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1 The quadratic interest rate model

1.1. Description of the model

In the quadratic interest rate model, the evolution of the spot interest
rate r(t) is described by the following SDE :



















dx(t) = (α(t) − β x(t)) dt + σ dW (t),

r(t) =
1

2
x(t)2,

x(0) =
√

2r(0),

where β and σ are constants. α is a time-dependent function determi-
nated by the values of β, σ and the curve of the s-maturity zero-coupon
prices at time t = 0. Notice that (x(t), t ≥ 0) is a gaussian process.

If Et denote the conditional expectation at time t under the risk-neutral
measure, for s-maturity zero-coupon bond at time t, we have :

Ps(t) = Et [exp (− ∫ s
t r(u)du)]

= exp
(

−
(

1

2
Bs(t)x(t)2 + bs(t)x(t) + cs(t)

))

,
(1)

where Bs(t), bs(t) and cs(t) are described in Section 2 and computed using
equations given in Appendix (see 8.2.1).
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1.2. The T -forward risk adjusted measure

For options on bonds, caplet and call on futures, we will have to use the
T -forward risk adjusted measure E

T
t defined by :

E
T
t [Z(T )] = Et[ e−

∫

T

t
r(u)du Z(T )]/PT (t) (2)

for all non-negative Itô process Z.

1.3. Notations

We write Y ∼ Ω(B, b, c, µ, V ) if Y = 1
2
BX2 + bX + c, where X =

µ + V G and G ∼ N (0, 1) is a centered reduced gaussian. We also have
Y = α + β(G +

√
λ)2 where :

α = c − 1

2

b2

B
, β =

1

2
BV , λ =

(µ + b/B)2

V
. (3)

Notice that (G +
√

λ)2 is distributed as a non-central chi-square with 1 de-
gree of freedom and non-centrality parameter λ. Let χ2(y; λ, β) denote the
cumulative distribution of β(G +

√
λ)2 and ω(y; B, b, µ, V ) the cumulative

distribution of 1
2
BX2 + bX. Hence, we have

P (Y ≤ y) = P

(

β(G +
√

λ)2 ≤ y − α
)

= χ2(y − α; λ, β),

as well as

P (Y ≤ y) = P

(

1

2
BX2 + bX ≤ y − c

)

= ω(y − c; B, b, µ, V ).

In particular :

ω(y; B, b, µ, V ) = χ2(y +
1

2

b2

B
; λ, β).

For a function of two variables written as fs(t), we write ḟs(t) ≡ ∂fs(t)/∂s
and f̈s(t) ≡ ∂2fs(t)/∂s2.

We also use the following conventions :

• T denotes the maturity of an option,

• t denotes the maturity of a futures or a forward contract,

• s, or s′ denote maturities of zero-coupon bonds,

• K denotes the strike of an option.

All prices are given at initial time t = 0. Hence, we have 0 ≤ T ≤ t ≤ s, s′.
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2 Calibration and computation of bond coef-

ficients

2.1. Initial values of bond coefficients

To compute the time-dependent function α, we must first compute the
forward interest rate at time t = 0 from the initial zero-coupon curve Ps(0)
as described in the Appendix. Now, for any s and t, using equations given
in 8.1.1, we can compute Bs(0), ḃs(0), ċs(0) and α(t) to fit the initial yield
curve. We get bs(0) and cs(0) for any s integrating ḃs(0) and ċs(0) with means
of trapezoidal rule.

2.2. Transport equations

Transport equations yield formulas for Bs(t), bs(t) and cs(t) for any t and
s using their initial values. These equations are given in 6.1.2.

3 Closed formulae for european options on

bonds

3.1. European call

Price : E0

[

e−

∫

T

0
r(u)du (Ps(T ) − K)+

]

= PT (0) ET
0 [(Ps(T ) − K)+] .

Under the T -forward risk adjusted measure, we have − log(Ps(T )) ∼
Ω(B, b, c, µ, V ) where B = Bs(T ), b = bs(T ), c = cs(T ) and :

µ =
√

ḂT (0)x(0) +
ḃT (0)
√

ḂT (0)
, V = σ2BT (0). (4)

Using (3), we compute the coefficients α, β and λ corresponding to B, b, c, µ
and V . Then, the price of a T -maturity call option on the s-bond is given
by:

E0

[

e−

∫

T

0
r(u)du (Ps(T ) − K)+

]

= Ps(0)χ2(−α − log(K);
λ

1 + 2β
,

β

1 + 2β
)

−KPT (0)χ2(−α − log(K); λ, β).
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3.2. Caplet

Price : E0

[

e−

∫

T

0
r(u)du (r(T ) − K)+

]

= PT (0) ET
0 [(r(T ) − K)+] .

