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Abstract

Lévy processes are popular models for stock price behavior since
they allow to take into account jump risk and reproduce the implied
volatility smile. In this paper, we focus on the tempered stable (also
known as CGMY) processes, which form a flexible 6-parameter family
of Lévy processes with infinite jump intensity. It is shown that un-
der an appropriate equivalent probability measure a tempered stable
process becomes a stable process whose increments can be simulated
exactly. This provides a fast Monte Carlo algorithm for computing
the expectation of any functional of tempered stable process. We use
our method to price European options and compare the results to a
recent approximate simulation method for tempered stable process by
Madan and Yor [14].

Keywords: Monte Carlo, Option pricing, Lévy process, Tempered stable
process, CGMY model
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1 Introduction

Lévy processes are stochastic processes with stationary and independent in-
crements that is to say if (Xt)t≥0 is a Lévy process, then Xt −Xs with t > s
is independent of the history of the process up to time s, and its law only
depends on t− s.

Exponentials of Lévy processes constitute the simplest model of stock
price behavior allowing to take into account price discontinuities and the
implied volatility smile phenomenon [7]. Despite this simplicity and unlike
the Black-Scholes model, closed option pricing formulas are not available in
exponential Lévy models and one must use either deterministic numerical
methods (partial integro-differential equations [8] or Fourier methods [4]) or
Monte Carlo methods which form the object of the present paper.

For Monte Carlo methods, finite-intensity (compound Poisson) Lévy pro-
cesses can be easily simulated on a computer, but for infinite intensity pro-
cesses the situation is more difficult: explicit simulation methods are only
available for stable processes [5] and a few other parametric classes (see [7]
for a comprehensive survey). For other processes, approximate methods are
available [1, 11], which are basically reduced to truncating small jumps and
replacing them with something easy to simulate. These methods are not
adapted for Monte Carlo pricing of European options and other options with
discrete observation of stock price trajectory since they require a complete
simulation of the process trajectory even if only the terminal value is used
for the final computation.

For the tempered stable process (also known as CGMY model), an ap-
proximate simulation method based on Brownian subordination and a re-
jection method by Rosinski [11] was recently proposed by Madan and Yor
[14] but, to the best of our knowledge, no exact simulation method for the
increments of this process is known. In section 3 of this paper, we propose
a method for Monte Carlo evaluation of any functional of the tempered sta-
ble process which avoids direct simulation of the increments of this process.
Instead, we construct an equivalent probability measure under which the
original tempered stable process becomes a stable process. Since the method
for direct simulation of stable random variables is well-known [5] and the
measure change is explicit, this provides the desired algorithm.

After describing the theoretical framework of our method in section 3,
we apply it to the pricing of European options in section 4 and compare
the results with the ones obtained using the approximate simulation method
by Madan and Yor. A strong point of the latter method is that it is easily
generalizable to multiple dimensions via Brownian subordination, whereas in
our setting a multidimensional extension is not straightforward. On the other
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hand, an important advantage of our method is that it provides unbiased
estimators of option prices, while the approximate method introduces a bias,
due to the truncation of small jumps, which is not easy to quantify. More
importantly, for the parameter sets used in this paper, our method required
16 to 50 times less computer time to achieve the same precision than the
approximate method.

2 Basic tools and definitions

In this section we review important properties of Lévy processes, stable pro-
cesses and tempered stable processes that are used in the sequel. Unless
otherwise mentioned, all proofs can be found in Sato [13]. We concentrate
on the one-dimensional case.

Lévy-Khintchine representation Let h : R → R be a measurable func-
tion such that for every z,

∫ |eizx − 1 − izh(x)|ν(dx) < ∞. Such a function
h is called a truncation function. The Levy-Khintchine representation with
the truncation function h takes the form:

E[eizXt ] = etψ(z), z ∈ R, (2.1)

ψ(z) = −1

2
zAz + iγhz +

∫

Rd
(eizx − 1 − izh(x))ν(dx). (2.2)

A and ν do not depend on the choice of h but γh depends on this choice. If
γ is the value of γh for the standard truncation function h(x) = x1|x|≤1, γh
for arbitrary h can be computed with

γh = γ +
∫ ∞

−∞
(h(x) − x1|x|≤1)ν(dx).

In the sequel, the value of γh corresponding to the truncation function h ≡ 0
(drift) will be denoted by γ0 and the value corresponding to h ≡ x (center)
will be denoted by γc.

