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1 The quadratic interest rate model

2 Notations

2.1 The instantaneous short rate model

We use the following conventions:

• t denotes today,

• x(t) = {xj(t), j = 1, . . . , J} denotes a vector of Markov processes
whose risk-neutral dynamics are such that the instantaneous drifts and
covariances are linear in the state variables, with which we characterize
a general J-factor affine model,

• r(t) denotes the instantaneous short rate which is defined as a linear
combination of the state variables: r(t) = δ +

∑J
j=1 xj(t), with δ a

constant,

• P T (t, x(t)) denotes the bond price on date t for an euro on date T in
the future,
If we use E

Q
t to denote the conditional expectation at time t under the

risk-neutral mesure, for a T -maturity zero-coupon bond at time t, we
will get :

P T (t, x(t)) = E
Q
t

[

e−
∫ T

t
r(s)ds

]

.

2.2 The swaption

We use the following conventions:

• T0 denotes the exercice date of the swaption,
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• (T1, ..., TN ) denote the dates that the coupon payments are made,

• (C1, ..., CN ) denote the payments at dates Ti,i = 1, ..., N ,

• CB(T0) denotes the price of this underlying coupon bond at the date
T0, and we have:

CB(T0) =
N
∑

i=1

CiP
Ti(T0, x(T0)),

• K denotes the strike price of a swaption,

• Swn(t, xj(t)) denotes the price of a swaption which is defined as:

Swn(t, xj(t)) = E
Q
t

[

e−
∫ T0

t
r(s)ds max(CB(T0) − K, 0)

]

.

3 Decription of the short rate models

3.1 Three-Factor Gaussian Model

We consider a three-dimensional Gaussian model with the three state vari-
ables dynamics as follows:

{

dxi(t) = −κixi(t)dt + σidzQ
i (t) i ∈ {1, 2, 3},

r(t) = δ +
∑3

i=1 xi(t),

where

• δ, κi and σi, i ∈ {1, 2, 3} are constants for all the three factors,

• dzQ
i (t), i ∈ {1, 2, 3} are three Brownian motions which are dependent

with each other: d < zQ
i , zQ

j >t= ρijdt where ρij = 1, i = j; ρij 6= 0,
i 6= j.

Thus, the model has κi, σi, δ and xi(0), i ∈ {1, 2, 3} as its inputs.
For this model, we have the following formula for the bond price:

P T (t, x(t)) = E
Q
t

[

e−
∫ T

t
r(s)ds

]

= eB0(T −t)−
∑3

i=1
Bκi

(T −t)xi(t),

where the deterministic functions B0(τ) and Bκi
(τ) satisfy a system of ordi-

nary differential equations known as Ricatti equations, which we describe in
the Appendix (1),(2).
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3.2 Two-Factor CIR Model

We consider a two-dimensional Cox-Ingersoll-Ross model (CIR for short)
with the two state variables following independant square root processes:

{

dxi(t) = −κi(θi − xi(t))dt + σi

√

xi(t)dzQ
i (t) i ∈ {1, 2},

r(t) = δ +
∑2

i=1 xi(t),

where

• κi, θi and σi are constants for the two factors,

• dzQ
i (t), i ∈ {1, 2} are two Brownian motions which are independent

with each other.

Thus, the model has κi, θi, σi, δ and xi(0), i ∈ {1, 2} as its inputs.
For this model, we are the bond price in the form as:

P T (t, x(t)) = E
Q
t

[

e−
∫ T

t
r(s)ds

]

= eB0(T −t)−
∑2

i=1
Bi(T −t)xi(t)

where the deterministic functions B0(τ) and Bi(τ) are given in the Appendix
(9),(10).

4 The W -forward risk measure

The price of a swaption in today is given by the expected discounted cash
flow, where the expectation is under the risk-neutral measure E

Q. However,
we notice that sometimes it is more convenient to price swaptions by calcu-
lating expectations under the so-called forward measures EW rather than the
risk-neutral measure. The W -forward risk measure is defined by:

E
W
t [Z(W )] = E

Q
t

[

e−
∫W

t
r(s)dsZ(W )

]

/P W (t, x(t))
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for all non-negative Itô process Z. Therefore, we get the price of a swaption
as:

Swn(t, x(t)) = E
Q
t

[

e−
∫ T0

t
r(s)ds max(CB(T0 − K, 0))

]

=
N
∑

i=1

CiE
Q
t

[

e−
∫ Ti

t
r(s)ds1CB(T0)>K

]

− KE
Q
t

[

e−
∫ T0

t
r(s)ds1CB(T0)>K

]

=
N
∑

i=1

CiP
Ti(t, x(t))EQ

t





e−
∫ Ti

t
r(s)ds

P Ti(t, x(t))
1CB(T0)>K





−KP T0(t, x(t))EQ
t





e−
∫ T0

t
r(s)ds

P T0(t, x(t))
1CB(T0)>K





=
N
∑

i=1

CiP
Ti(t, x(t))ETi

t

[

1CB(T0)>K

]

− KP T0(t, x(t))ETi
t

[

1CB(T0)>K

]

Thus, we need to estimate E
T
t

[

1CB(T0)>K

]

.

