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Abstract

We develop an algorithm to price American options on assets that follow the stochastic

volatility model defined by Heston. We use an approach which is based on a modification

of an explicitly defined stock price tree where the number of nodes grows quadratically in

the number of time steps. We show in a number of numerical tests that we get accurate

results in a fast manner. Features which are important for the practical use of option pricing

algorithms, such as the incorporation of cash dividends and a term structure of interest rates,

can easily be incorporated.

The version implemented in PREMIA is an improved version of the algorithm

presented here. Note that the number of timesteps and number of grid points for

stock and volatility can be freely specified in the PREMIA implementation but that

the theorem in the paper states explicit conditions that need to be satisfied to obtain

convergence when increasing these steps.

Premia 18

1 Introduction

The most popular model for equity option pricing under stochastic volatility seems to be the model
defined by Heston [9]:

dSt = µStdt +
√

VtSt dW 1
t

dVt = κ(θ − Vt)dt + ω
√

Vt dW 2
t

In this model for the stock price process S and squared volatility process V we denote by W 1 and
W 2 standard Brownian Motion processes that may have nonzero correlation, and µ, κ, θ and ω are
fixed and known strictly positive parameters.

The popularity of this model can be explained to a large extent by the possibility to derive
option price formulas for European options in closed form using Fourier transforms [3]. This closed
form actually requires the numerical approximation of a certain integral, and some care has to be
taken when dealing with the complex logarithm in this integral (see the excellent recent papers
by Lord, Kahl and Jäckel [16, 12] and Albracher et al [1] on this issue). But since this method
is still a lot faster than methods in which the corresponding partial differential equation is solved
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numerically, calibration of the Heston model to European options is a lot easier than calibration
of other stochastic volatility models which do not admit closed form pricing functions.

For American options, or asset dynamics which involve the payment of cash dividends at fixed
dividend dates instead of continuous dividend payments, such closed form pricing functions do not
exist. Methods to determine the prices of such options in the Heston model therefore typically
focus on solving the Heston partial differential equation under early exercise constraints.

Clarke and Parrott [4] formulate the American put pricing problem as a linear complementarity
problem and use an implicit finite difference scheme combined with a multigrid procedure based
on earlier work by Brandt and Cryer [2] to find price approximations. Their method was further
improved by Oosterlee [18] who used Fourier analysis methods to optimize the smoothing procedure
in the multigrid procedure. Forsyth, Vetzal and Zvan have used a penalty method to deal with
the early exercise constraint, and showed that in the limit this is in fact equivalent to a linear
complementarity formulation [21]. Ikonen and Toivanen [11] used operator splitting methods to
price American options in the Heston model. They find that the error induced by the splitting does
not reduce the error of accuracy when compared to Crank-Nicholson methods without splitting.

In this paper we will develop an alternative method which is based on building a discrete
time process that approximates the dynamics of the Heston model. Not only will we show that
American options and options including cash dividends can be priced very fast on such trees,
but we will also argue that the structure is very transparent, and therefore particularly easier to
implement.

Approximating trees for the Heston model have been considered before, for example in the
paper by Leisen [15]. In that paper a multinomial tree is constructed with 4 successor nodes per
timestep for the asset price process, and 2 succesor nodes for the volatility process. The goal
behind the construction of this tree is weak convergence to the correct joint distribution of asset
price and volatility when the number of timesteps grows to infinity. However, Florescu and Viens
[6] mention that since a transformation to eliminate the volatility is used, weak convergence cannot
be proven along the lines suggested in the paper. They therefore propose a different algorithm [7],
which combines a tree with Monte Carlo simulations based on a finite number of particles between
time steps, but this is computationaly expensive.

Hilliard and Schwartz [10] use a transformation of the S and V variables to end up with stochas-
tic differential equations for the transformed processes which lead to recombining discretizations
in a two-dimensional tree. The transformation itself i based on the one proposed by Nelson and
Ramaswamy [17]. However, their method has some numerical problems since negative probabil-
ities may arise in the discretized model if certain bounds on the correlation coefficient are not
satisfied. Moreover, since a lot of computational time is used for calculations in parts of the state
space which have a low probability, the method is not always very efficient.

