
The Bates volatility model

Maya Briani Roberto Natalini Marco Papi

Francesco Ferreri

Premia 18

1 Introduction

In the following we shall describe finite difference approximations for the Bates
volatility model. We shall recall some financial backgrounds, we shall introduce
the finite difference approximation and the setup for numerical tests. Some tests
will be also described.

2 The Bates volatility model

Merton’s and Heston’s approaches were combined by Bates in 1996 [1], who
proposed a stock price model with stochastic volatility and jumps:

dSt

St
= (r − δ)dt +

√

VtdW
(1)
t + dZt

dVt = κ(θ − Vt)dt + σ
√

VtdW
(2)
t .

where r is the spot interest rate, δ is the dividend paid by the asset S, V is
the value of the spot volatility, θ is the long-run volatility, σ is the volatility of
volatility (vol-vol) and W 1, W 2 two stochastic processes correlated by ρ. Zt is
a compound Poisson process with intensity λ and independent jumps J with

log(1 + J) ∼ N(log(1 + χ) − 1

2
α2, α2).

The parameters χ and α determine the distribution of the jumps and the Poisson
process is assumed to be independent of the Wiener processes.

Assuming that the previous dynamics represent the evolution of the state
process (St, Vt) under a risk-neutral measure, then the pricing equation of a
European contingent claim C on S is the following:

∂C

∂t
+

1

2
V S2 ∂2C

∂S2
+

1

2
σ2V

∂2C

∂V 2
+ ρθV S

∂2C

∂S∂V
+ (r − δ − λk̄)S

∂C

∂S

+κ(θ − V)
∂C

∂V
− rC + IC = 0,

(1)

1

?? pages 2

where

IC(S, V, t) = λ

∫ +∞

0

[C(Sξ, V, t) − C(S, V, t)]q(ξ)dξ,

q(ξ) =
1√

2παξ
e

−

1

2α2
(log(ξ) − m)

2

m := log(1 + χ) − 1

2
α2,

k̄ := eα2/2+m − 1.

The equation holds for S ∈ [0, +∞). For the V variables, we assume that
V ∈ [0, Vmax].
The PDE is usually given along with a proper payoff. In the case of vanilla
European call option we have,

C(S, V) = max [S − K, 0] , (2)

where K is the strike price. It should be noted that closed-form solutions of
problem (1) for vanilla-option payoff do exist, methods for integrating such
solutions can be found in [4]. Nevertheless, direct numerical integration of (1)
is important when dealing with non-trivial payoff functions.

2.1 Numerical approximation

We want to solve problem (1). Following [5], we convert the problem defined on
an infinite domain into one defined on a finite domain, by using the following
transformation:

x =
S

S + S0
, y = V, τ = T − t, u(x, y, τ) =

C(S, V, t)

S + S0
, (3)

where x ∈ [0, 1), y ∈ [0, Vmax], τ ∈ [0, T] and S0 is the current asset price.
Since this transformation converts a point S ∈ [0, +∞) into a point x ∈ [0, 1),
u = u(x, y, t) is defined on the domain (0, 1) × (0, ymax) × (0, T] and the Cauchy
problem (1) can be rewritten as

1

2
yx2(1 − x)2uxx + ρσyx(1 − x)uxy +

1

2
σ2yuyy + (r − δ − λk̄)x(1 − x)ux

+ (ρσyx + κ(θ − y)) uy +
(

(r − δ − λk̄)x − r − λ
)

u

+λ

∫ +∞

0

(1 + x(ξ − 1)) u

(

xξ

xξ + 1 − x
, y, τ

)

q(ξ)dξ = uτ ,

(4)
with initial data

u(x, y, 0) = [x − K(1 − x)/S0]+.

We observe that, in order to have a unique solution, the key is that the coeffi-
cients of the pde should satisfy the reversion conditions. Actually it is equivalent
to check this conditions on the original equations.

?? pages 3

Moreover, to convert the infinite integral domain into a finite one, we set

z =
xξ

xξ + 1 − x
. (5)

Now the integral term can be rewritten as

Iu(x, y, τ) =
λ

α
√

2π

∫ 1

0

1 − x

z(1 − z)2
u(z, y, τ)exp

(

− 1

2α2

(

log

(

z(1 − x)

x(1 − z)

)

− m

)2
)

dz.

We calculate the solution of problem (4) by using centred finite differences
for first and second order terms. For mixed derivatives we use the following
expansion suggested by Bouchut [2]:

∂2u

∂x∂y
≈ 1

2

1

∆x∆y

(

∆0
x∆0

y + ∆+
x ∆−

x ∆+
y ∆−

y

)

un.

As shown by Bouchut, not only does this expansion provide second-order ac-
curacy under Crank-Nicolson schemes, but also is monotone where the naive
expansion is not.