5 The estimation of P(Y > K) using the cu-

mulants of Y

We define firstly the cumulants as the coefficients of a Taylor series expansion
of the logarithm of the characteristic function. So if we define G(k) = E[eikY ]
as the characteristic function of Y , then, the cumulant cj are given via:

log [G(k)] =
∞
∑

j=1

cj

(ik)j

j!
,

So the m-th order cumulant is uniquely defined by the first m moments
µm = E[Y m] of the distribution (see Appendix (18)-(24)). Then we use
the inverse Fourier transform to approximate P(Y > K) by performing a
cumulant expansion, and we get:

P(Y > K) =
M
∑

j=0

γjλj,

where γj and λj, j ∈ {1, . . . , M} are given in the Appendix (25)-(32) and
(34)-(41). This expansion uses the first M moments of Y .
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6 Computation of the moments of CB(T0)

From the section 4, to give an approximation of ET
t [1CB(T0)>K ], it is enough

for us to compute the first M moments of CB(T0). We choosed M = 7 be-
cause it offers an excellent balance between speed and accuracy, and, because
it is computationally expensive to determine the higher-order cumulants c6

and c7), so we find it convient to set these both to zero. So we are:

ET
t [(CB(T0)

m)] = ET
t





N
∑

i1,...,im=1

(Ci1 . . . Cim
) ×

(

e
F0−

∫ J

j=1
xj(T0)Fj

)



 ,

m ∈ {1, . . . , 5}.

• For three-factor gaussian model,

ETi
t [(CB(T0)

m)] = ETi
t





N
∑

i1,...,im=1

(

Ci1 . . . Cim
× eF0 × L(t, T0, Ti)

)



 ,

(see Appendix 9.1.1,(3),(4),(6),(7),(8)).

• For two-factor CIR model,

ETi
t [(CB(T0)

m)] = ETi
t





N
∑

i1,...,im=1

(Ci1 . . . Cim
× L(t, T0, Ti))



 ,

(see section 9.1.2,(11)-(17)).

7 Monte Carlo methods

7.1 Three-Factor Gaussian Model

For this model, we know that xi(t), i ∈ {1, 2, 3} are Gaussian processes both
under the risk-neutral measure and under the W -forward risk measure. Thus,
under the W -forward risk measure we have for i ∈ {1, 2, 3}:

xi(T0) ∼ N (mi(T0), σ2
i (T0)),

where

mi(T0) = xi(t)e
−κi(T0) −

3
∑

j=1

σiσjρij

κj

[

Bκi
(T0) − e−κj(W −T0)Bκi+κj

(T0)
]

,

σ2
i (T0) =

3
∑

j=1

σiσjρijBκi+κj
(T0),
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and Bκi
(τ) is given in the Appendix (1). Then, the Monte Carlo price

are obtained using the exact Gaussian distribution of the state variable at
maturity to avoid any time discretization bias.

7.2 Two-Factor CIR Model

We cannot calculate the exact distribution of xi(t), i ∈ {1, 2} for this model,
instead, the Monte Carlo prices are obtained this time by using an improved
Euler discretization scheme of the stochastic differential equation (which
could be called as scheme of E(0), see References [2]). We consider the
regular grid tj = jT0

n
, j ∈ {0, . . . , n}. We try to simulate the xi(T0) on this

grid and we got the approximate value x̂n
i,tn

, i ∈ {1, 2} via:



























x̂n
i,t0

= xi(0),

x̂n
i,tj+1

=





(

1 − κiT0

2n

)
√

x̂n
i,tj

+
σi

(

Z
Q
i,tj+1

−Z
Q
i,tj

)

2(1−
κiT0

2n )





2

+
(

κiθi − σ2
i

4

)

T0

n
.

j ∈ {0, . . . , n − 1}

8 Program algorithm

The functions below are common to all the programs:

• int write_time(double dif)

This function computes the time which the whole program uses to
calculate the price of a swaption and it writes the result in the screen
in the format as: "Computation time: ? h ? m ? s".