Almost all tree methods proposed in the literature use a grid in which both the distance between
(transformed) asset price grid points and (transformed) volatility grid points are of the order

√
∆t,

where ∆t denotes the discrete time step. To make sure that the stochastic process defined on the
tree converges (weakly) to the correct continuous time process, second order moment matching
conditions are used and this generates equations that need to be satisfies by the single time step
transition probabilities under the riskneutral measure. In the detailed implementation described
by Leisen [15] this leads to a tree with 8 successor nodes per node on a fixed grid.

An exception is the paper by Guan and Xiaoqiang [8], which is based on a scheme introduced in
earlier work by Finucane and Thomas [5]. In the Guan and Xiaoqiang paper, a tree is constructed
in which the problem that nodes do not recombine is solved by an interpolation/extrapolation
scheme. A grid is define, and whenever option prices are needed that or not on the grid, inter-
polation or extrapolation based on neighbouring points is applied. Negative option prices may
occur in the tree, but these are set to zero. The method is shown to work well for short maturity
options, where the extrapolation errors are not yet too large.

In this paper, we propose an extension to this method in which we use different interpolation
schemes in order to exploit the regularity of the option payoff function. We define a flexible
grid for the logarithm of the stock price Zt = ln St and the squared volatility process Vt. We
take a meshsize which is of order o(∆t) at every timestep. The discrete time stochastic process
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that we define takes its values on this grid, and has 16 or 64 successor nodes in every point. This
obviously means that we require quite some computation time per timestep. But the extra degrees
of freedom that we create by our setup allow us to exploit the fact that the American Option price
function is once continuously differentiable in both S and V . This smoothness is used to improve
the speed of convergence, which means that we require more computations per timestep but far
less timesteps than in alternative methods. This means that we retain the flexibility of the Guan
and Xiaoqiang method when introducing for example a term structure of interest rates and cash
dividends, but at the same time we can get quicker convergence.

2 The Algorithm

The Heston model for squared volatility process V and log stock price process Z is

dVt = κ(θ − Vt)dt + ω
√

VtdW 1
t

dZt = (r − 1
2 Vt)dt +

√

VtdW 2
t

for given (V0, Z0) = (σ2, ln S0), where {(W 1
t , W 2

t ), t ∈ [0, T ]} are correlated standard Brownian
Motion processes with correlation coefficient ρ under the riskneutral measure Q, and κ, ω, θ and
r are strictly positive given constants. The value of the European option with maturity T and
payoff function Φ : R+ × R → R equals (see for example [14])

Ht(Vt, Zt) = e−r(T −t)EQ[Φ(eZT ,
√

VT ) | Ft]

with (Ft)t∈[0,T ] the filtration generated by the process {(Vt, Zt), t ∈ [0, T ]}. The righthand side
can be shown to be indeed a function of t, Vt and Zt only, because of the Markov property of
(Vt, Zt).

We now define the following discrete time stochastic processes (k = 0..n − 1)

V n
k+1 = V n

k + κ(θ − V n
k )∆tn + Y n,1

k+1ω
√

V n
k ∆tn

Zn
k+1 = Zn

k + (r − 1
2 V n

k )∆tn + Y n,2
k+1

√

V n
k ∆tn

with (V n
0 , Zn

0 ) = (V0, Z0) and where the variables (Y n,1
k , Y n,2

k ) are i.i.d. distributed in k, with

Qn(Y n,1
k = +1, Y n,2

k = +1) = 1
4 (1 + ρ)

Qn(Y n,1
k = −1, Y n,2

k = +1) = 1
4 (1 − ρ)

Qn(Y n,1
k = +1, Y n,2

k = −1) = 1
4 (1 − ρ)

Qn(Y n,1
k = −1, Y n,2

k = −1) = 1
4 (1 + ρ).

under a new pricing measure Qn. Note that this essentially means that we define a simple Euler
simulation scheme for the correlated Brownian Motion processes that drive the riskneutral dy-
namics. This seems the most natural discrete time stochastic process to approximate the Heston
model in continuous time, but it is of course non-recombining. The number of possible values for
the process (V n, Zn) grows exponentially in the number of timesteps and it is therefore not very
well suited to do actual computations.

