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Abstract

We estimate the delta of options in exponential Lévy models by the likelihood ratio method.
The latter needs the probability density functions of Lévy increments and their derivatives. These
densities are often known through their charateristic functions. Hence, as proposed by Glasserman
and Liu (see [1, 2]), we use saddlepoint approximations.

1 Preliminaries

A real Lévy process X is characterized by its generating triplet (γ, σ2, ν). Where (γ, σ) ∈ R×R
+, and ν

is a Radon measure satisfying
∫

R

(
1 ∧ x2

)
ν(dx) < ∞.

By Lévy-Itô decomposition X can be written in this form

Xt = γt + σBt + X l
t + lim

ǫ↓0
X̃ǫ

t , (1.1)

where

X l
t =

∫

|x|>1,s∈[0,t]

xJX(dx × ds) ≡

|∆Xs|≥1∑

0≤s≤t

∆Xs

X̃ǫ
t =

∫

ǫ≤|x|≤1,s∈[0,t]

x(JX(dx × ds) − ν(dx)dt)

≡

∫

ǫ≤|x|≤1,s∈[0,t]

xJ̃X(dx × ds)

≡

ǫ≤|∆Xs|<1∑

0≤s≤t

∆Xs − t

∫

ǫ≤|x|≤1

xν(dx),

Where J is a Poisson measure on R× [0, ∞) with rate ν(dx)dt and B is a standard Brownian motion. In
Lévy-Khinchine representation X, we characterize X by its characteristic function. That means

EeiuXt = etϕ(u) ∀u ∈ R,

where ϕ is given by

ϕ(u) = iγu −
σ2u2

2
+

∫

R

(eiux − 1 − iux1|x|≤1)ν(dx). (1.2)
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2 Likelihood ratio method

In this section we will evaluate the delta of an option using the likelihood ration method. For details
about this method and the evaluation of greeks see [1]. Let (St)t≥0] be the price of a security, the process
S behaves as the exponential of a Lévy process

St = S0eXt , ∀t ≥ 0.

We are interested in options with discounted payoff of the form

V (S) = V (St1
, . . . , Stm

) ,

where 0 = t0 < t1 < t2 < · · · < tm. We let ∆i = ti − ti−1 for i ∈ {1, . . . , m}. Thus S is a function
of X = (X1, . . . , Xm), where Xi = Xti

− Xti−1
. Note that the r.v. (Xi)1≤i≤m are independent and for

any i ∈ {1, . . . , m} Xi has the same distribution as X∆i
. When estimating E (V (S)), we first simulate

(X1, . . . , Xm) and map these to S to evaluate V (S). We suppose that for any t > 0, Xt has a probability
density function denoted by ft. Then the joint density of X = (X1, . . . , Xm) is

f(x) = f∆1
(x1) . . . f∆m

(xm) ≡ f1 (x1) . . . fm (xm) ,

and might write the expected payoff as

E (V (S)) =

∫
V (s)f(x)dx, (2.3)

where s = (s1, . . . , sm) and x = (x1, . . . , xm). Recall that for i ∈ {1, . . . , m}

Sti
= S0eXti ≡ Sti−1

eXi .

So

E (V (S)) =

∫
V (S0ex1 , s2, . . . , sm) f1(x1) . . . fm(xm)dx1 . . . dxm

=

∫
V (ex1 , s2, . . . , sm) f1 (x1 − log (S0)) f2(x2) . . . fm(xm)dx1 . . . dxm.

Thus

∂

∂S0
E (V (S)) = −

1

S0

∫
V (ex1 , s2, . . . , sm) f ′

1 (x1 − log (S0)) f2(x2) . . . fm(xm)dx1 . . . dxm

= −
1

S0

∫
V (s1, . . . , sm) f ′

1 (x1) f2(x2) . . . fm(xm)dx1 . . . dxm

= −
1

S0

∫
V (s)f(x)

f ′
1 (x1)

f1(x1)
dx

= E (V (S) Sf (X)) ,

where Sf called the score function, is given by

Sf (x) = −
f ′

1 (x1)

S0f1(x1)
.

3 Saddlepoint approximations

We will use saddlepoint approximations to approximate the probability density functions and derivatives
of their logarithm (to approximate the score function defined in the previous section). Suppose that a
random variable X has a probability density function f and a cumulant generating function

K(s) = EesX .
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The function is assumed to be finite of the neighborhood of the origin. By [3] (p.27)

f(x) =
1√

2πK ′′(ŝ)
eK(ŝ)−ŝx

(
1 +

λ4(ŝ)

8
+

1

8
λ4(ŝ) −

5

24
(λ3(ŝ))

2
+ . . .

)
,

where ŝ (called the saddlepoint approximation) satisfies K ′(ŝ) = x, and

λn(s) =
K(n)(s)

(K ′′(s))
n

2
.

So f(x) can be approximated by

1√
2πK ′′(ŝ)

eK(ŝ)−ŝx

(
1 +

λ4(ŝ)

8
+

1

8
λ4(ŝ) −

5

24
(λ3(ŝ))

2

)
, (3.4)

or (less precise) by
1√

2πK ′′(ŝ)
eK(ŝ)−ŝx. (3.5)

If X has a Gaussian distribution, (3.5) is exactly the probability density function of X at x.
To approximate the score function, we have to take the logarithm of (3.4) and differentiate. To do so,

we must evalute ∂ŝ
∂x

. But we have K ′(ŝ) = x. Thus

∂ŝ

∂x
K ′′(ŝ) = 1.

Therefore
∂ŝ

∂x
=

1

K ′′(ŝ)
. (3.6)

But we have

log (f(x)) = log

(
1√

2πK ′′(ŝ)
eK(ŝ)−ŝx

)
+ log

(
1 +

λ4(ŝ)

8
+

1

8
λ4(ŝ) −

5

24
(λ3(ŝ))

2

)

≡ g1(x) + g2(x),

where g1 (resp. g2) is the first (resp. the second) term at right of the penultimate equality. So

f ′(x)

f(x)
= g′

1(x) + g′
2(x), (3.7)

where, using (3.6), we have

g′
1(x) = −

(
K(3)(ŝ)

2 (K ′′(ŝ))
2 + ŝ

)

g′
2(x) =

1
8

(
K(5)(ŝ)K ′′(ŝ) − 2K(3)(ŝ)K(4)(ŝ)

)
− 5

12

(
K(4)(ŝ) −

3(K(3)(ŝ))
2

2K′′(ŝ)

)
K(3)(ŝ)

g2(x) (K ′′(ŝ))
4 .

4 Jump-diffusion case

If ν(R) < ∞, X is called a finite activity Lévy process. If in addition σ > 0, the process X is called a
jump-diffusion process, and can be written in this form

Xt = γ0t + σBt +

Nt∑

i=1

Yi, (4.8)
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where N is a Poisson process with rate λ = ν(R), (Yi)i≥1 are i.i.d. random variables with common

distribution ν(dx)
ν(R) and

γ0 = γ −

∫

|x|≤1

xν(dx). (4.9)

If the (∆i)i 1 ≤ i ≤ m (defined in Section 2) are equal to T
m
, we have for any i ∈ {1, . . . , m} (see Section 2)

X1 = γ0
T

m
+ σB T

m

+

N T

m∑

i=1

Yi.

The constant T is the maturity of the option. We can, thus, approximate f1, the probability density
function of X1, by the probability density function of γ0

T
m

+σB T

m

. This gives the following approximation

of the score function.

Sf (x) =
x − γ0

T
m

σ2 T
m

S0

. (4.10)

Though the error generated by such approximation should be studied, numerically we obtain good results
quickly.
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