In the sequel, we will use the following result on exponential moments of
Lévy processes (see [13, theorem 25.17]):

Proposition 2.1. Let X be a Lévy process with characteristic triplet (A, ν, γh)
with respect to a truncation function h and let λ ∈ R. Then E[eλXt ] < ∞ for
some t > 0 or equivalently for all t > 0 if and only if

∫

|x|≥1
eλxν(dx) < ∞.

In this case, E[eλXt ] = etψ(−iλ) with ψ as in (2.2).
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Equivalent measure changes for Lévy processes

Proposition 2.2 (see [13, Theorems 33.1 and 33.2]). Let (Xt, P ) and (Xt, P
′)

be two Lévy processes on R with characteristics triplets (A, ν, γ) and (A′, ν ′, γ′).
Then P |Ft and P ′|Ft are equivalent for all t (or equivalently for one t > 0)
if and only if the three following conditions are satisfied:

1. A = A′

2. The Lévy measures are equivalent with

∫ ∞

−∞
(eΦ(x)/2 − 1)2ν(dx) < ∞

where Φ(x) = ln(dν
′

dν
)

3. If A = 0 then we must in addition have

γ′
h = γh +

∫ ∞

−∞
h(x)(ν ′ − ν)(dx)

When P and P ′ are equivalent , the Radon-Nikodym derivative is

dP ′

dP
|Ft = eUt

with

Ut = ηXc
t − η2At

2
− ηγt+ lim

ǫ→0





∑

|∆Xs|>ǫ

Φ(∆Xs) − t
∫

|x|>ǫ
(eΦ(x) − 1)ν(dx)





Here (Xc
t ) is the continuous part of (Xt), i.e. the Lévy process with generating

triplet (A, 0, γ) and η is such that

γ′
h − γh −

∫ ∞

−∞
h(x)(ν ′ − ν)(dx) = Aη if A > 0

and zero if A = 0.

Ut is a Lévy process with characteristic triplet (AU , νU , γU) given by:

aU = η2σ2

νU = ν ◦ Φ−1

γU = −1

2
Aη2 −

∫ ∞

−∞
(ey − 1 − h(y))(νΦ−1)(dy)
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Stable processes Real valued α-stable processes with 0 < α < 2 are Lévy
processes with no continuous martingale part and Lévy measure of the form

ν(x) =
A

|x|α+1
1x>0 +

B

|x|α+1
1x<0.

If 1 < α < 2, the process has finite mean and its characteristic function has
the following form:

ΦXt(z) = exp t
{

iµz +
∫

R

(eizx − 1 − izx)ν(dx)
}

for some center µ ∈ R. In the case 0 < α < 1, the process has finite variation
and we can write

ΦXt(z) = exp t
{

iµz +
∫

R

(eizx − 1)ν(dx)
}

,

i.e., µ is now the drift. The characteristic function of a stable process may
also be expressed as (see [13])

ΦXt(z) = exp
{

−σα|z|αt(1 − iβ sgn z tan
πα

2
) + iµzt

}

, if α 6= 1,

ΦXt(z) = exp
{

−σ|z|t(1 + iβ
2

π
sgn z log |z|) + iµzt

}

, if α = 1, (2.3)

where α ∈ (0, 2], σ ≥ 0, β ∈ [−1, 1] and µ ∈ R. A stable law with parameters
α, σ, β, ν is denoted by Sα(σ, β, ν).

In the case α < 2 the two parametrizations are linked by the following
relations:

σ =
[

−(A+B)Γ(−α) cos(
πα

2
)
]

1
α

when α 6= 1,

σ =
π

2
(A+B) when α = 1,

β =
A−B

A+B
.

Furthermore, when α 6= 1 and γ is the third parameter of the characteristic
triplet of X for the standard truncation function h(x) = x1|x|≤1 then

µ = γ +
B − A

1 − α
.
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Simulation of stable random variables

Proposition 2.3 (see [5]). Let Θ and W be independent with Θ uniformly
distributed on (−π

2
, π

2
) and W exponentially distributed with mean 1, and let

0 < α ≤ 2.

• The symmetric random variable

Z =















sin(αΘ)

(cos(Θ))1/α

[

cos(α− 1)Θ

W

](1−α)/α

, α 6= 1

tan Θ, α = 1

has a Sα(1, 0, 0) distribution.