Let
zn,max

k = max{z : Qn(Zn
k = z) > 0}

and define zn,min
k , vn,max

k and vn,min
k analogously. We take

∆zn
k = (zn,max

k − zn,min
k )/mz,

∆vn
k = (vn,max

k − vn,min
k )/mv
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for certain mv, mz ∈ N+ which describe how fine the mesh is that we will take, and define the set
of gridpoints in R2:

Ŝn
k = {(vn,min

k + i∆vn
k , zn,min

k + j∆zn
k ) | i = 0...mv, j = 0...mz}.

For any set S = Sx × Sy ⊂ R2 of gridpoints and functions f : S → R we denote by LS [f ] :
C(S) → R the piecewise bilinear interpolating function corresponding to this function on the grid,
where C(S) denotes the convex hull of S. This means that

LS [f ](x, y) = cS
00(x, y) f(xS

0 (x), yS
0 (y)) + cS

10(x, y) f(xS
1 (x), yS

0 (y)) +

cS
01(x, y) f(xS

0 (x), yS
1 (y)) + cS

11(x, y) f(xS
1 (x), yS

1 (y))

where the functions xS
0 : C(S) → R and yS

0 : C(S) → R are defined in such a way that

(xS
0 (x), yS

0 (y)) ∈ S, (xS
1 (x), yS

1 (y)) ∈ S, xS
0 (x) ≤ x ≤ xS

1 (x), yS
0 (y) ≤ y ≤ yS

1 (y),

i.e., x and y are always in between the adjacent grid points xS
0 (x), xS

1 (x) and yS
0 (y), yS

1 (y) respec-
tively. The functions cS

ij are defined by

cS
00(x, y) = (1 − x̃)(1 − ỹ), x̃ =

x−xS

0 (x)

xS

1
(x)−xS

0
(x)

, ỹ =
y−yS

0 (y)

yS

1
(y)−yS

0
(y)

cS
10(x, y) = x̃(1 − ỹ)

cS
01(x, y) = (1 − x̃)ỹ

cS
11(x, y) = x̃ỹ.

We define for u ∈ {0, 1}

hk,n
u (x) = x − x

Ŝn
k

u (x),

gk,n
u (y) = y − y

Ŝn
k

u (y).

Obviously, |hk,n
u (x)| < ∆vn

k and |gk,n
u (x)| < ∆zn

k , and we will need these expressions in the proof
of Theorem 2 in the next section.

We take a new process (Ṽ n, Z̃n) on the space Ŝn
k , as follows. First we define

vn(y, v, z) = v + κ(θ − v)∆tn + yω
√

v∆tn

zn(y, v, z) = z + (r − 1
2 v)∆tn + y

√
v∆tn

where ∆tn = T/n. Let

(Ṽ n
k+1, Z̃n

k+1) =

(

x
Ŝn

k+1

Y n,3

k+1

(vn(Y n,1
k+1, Ṽ n

k , Z̃n
k )), y

Ŝn
k+1

Y n,4

k+1

(zn(Y n,2
k+1, Ṽ n

k , Z̃n
k ))

)

where under a new measure Q̃n, the (Y n,1, Y n,2) have the same distribution as under Qn

Q̃n(Y n,1
k+1 = i, Y n,2

k+1 = j) = 1
4 (1 + ijρ) i, j ∈ {−1, 1} (2.1)

and are independent for different values of k, while the (Y n,3, Y n,4) have the following conditional
distribution:

Q̃n(Y n,3
k+1 = i, Y n,4

k+1 = j | (Y n,1
k+1, Y n,2

k+1, Ṽ n
k , Z̃n

k ))

= c
Ŝn

k+1

ij (vn(Y n,1
k+1, Ṽ n

k , Z̃n
k ), zn(Y n,2

k+1, Ṽ n
k , Z̃n

k )) i, j ∈ {0, 1}

and are conditionally independent for different values of k. Note that this means that in every
time step there are four times four is 16 new possible values for (Ṽ n

k+1, Z̃n
k+1) based on the current

value of (Ṽ n
k , Z̃n

k ), since every one of the four next time step values is split over four new points.
Having thus defined a discrete-time homogeneuous Markov process, we will now investigate

the weak convergence of this stochastic process in the next section.
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3 Weak Convergence

From now on, we take T = 1 without loss of generality. We will use the following theorem by
Stroock and Varadhan [20] (see their section 11.2).