The integral term is solved by quadrature rules [3]. Notice that, after the
change of variables (3) and (5), the x variables and the z variables belong both to
[0, 1]. Therefore, we may use as stencil for the integral term approximation the
same as of the differential part, i.e. we compute the integral term on (xj)j=0,Nx

grid nodes, and we do not need any additional artificial conditions to solve the
problem. For the integral term, we then get

Iu(x, y, τ) ≈ λ

Nx
∑

l=0

βlf(x, xl)u(xl, y, τ),

where

f(x, z) =
1

α
√

2π

1 − x

z(1 − z)2
e−

1

2α2
(log(z

1−z
)+log(1−x

x
)−m)2

.

The coefficients βl are defined by the quadrature rule. In the implementation
code, we use the Simpson’s rule,

β = (β0, ..., βNx
) =

∆x

3
(1, 4, 2, 4, 2, ..., 4, 1).

The above expansions for the space variables, were used in an explicit scheme
in time in order to smooth out the initial condition for the first 20 steps. After
that, a Crank-Nicolson scheme was implemented. To keep the scheme stable we
used a CFL condition for the first explicit steps as,

∆TEX ≈ min
{

∆x2/32, ∆y2σ2/4
}

,

and, for the following time steps, using Crank-Nicolson approximation,

∆TCN =
√

∆TEX.

Under this setup, at each time step, the finite-differences approximation gener-
ate, both for the explicit and Crank-Nicolson part, the following linear system:

Dn+1Un+1 = DnUn + F n + Bn (6)

?? pages 4

where Dn are square matrices computed by iteratively applying stencils to each
node of the underlying discrete grid, F n is a vector containing the integral term
approximation and Bn

c is a vector containing correction for boundaries.
In particular, the vector F n of system (6) is defined by

F n = (fn
00, fn

10, fn
20, ..., fn

Nx0, fn
01, fn

11, ..., fn
Nx1, ..., fn

1Ny
, ..., fn

NxNy
),

where, for i, j = 0, ..., Nx

fn
ij = λ

Nx
∑

l=0

βlf(xi, xl)u
n
lj .

For the explicit steps the solution Un+1 can be directly calculated. For the
Crank-Nicolson part, the solution Un+1 is calculated using a standard Stabilised
BiConjugate Gradient (SBiCG) iterative algorithm with the Incomplete LU
preconditioner. If the SBiCG algorithm doesn’t converge to a solution with a
specific accuracy after N steps, a Generalised Minimum Residuals (GMRES)
algorithm is used.

2.2 Remark on the boundary approximation

Notice that artificial boundary conditions are introduced only on the y direction.
For y = 0 and y = ymax, we assume that the solution of (4) follows the behaviour
of the discounted payoff, then for all x ∈ (0, 1) and τ ∈ (0, T], we set

u(x, 0, τ) = u(x, ymax, τ) = [x − Ke−rτ (1 − x)/S0]+.

While, for the x direction we don’t need any artificial condition. In fact, at the
boundary, for x = 0 and for x = 1 the equation (4) reduces respectively to

1

2
σ2yuyy(0, y, τ) + (κ(θ − y)) uy(0, y, τ) − ru(0, y, τ) = uτ (0, y, τ). (7)

and to

1

2
σ2yuyy(1, y, τ) + (ρσy + κ(θ − y)) uy(1, y, τ) − δu(1, y, τ) = uτ (1, y, τ).

(8)
In both cases the solution is computed directly by the numerical scheme. The
proposed transformation is actually quite effective and easy to be implemented.
This way, it is possible to avoid the numerical errors coming from the artificial
truncation, which is necessary in unbounded domain. Here we perform this
change of variable only in the S direction, since the diffusion term is singular in
V .

Let us notice also that for other problems, i.e.: one dimensional Merton’s
model, and the 2D model in [5], this change of variable yields an even greater
improvement on the numerical tests, with respect to the troncature methods.

2.3 Numerical Test

For the purpose of testing the implementation, we fixed the following parame-
ters:

?? pages 5

• Current Date: 0.000000

• Spot: S0 = 100

• Annual Dividend Rate: 0

• Annual Interest Rate: 10 (Instantaneous Interest Rate: r = 0.095310)

• Current Variance: V0 = 0.01

• Mean Reversion: κ = 2

• Long-Run Variance: θ = 0.01

• Volatility of Volatility: σ = 0.2

• Lambda: λ = 0.1

• Mean: m = 0

• Variance: α = 0.16

• Rho: ρ = 0.5

• Strike: K = 100

• Maturity: T = 1

In the table the results for a European Call for different asset spot prices
are shown: here N1 = 201 and N2 = 51. The results are compared with those
calculated from the evaluation of the closed form formula as implemented in
Premia:

S0 P ($) ∆ ($) time (s) PCF ($) ∆ ($)
90 3.020626 0.421302 3.919221 3.076410 0.422205
95 5.766727 0.689945 3.921054 5.792484 0.666280
100 9.829271 0.892125 4.261158 9.658327 0.863656
105 14.593351 0.971309 3.890816 14.253142 0.958117
110 19.533194 0.993057 4.361929 19.127745 0.988669

References

[1] DS Bates, Jumps and stochastic volatility: exchange rate processes implicit
in deutsche mark options, Rev Fin 1996; 9:69-107 1

[2] F. Bouchut, H. Frid, Finite difference schemes with cross derivatives cor-
rectors for multidimensional parabolic systems. J. Hyperbolic Differ. Equ.
3 (2006), no. 1, 27–52. 3

[3] M. Briani, C. La Chioma, R. Natalini Convergence of numerical schemes
for viscosity solutions to integro-differential degenerate parabolic problems
arising in financial theory, Numer. Math. 98 (2004), no. 4, 607–646. 3

[4] SL Heston, S Nandi, A closed-form GARCH option valuation model, Rev
Fin 2000; 13:585-625. 2

[5] Zhu, You-Lan; Li, Jinliang. Multi-factor financial derivatives on finite do-
mains. Commun. Math. Sci. 1 (2003), no. 2, 343–359. 2, 4

?? pages 6

3 Appendix: the PDE solver

Here we describe the general infrastructure of the solver stored in the directory

$PREMIA/Src/mod/highdim_solver/

3.1 Architecture

We tried to follow an object-oriented approach even if working with a procedural
language (ANSI C), as a first step we identified the main data abstractions of
our application domain.

As such, an instance of a PDE_PROBLEM is composed of:

• a PDE describing our Partial Differential Equation

• a BOUNDARY_DESCRIPTION for the given problem

• a GRID containing all control logic related to discretization of the problem
domain

• a PROBLEM_SOLVER managing solution algorithms and related functions

A PDE object is composed of sub-objects representing both differential and
integral terms, each with a related STENCIL_OPERATOR which is responsible for
the application of proper discretization schemes.

3.2 Operational overview

In order to use our solver, one has to setup a proper PDE_PROBLEM instance,
with related equation, boundary description and grid description.

pde_problem_create(&problem);

problem->max_explicit_steps = 20;

pde_problem_set_desired_accuracy(problem, 10e-10);

pde_problem_set_equation(problem, equation);

pde_problem_set_grid(problem, grid);

pde_problem_set_boundary(problem, boundary);

pde_problem_set_plotfile(problem, "heston_matrix");

pde_problem_set_plotting(problem, 0);

then problem solution is triggered by the invocation of the pde_problem_solve()

function:

pde_problem_setup(problem);

pde_problem_solve(problem);

pde_problem_get_solution(problem,&solution);

behind the lines, a PROBLEM_SOLVER object is created, the solver performs
the following steps:

?? pages 7

3.2.1 Matrix and boundary setup

In the most generic case, at each time iteration our solver has to perform the
following:

Dn+1Un+1 = DnUn + Bn
c (9)

where Dj are square matrices computed by iteratively applying stencils to
each node of the underlying discrete grid, and Bj

c is a vector containing correc-
tion for boundaries, source and integral terms (when needed). Several iteration
methods are available through the GRID object, these are key functions for the
overall application.

3.2.2 Iteration

The solver performs a fixed number of iterations (usually 20) by applying an
explicit scheme, then solution goes on by means of an implicit Crank-Nicolson
scheme. At each implicit iteration, a stabilized biconjugate gradient algorithm
is firstly applied, falling back to a generalized minimal residual algorithm when
desired accuracy is not reached.

3.3 Implementation

As stated before, code is organized according to an object-oriented fashion, each
component of the architecture fits in a separated C module, in order to promote
correctedness and robustness of the application, a minimal support for Design

by Contract methodologies has been added by using a set of macro to support
assertions (preconditions and postconditions) declaration in each C function1.
Moreover, simple support for debugging output has been added, both debugging
and assertions support can be enabled or disabled at compile time.