• In the nonsymmetric case, for any −1 ≤ β ≤ 1, define

θ0 = arctan(β tan(πα/2))/α

when α 6= 1. Then

Z =



























sin(α(Θ + θ0))

(cos(αΘ0) cos(Θ))1/α

[

cos(αΘ0 + (α− 1)Θ

W

](1−α)/α

, α 6= 1

π

2

[

(
π

2
+ βΘ) tan Θ − β log

(

π
2
W cos(Θ)
π
2

+ βΘ

)]

, α = 1,

has a Sα(1, β, 0) distribution.

Stable random variates with σ 6= 1 and µ 6= 0 may be obtained from
Sα(1, β, 0) by scaling and translation.

Tempered stable processes A one-dimensional tempered stable process
is obtained by taking a one-dimensional stable process and multiplying the
Lévy measure with a decreasing exponential on each half of the real axis.
Thus, a tempered stable process is a Lévy process on R with no Gaussian
component and Lévy density of the form:

ν(x) =
c+e

−λ+x

x1+α
1x>0 +

c−e
−λ−|x|

|x|1+α
1x<0,

with parameters satisfy c− > 0, c+ > 0, λ− > 0, λ+ > 0 and 0 < α < 2.
For greater generality one can allow different values of α for positive and
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negative half-lines and speak of a generalized tempered stable process with
Lévy measure of the form

ν(x) =
c+e

−λ+x

x1+α+
1x>0 +

c−e
−λ−|x|

|x|1+α−

1x<0.

Tempered stable processes have been studied by many authors including
[2, 3, 6, 10] under different names. In particular, the version when c+ = c−

and α+ = α− was studied in [3] under the name CGMY process with Lévy
measure

νCGMY (x) = C

[

e−Mx

x1+Y
1x>0 +

e−G|x|

|x|1+Y
1x<0

]

.

A multidimensional generalization of tempered stable processes is proposed
in [12].

Because of the exponential tempering in the case of the tempered stable
process big jumps need not be truncated and one can use the truncation
function h(x) = x. In the general case (α± 6= 1 and α± 6= 0) the characteristic
exponent ψ(u) = t−1 logE[eiuXt ] then becomes

ψ(u) = iuγc + Γ(−α+)λ
α+
+ c+

{(

1 − iu

λ+

)α+

− 1 +
iuα+

λ+

}

+ Γ(−α−)λ
α−

− c−

{(

1 +
iu

λ−

)α−

− 1 − iuα−

λ−

}

. (2.4)

In the sequel we will also need the characteristic exponent of the tempered
stable process for 0 < α < 1 with h ≡ 0 as truncation function:

ψ(u) = iuγ0 + Γ(−α)[c+((λ+ − iu)α − λα+) + c−((λ− + iu)α − (λ−)α)].

(2.5)

3 Monte Carlo evaluation of functionals of

CGMY process using measure change

The following theorem is the main result of this paper and shows that under
an appropriate change of measure the tempered stable process becomes a
sum of two one-sided stable processes.

Theorem 3.1. Let (Xt) be a (generalized) tempered stable Lévy process on
the probability space (Ω,F , P ) with Lévy density

ν(x) =
c+e

−λ+x

x1+α+
1x>0 +

c−e
−λ−|x|

|x|1+α−

1x<0,
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and let (X+
t ) and (X−

t ) be tempered stable Lévy processes such that X =
X+ +X− with characteristic triplets (0, ν+, γ

+) and (0, ν−, γ
−) where

ν+(x) =
c+e

−λ+x

x1+α+
1x>0 and ν−(x) =

c−e
−λ−|x|

|x|1+α−

1x<0.

Then the following holds:

1. There exists a unique constant c such that eUt is a P -martingale, where
Ut = λ+X

+
t − λ−X

−
t + ct.

c is given by1

• for 0 < α < 1,

c = −λ+γ
+
0 + Γ(−α+)λ

α+
+ c+ + λ−γ

−
0 + Γ(−α−)λ

α−

− c−.

• for 1 < α < 2,

c = −λ+γ
+
c +Γ(−α+)λ

α+
+ c+(α+−1)+λ−γ

−
c +Γ(−α−)λ

α−

− c−(α−−1).

2. One can define a probability measure Q on (Ω,F) such that Q|Ft ∼ P |Ft

for every t by dQ
dP

|Ft = eUt.

