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1. Introduction

Premia 18
The object of this document is to introduce a new weak approximation scheme
of stochastic differential equations which is proposed in [10]. We present the
algorithm and provide an example to illustrate the application of it.

Theorem 1.1 and Corollary 1.1 give a new implementation method of the new
higher order scheme of weak approximation. The point in the algorithm is that the
approximation operator can be considered to be composition of solutions of ODEs
when ω is given. The concrete ODEs are constructed by Theorem 1.2 and can be
approximated by the Runge-Kutta method for ODEs by Theorem 1.3.

We should note that another higher-order weak approximation method, the
N-V algorithm, is introduced in [16]. Although the N-V algorithm and the new
method are based on the same scheme [7] and [9] and have many common features,
algorithms themselves are completely different and the diversity is not trivial.

Let (Ω,F ,P) be a probability space. We define B0(t) as t and (B1(t), . . . ,Bd(t)) as
the d-dimensional standard Brownian Motion. C∞

b
(RN;RN) denotes the set of RN-

valued infinitely differentiable functions defined over RN whose derivatives are
all bounded. Our interest is in weak approximation, that is to say, approximation
of (Pt f )(x) = E[ f (X(1, x))] where f ∈ C∞

b
(RN;R) and X(t, x) is a solution to the

Stratonovich stochastic integral equation

(1.1) X(t, x) = x +

d
∑

i=0

∫ t

0

Vi(X(s, x)) ◦ dBi(s),

where Vi ∈ C∞
b

(RN;RN), i = 0, . . . , d. Vi ∈ C∞
b

(

R
N;RN

)

is regarded as a vector field

in the following way:

Vi f (x) =

N
∑

j=1

V
j

i
(x)
∂ f

∂x j
(x), for f ∈ C∞b (RN;R).

Let A = {v0, v1, . . . , vd}, d ≥ 1 be an alphabet and A∗ denote the set of all words
consisting of the elements of A. The empty word 1 is the identity of A∗. For
u = vi1 · · · vin ∈ A∗, ik ∈ {0, 1, . . . , d}, |u| and ‖u‖ are defined by |u| = n and ‖u‖ =
|u| + card ({k | ik = 0}), respectively, where card(S) denotes the cardinality of a set
S. A∗m and A∗≤m denote {w ∈ A∗| |w| = m} and {w ∈ A∗| |w| ≤ m}, respectively.
Let R〈A〉 be the R-coefficient free algebra with basis A∗ and R〈〈A〉〉 be the set of
all R-coefficient formal series with basis A∗. Then, R〈A〉 is a sub R-algebra of

1
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R〈〈A〉〉. We call an element of R〈A〉 a non-commutative polynomial. Let R〈A〉m =
{P ∈ R〈A〉 | (P,w) = 0, if ‖w‖ , m }. P ∈ R〈〈A〉〉 is written as

P =
∑

w∈A∗

(P,w) w or
∑

w∈A∗

aww,

where (P,w) = aw ∈ R denotes the coefficient of w. The algebra structure is defined
as usual, that is to say,















∑

w∈A∗

aww





























∑

w∈A∗

bww















=
∑

w=uv
w∈A∗

aubvw.

The Lie bracket is defined as [x, y] = xy − yx for x, y ∈ R〈〈A〉〉. For w = vi1 · · · vin ∈
A∗, r(w) denotes [vi1 , [vi2 , [. . . , [vin−1

, vin ] . . . ]]]. We define LR(A) as the set of Lie
polynomials in R〈A〉 and LR((A)) as the set of Lie series. For m ∈ Z≥0, let jm be a
map defined as follows:

jm















∑

w∈A∗

aww















=
∑

‖w‖≤m

aww.

For arbitrary P,Q ∈ R〈A〉, the inner product 〈P,Q〉 is defined as follows:

〈P,Q〉 =
∑

w∈A∗

(P,w)(Q,w).

For P ∈ R〈〈A〉〉 such that (P, 1) = 0, we can define exp(P) as 1 +
∑∞

k=1 Pk/k!. Also,
log(Q) can be defined as

∑∞
k=1(−1)k−1(Q − 1)k/k for Q ∈ R〈〈A〉〉 if (Q, 1) = 1. The

following relations hold:

log(exp(P)) = P and exp(log(Q)) = Q.

Let ‖P‖2 = (〈P,P〉)1/2, for P ∈ R〈A〉.
By the natural identification R〈〈A〉〉 ≈ R∞, we can induce the direct product

topology into R〈〈A〉〉. R〈〈A〉〉 becomes a Polish space by the topology. Also we
can consider its Borel σ-algebra B(R〈〈A〉〉), R〈〈A〉〉-valued random variables, their
expectations, and other notions as usual.

