7?7 pages

Source | Model | Option
Model Option | Help on tr methods |

Archived Tests

tr lrsld zcbond

Technical manuel for the implementation in C language of a lattice pricing

model

Marwan Younes ENSTA

Table des matieres

Introduction

The mathematical equations

2.1 Introduction : calculating the bond price
2.2 Dynamic of the state variables
2.3 Jump Probabilityo
2.4 Recursion and linear interpolation
2.5 Summary : the essential equations

General presentation of the lattice method
The constraints of the model
Simplifying hypotheses

Source code description

6.1 The auxiliary functions

Limitations

Typing errors in the LRS article

7?7 pages 2

1 Introduction

As part of the Personel Project in Laboratory, I have implemented in
C language the algorithm describe in the Li, Ritchken, and Sankarasubra-
manian 1995 article entitled "Lattice Models for Pricing American Interest
Rate Claims". The authors use a specific volatility structure in the Hearth-
Jarrow-Morton (hereafter HJM) paradigm to price - using a lattice technique
- options on interest rate products.

This report describes the source code used in the C program.

2 The mathematical equations

The purpose of this section is not to provide a detailed mathematical
study of the model developped by Li, Ritchken, and Sankarasubramanian
(hereafter LRS), but to list the main equations they derived, and that I shall
use in the algorithm.

2.1 Introduction : calculating the bond price

We want to calculate the price of a zero-coupon bond at date ¢, with
maturity 7', in the HJM paradigm. By definition, the price P(¢,7') is given
by

P(t>T) =ce ftT f(t,s)ds

where f(t,s) is the forward rate, and represents the interest rate at time
s that the market "sees" at time t. The evolution of forward rates for any
maturity 7 is given by a diffusion process of the form :

df(t,T) = ps(t, T)dt + o4 (t,T)dw(t), f(0,T) given V1T >t

The choice of the volatility of(¢,7") determins completely the contract
price, since for every choice the drift is determined in a unique way, using
the no-arbitrage condition :

6,) = os(1T) [oyt)ds

HJM showed that unless one severely restrains the volatility structure,
the evolution of the term structure may depend upon the entire path taken
since its initialization. But in that case, the evolution of the term structure

7?7 pages 3

isn’t Markovian in respect to a finite dimensionnal state. The implementa-
tion of pricing models for interest rate derivatives is faced with a number of
difficulties. If, for example, one uses a classic lattice model, the paths cannot
recombine (due to the non-markovian term structure). The information has
to be manipulated along the entire path, and the lattice size grows exponen-
tially (see for example HJM 1990).

Ritchken and Sankarasubramanian (RS) have determined the necessary
and sufficient conditions on the volatility structure to resolve these difficul-
ties : these conditions do not suppress the path-dependance of the volatility
structures, but summarize it in a single statistic. Thus for volatility struc-
tures in this class, the evolution of the term structure can be written in a
Markovian form in respect to two state variables.

In the RS model, the class of the volatility structure that allows the trm
structure to be represented by a two-state Markovian model is caracterized
by :

or(t,T) = ot t)k(t,T) (1)

with -
k(t,T) = e~ Jo wa)de

If the volatility structure is of the form (1), then the prices of the zero-
coupons can be expressed using the available prices at ¢ = 0, the spot interest
rate at time ¢, (t), and by a second statistic, ¢(t), representing the accumu-
lated variance of the forward rate at date ¢. If we denote :

B(t,T) = /tT k(t, u)du

and

t
o(t) = / o2 (u, t)du
0
t
= / J?(u,u)kj(u,t)du
0
The theoretical price of a zero-coupon at date ¢ and maturity 7' is given

by (see RS 1995 for the details) :

P0,T) _ (H)— _1g2

7?7 pages 4

The dynamic of the two-state Markovian process is given by :

dr(t) = p(r, ¢, t)dt + o¢(t, t)dw(t) (3a)
do(t) = (of(t, 1) — 26(t)e(1))dt (3b)

2.2 Dynamic of the state variables

The class of volatilities that we considered is very large, and doesn’t
impose any particular constraints on the spot volatility structure, os(¢,%).
In particular, the volatilities can depend on the two state variables, r(t) et

o(t) -
op(tt) = a(r(t), o(t), 1) (4)

Of particular interest if the following model :

of(t,t) = o[r@)]" (5)

RLS study the case v = 0.5 (square root model), and the case v = 1
(proportional model, which will be implemented)

RLS start by putting the interest rate process of equation (3) under a
constant volatility form using the following transformation (see Nelson and
Ramaswamy, 1990) :

1
Y0~ | T e ©

Then by denoting r(t) = k(Y (t)) the inverse function, we obtain :

dY (t) = m(Y, ¢, t)dt + dw(t) (7a)
d(t) = (o°[r(t), o(t),t] — 2r(t)p(t))dt (7b)
where :
oy oy 1 02V (t)

m(Y,p,t) = 2 p(r, ¢ﬂf)m + 502[7“@)’ o(t), 1]

7?7 pages i)

To illustrate the transform, let us consider the proportional model where
v = 1. For r(t) > 0, the specific structure of equation (7) results in :