3. Under Q, the processes (X+
t ) and (X−

t ) are stable processes with char-
acteristic triplets (0, ν̃+, γ̃+) and (0, ν̃−, γ̃−) where

ν̃+(x) =
c+

x1+α+
1x>0 and ν̃−(x) =

c−

|x|1+α−

1x<0.

and

• for 0 < α < 1

γ̃+
0 = γ+

0 (3.1)

γ̃−
0 = γ−

0 (3.2)

• for 1 < α < 2

γ̃+
c = γ+

c + c+

∫ ∞

0

1 − e−λ+x

xα+
dx = γ+

c − c+λ
α+−1
+ Γ(1 − α+), (3.3)

γ̃−
c = γ−

c + c−

∫ 0

−∞

1 − e−λ−|x|

|x|α−

dx = γ−
c − c−λ

α−−1
− Γ(1 − α−).

(3.4)
1Here and below 0 < α < 1 means that both 0 < α+ < 1 and 0 < α

−
< 1 and similarly

for 1 < α < 2. The formulas for the other cases when, say 0 < α+ < 1 and 1 < α
−

< 2
are straightforward generalizations.
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Remark 3.1. The processes X+ and X− are only unique up to a linear
function: we can freely choose a constant k and put X+′

= X+ + kt and
X−′

= X− − kt. It is easy to see that the value of −λ+X
+
t +λ−X

−
t − ct does

not depend on k and therefore, the quantities that we want to compute, that
is, expectations of functionals of X, do not depend on k.

Proof. 1. By proposition (2.1), E[eλ+X
+
1 ] < ∞, E[e−λ−X

−

1 ] < ∞ and, since
X+ and X− are independent,

E[eλ+X
+
1 −λ−X

−

1 ] = E[eλ+X
+
1 ]E[e−λ−X

−

1 ] < ∞.

Let

c = − lnE[eλ+X
+
1 −λ−X

−

1 ] ≡ −(lnE[eλ+X
+
1 ] + lnE[e−λ−X

−

1 ]).

Since λ+X
+
1 − λ−X

−
1 is a Lévy process,

eλ+X
+
t −λ−X

−

t +ct =
eλ+X

+
t −λ−X

−

t

E[λ+X
+
t − λ−X

−
t ]

is a martingale. The constant c can be computed as follows:

• If 0 < α < 1 we can use the truncation function h ≡ 0 and
equation (2.5) yields

c = −λ+γ
+
0 + Γ(−α+)λ

α+
+ c+ + λ−γ

−
0 + Γ(−α−)λ

α−

− c−

• If 1 < α < 2 we can use the truncation function h(x) = x and
equation (2.4) yields:

c = −λ+γ
+
c +Γ(−α+)λ

α+
+ c+(α+−1)+λ−γ

−
c +Γ(−α−)λ

α−

− c−(α−−1)

2. Let
Φ(x) = λ+x1x>0 − λ−x1x<0.

Since, as easily seen,
∫∞

−∞(eΦ(x)/2 − 1)2)ν(dx) < ∞, by proposition 2.2,
we can define a new probability Q ∼ P by:

dQ

dP
|Ft = eUt
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with

Ut = lim
ǫ→0





∑

|∆Xs|>ǫ

Φ(∆Xs) − t
∫

|x|>ǫ
(eΦ(x) − 1)ν(dx)





= lim
ǫ→0





∑

|∆Xs|>ǫ

(λ+∆Xs1∆Xs>0 − λ−∆Xs1∆Xs<0)

− t
∫

|x|>ǫ
(eλ+x1x>0−λ−x1x<0 − 1)ν(dx)





= lim
ǫ→0

(

∑

∆Xs>ǫ

λ+∆Xs − t
∫

x>ǫ
(eλ+x − 1)ν(dx)

)

+ lim
ǫ→0

(

∑

∆Xs<−ǫ

(−λ−)∆Xs − t
∫

x<−ǫ
(e−λ−x − 1)ν(dx)

)

(3.5)

The first term in the right-hand side can be rewritten it as follows:

lim
ǫ→0

λ+





∑

ǫ≤∆Xs

∆Xs − t
∫

ǫ<x
h(x)ν(dx)





− lim
ǫ→0

(

t
∫

x>ǫ
(eλ+x − 1 − λ+h(x))ν(dx)

)

By the Lévy-Itô decomposition, the first term above equals

λ+X
+
t − λ+γ

+
h t,

and by the Lévy-Khintchine representation (2.1), the second term gives

lnE[eλ+X
+
1 ] − λ+γ

+
h .