Let Φ be a homomorphism between R〈A〉 and the R-algebra which consists of
smooth differential operators over RN such that

Φ(1) = Id,

Φ(vi1 · · · vin ) = Vi1 · · ·Vin , i1, . . . , in ∈ {0, 1, . . . , d}.
(1.2)

Also, for s ∈ R>0,Ψs : R〈〈A〉〉 −→ R〈〈A〉〉 is defined as follows:

Ψs















∞
∑

m=0

Pm















=

∞
∑

m=0

sm/2Pm, where Pm ∈ R〈A〉m.

For a smooth vector field V, i. e. an element of C∞
b

(

R
N;RN

)

, exp (V) (x) denotes

the solution at time 1 of the ordinary differential equation

dzt

dt
= V (zt) , z0 = x.
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We also define ‖V‖Cn for V ∈ C∞
b

(RN;RN) as follows:

‖V‖ = sup
x
|V(x)|

∥

∥

∥V(n)
∥

∥

∥ = sup
x

{∣

∣

∣

∣

V(n)

(x)
(U1,U2, . . . ,Un)

∣

∣

∣

∣

; ‖Ui‖ = 1, i = 1, . . . ,n
}

‖V‖Cn =

n
∑

i=0

∥

∥

∥V(i)
∥

∥

∥ .

Here V(k) denotes the k-th order total differential of V.

Definition 1.1. A map g from C∞
b

(RN;RN) to the set of all maps fromRN toRN is called
an integration scheme of order m if there exists a positive constant Cm such that for all
W ∈ C∞

b
(RN;RN) and x ∈ RN,

(1.3)
∣

∣

∣g(W)(x) − exp (W)(x)
∣

∣

∣ ≤ Cm‖W‖m+1
Cm+1 .

Here Cm depends only on m and g. Let IS(m) be the set of all integration schemes of order
m.

Notation 1.1. For z1, z2 ∈ LR((A)), we define z2 ⊢⊣ z1 as log(exp(z2) exp(z1)). Then from
the definition, for z1, z2, z3 ∈ LR((A)),

(z1 ⊢⊣ z2) ⊢⊣ z3 = log
(

exp(z1) exp(z2) exp(z3)
)

= z1 ⊢⊣ (z2 ⊢⊣ z3) ,

and so we can write for z1, . . . , zn ∈ LR((A))

(1.4) z1 ⊢⊣ z2 ⊢⊣ · · · ⊢⊣ zn = log
(

exp(z1) · · · exp(zn)
)

.

The followings are the main results of our study.

Theorem 1.1. Suppose that for m ≥ 1 and n ≥ 2 there exist LR((A))-valued random
variables Z1, . . . ,Zn satisfying that

‖Zi‖ ≤ m for all i ∈ {1, . . . ,n},(1.5)

E
[∥

∥

∥ jmZi

∥

∥

∥

2

]

< ∞,(1.6)

E

















exp

















a

n
∑

j=1

∥

∥

∥Z j

∥

∥

∥

Cm+1

































< ∞ for any a > 0,(1.7)

where y denotes Φ(Ψs(y)) for an element y ∈ LR((A)). Then for arbitrary g1, . . . , gn ∈
IS(m), there exists a positive constant C such that

(1.8)
∥

∥

∥

∥

g1

(

Z1

)

◦ · · · ◦ gn

(

Zn

)

(x) − exp
(

jm (Zn ⊢⊣ · · · ⊢⊣Z1)
)

(x)
∥

∥

∥

∥

Lp
≤ Cs(m+1)/2.

Here for functions f and g, f ◦ g(x) denotes f
(

g(x)
)

as usual.

Let Si
j
’s be R-valued normally distributed random variables and c j’s and R j j′ be

constants in R satisfying that for j, j′ = 1, . . . ,n, and i, i′ = 1, . . . , d,

(1.9)

n
∑

j=1

c j = 1, E
[

Si
j

]

= 0, and E
[

Si
jS

i′

j′

]

= R j j′δii′ .