Theorem 1. Let Qn be a probability measure and Πn a transition function on Rd such that Qn-a.s.
Xn

0 = x0 and for all k > 0

Xn
t = (k + 1 − tn)Xk/n + (tn − k)X(k+1)/n, k

n ≤ t ≤ k+1
n .

Define for all k > 0 and all Borel sets A in Rd

Πn(Xk/n, A) = Qn(X(k+1)/n ∈ A | Fk/n),

where Fk/n = σ({Xt, 0 ≤ t ≤ k/n}) and assume that for all R > 0, ǫ > 0 and certain continuous

functions a : Rd → Sd and b : Rd → Rd:

lim
n→∞

sup
‖x‖≤R

‖an(x) − a(x)‖ = 0, aij
n (x) = n

∫

‖y−x‖≤1

(yi − xi)(yj − xj)Πn(x, dy)

lim
n→∞

sup
‖x‖≤R

‖bn(x) − b(x)‖ = 0, bi
n(x) = n

∫

‖y−x‖≤1

(yi − xi)Πn(x, dy)

lim
n→∞

sup
‖x‖≤R

∆ǫ
n(x) = 0, ∆ǫ

n(x) = n Πn(x, {y ∈ Rd : ‖y − x‖ > ǫ}).

If the martingale problem for a and b has exactly one solution Qx for every initial value x0 = x
then Qn converges weakly to Qx0

, uniformly on compact subsets of Rd.

We take V̂ n
k/n = Ṽ n

k and Ẑn
k/n = Z̃n

k and define

V̂ n
t = (k + 1 − tn)V̂ n

k/n + (tn − k)V̂ n
(k+1)/n, k

n ≤ t ≤ k+1
n

Ẑn
t = (k + 1 − tn)Ẑn

k/n + (tn − k)Ẑn
(k+1)/n.

Our main result is the following.

Theorem 2. Assume that

lim
n→∞

∆tn = 0, lim
n→∞

max
k=1..n−1

∆vn
k

∆tn
= 0, lim

n→∞
max

k=1..n−1

∆zn
k

∆tn
= 0.

Then the processes (V̂ n, Ẑn) converge weakly to the process (V, Z), i.e.

((V̂ n, Ẑn) | Q̃n)
W→ ((V, Z) | Q)

where W stands for weak convergence in the space of continuous processes on [0, 1].

Proof.

Define Xn
k/n = (Ṽ n

k , Z̃n
k ) and

∆Xn
k = Xn

(k+1)/n − Xn
k/n.

Take x = (v, z). Since the drift and diffusion functions of the Heston-model

b(x) =

[

κ(θ − v)
r − 1

2 v2

]

, a(x) = v

[

ω2 ρω
ρω 1

]

.
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define a unique solution for the associated martingale problem (see for example [13]), we only need
to check the conditions stated in the previous theorem. This boils down to proving that for all
R > 0 and all ǫ > 0 we have

0 = lim
n→∞

sup
‖x‖≤R

∥

∥

∥
b(x) − nEQ̃n

[

(∆Xn
k ) 1{‖∆Xn

k
‖≤1}

∣

∣

∣
Xn

k/n = x
] ∥

∥

∥

0 = lim
n→∞

sup
‖x‖≤R

∥

∥

∥
a(x) − nEQ̃n

[

(∆Xn
k ) (∆Xn

k )
T

1{‖∆Xn
k

‖≤1}

∣

∣

∣
Xn

k/n = x
] ∥

∥

∥

0 = lim
n→∞

sup
‖x‖≤R

n Q̃n( ‖∆Xn
k ‖ > ǫ | Xn

k/n = x)