Under the T -forward risk adjusted measure, we have r(T ) ∼ Ω(B, b, c, µ, V )
with B = 1, b = 0, c = 0 and µ and V given by (4). Thanks to (3), we com-
pute the coefficients α, β and λ corresponding to B, b, c, µ and V . Then,
the price of a T -maturity caplet is given by:

E0

[

e−

∫

T

0
r(u)du (r(T ) − K)+

]

= PT (0)
[

1

2
(rT (0) − K) + C(K − α; λ, β)

]

,

where:

C(K − α; λ, β) =
1

π

∫ +∞

0

[

1 − Ψ(λ, 2ξ2β2) cos(ξ(K − α) − Φ(λ, ξβ))
] dξ

ξ2
,

with

Ψ(λ, z) = (1 + 2z)−1/4 exp(
λz

1 + 2z
) and Φ(λ, z) =

1

2
arctan(2z) +

λz

1 + 4z2
.

3.3. Exchange option

Price : E0

[

e−

∫

T

0
r(u)du (kPs(T ) − k′Ps′(T ))+

]

= PT (0)ET
0 [(kPs(T ) − k′Ps′(T ))+] .

Under the T -forward risk adjusted measure : − log(Ps(T )) = 1
2
BX2 +

bX + c and − log(Ps′(T )) = 1
2
B′X2 + b′X + c′ where X ∼ N (µ, V ), B =

Bs(T ), b = bs(T ), c = cs(T ), B′ = Bs′(T ), b′ = bs′(T ), c′ = cs′(T ) and µ,
V given by (4). In particular, we have − log(Ps(T )) ∼ Ω(B, b, c, µ, V ) and
− log(Ps′(T )) ∼ Ω(B′, b′, c′, µ, V ). Then, the price of the exchange option to
put k′ s′-bonds and call k s-bond is :

E0

[

e−

∫

T

0
r(u)du (kPs(T ) − k′Ps′(T ))+

]

= kPs(0) ω( c′ − c − log(
k′

k
); B − B′, b − b′,

µ − bV

1 + BV
,

V

1 + BV
)

− k′Ps′(0) ω( c′ − c − log(
k′

k
); B − B′, b − b′,

µ − b′V

1 + B′V
,

V

1 + B′V
).
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3.4. European call on forward contract

Price
1 : E0

[

e−

∫

T

0
r(u)du (Ps(T ) − KPt(T ))+

]

= Pt(0)Et
0

[(

Ps(T )

Pt(T )
− K

)

+

]

.

Under the t-forward risk adjusted measure, we have − log(Ps(T )/Pt(T )) ∼
Ω(B, b, c, µ, V ) with B = Bs(T )−Bt(T ), b = bs(T )−bt(T ), c = cs(T )−ct(T )
and :

µ =

√

√

√

√

Ḃt(0)

Ḃt(T )
x(0) +

ḃt(0)
√

Ḃt(0)Ḃt(T )
− ḃt(T )

Ḃt(T )
, and V =

Vt(0) − Vt(T )
˙Bt(T )

.

Thanks to (3), we compute the coefficients α, β and λ corresponding to
B, b, c, µ and V . Then, the price of a call option on the t-delivery forward
contract on the s-bond is given by:

E0

[

e−

∫

T

0
r(u)du (Ps(T ) − KPt(T ))+

]

= Ps(0)χ2(−α − log(K);
λ

1 + 2β
,

β

1 + 2β
)−KPt(0)χ2(−α − log(K); λ, β).

4 Closed formulae for futures and european

options on futures

For any 0 ≤ T ≤ t ≤ s, we set Ft,s(T ) ≡ ET [Ps(t)].

4.1. Futures

Price : Ft,s(0) = E0[Ps(t)]

Under the risk-neutral measure, − log(Ps(t)) ∼ Ω(B, b, c, µ, V ) with
B = Bt(s), b = bt(s), c = ct(s), and

µ = pt + qtx(0), V = vt (5)

Recall that x(0) =
√

2r0). Subsection 8.2.1 of the Appendix gives expres-
sions to compute Bt,s(0), bt,s(0), ct,s(0), pt and qt. Then, the price of the
t-delivery futures contract on the s-bond is given by :

Ft,s(0) = E0[Ps(t)] = exp
(

−Bs,t(0)x(0)2 + bs,t(0)x(0) + cs,t(0)
)

. (6)

1Evidently, the option to exchange two bonds as in section 3.4. is equivalent to an
option on a bond forward contract, as in section 3.4. We thus have two different formulae
for this option which agree under the asumption of the model.
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4.2. European call option on futures