Treating in the same way the second term in the right-hand side of
(3.5) and assembling all terms, we finally get

Ut = λ+X
+
t − λ−X

−
t + ct.

3. By proposition (2.2), we can express the Lévy densities of X+ and X−

under Q as follows:

ν̃+(dx) = eΦ(x)ν+(dx) = eλ+xν+(dx) =
c+

x1+α+
1x>0,

ν̃−(dx) = eΦ(x)ν−(dx) = e−λ−xν−(dx) =
c−

x1+α−

1x<0.
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Moreover, once again by proposition (2.2),

γ̃+
h − γ+

h =
∫ ∞

−∞
h(x)(ν̃+ − ν+)(dx),

γ̃−
h − γ−

h =
∫ ∞

−∞
h(x)(ν̃− − ν−)(dx).

Treating separately the cases 0 < α < 1 and 1 < α < 2, we obtain
equations (3.1)–(3.4).

The expectation of any FT -measurable random variable HT can be eval-
uated via

EP [HT ] = EQ[HT e
−λ+X

+
T +λ−X

−

T −cT ].

In particular, if HT = f(XT ), then

EP [HT ] = EP [f(XT )] = EQ[f(XT )e−λ+X
+
T +λ−X

−

T −cT ].

The Monte Carlo estimator H̄ of E[HT ] is given by

H̄ =
1

N

N
∑

i=1

H i
T exp(−λ+X

+,i
T + λ−X

−,i
T − cT ),

where (X i
T ) for i = 1, . . . , N are independent realizations of XT and H i

T are
corresponding realizations of HT . We conclude this section with an upper
bound for the variance of H̄.

Proposition 3.2. Suppose that in Theorem 3.1, (Xt) is such that α+ 6= 1
and α− 6= 1 and that the random variable HT is bounded: |HT | ≤ K. Then:

√

VarQ H̄ =

√

1

N
VarQ

(

HT e
−λ+X

+
T +λ−X

−

T −cT
)

≤ K√
N

exp[Γ(−α+)λ
α+
+ c+T (2α+−1 − 1) + Γ(−α−)λ

α−

− c−T (2α−−1 − 1)].

Proof. We have that

VarQHT e
−λ+X

+
T +λ−X

−

T −cT ≤ EQ[f(XT )2 exp(−2λ+X
+
T + 2λ−X

−
T − 2cT )]

≤ K2EQ[exp(−2λ+X
+
T + 2λ−X

−
T − 2cT )].

But as X+
T and X−

T are independent:

EQ[exp(−2λ+X
+
T +2λ−X

−
T −2cT )] = e−2cTEQ[exp(−2λ+X

+
T )]EQ[exp(2λ−X

−
T )].
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Moreover:

EQ[exp(−2λ+X
+
T )] = EP [exp(−λ+X

+
T + λ−X

−
T + cT )]

= ecTEP [exp(−λ+X
+
T )]EP [exp(−λ−X

−
T )]

and
EQ[exp(2λ−X

−
T )] = ecTEP [exp(λ−X

−
T )]EP [exp(λ+X

+
T )].

Thus

EQ[exp(−2λ+X
+
T + 2λ−X

−
T − 2cT )]

= EP [exp(−λ+X
+
T )]EP [exp(λ−X

−
T )]EP [exp(−λ−X

−
T )]EP [exp(λ+X

+
T )]

= exp(T (ψ+(iλ+) + ψ+(−iλ+) + ψ−(iλ−) + ψ−(−iλ−)))

= exp (Γ(−α+)λ
α+
+ c+T (2α+ − 2) + Γ(−α−)λ

α−

− c−T (2α− − 2)) .

4 Numerical results.

Overview of the direct simulation method Let us briefly review the
approximate simulation method for the tempered stable process, introduced
in [14]. This method applies to the 4-parameter CGMY family (tempered
stable process with c− = c+ = c and α− = α+ = α). It is based on the fact
that such a process can be represented as a time-changed Brownian motion
with drift. Since some of the constants are not given explicitly in [14], we
provide a short proof of this result here.