• double B_ki(double ki,double t)/double B_i(int i,double t)

double B_0(double t)

These two functions compute the coefficients Bki
and B0 for the three-

factor Gaussian model or Bi and B0 for the two factor CIR model
which are served to calculate the bond price given in the Appendix
(1),(2),(9),(10).

• double P(double t,double Ti)

This function returns the bond price in the date t for an euro in the
date Ti (see section 2.1 and 2.2).

The following functions are used in Cumulant Approximation method:

• double erf(double x)

This function is used to calculate N(d) given in the Appendix (33).
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• double Ci(int *I,int m)

This function returns
∑N

i1,i2,...,im=1 (Ci1 . . . Cim
), which is served to cal-

culate the m-th moment, m ∈ {1, . . . , M}.

• double F_ki(int i,int *I,int m)/double F_i(int i,int *I,int

m)

double F_0(int *I,int m)

These two functions are to compute the coefficients Fκj
and F0 for the

three-factor Gaussian model (see Appendix (3),(4)) or Fj and F0 for
the two-factor CIR model (see Appendix (11),(12)) which are used to
compute the m-th moment, m ∈ {1, . . . , M}.

• double N_i(double t,int i,int *I,int m)/double N_i(double t,int

i,int *I,double W,int m)

double M_W(double t,double W,int *I,int m)

These two functions are used to compute the coefficients which are
given in the Appendix (7),(8),(14),(15) for the Laplace transform.

• double L(double t,double W,int *I,int m)

These functions are used to compute the Laplace transform L(t, T0, Ti)
(see Appendix (6),(13)) of the variable xi(T0), i ∈ {1, 2, 3} under the
forward-neutral measure to express the expectation of products of bond
prices at some future date.

• double moment(double t,double W)

There are five functions like this which are to compute the first five
moments (see section 5).

• double coeff(double t,double W)

We used the first M(M = 7) moments and the formulae in the Ap-
pendix (18)-(24) to calculate the cumulants and the coefficients γTi

j

and λTi

j , i = 1, . . . , N ; j = 0, . . . , M .

• double price(double t)

This simple function is using the formula

Swn(t, Xj(t)) =
N
∑

i=1

CiP
Ti(t)





M
∑

j=0

γTi

j λTi

j



− KP T0(t)





M
∑

j=0

γT0
j λT0

j





to compute the price of the swaption which we seeked.

The following functions are used in Monte Carlo method:
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• double SHUFL()

This function is used to generate a variable which follows an uniform
distribution U(0, 1).

• double BoxMuller()

This function uses the Box-Muller theorem to transform from a two-
dimensional continuous uniform distribution U(0, 1) to a two-dimension
bivariate normal distribution N (0, 1)(see Appendix 9.3).

• int prix_MC(double t)

This function gives the price of a T0-maturity swaption with the strike
K on N coupon payments dates. The number of Monte Carlo simula-
tions is stored in MC. We compute also the confidence interval which is
stored in variance.

• To simulate the x(T0):

– for three-factor Gaussian model:

∗ int experance(double t,double W)

We compute the experances of xi(T0), i ∈ {1, . . . , 3} which are
stored in a table ex[3].

∗ int covariance(double t)

We compute the covariance matrix of xi(T0), i ∈ {1, . . . , 3}
which is stored in a matrix cov[3][3].

∗ int cholesky(double a[d][d])

We simulate the variable xi(T0), i ∈ {1, . . . , 3} which follow
the normal distributions ex+

√
covN (0, I3), where we get the

root of cov[3][3] by using the cholesky method.

– for two-factor CIR model:

∗ double approximate(int j,double t)

∗ double CB_T0(double t)

We use an ameliorated Euler approximation to simulate the
variables xi(T0).

9 Results and conclusions

9.1 Three-Factor Gaussian Model

We have experimented some tests to better check the accuracy of the com-
puted prices.
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1. We tested firstly with N = 1:

• We supposed that the three factors are independent, then we can
calculate the price in closed formula and we compared it to the
results came from the cumulant expansion approximation method
and Monte Carlo method when N = 1 and ρij = 0(i 6= j).

• We then checked the two methods with N = 1, but with the
dependant state variables, which is the normal case. We noticed
that the approximation is excellent and the cumulant expansion
approximation method expends much less computation time than
Monte Carlo.

2. We experimented afterwards with different payment dates Ti, i = 1, ..., N
and N = 10, N = 20:

• For the cumulant expansion approximation method, we launched
the programs for M = 4 et M = 7.