Price : E0

[

e−

∫

T

0
r(u)du (Ft,s(T ) − K)+

]

= Pt(0)Et
0

[

(Ft,s(T ) − K)+

]

Under the T -forward risk adjusted measure, − log(Ft,s(T )) ∼ Ω(B, b, c, µ, V )
with B = Bt,s(T ), b = bt,s(T ), c = ct,s(T ) and µ, V given by (4). The co-
efficients Bt,s(T ), bt,s(T ), and ct,s(T ) are computed from Bt,s(0), bt,s(0), and
ct,s(0), as described in subsection 6.2.2 of the appendix. Thanks to (3), we
compute the coefficient α, β and λ corresponding to B, b, c, µ and V . Then,
the price of a T -maturity european call option on the t-delivery futures on
s-bond is :

E0

[

e−

∫

T

0
r(u)du (Ft,s(T ) − K)+

]

= PT (0) ET
0 [Ft,s(T )] χ2(−α − log(K);

λ

1 + 2β
,

β

1 + 2β
)

−KPT (0)χ2(−α − log(K); λ, β),

with E
T
0 [Ft,s(0)] = e−F x2(0)−Gx(0)−H . Formula for F , G and H are given in

section 8.2.3.

4.3. Delivery option

Price : E0 [min(kPs(T ), k′Ps′(T ))]

Under the risk-neutral measure, we have − log(Ps(t)) ∼ Ω(B, b, c, µ, V )
and − log(Ps′(t)) ∼ Ω(B′, b′, c′, µ, V ) with B = Bs(t), b = bs(t), c = cs(t),
B′ = Bs′(t), b′ = bs′(t), c′ = cs′(t), and µ, V given by (4). Then, the price of
the T -maturity futures contract to deliver the cheapest between k s-bond or
k′ s′-bond is :

E0 [min(kPs(T ), k′Ps′(T ))]

= kFt,s(0) ω( c − c′ + log(
k′

k
); B′ − B, b′ − b,

µ − bV

1 + BV
,

V

1 + BV
)

+ k′Ft,s′(0) ω( c′ − c − log(
k′

k
); B − B′, b − b′,

µ − b′V

1 + B′V
,

V

1 + B′V
).

Notice that Fs,t(0) and Fs′,t(0) are given by (6).
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5 Monte Carlo methods for european options

on futures and bonds

For each option, we know that (x(t), t ≥ 0) is a gaussian process both under
the risk-neutral measure and under the T -forward risk adjusted measure and
we have expression for its mean and variance. Therefore, to compute Monte
Carlo methods, we simulate the variable x(t) and we simply use the relation-
ships between x(t) and the price of zero-coupon bond, the spot interest rate
or the price of a futures.

For options on bonds, caplet, and call on futures, we use the distribution
of x under the T -forward risk adjusted measure. Indeed, we have, x ∼
N (µ, V ) with µ and V given by (4) and for any pay-off X(T ) at maturity T

E0

[

e−

∫

T

0
r(s)ds X(T )

]

= PT (0)ET
0 [X(T )].

Hence, with a Monte Carlo method, we get the desired price.

For futures and for delivery options (section 4.1 and 4.3), we directly get
the desired price by a Monte Carlo method using the distribution of x in the
risk-neutral measure : x ∼ N (µ, V ) is again a gaussian process with µ, and
V given by (5) for futures and by (4) for delivery options.

6 Algorithms

The functions below are common to all programs :

• void bond_coeffs(ZCMarketData* ZCMarket, Data *data, double

T, double beta, double sigma, double x0);

This function computes the coefficients BT (0), bT (0), cT (0), ḂT (0),
ḃT (0) and stores them in structure data .

Integrations are done with means of trapezoidal rule.

• void transport(Omega *om, Data data1, Data data2, double

alpha, double beta, double sigma, double x0)

This function computes the coefficients of Ps(T ) knowing those of PT (0)
(contained in data1) and Ps(0) (contained in data2).

Results are stored in om.B, om.b and om.c.

• void om2chn(Omega om, Chn *chn)

Transforms an Omega structure into a Chn strucure using equations (3).
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7 Results and conclusions

To check the accuracy of the computed prices, we did the following tests.

• First, we checked the put prices computed with closed forms agree
with the prices given by Pelsser in [2]. Computed prices are exactly
the same.

• Then, to check the efficiency of the quadratic interpolation, we have
taken a function for Ps(0) (Ps(0) = exp (−s (0.08 − 0.05e−.18s))) and we
have discretized it successively with a time-step of 0.05 and a time-step
of 0.25. Prices for each kind of options are nearly the same : the error
is always lower than 1 basis point.