Proposition 4.1. Let c > 0, α ∈ (0, 2), λ+ > 0 and λ− > 0 and let Z be a
subordinator with zero drift and Lévy density

νZ(t) =
ce

t
2
A2− t

4
B2
D−α(B

√
t)

t
α
2

+1
,

where D is the parabolic cylinder function (see [9]), A = λ−−λ+

2
and B =

λ++λ−

2
. Then the process

Xt = AZt +W (Zt),

where W is a standard Brownian motion, is a tempered stable process with
Lévy density

ν(x) =
ce−λ+x1x>0 + ce−λ−|x|1x<0

|x|1+α
(4.1)
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and center
γc =

∫

R

x(1 − e−Ax)ν(x)dx.

In the case 0 < α < 1, the drift of X is equal to zero.

Remark 4.1. In the case α 6= 1 the center is given explicitly by

γc = cΓ(1 − α)(λα−1
+ − λα−1

− ).

Proof. By [13, Theorem 30.1], the Lévy density of X is given by

νX(x) =
∫ ∞

0
pt(x)νZ(t)dt.

where

pt(x) =
1√
2π
e−

(x−At)2

2t .

This integral corresponds to integral 7.728 in [9, page 837] and is equal to
(4.1).

Once again, by [13, Theorem 30.1], the center of X (third component of
the characteristic triplet with respect to the truncation function h(x) ≡ x)
is given by

∫ ∞

0
νZ(t)dt

∫

R

xpt(x)dx = A
∫ ∞

0
tνZ(t)dt.

On the other hand, by Fubini theorem,

∫

R

x(1 − e−Ax)ν(x)dx =
∫

R

x(1 − e−Ax)
∫ ∞

0
pt(x)νZ(t)dtdx

=
∫ ∞

0
νZ(t)dt

∫

R

x(1 − e−Ax)pt(x)dx = A
∫ ∞

0
tνZ(t)dt.

The last statement of the theorem follows directly from [13, Theorem 30.1].

The paper [14] further shows that the density of the time change Z can
be written as

νZ(t) = f(t)ν0(t),

where f(t) ≤ 1 and ν0(t) is the Lévy density of a α
2
-stable subordinator:

f(t) =
2

α
2 Γ(α

2
+ 1

2
)e

t
2
A2− t

4
B2

√
π

D−α(B
√
t),

ν0(t) = 2− α
2
√
π
λα−2

+ + λα−2
−

Γ(α
2

+ 1
2
)

c

t1+ α
2

1t>0 ≡ K

t1+ α
2

1t>0.

This allows to simulate paths of Z on the interval [0, T ] using Rosinski [11]
rejection method as follows
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Description of the algorithm

1. Approximate a trajectory of a stable subordinator with Lévy density
ν0 on [0, T ]. The approximation consists in replacing this subordinator
with a compound Poisson subordinator with Lévy density

K

t1+ α
2

1t>ε

and drift

d =
∫ ε

0
y
K

y
α
2

+1
dy =

Kε1− α
2

1 − α
2

.

This amounts to replacing small jumps with their expectation. Note
that an approximation bias is introduced at this stage. Denote by (Ti)
the jump times and by (yi) the jump sizes of the compound Poisson
approximation (we do not give details since their simulation is straight-
forward).

2. Approximate the trajectory of the CGMY time change Z using the re-
jection method. In this setting this amounts to accept every jump yi of
the stable subordinator for which f(yi) is greater than an independent
uniform random variable on [0, 1]. The approximated time change is
given by

Ẑt = td+
∑

i

yi1Γi≤t1f(yi)>Ui
,

where (Ui) is an independent sequence of uniforms on [0, 1].

3. Approximate the CGMY process by

X̂t = AẐt +W (Ẑt),

where W is a standard Brownian motion.

Financial model setup To compare the performance of the algorithm in-
troduced in section 3 with that of the approximate simulation algorithm of
[14], we use both methods to compute the prices of European put options in
an exponential Lévy model driven by a tempered stable process. The Eu-
ropean options were chosen, because their reference prices can be computed
analytically which allows to estimate the bias in the approximate simulation
method. In this model, the stock price is given by

St = S0e
rt+Xt ,
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Strike Price
80 1.7444
85 2.3926
90 3.2835
95 4.5366
100 6.3711
105 9.1430
110 12.7631
115 16.8429
120 21.1855

80 85 90 95 100 105 110 115 120

0.34

0.36

0.38

0.40

0.42

0.44

0.46

0.48

Table 1: Reference option prices computed using the Fourier transform
method and the corresponding implied volatilities.

