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1 Input parameters

- First and second Monte Carlo samples N; and Ns.

- Generator type

- Spot Sy, the annual interest rate r, the dividend divid, € and epeyq.
- The CGMY parameters: C >0, G>0, M >0 and Y < 2.

- Maturity T

- Strike K

2 OQOutput parameters

- Price
- Length of the Price confidence interval

- Variance of the first and second Monte Carlo
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3 Description

3.1 CGMY model
The CGMY is a pure jump process with a Lévy density given by:
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where C > 0,G > 0,M > 0 and Y < 2. The condition Y < 2 is induced by the requirement that lévy
density integrate x2 in the neighborhood of 0.
The characterictic exponent is given by

YW = e + I(=Y)M'C {(1 - %)Y ~1+ ”ﬁ/} + I(-Y)G¥C {(1 + %“)Y —1- “LGY} .

We use the Statistical Romberg method to compute the prices of European call options in an exponential
Lévy model driven by a CGMY process. The stock price is given by:

St = S()€TT+LT .

where L is a Lévy process.



3.2 Importance sampling

The optimal 0 is given by:

0; = argmin B [(?(Lr) + (Vo(Lr).Wr)?) e b+ 750
OeR?

To obtain the optimal 6, the idea is to make use a constrained Robbins Monro algorithm which is decribed
as follows: Let (Ly;);>1 be an i.i.d copies of the stochastic process (Ly). Let B be a connected set in
RY with {0} € B. For 0y € B, we construct recursively the sequence of random variables (6$);cn in R¢
defined by

9@‘€+1 =g [Gf - ’Y¢+1H(9f, LET,@+1)] (1)
where IIp is the Euclidean projection onto the constraint set B and the gain sequence (7;);>1 is a
decreasing sequence of positive real numbers satistfying

i%:ooand i%'2<00 (2)
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The function H is given by

H(0,Ly) = (TVk(0) — L) (¥ (Lr) + (VY (L1).Wr)?) exp(—6.Lr + Tr(0)). (3)

3.3 Calculus of the Statistical Romberg price

By rebalancing the optimal 6, we compute the price of the considered option using the Statistical

Romberg method with importance sampling (SR + IS). Hence, we approximate our initial quantity of

interest E(Ly) (N7 = &741/_); and Ny = %5(2*“(5*2))
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where with k is the cummulant generating function of the marginal law at unit time of {L;;¢ > 0} under
the probability measure P, that is, k;(0) := InE [ee'Lf].
We compute the length of a 95% confidence interval and the CPU time of our method.

3.4 Complexity Analysis

The optimal average complexity of the Monte Carlo method is given by
E[Cymc] =E[N7] x N

where E [N5] = v ([e, +o0[) = O(e~Y)
Hence,
1

E[C]\/[C] « (C x 547Y

The optimal average complexity of the Statistical Romberg method is given by
E|[Csr] = E[NF | x N; + (EINF] + E[Ng ]) x Ny

where E {N;ﬁ} = v ([e?,4+00[) = O(Y)
Hence,
E[Csg] = C x E[Cpc]e¥ AP (1 +e(@ Y8 4 525_Y)

Since the only restriction on g is that 5 € (0,1), we will choose the optimal 5* minimizing the average
complexity of the Statistical Romberg algorithm. Numerically, we verify easily that for § = %, the

average complexity of the Statistical Romberg method will be minimal in comparison to the Monte
Carlo one.
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