Here our interest is in finding Z j =
∑d

i=1 Si
j
vi + c jv0, j = 1, . . . ,n, such that

(1.10) E
[

jm
(

exp (Z1) · · · exp (Zn)
)]

= jmE















exp















v0 +
1

2

d
∑

i=1

v2
i





























.
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Theorem 1.2. For m = 5, Z j’s as above can be constructed if we take n = 2 with

c1 =
∓

√

2 (2u − 1)

2
, c2 = 1 ±

√

2 (2u − 1)

2
, R11 = u

R22 = 1 + u ±
√

2 (2u − 1), R12 = −u ∓
√

2 (2u − 1)

2
.

(1.11)

If u ≥ 1/2, then the positive definiteness is satisfied.

Each gi (Zi) (y) in Theorem 1.1 is the approximation of exp (Zi(ω))(y) for a given
ωwhich has the form of a solution of an ODE. From this point of view, we take the
m-th order Runge-Kutta method for ODEs as a candidate for each gi.

The M-stage Runge-Kutta method of order m can be written in the sense of [1]

as follows: for W ∈ C∞
b

(

R
N;RN

)

,

Yi (W, s) = y0 + s

M
∑

j=1

ai jW
(

Y j(W, s)
)

,

Y(y0; W, s) = y0 + s

M
∑

i=1

biW (Yi(W, s)) ,

(1.12)

where A =
(

ai j

)

i, j=1,...,M
with ai j ∈ R and b = t(b1, . . . , bM) ∈ RM satisfy the conditions

described in [1][2]. (1.12) gives the m-th order approximation of an ODE

(1.13) dy(t) =W
(

y(t)
)

dt, y(0) = y0.

Letting RK(m)(W)(y0) be Y(y0; W, 1), RK(m) belongs to IS(m), which is Theorem 1.3.

Corollary 1.1. Let Z j’s j = 1, . . . ,n, be LR((A))-valued random variables as in Theo-
rem 1.2 and define linear operators Q(s), s ∈ (0, 1] by

(1.14)
(

Q(s) f
)

(x) = E
[

f
(

RK(m)

(

Z1

)

◦ · · · ◦ RK(m)

(

Zn

)

(x)
)]

.

Then for f ∈ C∞
b

(RN;R),

(1.15)
∥

∥

∥Ps f −Q(s) f
∥

∥

∥∞ ≤ Cs(m+1)/2
∥

∥

∥grad( f )
∥

∥

∥∞ .

where C is a positive constant and s ∈ (0, 1].

Remark 1.1. Kusuoka shows the following results in [9]:

(1) For a Lipschitz continuous function f , the inequality (1.15) still holds.

(2) The Romberg extrapolation can be applied to this algorithm.

RK(m) denotes the m-th order Runge-Kutta method with s = 1. The following
theorem confirms that the m-th order Runge-Kutta method belongs to IS(m).

Theorem 1.3. RK(m) ∈ IS(m).

2. The new simulation scheme and Corollary 1.1

The Corollary 1.1 indicates the new implementation method of the new higher
order scheme proposed by Kusuoka in [7], [8], and [9]. Corollary 1.1 can be proved
by Theorem 1.1 and 1.3 and a theorem in [9].
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This implementation method seems to be distinguished mainly for two ad-
vantages. One is that the approximation operator can be obtained by numerical
calculations if the Runge-Kutta method is applied to calculation of each exp (Z j)
while the tediousness in symbolical calculations of the operator might be an ob-
stacle for practical application, which can be seen in [11], [15], and [17]. The other
is that the partial sampling problem discussed in [11] and [15] can be conquered
by using quasi-Monte Carlo methods. More precisely, the following two points
make effective the use of the Low-Discrepancy sequences, which are essential to
quasi-Monte Carlo methods([14]):

• Si
j
’s can be taken to be continuous random variables in this implementation

• the scheme itself is characterized by the need of the much less number of
discretization of time, which leads to reduction of the number of dimen-
sions of the numerical integration.

3. Application

We give a numerical example in this section in order to illustrate the implementa-
tion method proposed in Corollary 1.1 of the new higher-order scheme, comparing
with some existing schemes.

3.1. Simulation. Let X(t, x) be a diffusion process defined by (1.1). The most
popular scheme of first order is the Euler-Maruyama scheme. It is shown in [6][20]
that for an arbitrary C4 function f

(3.1)
∥

∥

∥

∥

E
[

f
(

X(EM),n
1

)]

− E
[

f (X(1, x))
]

∥

∥

∥

∥

≤ C f
1

n

where X(EM),n
1

denotes the Euler-Maruyama scheme approximating X(t, x).
Construction of higher order scheme is based on the higher order stochastic

Taylor formula ([3][6]). When the vector fields {Vi}di=0 commute, higher-order
schemes can be easily simplified to a direct product of one-dimensional problem

as seen in [6]. Contrastingly, for non-commutative {Vi}di=0, acquisition of all iterated
integrals of Brownian motion is required, which is very demanding. This is done
in [7][12][18] [19][11] and generalized as cubature method on Wiener space ([13]).