Let Xn
k/n = x = (v, z). Then

∆Xn
k =

[

Ṽ n
k+1 − Ṽ n

k

Z̃n
k+1 − Z̃n

k

]

=







x
Ŝn

k+1

Y n,3

k+1

(vn(Y n,1
k+1, v, z)) − v

y
Ŝn

k+1

Y n,4

k+1

(zn(Y n,2
k+1, v, z)) − z






=





vn(v, z, Y n,1
k+1) − v + hk+1,n

Y n,3

k+1

(v)

zn(v, z, Y n,2
k+1) − z + gk+1,n

Y n,4

k+1

(z)





so

∆Xn
k =

[

κ(θ − v)∆tn + Y n,1
k+1 ω

√
v∆tn

(r − 1
2 v)∆tn + Y n,2

k+1

√
v∆tn

]

+





hk+1,n

Y n,3

k+1

(v)

gk+1,n

Y n,4

k+1

(z)



 (3.2)

with

Q̃n(Y n,1
k+1 = i, Y n,2

k+1 = j) = 1
4 (1 + ijρ) i, j ∈ {−1, 1}

Since ∆tn = 1/n we see from (3.2) that for n > n1 with n1 large enough we have ‖∆Xn
k ‖ ≤ 1

since |Y n,u
k+1| = 1 and at the same time

|hk+1,n
u (v)| < ∆vn

k+1, |gk+1,n
u (z)| < ∆zn

k+1.

which implies that hk+1,n
u = o(∆tn) and gk+1,n

u = o(∆tn) for u ∈ {0, 1}. But this means that for
n > n1we find

b(x) − nEQ̃n
[

(∆Xn
k ) 1{‖∆Xn

k
‖≤1}

∣

∣

∣
Xn

k/n = x
]

= EQ̃n





hk+1,n

Y n,3

k+1

(v)

gk+1,n

Y n,4

k+1

(z)





and the norm of this clearly converges to zero. A similar argument shows that the second condition
is satisfied as well, because

a(x) − nEQ̃n
[

(∆Xn
k ) (∆Xn

k )
T

1{‖∆Xn
k

‖≤1}

∣

∣

∣ Xn
k/n = x

]

=

[

ãn
11 ãn

12

ãn
12 ãn

22

]

for n > n1, with

ãn
11 = vω2 − EQ̃n 1

∆tn

(

κ(θ − v)∆tn + Y n,1
k+1 ω

√
v∆tn + o(∆tn)

)2

ãn
12 = vρω − EQ̃n 1

∆tn

(

(r − 1
2 v)∆tn + Y n,2

k+1

√
v∆tn + o(∆tn)

) (

κ(θ − v)∆tn + Y n,1
k+1 ω

√
v∆tn + o(∆tn)

)

ãn
22 = v − EQ̃n 1

∆tn

(

(r − 1
2 v)∆tn + Y n,2

k+1

√
v∆tn + o(∆tn)

)2

which shows convergence in norm. The third condition is trivial since when ‖x‖ < R

Q̃n(‖∆Xn
k ‖ > ǫ | Xn

k/n = x)

= Q̃n





∥

∥

∥

∥

∥

∥

[

κ(θ − v)∆tn + Y n,1
k+1 ω

√
v∆tn

(r − 1
2 v)∆tn + Y n,2

k+1

√
v∆tn

]

+





hk+1,n

Y n,3

k+1

(v)

gk+1,n

Y n,4

k+1

(z)





∥

∥

∥

∥

∥

∥

> ǫ
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and this is actually equal to zero if we take n large enough, since the vector of which the norm
is taken can be made arbitrarily small since |Y n,u

k+1| = 1 for u ∈ {1, 2} while hk+1,n
u = o(∆tn) and

gk+1,n
u = o(∆tn) for u ∈ {0, 1}. �

The proof given above relies on the fact that we use a bilinear interpolation for option price
values which fall outside grid points, as can clearly be seen from the functions cS

ij that we defined
in Section 2. Obviously, we could use other approximations as well. For example, interpolation
based on bicubic splines instead of bilinear ones would use

