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1 Introduction

The following methods deal with two alternatives to Least Squares Method : the match-
ing pursuit method, introduced in [1] and the orthogonal matching pursuit, introduced in
[2].

2 Matching pursuit (MP)

The paper introduces an algorithm, called matching pursuit, that decomposes any sig-
nal into a linear expansion of waveforms that are selected from a redundant dictionary of
functions. Theses waveforms are chosen in order to best match the signal structures.

Let H be an Hilbert space and define a dictionary as a family D = (xi)i∈N of vectors
in H. Let y ∈ H. We want to compute a linear expansion of y over a set of vectors
selected from D, in order to best match its inner structures. This is done by successive
approximations of y with orthogonal projections on elements of D. Let xγ0 ∈ D. The
vector y can be decomposed into

y = 〈y, xγ0〉xγ0 + Ry

where Ry is the residual vector after approximating y in the direction xγ0 . Clearly xγ0 is
orthogonal to Ry, hence

‖y‖2 = ‖〈y, xγ0〉‖2 + ‖Ry‖2.

To minimize ‖Ry‖2, we must choose xγ0 ∈ D such that ‖〈y, xγ0〉‖ is maximum.

A matching pursuit is an iterative algorithm that subdecomposes the residue Ry by
projecting it on a vector of D that matches Ry at best, as it as been done for y. This
procedure is repeated as many times as necessary.

Description of the algorithm

Let ŷ(k) denote the approximation of y at step k and r(k) denote the kth residue, i.e.
r(k) := y − ŷ(k).
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1. Initialisation : ŷ(0) = 0, r(0) = y and k = 1. At step k

2. we compute (‖〈r(k−1),xi〉‖
‖xi‖

)i=1,··· ,n.

3. Among the dictionary directions, find the direction γk that best describes the residual
vector and compute the associated coefficient

γk := arg max
i

‖〈r(k−1), xi〉‖

‖xi‖
,

ak :=
〈r(k−1), xγk

〉

‖xγk
‖2

.

4. Substract all the information along the best direction from the data and compute
the residual vector

ŷ(k) = ŷ(k−1) + akxγk
,

r(k) = y − ŷ(k) = r(k−1) − akxγk

5. Increment k and repeat steps 2,3 and 4 until ‖y − ŷ(k)‖ ≤ ε, ε is specified at the
beginning of the procedure.

3 Orthogonal matching pursuit (OMP)

The matching pursuit method is very easy to implement and very fast. However, when
the dictionary we consider does not contain orthogonal functions, the convergence is very
slow. At the first step, we have 〈r(1), xγ1〉 = 0. At the second step, we compute γ2 such
that 〈r(2), xγ2〉 = 0, but we also have 〈r(2), xγ1〉 6= 0. Then it is possible to choose again
xγ1 at an other step in the algorithm. The following algorithm enables to circumvent this
problem.
It is a modified version of the mathing pursuit algorithm. At each step of the algorithm,
we find the direction that best describes the residual vector but, contrary to MP algo-
rithm, we recompute the estimation ŷ(k). ŷ(k) is now defined as the projection of y on
the space spanned by {xγ1 , · · · , xγk

}. At the kth iteration, we have, for all i ∈ {1, · · · , k},
〈r(k), xγi

〉 = 0.

Description of the algorithm

Let ŷ(k) still denote the approximation of y at step k and r(k) denote the kth residue, i.e.
r(k) := y − ŷ(k). We also introduce the matrix Xk := [xγ1 | · · · |xγk

] and â(k) the vector
composed by the coefficients of the linear regression. We recall that all the coefficients are
recomputed at each iteration, so that r(k) does not belong to the space spanned by Xk.

1. Initialisation : ŷ(0) = 0, r(0) = y, X0 = [ ] and k = 1. At step k

2. we compute (‖〈r(k−1),xi〉‖
‖xi‖

)i=1,··· ,n.

3. Among the dictionary directions, find the direction γk that best describes the residual
vector and compute the associated coefficient

γk := arg max
i

‖〈r(k−1), xi〉‖

‖xi‖
,
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4. Substract all the information along the best direction from the data and compute
the residual vector

Xk = [Xk−1|xγk
],

â(k) = X+
k y then ŷ(k) = Xkâ(k)

r(k) = y − ŷ(k)

5. Increment k and repeat steps 2,3 and 4 until ‖y − ŷ(k)‖ ≤ ε, ε is specified at the
beginning of the procedure.

where X+
k = (XT

k Xk)−1XT
k is the pseudo-inverse of Moore-Penrose of Xk.
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