Simulation approach is to be necessarily followed by numerical calculation of

E
[

f
(

X
(ord p),n

1

)]

. However, when n×d is large, it is practically impossible to proceed

the integration by using trapezoidal formula and so we fall back on the Monte
Carlo or quasi-Monte Carlo method ([14]). Here we only introduce remarks on
each method. For details, see [16].

Remark 3.1. As long as we use the Monte Carlo method for numerical approximation of
E[ f (X(1, x))], the number of sample points needed to attain a given accuracy is independent
of the number of the dimensions of integration, namely both the number n of partitions and
the order p of the approximation scheme.

Remark 3.2. In contrast to the Monte Carlo case, the number of sample points needed
for the quasi-Monte Carlo method for numerical approximation of E[ f (X(1, x))] heavily
depends on the number of the dimensions of integration. The smaller the number of the
dimensions, the less number of samples are needed.

3.2. The algorithm and competitors.
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3.2.1. The algorighm of the new method. We take the algorithm which is proposed
by Corollary 1.1 with Z j’s j = 1, 2, given in Theorem 1.2. From Corollary 1.1,
we can implement the second order algorithm with numerical approximation of
exp (Zi)’s of at least 5th-order Runge-Kutta method because the order m for an
integration scheme attained by Z1 and Z2 is five and so the order of the new
implementation method becomes two. As a result of the same argument it can
be shown that at least 7th-order explicit Runge-Kutta method has to be applied
to approximation of exp (Zi)’s when we boost the new method to the third order
by Romberg extrapolation. Details of these Runge-Kutta algorithms used here are
given in Appendix.

3.2.2. Competitive schemes. Although there are a lot of studies on acceleration of
Monte Carlo methods ([5]), we choose by the following reasons only the crude
Euler-Maruyama scheme and the N-V algorithm both with and without Romberg
extrapolation as competitors:

(i) Only these two schemes can be recognized to be comparable to the new
method in that they are model-independent.

(ii) Almost all variance reduction techniques and dimension reduction tech-
niques which we can apply to the Euler-Maruyama scheme are also applicable
to the new method.

3.3. Numerical results. We provide an example on financial option pricing in the
following part of this paper.

3.3.1. Asian option under the Heston model. We consider an Asian call option written
on an asset having the price process under the Heston model which is known as
a two-factor stochastic volatility model. Comparison with the N-V algorithm is to
be given as well from the result shown in [16].

Non-commutativity of this example should be of note here.
Let Y1 be the price process of an asset following the Heston model:

Y1(t, x) =x1 +

∫ t

0

µY1(s, x) ds +

∫ t

0

Y1(s, x)
√

Y2(s, x) dB1(s),

Y2(t, x) =x2 +

∫ t

0

α (θ − Y2(s, x)) ds

+

∫ t

0

β
√

Y2(s, x)
(

ρ dB1(s) +
√

1 − ρ2 dB2(s)
)

,

(3.2)

where x = (x1, x2) ∈ (R>0)2, (B1(t),B2(t)) is a two-dimensional standard Brownian
motion,

∣

∣

∣ρ
∣

∣

∣ ≤ 1, andα,θ,µ are some positive coefficients such that 2αθ−β2 > 0 to en-
sure the existence and uniqueness of a solution to the SDE ([4]). Then the payoff of
Asian call option on this asset with maturity T and strike K is max (Y3(T, x)/T − K, 0)
where

(3.3) Y3(t, x) =

∫ t

0

Y1(s, x) ds.

Hence, the price of this option becomes D × E [max (Y3(T, x)/T − K, 0)] where D is
an appropriate discount factor that we do not focus on in this experiment. We set
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T = 1, K = 1.05, µ = 0.05, α = 2.0, β = 0.1, θ = 0.09, ρ = 0, and (x1, x2) = (1.0, 0.09)
and take

E [max (Y3(T, x)/T − K, 0)] = 6.0473534496 × 10−2

which is obtained by the new method with Romberg extrapolation and the quasi-
Monte Carlo with n = 96 + 48, and M = 8 × 108 where M denotes the number of
sample points.