• We also checked the prices using Monte Calo method. We launched
the program 1000 times and around 95% of computed 95-per-cent-
confidence intervals contain the closed form price.

• We also passed the following test : for α given and constant, we have
computed prices of zero-coupon bond for several maturity. These prices
were stored in the file initialyield.dat. Then, we launched the
program for α time-dependent and we checked if computed prices with
these values for bond were the same than for α constant. The prices
are always the same with an error lower than one basis point.

8 Appendix

In all the following equations, we set γ =
√

β2 + σ2.

6.1. Bond coefficients

• 6.1.1. Equations to compute initial values of bond coefficients

For all s and t :

Bs(0) =
e2γs − 1

(γ + β)e2γs + γ − β
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If α is constant, we have closed forms for bs(0) and ċs(0)2 :

h(s) = ((γ + β)e2γs + γ − β)
−1

,

bs(0) =
α

γ
h(s)(eγs − 1)2,

ċs(0) = αbs(0) +
1

2
σ2Bs(0) − 1

2
σ2b2

s(0).

Else, for all s, the forward interest rate at time t = 0 is : rs(0) = −∂ log(Ps(0))

∂s
.

Then, we have :

ḃs(0) = Ḃs(0)x(0) +
√

Ḃs(0)(2rs(0) − 1
2
σ2Bs(0))

ċs(0) =
1

2

(

(ḃs(0))2

Ḃs(0)
+ σ2Bs(0)

)

α(t) = (Ḃt(0))−3/2(Ḃt(0)b̈t(0) − B̈t(0)ḃt(0)).

• 6.1.2. Transport equations for bond coefficients

For all T , and s, we have :

Bs(T ) =
Bs(0) − BT (0)

ḂT (0) − σ2BT (0)(Bs(0) − BT (0))
,

Ḃs(T ) =
Ḃs(0)ḂT (0)B2

s (T )

(Bs(0) − BT (0))2
,

bs(T ) = Bs(T )
√

Ḃs(T )

(

bs(0) − bT (0)

Bs(0) − BT (0)
−

˙bT (0)
˙BT (0)

)

,

ḃs(T ) =
ḃs

√

ḂT (0)

(

1 + σ2BT (0)Bs(T )) + Ḃs(T )
(

σ2BT (0)(bs(0) − bT (0)
)

− ḃT (0)
)

,

cs(T ) = cs(0) − cT (0) − c̃(Bs(T ), bs(T ), ḃT (0)/
√

ḂT (0), σ2BT (0)).

with c̃(B, b, a, V ) =
1

2

(

log(1 + BV ) +
Ba2 + 2ab − V b2

1 + BV

)

.

6.2. Futures coefficients

2There is a misprint in the formula given by Jamshidian in [1] for ċs(0) which is cor-
rected here.
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• 6.2.1. Equations to compute initial values of futures coeffi-

cients

For all s and t, we set:

pt =
∫ t

0
α(u)e−β(t−u)du, qt = e−βt, vt =

σ2(1 − e−2βt)

2β
.

Then, for all s and t, we have :

Bt,s(0) =
q2

t Bs(t)

1 + Bs(t)vt

,

bt,s(0) =
qt(bs(t) + Bs(t)pt)

1 + Bs(t)vt

,

ct,s(0) = cs(t) +
1

2
log(1 + vtBs(t)) +

Bs(t)p
2
t + 2bs(t)pt − vtp

2
t

2(1 + vtBs(t))
.

• 6.2.2. Transport equations for futures coefficients

For all s, t and T , we set :

Bt,s(T ) =
Bt,s(0)

q2
T − vT Bt,s(0)

,

bt,s(T ) = Bt,s(T )

(

bt,s(0)

Bt,s(0)
qT − pT

)

,

ct,s(T ) = ct,s(0) − 1

2
log(1 + vT Bt,s(T )) +

Bt,s(T )p2
T + 2bt,s(T )pT − vT q2

T

2(1 + vT Bt,s(T ))
.

For all t, s and T , we set :

• 6.2.3. Other formulas for futures

For all s, t and T , we set :

pt =
√

ḂT (0) and qt =
ḃT (0)
√

ḂT (0)
.

Then, we have3 : E
T
0 [Ft,s(0)] = e−F x2(0)−Gx(0)−H with :

F =
q2

T Bt,s(T )

1 + Bt,s(T )vT

,

G =
qT (bt,s(T ) + Bt,s(T )pT )

1 + Bt,s(T )vT

,

H = ct,s(T ) +
1

2
log(1 + vtBt,s(T )) +

Bt,s(T )p2
T + 2bt,s(T )pT − vT p2

T

2(1 + vtBt,s(T ))
.

3We recall that x(0) =
√

2r(0).
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