3.4 Grid definition

A grid is defined as follows:

/***************************

* GRID and TUNER *

***************************/

grid_tuner_create(&tuner);

grid_tuner_set_argument(tuner,&model);

grid_tuner_set_tuner(tuner, EXPLICIT_TUNER, explicit_tuner_proc);

grid_tuner_set_tuner(tuner, IMPLICIT_TUNER, implicit_tuner_proc);

grid_tuner_set_tuner(tuner, RESCALE_TUNER, focus_rescaler_proc);

grid_create(&grid);

grid_set_space_dimensions(grid,2);

grid_set_tuner(grid,tuner);

grid_set_min_value(grid,T_DIM,0.0);

grid_set_max_value(grid,T_DIM,model.T);

1see http://archive.eiffel.com/doc/manuals/technology/contract/ for a general

overview of these design techniques

?? pages 8

grid_set_ticks(grid,X_DIM,model.Ns);

grid_set_ticks(grid,Y_DIM,model.Nv);

grid_set_iterator(grid, X_DIM, ITER_PLAIN);

grid_set_iterator(grid, Y_DIM, ITER_CORE);

/* focus */

grid_set_focus(grid,X_DIM,model.S0);

grid_set_focus(grid,Y_DIM,model.V0);

grid_rescale(grid);

firstly, a GRID_TUNER is needed to properly set all grid parameters, GRID_TUNER

objects are just encapsulations of user-defined tuning routines; iterators specify
how to run through the grid, then a grid focus is specified (i.e. the node where
our final solution is in) and grid is re-scaled around that.

3.4.1 Function definitions

Functions are needed to specify PDE terms and payoff boundaries, each function
is represented by a FUNCTION object, the functional part is defined in a static C
function, which take as arguments a FUNCTION object and a GRID_NODE:

static double func_uxy(const function *f, const grid_node *node){

REQUIRE("function_not_null", f != NULL);

REQUIRE("node_not_null", node != NULL);

bates_model *model = (bates_model *)f->args;

double x = node->value[X_DIM];

double y = node->value[Y_DIM];

double rho = model->rho;

double sigma = model->sigma;

double result = rho * sigma * y * x * (1.0-x);

return result;

}

each FUNCTION object is created as follows:

function_create(&f_uxy);

function_set_args(f_uxy, &model);

function_set_body(f_uxy, func_uxy);

3.4.2 PDE definition

PDEs are defined by defining each PDE term and then putting it all together:

/***************************

* EQUATION *

***************************/

?? pages 9

pde_create(&equation);

/* 1: Uxx */

function_create(&f_uxx);

function_set_body(f_uxx,func_uxx);

stencil_operator_create(&stnop,STENCIL_OP_UXX);

pde_term_create(&pterm, UXX_TERM, f_uxx, stnop);

pde_add_term(equation, pterm);

/* 2: Uxy */

function_create(&f_uxy);

function_set_args(f_uxy, &model);

function_set_body(f_uxy, func_uxy);

stencil_operator_create(&stnop,STENCIL_OP_UXY);

pde_term_create(&pterm, UXY_TERM, f_uxy, stnop);

pde_add_term(equation, pterm);

...

if(model.lambda != 0.0){

pde_integral_term_create(&iterm);

pde_integral_term_set_lambda(iterm, model.lambda);

pde_integral_term_set_alpha(iterm, model.alpha);

pde_integral_term_set_m(iterm, model.m);

pde_integral_term_set_grid(iterm,grid);

pde_set_integral_term(equation, iterm);

}

3.4.3 Boundary definition

Boundaries are quite simple to setup, we must specify proper functions for left,
right and initial values of our unknown solution:

/***************************

* BOUNDARY *

***************************/

function_create(&f_payoff);

function_set_args(f_payoff,&model);

function_create(&f_boundary);

function_set_args(f_boundary,&model);

if(option_type == PUT_OPTION){

function_set_body(f_payoff,func_put_payoff);

function_set_body(f_boundary,func_put_boundary);

}

else{

?? pages 10

function_set_body(f_payoff,func_call_payoff);

function_set_body(f_boundary,func_call_boundary);

}

boundary_description_create(&boundary);

boundary_description_set_left(boundary,X_DIM, f_boundary);

boundary_description_set_left(boundary,Y_DIM, f_boundary);

boundary_description_set_right(boundary, X_DIM, f_boundary);

boundary_description_set_right(boundary, Y_DIM, f_boundary);

boundary_description_set_initial(boundary, f_payoff);

3.4.4 Problem setup and solution

Last step is putting all components into a problem and solve it:

/***************************

* PROBLEM *

***************************/

pde_problem_create(&problem);

problem->max_explicit_steps = 20;

pde_problem_set_desired_accuracy(problem, 10e-10);

pde_problem_set_equation(problem, equation);

pde_problem_set_grid(problem, grid);

pde_problem_set_boundary(problem, boundary);

/***************************

* SOLUTION *

***************************/

pde_problem_setup(problem);

pde_problem_solve(problem);

pde_problem_get_solution(problem,U0);

pde_problem_get_delta_x(problem, D0);

(*U0) *= 2.0 * model.S0;

	Introduction
	The Bates volatility model
	Numerical approximation
	Remark on the boundary approximation
	Numerical Test

	Appendix: the PDE solver
	Architecture
	Operational overview
	Matrix and boundary setup
	Iteration

	Implementation
	Grid definition
	Function definitions
	PDE definition
	Boundary definition
	Problem setup and solution

