dy, T0 > t) =
1√
2πt

(
e−(x−y)2/2t − e−(x+y)2/2t

)
1{xy>0} dy. (D.5)

Now, we can try to compute the law of (gt,Wt). Let’s calculate P(Wt ∈ dy, gt ≤ s). If t < s, then gt
is always smaller than s because gt is bounded by t, so the probability does not depend on s anymore.
Thus, its partial differential with respect to s is identically null. Now we assume that s ≤ t, y > 0.

P(Wt ∈ dy, gt ≤ s, ) = E(1{{Wt ∈ dy, gt≤s}}),

= E(E(1{{Wt ∈ dy, Wu 6=0 ∀u ∈ [s,t]}} | Fs)),
= E(E(1{{Wt−s◦θs ∈ dy, Wu◦θs 6=0 ∀u ∈ [0,t−s]}} | Fs)),

Relying on the Markov property, we may write

= E(EWs(1{{Wt−s ∈ dy, Wu 6=0 ∀u ∈ [0,t−s]}})),

we calculated the second expectation above, so we get

= E

(
1√

2π(t− s)

(
e−(Ws−y)2/2(t−s) − e−(Ws+y)2/2(t−s)

)
dy

)
,

=

∫ ∞

0

dx
1√
2πs

e−x2/2s 1√
2π(t− s)

(
e−(x−y)2/2(t−s) − e−(x+y)2/2(t−s)

)
dy,

=

√
s(t− s)

t

∫ ∞

y s
t(t−s)

e−z2/2dze−y2/2t. (D.6)

Finally, we only have to differentiate with respect to s to come up with the formula of the density of
(gt,Wt).

P(Wt ∈ dy, gt ∈ ds) =
y

2π
√
s(t− s)3

exp

(
− y2

2(t− s)

)
1{s≤t} dsdy. (D.7)

If we assume that y < 0 then, since W and −W follow the same law, we can write

P(Wt ∈ dy, gt ≤ s) = P(Wt ∈ −dy, gt ≤ s), (D.8)
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which enables us to refer to the previous case and the final formula for the law of the couple (gt,Wt) is
given by

P(Wt ∈ dy, gt ∈ ds) =
|y|

2π
√
s(t− s)3

exp

(
− y2

2(t− s)

)
1{s≤t} ds dy. (D.9)

Appendix E. Regularity of option prices

Proposition E.1. Let f(t) be the “star” price of a Parisian option of maturity t. If b1 < 0 and b2 > 0,

f is of class C∞ and for all k ≥ 0, f (k)(t) = O
(

e
(m+σ)2

2 t
)

when t goes to infinity.

For the sake of clearness, we will only prove Proposition E.1 for single barrier Parisian options as the
scheme of the proof is still valid for Parisian options. Once again, we can restrict to calls. Let f(t) =
PDIC(x, t;K,L; r, δ).

f(t) = E

[
emZt(St −K)+1{T−

b
<t}

]
.

Let Wt denote Zt+T−
b

− ZT−
b

. Relying on the strong Markov property,

f(t) = E

(
1{T−

b
<t}E

[
(xeσ(Wt−τ +z) −K)+em(Wt−τ +z)

]
|z=Z

T
−
b

, τ=T−
b

)
. (E.1)

Let ν denote the density of ZT−
b

(see [Chesney et al.(1997)Chesney, Jeanblanc-Picqué, and Yor] for its

expression) and µ the density of T−
b (see Proposition F.1 for a proof of existence). Since ZT−

b

and T−
b

are independent, Equation (E.1) can be written

f(t) =

∫ t

0

dτ

∫ ∞

−∞
dz

∫ ∞

−∞
dw (xeσ(w

√
t−τ+z) −K)+em(w

√
t−τ+z)p(w)ν(z)µ(τ)

where p(w) = 1√
2π

e− w2

2 . A change of variable on τ gives

f(t) =

∫ t

0

dτ

∫ ∞

−∞
dz

∫ ∞

−∞
dw (xeσ(w

√
τ+z) −K)+em(w

√
τ+z)p(w)ν(z)µ(t− τ).

Since µ is of class C∞ and all its derivatives are null at 0 and bounded on any interval [0, T ](see Appen-
dix F), one can easily prove that f is of class C∞ and that for all k ≥ 0

f (k)(t) =

∫ t

0

dτ

∫ ∞

−∞
dz

∫ ∞

−∞
dw (xeσ(w

√
τ+z) −K)+em(w

√
τ+z)p(w)ν(z)µ(k)(t− τ).

This proves the first part of Proposition E.1. From Proposition F.1, we know that µ and all its derivatives
are bounded. Then, we can bound f (k)

∣∣∣f (k)(t)
∣∣∣ ≤

∫ t

0

dτ

∫ ∞

−∞
dz

∫ ∞

−∞
dw xe(m+σ)(w

√
τ+z)p(w)ν(z)

∥∥∥µ(k)
∥∥∥

∞
,

≤
∫ ∞

−∞
xe(m+σ)zν(z)dz

∥∥∥µ(k)
∥∥∥

∞

∫ t

0

e
(m+σ)2

2 τdτ,

≤ e
(m+σ)2

2 t 2x

(m+ σ)2

∥∥∥µ(k)
∥∥∥

∞

∫ ∞

−∞
e(m+σ)zν(z)dz.