where X is a tempered stable process and r is the interest rate supposed
constant. The European put option is a contract which pays to its holder
(K−ST )+ at a future date T , where K is a fixed amount (strike). By the fun-
damental theorem of asset pricing, absence of arbitrage in a financial market
is equivalent to the existence of a probability Q equivalent to the historical
probability P , such that discounted prices of all assets are Q-martingales. In
this paper we place ourselves directly under the probability Q. The process
X must therefore satisfy the martingale condition E[eXt ] = 1 and the price
of a European put option at time t = 0 is

P (T,K) = e−rTEQ[(K − ST )+].

4.1 Results and comparisons

For numerical computations, we used the following artificial parameters of
the tempered stable process: α = 0.5, c = 0.5, λ+ = 3.5 and λ− = 2. The
initial stock price was taken equal to 100, the option’s maturity was T = 0.25,
and the interest rate was 4%. The first step was to compute the reference
prices using the Fourier transform method, described in [7]. The prices are
given in table 1. The implied volatility smile corresponding to these prices
is shown in the graph next to this table. This is a typical shape of implied
volatility observed for options on stocks.

Next we study the bias of the approximate simulation method. To reduce
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ε Price (std.dev) Bias (std.dev) Time (107 traj.)
10−1 8.4608(0.004) 2.090(0.004) 61 sec
10−2 6.5834(0.004) 0.2123(0.004) 91 sec
10−3 6.3784(0.004) 0.0073(0.004) 144 sec
10−4 6.3658(0.004) −0.0053(0.004) 233 sec

Table 2: Bias of the approximate simulation method.

Strike Price Std. dev.
80 1.745 0.007
85 2.378 0.008
90 3.278 0.009
95 4.544 0.011
100 6.349 0.012
105 9.131 0.013
110 12.765 0.014
115 16.855 0.015
120 21.192 0.016

Table 3: Option prices computed using the approximate simulation method.
The computation time is about 23 seconds for each price.

the number of simulations, we only treat the strike K = 100. The results
are shown in table 2. We see that for the parameter values used, the bias
decreases rapidly to zero as ε → 0. Moreover, since the computational com-
plexity is proportional to 1

εα/2 , decreasing ε by a factor of 10 reduces the bias
by roughly the same factor but will only increase the complexity by a factor
of 101/4 ≈ 1.77. Therefore, in this case it is sufficient to take ε = 10−4 and
the Monte Carlo error will play the dominant role.

Armed with this knowledge, we set ε = 10−4, the level at which the bias
is insignificant for 107 trajectories, and compute the option prices by Monte
Carlo using the approximate simulation method over 106 trajectories. This
number of trajectories allows to estimate option prices with a precision of
about one cent. The prices, standard deviations, and computation times are
shown in table 3.

Next, we use the Monte Carlo method described in section 3 to compute
the same prices. With 106 trajectories we obtain roughly the same variance
for strike K = 100 as with the approximate method, whereas the computa-
tional time is reduced by a factor of 16. The results are shown in table 4.
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Strike Price Std. dev. Theor.bound
80 1.751 0.005 0.12
85 2.403 0.006 0.13
90 3.299 0.008 0.14
95 4.560 0.010 0.15
100 6.397 0.012 0.15
105 9.168 0.015 0.16
110 12.789 0.019 0.17
115 16.867 0.023 0.18
120 21.207 0.028 0.18

Table 4: Option prices computed using the method of section 3. The theo-
retical bound is that given in proposition 3.2. The computation time for one
price is about 1.43 seconds. The errors are all of the same sign compared to
table 1 because they have been computed over the same set of trajectories.

We also compute the theoretical bound on variance, given by proposition 3.2.
The theoretical bound is quite far from the true variance since the option
pay-off is estimated from above by the strike value (a very rough estimate).

As our last example, we compare the two algorithms in an infinite vari-
ation model with parameters α = 1.5, c = 0.1, λ+ = 3.5, λ− = 2. This
corresponds to roughly the same unit variance as in the previous case. We
fix the strike equal to 100 and leave all the other parameters unchanged. The
true price of the option (computed by Fourier transform) is equal to 8.3014
in this case.

First we analyze the bias of the approximate simulation algorithm. The
results are shown in table 5. In this case, the computational time is much
more sensitive to ε and the bias is, roughly, inversely proportional to the
computational effort.