LS [f ](x, y) =

2
∑

i=−1

2
∑

j=−1

cS
ij(x, y) f(xS

i (x), yS
j (y))

where the functions xS
0 and yS

0 are defined as before, xS
−1(x) = xS

0 (x) − ∆x, xS
2 (x) = xS

1 (x) + ∆x,
and similar definitions hold for yS

−1 and yS
2 , while

cS
00(x, y) = 1

4 (x̃ − 1)(ỹ − 1)(3x̃2 − 2x̃ − 2)(3ỹ2 − 2ỹ − 2)

cS
−1,−1(x, y) = 1

4 x̃(x̃ − 1)2ỹ(ỹ − 1)2

cS
0,−1(x, y) = − 1

4 x̃(x̃ − 1)2ỹ(3ỹ2 − 2ỹ − 2)

while the rest follows from symmetries: ci,j → cj,i means (x̃, ỹ) → (ỹ, x̃), ci,j → c1−i,j means
(x̃, ỹ) → (1 − x̃, ỹ) and finally ci,j → ci,1−j means (x̃, ỹ) → (x̃, 1 − ỹ).

For this bicubic interpolation we cannot give a similar convergence proof as for the bilinear
case. In the bilinear case we use the fact that the functions cij all map into [0, 1] while the sum
over all i and j of cij(x, y) equals 1 for all x and y. This allows us to use the bilinear interpolation
to redistribute probability mass over neighbouring points, to create a stochastic process and use
weak convergence results for such processes. However, when we use bicubic interpolation some of
the weights cij(x, y) can be negative so we cannot use the probabilistic result we used earlier.

Numerical error analysis helps to illustrate what may go wrong. If some weights cij(x, y) are
negative, numerical errors that we introduce in our scheme may increase over time. Indeed, we
would like to have that EQ̃nLS [∆f ] ≤ supS ∆f for an error function ∆f on the grid. This is
satisfied for bilinear interpolation, but not for bicubic interpolation. It would therefore be better
to use a local scheme which gives positive values for all positive functions and is C1 at the same
time. Such grids exist [19] but are very computationally intensive. Therefore we prefer to use the
bicubic interpolation. Notice that if the errors ∆f do not change signs in neighbouring points all
the time, the errors can be expected to decrease on average and we will see in numerical results
that this indeed what is observed in practice.

4 Numerical Results

In Tables 1 to 8 we report the results of some experiments that we performed with our new
numerical method. The test case we took is the same as in earlier papers that deal with American
options in the Heston model [2, 4, 11, 18, 21]. The relevant parameter values are

κ = 5, θ = 0.16, ω = 0.9, ρ = 0.1, r = 0.10.

The strike was chosen to be K = 10.0 and different values of the starting volatility V0 and initial
stock price S0 were considered.

Tables 1 and 2 give the option prices, and relative errors for the method involving 16 successors
for every state, while Tables 3 and 4 provide the same for the model with 64 successors per state.
To get error estimates we used exact Heston option prices for the European case, and the results
by Zven, Forsyth and Vetzal in the American case; the results reported by other authors are close
to these. Results are provided for two initial volatility values,

√
V0 = 25% and

√
V0 = 50%, and

for initial stock prices S0 ∈ {8, 9, 10, 11, 12}, i.e. the values that were used earlier in the papers
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mentioned above. Per option that we consider, we present the results for our algorithm with four
different number of timesteps and grid sizes to show the speed of convergence. The results by
other authors are indicated by ZFV (Zven, Forsyth, Vetzal), IT-PSOR (Ikonen and Toivanen),
OO (Oosterlee) and CP (Clarke and Parott). Errors are based on the Heston closed-form formula
for European options, and on the results by Zven, Forsyth, and Vetzal for American options; these
values are close to the other values reported.