Let Y(t, x) =
t
(Y1(t, x),Y2(t, x),Y3(t, x)). Transformation of the SDEs (3.2) and (3.3)

gives the following Stratonovich-form SDEs:

(3.4) Y(t, x) =

2
∑

i=0

∫ t

0

Vi(Y(s, x)) ◦ dBi(s),

where

V0

(

t(y1, y2, y3
)

)

=

t
(

y1

(

µ −
y2

2
−
ρβ

4

)

, α(θ − y2) −
β2

4
, y1

)

V1

(

t(y1, y2, y3
)

)

=
t(

y1
√

y2, ρβ
√

y2, 0
)

V2

(

t(y1, y2, y3
)

)

=
t
(

0, β
√

(

1 − ρ2
)

y2, 0
)

.

(3.5)

3.3.2. Discretization Error. The relation between discretization error and the num-
ber of partitions of each algorithm is plotted in Figure 3.1.
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Figure 3.1. Error coming from the discretization
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Figure 3.2. Convergence Error from quasi-Monte Carlo and
Monte Carlo

3.3.3. Integration Error. Looking at Figure 3.2, we can compare convergence errors
of respective methods for each number of sample points, M. For Monte Carlo case,
2σ of 10 batches is taken as convergence error while for the quasi-Monte Carlo
method, absolute difference from the value to be convergent is considered. For
10−4 accuracy with 95% confidence level (2σ), M = 108 is taken for the Monte Carlo
method. On the other hand, if we apply the quasi-Monte Carlo method instead,
the new method and the N-V method require M = 2 × 105 sample points, though
M = 5 × 106 has to be taken for the Euler-Maruyama scheme.

Table 1. #Partitions, #Samples, Dimension, and CPU time re-
quired for accuracy of 10−4.

Method #Part. Dim. #Samples CPU time (sec)

E-M +MC 2000 4000 108 1.72 × 105

E-M + Romb. + QMC 16 + 8 48 5 × 106 1.27 × 102

N-V + QMC 16 32 + 16 2 × 105 4.38
N-V + Romb. + QMC 4 + 2 12 + 6 2 × 105 1.76
New Method + QMC 10 40 2 × 105 3.4
New Method + Romb. + QMC 2 + 1 12 2 × 105 1.2

3.3.4. Overall performance comparison. The number of partitions, the number of
samples, and the amount of computation time required for 10−4 accuracy for each
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method are summarized in Table 1. CPU used in this experiment is Athlon 64
3800+ by AMD.

From this table, we can see that the speed of the new method is approximately
100 times faster than that of the Euler-Maruyama scheme when Romberg extrap-
olation and quasi-Monte Carlo are applied to each. Even when the extrapolation
is not applied, the new method dose more or less 37 times faster calculation than
the Euler-Maruyama scheme with Romberg extrapolation and quasi-Monte Carlo
does.

Lastly, Remarks 3.1 and 3.2 should be emphasized to recall that the advantage of
the new method is deeply related to the property of the quasi-Monte Carlo method.

Appendix: The fifth-order and the seventh-order Runge-Kutta algorithms

We give the concrete algorithms of the explicit fifth and seventh order Runge-
Kutta methods applied in subsection 3.2. The fifth order method is taken from [1]
as follows:

a21 =
2

5
, a31 =

11

64
, a32 =

5

64
, a43 =

1

2
, a51 =

3

64
, a52 = −

15

64
,

a53 =
3

8
, a54 =

9

16
, a62 =

5

7
, a63 =

6

7
, a64 = −

12

7
, a65 =

8

7
,

ai j = 0 otherwise,

b =
(

7

90
0

32

90

12

90

32

90

7

90

)

.

The seventh order method is taken from [2] as follows:

a21 =
1

6
, a32 =

1

3
, a41 =

1

8
, a43 =

3

8
, a51 =

148

1331
, a53 =

150

1331
, a54 = −

56

1331
,

a61 = −
404

243
, a63 = −

170

27
, a64 =

4024

1701
, a65 =

10648

1701
, a71 =

2466

2401
, a73 =

1242

343
,

a74 = −
19176

16807
, a75 = −

51909

16807
, a76 =

1053

2401
, a81 =

5

154
, a84 =

96

539
, a85 = −

1815

20384
,

a86 = −
405

2464
, a87 =

49

1144
, a91 = −

113

32
, a93 = −

195

22
, a94 =

32

7
, a95 =

29403

3584
,

a96 = −
729

512
, a97 =

1029

1408
, a98 =

21

16
, ai j = 0 otherwise,

b =
(

0 0 0
32

105

1771561

6289920

243

1560

16807

74880

77

1440

11

70

)

.
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