With the method of section 3, the standard deviation of about 0.011
is obtained for 1.8 × 106 trajectories, which requires about 2.62 seconds of
machine time. Therefore, in this case our algorithm is about 50 times faster
than approximate simulation, for the same precision.

To conclude, let us sum up the advantages and drawbacks of the two
algorithms. First of all, we want to emphasize the fundamental difference
between the two approaches: whereas the method of [14] is a simulation
algorithm, our method is an algorithm for evaluating expectations, it cannot
be used to, say, plot a trajectory of the tempered stable process for given
parameter values.

The approximate simulation method by [14]
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ε Price (std.dev) Bias (std.dev) Time (106 traj.)
10−1 10.081(0.013) 1.780(0.013) 1.5 sec
10−2 8.683(0.012) 0.381(0.012) 5.17 sec
10−3 8.368(0.011) 0.067(0.011) 24 sec
10−4 8.304(0.011) 0.002(0.011) 132 sec

Table 5: Approximation bias, infinite variation case.

• Can be easily generalized to multiple dimensions by taking a multidi-
mensional Brownian motion.

• Provides access to the entire trajectory of the process.

• Involves an approximation bias which may be important and is difficult
to quantify.

On the other hand, our algorithm presented in section 3

• Is more general (in one dimension) in the sense that we allow different
values of α+ and α− and different values of c+ and c−, which is not
possible with Brownian subordination.

• Provides unbiased Monte Carlo estimates.

• Runs 16 to 50 times faster (for pricing European options).

References

[1] S. Asmussen and J. Rosiński, Approximations of small jumps of Lévy
processes with a view towards simulation, J. Appl. Probab., 38 (2001),
pp. 482–493. 2

[2] S. Boyarchenko and S. Levendorskĭı, Non-Gaussian Merton-
Black-Scholes Theory, World Scientific, River Edge, NJ, 2002. 7

[3] P. Carr, H. Geman, D. Madan, and M. Yor, The fine structure
of asset returns: An empirical investigation, Journal of Business, 75
(2002), pp. 305–332. 7

[4] P. Carr and D. Madan, Option valuation using the fast Fourier
transform, 2 (1998), pp. 61–73. 2



?? pages 19

[5] J. Chambers, C. Mallows, and B. Stuck, A method for simulating
stable random variables, 71 (1976), pp. 340–344. 2, 6

[6] R. Cont, J.-P. Bouchaud, and M. Potters, Scaling in finan-
cial data: Stable laws and beyond, in Scale Invariance and Beyond,
B. Dubrulle, F. Graner, and D. Sornette, eds., Springer, Berlin, 1997. 7

[7] R. Cont and P. Tankov, Financial Modelling with Jump Processes,
Chapman & Hall / CRC Press, 2004. 2, 15

[8] R. Cont and E. Voltchkova, A finite difference scheme for option
pricing in jump-diffusion and exponential Lévy models, SIAM Journal
on Numerical Analysis, 43 (2005). 2

[9] I. Gradshetyn and I. Ryzhik, Table of Integrals, Series and Prod-
ucts, Academic Press, 1995. 12, 13

[10] I. Koponen, Analytic approach to the problem of convergence of trun-
cated Lévy flights towards the Gaussian stochastic process., Physical Re-
view E, 52 (1995), pp. 1197–1199. 7

[11] J. Rosiński, Series representations of Lévy processes from the perspec-
tive of point processes, in Lévy Processes — Theory and Applications,
O. Barndorff-Nielsen, T. Mikosch, and S. Resnick, eds., Birkhäuser,
Boston, 2001. 2, 13

[12] , Tempering stable processes. Preprint (cf.
www.math.utk.edu/∼rosinski/manuscripts.html), 2004. 7

[13] K. Sato, Lévy Processes and Infinitely Divisible Distributions, Cam-
bridge University Press, Cambridge, UK, 1999. 3, 4, 5, 13

[14] M. Yor and D. B. Madan, CGMY and Meixner subordinators are
absolutely continuous with respect to one sided stable subordinators,
Prépublication du Laboratoire de Probabilités et Modèles Aléatoires,
(2005). 1, 2, 12, 13, 14, 17


	Introduction
	Basic tools and definitions
	Monte Carlo evaluation of functionals of CGMY process using measure change
	Numerical results.
	Results and comparisons