We see from these tables that the bicubic method indeed peforms considerably better than the
bilinear method. Indeed, for the bicubic method we find option prices with errors smaller than one
cent (or maximally 1%) even for the smallest number of timesteps. The errors converge to zero in
all cases but it is clear that the bicubic method converges a lot faster, while the computational time
is of the same order of magnitude as for the bilinear calculations. The CPU times for the smallest
grid are approximately 0.19 seconds for the method with 16 successors and 0.35 seconds for the
method with 64 successors, while on the largest grids they are 17 and 27 seconds respectivelya.
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5 Conclusions

In this paper we have shown that tree-based methods can be used to find the price of American
Options in the Heston model. We believe that the speed and flexibility of this method may
make it a suitable alternative for the PDE-based methods that have been mentioned in this
paper. Moreover, the basic idea behind our method, to approximate a diffusion process on a grid
which has a finer mesh for ∆S and ∆V for the stock and volatility than the usual square root
of the time spacing ∆t, may be applied to other methods as well. As indicated in the paper,
the precise properties of the interpolation schemes, such as whether strictly positive functions are
mapped to strictly positive interpolating functions, will be essential for the further analysis of such
schemes. Interpolation chemes exist which preserve positivity, monotonicity, differentiability and
local convexity in the space variables and once these become computationally feasible. possibly
even better methods to approximate American options in the Heston model may become available.
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S0

8 9 10 11 12
steps s steps v steps t

125 6 25 1.8427 1.0572 0.5153 0.2267 0.0975
250 12 35 1.8417 1.0543 0.5103 0.2206 0.0920
500 24 50 1.8408 1.0527 0.5077 0.2169 0.0884

1000 48 71 1.8402 1.0515 0.5060 0.2142 0.0857

(Exact) 1.8389 1.0483 0.5015 0.2082 0.0804

(Error) 0.2% 0.8% 2.8% 8.9% 21.3%
0.2% 0.6% 1.8% 5.9% 14.3%
0.1% 0.4% 1.2% 4.2% 9.9%
0.1% 0.3% 0.9% 2.9% 6.6%

Table 1: European Option, 16 Successors,
√

V0 = 0.25

S0

8 9 10 11 12
steps s steps v steps t

125 6 25 1.9933 1.1189 0.5366 0.2333 0.0995
250 12 35 1.9948 1.1149 0.5307 0.2268 0.0938
500 24 50 1.9960 1.1128 0.5276 0.2230 0.0902

1000 48 71 1.9970 1.1112 0.5254 0.2201 0.0875

2.0000 1.1076 0.5202 0.2138 0.0821 ZFV
2.0000 1.1074 0.5190 0.2130 0.0818 IT-PSOR
2.0000 1.1070 0.5170 0.2120 0.0815 Oo
2.0000 1.1080 0.5316 0.2261 0.0907 CP

(Error) -0.3% 1.0% 3.2% 9.1% 21.2% (ZFV)
-0.3% 0.7% 2.0% 6.1% 14.3%
-0.2% 0.5% 1.4% 4.3% 9.9%
-0.1% 0.3% 1.0% 3.0% 6.6%

Table 2: American Option, 16 Successors, ,
√

V0 = 0.25

S0

8 9 10 11 12
steps s steps v steps t

125 6 25 1.8378 1.0474 0.5001 0.2080 0.0802
250 12 35 1.8378 1.0479 0.5012 0.2079 0.0797
500 24 50 1.8380 1.0481 0.5015 0.2079 0.0798

1000 48 71 1.8382 1.0481 0.5016 0.2080 0.0799

(Exact) 1.8389 1.0483 0.5015 0.2082 0.0804

(Error) -0.1% -0.1% -0.3% -0.1% -0.3%
-0.1% 0.0% 0.0% -0.1% -0.9%
0.0% 0.0% 0.0% -0.1% -0.8%
0.0% 0.0% 0.0% -0.1% -0.6%

Table 3: European Option, 64 Successors,
√

V0 = 0.25

S0

8 9 10 11 12
steps s steps v steps t

125 6 25 1.9922 1.1073 0.5192 0.2133 0.0815
250 12 35 1.9942 1.1075 0.5199 0.2133 0.0812
500 24 50 1.9957 1.1076 0.5201 0.2133 0.0813

1000 48 71 1.9968 1.1076 0.5202 0.2134 0.0815

2.0000 1.1076 0.5202 0.2138 0.0821 ZFV
2.0000 1.1074 0.5190 0.2130 0.0818 IT-PSOR
2.0000 1.1070 0.5170 0.2120 0.0815 Oo
2.0000 1.1080 0.5316 0.2261 0.0907 CP