Appendix F. Regularity of the density of T−
b

In this section, we assume b < 0.

Proposition F.1. The r.v. T−
b has a density µ w.r.t to Lebesgue’s measure. µ is of class C∞ and for

all k ≥ 0, µ(k)(0) = µ(k)(∞) = 0.

To prove this proposition, we need the two following lemmas.

Lemma F.1. Let N be the analytic prolongation of the cumulative normal distribution function on the
complex plane. The following equivalent holds

N (r(1 + i)) ∼ 1 when r → ∞.
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Lemma F.2. For b < 0, we have for u ∈ R

E

(
e−iuT−

b

)
= O

(
e−|b|

√
|u|
)

when |u| → ∞.

Proof of Proposition F.1. We recall that

E

(
e− λ2

2 T
−
b

)
=

eλb

ψ(λ
√
D)

. (F.1)

We define O = {z ∈ C; −π
4 < arg(z) < π

4 }. One can easily prove that the function z 7−→ E

(
e− z2

2 T
−
b

)
is

holomorphic on the open set O and hence analytic. Moreover, z 7−→ ezb

ψ(z
√
D)

is also analytic on O except

perhaps in a countable number of isolated points. These two functions coincide on R+, so they are equal
on O.
Consequently, we can derive the following equality. For all z ∈ C with positive real part, we have

E

(
e−zT−

b

)
=

e
√

2zb

ψ(
√

2zD)
. (F.2)

We use the following convention: for any z ∈ C with positive real part,
√
z is the only complex number

z′ ∈ O such that z = z′z′.
Thanks to the continuity of both terms in (F.2), the equality also holds for pure imaginary numbers.
Hence, by setting z = iu for u ∈ R in Equation (F.2), we obtain the Fourier transform of T−

b

E

(
e−iuT−

b

)
=

e
√

2uib

ψ(
√

2iuD)
.

From Lemma F.2, we know that the Fourier transform of T−
b is integrable on R, thus the r.v. T−

b has a
density µ w.r.t. the Lebesgue measure given by

µ(t) =
1

2π

∫ ∞

−∞

e
√

2uib

ψ(
√

2iuD)
e−iut du.

Moreover, thanks to Lemma F.2, u 7−→ uk e
√

2uib

ψ(
√

2iuD)
is integrable and continuous. Hence, µ is of class

C∞. Since µ(t) = 0 for t < D, for all k ≥ 0, µ(k)(0) = 0. Lemma F.3 yields that for all k ≥ 0,
limt→∞ µ(k)(t) = 0. �

Proof of Lemma F.1.

N (x+ iy) =
1√
2π

∫ x

−∞
e− (v+iy)2

2 dv.

It is easy to check that ∂xN (x+ iy) − ∂yN (x+ iy) = 0 and this definition coincides with the cumulative
normal distribution function on the real axis, so it is the unique analytic prolongation. We write N (x+
iy) = N (x) +

∫ y
0
∂yN (x+ iy), to get

N (x+ iy) = N (x) − i
1√
2π

∫ y

0

∫ x

−∞
(v + iu) e− (v+iu)2

2 dvdu,

= N (x) + i
1√
2π

∫ y

0

e− (x+iu)2

2 du.

Taking x+ iy = r(1 + i) gives

N (r(1 + i)) = N (r) + i
1√
2π

∫ r

0

e− (r+iu)2

2 du,

= N (r) + i
1√
2π

∫ 1

0

e
r2

2 (t2−1) e−itr2

rdt. (F.3)

For t ∈ [0, 1), e
r2

2 (t2−1) r tends to 0 when r goes to infinity. The function r 7−→ e
r2

2 (t2−1) r is maximum
for r = 1

1−t2 , hence the following upper bound holds

e
r2

2 (t2−1) r ≤ 1

1 − t2
e

1
2(t2−1) for all t ∈ [0, 1).

The upper bound is integrable on [0, 1), so by using the bounded convergence theorem, we can assert
that the integral on the right hand side of (F.3) tends to 0 when r goes to infinity. �
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Proof of Lemma F.2. We only do the proof for u > 0. For r > 0,

ψ(r(1 + i)) = 1 + r(1 + i)
√

2π er
2i N (r(1 + i)).

Using the equivalent of N (r(1 + i)) when r goes to infinity (see Lemma F.1) enables to establish that

|ψ(r(1 + i))| ∼ 2r
√
π when r goes to infinity. Noticing that

√
iu =

√
2u
2 (1 + i) ends the proof. �

Here is a quite obvious lemma we used in the proof of Proposition F.1.

Lemma F.3. Let g be an integrable function on R, then

lim
t→∞

∫ ∞

−∞
g(u) eiut du = 0.
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