• For Monte Carlo method, we launched it for 500 000 times and
we calculated the confidence of intervals.
We saw clearly that along with the augment of N , our programe
ran more and more slowly, even so, the cumulant expansion ap-
proximation method expends still less time than Monte Carlo, and
the absolute error relative to the true solution is less than a few
parts in 10−4. We stored the results of the two methods in two files
Gaussian.dat et MC_Gaussian.dat and then we give the graphes
(only when N=20) as follows:
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Figure 1: The price of a swaption under three-factor Gaussian model when
N = 20, K ∈ {1.15, 1.5}
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Figure 2: Three-factor Gaussian model: Difference between Cumulant Ap-
proximation and Monte Carlo (MC = 500000) when N = 20, K ∈ {1.15, 1.5}
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9.2 Two-Factor CIR Model

1. To prove that the Laplace transform is correct, we wrote two sub-
program to compare the following two values

• EQ
t

[

e−
∫ T0

t
rvdveF ∗

0 −x1(T0)F ∗

1 −x2(T0)F ∗

2

]

• eM(T0−t)−x1(t)N1(T0−t)−x2(t)N2(T0−t)

where M(τ) and Ni(τ) can be referenced in the Appendix (14),
(15). In the same time, we saw that the improved Euler ap-
proximation avoid the situation when x̂n

ti
is equal to 0 during the

recurrence.

2. We experimented the two methods with N = 20, the approximation
this time is still excellent. The absolute error relative to the true solu-
tion is less than a few parts in 10−4. We give the graphes as follows:
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10 Appendix

10.1 The coefficients for the model

10.1.1 Three-Factor Gaussian Model

For all τ , we have:

Bκi
(τ) =

1 − e−κiτ

κi

, (1)

B0(τ) = −δτ +
1

2

3
∑

i,j

σiσjρij

κiκj

[

τ − Bκi
(τ) − Bκj

(τ) + Bκi+κj
(τ)
]

, (2)

Fκj
=

m
∑

k=1

Bκj
(Tik

− T0) m ∈ {1, . . . , M}, (3)

F0 =
m
∑

k=1

B0(Tik
− T0) m ∈ {1, . . . , M}. (4)

When we change the probability under the W forward mesure, the state
variables have the dynamics:

dxi(t) =



−κixi(t) −
3
∑

j=1

σiσjρijBκj
(W − t)



 dt + σidzW
i (t) (5)
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To compute all the moments of the coupon bond price at the maturity
date T0, we have used the Laplace transform of the state variable under
the forward-neutral measure:

L(t, T, W ) ≡ EW
t

[

e−
∑3

i=1
Fixi(T )

]

= eM(T −t)−
∑3

i=1
Ni(T −t)xi(t) (6)

where

Ni(τ) = Fie
−κiτ (7)

M(τ) =
∑

i,j

σiσjρij

κj

Fi

[

Bκi
(τ) − e−κj(W −τ)Bκi+κj

(τ)
]

+
1

2

∑

i≥j

σiσjρijFiFjBκi+κj(τ) (8)

10.1.2 Two-Factor CIR Model

For all τ , we have:

B0(τ) = −δτ

+
2
∑

i=1

(

2κiθi

γi − κi

τ − 2κiθi

σi2

log

[

(κi + γi)(e
γiτ − 1) + 2γi

2γi

])

, (9)

Bi(τ) =
2(eγiτ − 1)

(κi + γi)(eγiτ − 1) + 2γi

, (10)

F0 =
m
∑

k=1

B0(Tik
− T0) m ∈ {1, . . . , M}, (11)

Fj =
m
∑

k=1

Bj(Tik
− T0) m ∈ {1, . . . , M}, (12)

where we define γi ≡
√

κ2
i + 2σ2

i . Then we give the moments of the
distribution of a coupon bond by noting:

L(t, T0, W ) ≡ EW
t

[

eF0−x1(T0)F1−x2(T0)F2

]

=
1

P W (t)
eM(T0−t)−x1(t)N1(T0−t)−x2(t)N2(T0−t) (13)
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where

Ni(τ) =
F ∗

i (λi,+eγiτ − λi,−) + 2
σ2

i

(eγiτ − 1)

F ∗
i (eγiτ − 1) − (λi,−eγiτ − λi,+)

(14)

M(τ) = F ∗
0 − δτ +

2
∑

i=1

×




2κiθi

γi − κi

τ − 2κiθi

σi2

log





(F ∗
i − λi,−)eγiτ − (F ∗

i − λi,+)
2γi

σ2
i







 (15)

and
F ∗

i = Fi + Bi(W − T0) (16)

λi,± ≡ −κi ± γi

σ2
i

(17)