(Error) -0.4% 0.0% -0.2% -0.2% -0.7% (ZFV)
-0.3% 0.0% -0.1% -0.2% -1.1%
-0.2% 0.0% 0.0% -0.2% -1.0%
-0.2% 0.0% 0.0% -0.2% -0.7%

Table 4: American Option, 64 Successors,
√

V0 = 0.25
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S0

8 9 10 11 12
steps s steps v steps t

125 6 25 1.9837 1.2933 0.7887 0.4582 0.2599
250 12 35 1.9816 1.2886 0.7821 0.4506 0.2520
500 24 50 1.9803 1.2864 0.7786 0.4462 0.2472

1000 48 71 1.9794 1.2846 0.7760 0.4430 0.2438

(Exact) 1.9773 1.2800 0.7697 0.4361 0.2373

(Error) 0.3% 1.0% 2.5% 5.1% 9.5%
0.2% 0.7% 1.6% 3.3% 6.2%
0.2% 0.5% 1.2% 2.3% 4.2%
0.1% 0.4% 0.8% 1.6% 2.8%

Table 5: European Option, 16 Successors,
√

V0 = 0.50

S0

8 9 10 11 12
steps s steps v steps t

125 6 25 2.0873 1.3514 0.8190 0.4729 0.2669
250 12 35 2.0839 1.3450 0.8109 0.4644 0.2584
500 24 50 2.0820 1.3416 0.8064 0.4594 0.2533

1000 48 71 2.0809 1.3392 0.8033 0.4559 0.2498

(Exact) 2.0784 1.3337 0.7961 0.4483 0.2428 ZFV
2.0783 1.3335 0.7958 0.4481 0.2427 IT-PSOR
2.0790 1.3340 0.7960 0.4490 0.2430 OO
2.0733 1.3290 0.7992 0.4536 0.2502 CP

(Error) 0.4% 1.3% 2.9% 5.5% 9.9% (ZFV)
0.3% 0.8% 1.9% 3.6% 6.4%
0.2% 0.6% 1.3% 2.5% 4.3%
0.1% 0.4% 0.9% 1.7% 2.9%

Table 6: American Option, 16 Successors,
√

V0 = 0.50

S0

8 9 10 11 12
steps s steps v steps t

125 6 25 1.9781 1.2832 0.7740 0.4396 0.2395
250 12 35 1.9777 1.2823 0.7730 0.4387 0.2386
500 24 50 1.9776 1.2816 0.7720 0.4379 0.2382

1000 48 71 1.9775 1.2811 0.7713 0.4374 0.2379

(Exact) 1.9773 1.2800 0.7697 0.4361 0.2373

(Error) 0.0% 0.2% 0.6% 0.8% 1.0%
0.0% 0.2% 0.4% 0.6% 0.6%
0.0% 0.1% 0.3% 0.4% 0.4%
0.0% 0.1% 0.2% 0.3% 0.3%

Table 7: European Option, 64 Successors,
√

V0 = 0.50

S0

8 9 10 11 12
steps s steps v steps t

125 6 25 2.0797 1.3377 0.8011 0.4522 0.2452
250 12 35 2.0793 1.3365 0.7996 0.4510 0.2441
500 24 50 2.0790 1.3357 0.7986 0.4502 0.2437

1000 48 71 2.0789 1.3351 0.7978 0.4497 0.2435

2.0784 1.3337 0.7961 0.4483 0.2428 ZFV
2.0783 1.3335 0.7958 0.4481 0.2427 IT-PSOR
2.0790 1.3340 0.7960 0.4490 0.2430 Oo
2.0733 1.3290 0.7992 0.4536 0.2502 CP

(Error) 0.1% 0.3% 0.6% 0.9% 1.0% (ZFV)
0.0% 0.2% 0.4% 0.6% 0.5%
0.0% 0.1% 0.3% 0.4% 0.4%
0.0% 0.1% 0.2% 0.3% 0.3%

Table 8: American Option, 64 Successors,
√

V0 = 0.50
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