10.2 The relevant cumulants and other parameters

We calculate the first seven moments by the definition: µm = E[CB(T0)
m],

m ∈ {1, . . . , M}, M = 7. We provide the first seven cumulants ci in terms
of the moments µi as follows:

c1 = µ1, (18)

c2 = µ2 − µ2
1, (19)

c3 = µ3 − 3µ1µ2 + 2µ3
1, (20)

c4 = µ4 − 4µ1µ3 − 3µ2
2 + 12µ2

1µ2 − 6µ4
1, (21)

c5 = µ5 − 5µ1µ4 − 10µ2µ3 + 20µ2
1µ3 + 30µ1µ

2
2 − 60µ3

1µ2 + 24µ5
1, (22)

c6 = µ6 − 6µ1µ5 − 15µ2µ4 + 30µ2
1µ4 − 10µ2

3 + 120µ1µ2µ3 − 120µ3
1µ3 + 30µ3

2

−270µ2
1µ

2
2 + 360µ4

1µ2 − 120µ6
1, (23)

c7 = µ7 − 7µ1µ6 − 21µ2µ5 − 30µ3µ4 + 140µ1µ
2
3 − 630µ1µ3

2 + 210µ1µ2µ4 − 1260µ2
1µ2µ3

+42µ2
1µ5 + 2520µ3

1µ2
2 − 210µ3

1µ4 + 210µ2
2µ3 + 840µ4

1µ3 − 2520µ5
1µ2 + 720µ7

1. (24)
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We define also:

λ0 = N

[

c1 − K√
c2

]

, (25)

λ1 =
1√

2πc2

e
−

(K−c1)2

2c2 [c2] , (26)

λ2 = c2N

[

c1 − K√
c2

]

+
1√

2πc2

e
−

(K−c1)2

2c2 [c2(K − c1)] , (27)

λ3 =
1√

2πc2

e
−

(K−c1)2

2c2

[

c2(K − c1)
2 + 2c2

2

]

, (28)

λ4 = 3c2
2N

[

c1 − K√
c2

]

+
1√

2πc2

e
−

(K−c1)2

2c2

[

c2(K − c1)
3 + 3c2

2(K − c1)
]

, (29)

λ5 =
1√

2πc2

e
−

(K−c1)2

2c2

[

c2(K − c1)
4 + 4c2

2(K − c1)
2 + 8c3

2

]

, (30)

λ6 = 15c3
2N

[

c1 − K√
c2

]

+
1√

2πc2

e
−

(K−c1)2

2c2

[

c2(K − c1)
5 + 5c2

2(K − c1)
3 + 15c3

2(K − c1)
]

,(31)

λ7 =
1√

2πc2

e
−

(K−c1)2

2c2

[

c2(K − c1)
6 + 6c2

2(K − c1)
4 + 24c3

2(K − c1)
2 + 48c4

2

]

, (32)

where

N(d) =
1√
2π

∫ d

−∞
e− x2

2 dx, (33)
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and

γ0 = 1 +
3

c2
2

(

c4

4!

)

− 15

c3
2

(

c6

6!
+

1

2

c2
3

(3!)2

)

, (34)

γ1 = − 3

c2
2

(

c3

3!

)

+
15

c3
2

c5

5!
− 105

c24

(

c7

7!
+

c3c4

(3!)(4!)

)

, (35)

γ2 = − 6

c3
2

(

c4

4!

)

+
45

c4
2

(

c6

6!
+

1

2

c2
3

(3!)2

)

, (36)

γ3 =
1

c3
2

(

c3

3!

)

− 10

c4
2

c5

5!
+

105

c25

(

c7

7!
+

c3c4

(3!)(4!)

)

, (37)

γ4 =
1

c4
2

(

c4

4!

)

− 15

c5
2

(

c6

6!
+

1

2

c2
3

(3!)2

)

, (38)

γ5 =
1

c5
2

(

c5

5!

)

− 21

c26

(

c7

7!
+

c3c4

(3!)(4!)

)

, (39)

γ6 =
1

c6
2

(

c6

6!
+

1

2

c2
3

(3!)2

)

, (40)

γ7 =
1

c27

(

c7

7!
+

c3c4

(3!)(4!)

)

. (41)

10.3 Box-Muller transformation

If x1 and x2 are uniformly and independently distributed between 0 and 1,
then z1 and z2 as defined below have a normal distribution with mean µ = 0
and variance σ2 = 1.

z1 =
√

−2 ln x1 cos(2πx2), (42)

z2 =
√

−2 ln x1 sin(2πx2). (43)
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