Y () = ln[z(t)] (8a)
o(Y: 6.1) [famo, 0= O]+ o0 + L 1(0.) (8b)
m(¥,0,0) = [o(V,6,0) — - (50)

For each time increment At, the state variables (y“, ¢*) move either to a
(y**,¢°T), or to & (y*~, ¢*"). The evolution of y* is caracterized by :

vt =yt (JHD)VAL >yt m(y®, 0" OV AL > y o+ (T - 1) VAL =y~ (9)

In order to define J, we denote Z = E[m(y®, ¢, t)V/At], 6 = Sign(Z)

and we have :

J:{ 0z if Z pair (10)

d|Z| 4+ 1 otherwise

J is chosen in such a way that the two terms y*~ et y** are the upper
and lower limit of the interest rate expectation in the next time increment.
Since the process for ¢ is locally deterministic, the values ¢ and ¢% are
equal and completely determined by the current state variables (y®, ¢%). If
we denote by ¢** their common value, we get :

O = ¢ = 0™ = ¢ + | (h[y], 0", 1) — 26(t)¢"] At (11)

2.3 Jump Probability

The choice of J is made in a way that the expectation of the interest
rate lies between the two successor points y*~ and y®", which constrains
the upjump probability to be between 0 and 1. If we denote p this upjump
probability p(y*, ¢*), and taking the expectation of (y — y®), we have :

p(y* " —y") + (1 —p)(y* —y") = m(y", ¢, t)At (12)
thus :
_ myt, 9% AL+ (' —y*T)

13
ya—l— _ ya— ()

p

7?7 pages 6

This methods insures that locally, the expectation of the interest rate r
coincides with the drift, and that the variance of the approximated processus
converges towards the true variance when taking an increasingly precise time
partition.

2.4 Recursion and linear interpolation

In order to calculate recursively the price of an option at time 7, knowing
the option price at time ¢ + 1 that we denote by g¢;11(y%, ¢*), we using the
following formula :

gi(y", %) = pgiri (", ™) + (1 = p)gi1 (y* ™, ¢™)]e 2 (14)

In reality, since ¢** is completely determined by (y%, ¢*) the values of the
bond at the successor nodes can be unavailable.
For example, we can imagin that the price of the bond for (y®*, ¢**) isn’t
available. Through our construction method, we know that in this case we
shall have the prices for the states (y**,¢%") and (y**, ¢*), where ¢ <
¢v* < ¢F.
All we need to do to derive the correct price is a linear interpolation :

9i+1(ya+> (,ba*) = gi+l<ya+> ¢‘1*) + <w> (9i+1(ya+, ¢T) —gi+1(ya+, ¢‘1*))
(15)

2.5 Summary : the essential equations

The algorithm won’t use, of course, all the equations we established in
the previous section.

— We shall need the following equations (8a) and (9) to calculate the
new interest rate, thus obtaining :

rot — eln[r(t)]—ﬁ-a(J-‘rl)\/E (16)
o= — eln[r(t)]—ﬁ-a(J—l)\/Kt (17)

J is calculated using equation (10).

— The successor of ¢(a) is calculated using (11).

7?7 pages 7

— The up-jump probability is derived of equation (13).
— The bond price is given by equation (2)

— Finally, the linear recursion on option prices is obtained using (14)
and interpolation (15)

3 (eneral presentation of the lattice method

The lattice method used here is very conventionnal : we first build a

descending tree, meaning that from the first node we build two sons, and
each of these two nodes will give birth to two new nodes, etc. Fach generation
represents one time increment At, the total number of generations multiplied
by this time increment is equal to the time to maturity of the du contrat.
This lattice has the important property of having its branches recombine,
property that results from the mathematical choice of constraining the class
of admissible volatilities, in such a way that the terme structure is represented
by a two-state Markovian structure.
After building the descending lattice, we calculate the price of the bonds at
the terminal nodes. Knowing the strike, we can calculate the price of the
option at maturity for each node. We shall then climb back the lattice, using
the upjump probability, to calculate recursively at each generation the price
of the option, until finally reaching the initial node.

4 The constraints of the model

This algorithm demands important constraints in terms of memory. Let
us examin what information we shall need to store in order to first build the
lattice, then climb it recursively.

— We use a two-state Markovian process, which are the interest rale r

and the accumulated variance of the forward rate ¢. We start by sto-
ring the interest rate r in each node of the tree.

— There are as many values of ¢ at each node as paths taken in the
lattice that arrive in that node, since equation (11) clearly shows that
the successor ¢** of element ¢® depends on the latter and thus, from
node to node, depends on the path taken. Keeping in line with the
article, rather that storing all the ¢’s obtained in the node, we shall
only keep the minimum and the maximum.

7?7 pages 8

We can thus defined using those two elements an interval [@in, Omaz)
that we partition into m equidistant points (¢, = ¢*(1) < ¢%(2) <
e < P"(M) = Ppmaz), that we use to calculate the successor points in
the nodes below, and from those successor points we can extract the
minimum and the maximum to define an interval that we partition,
we then use this partition to calculate the successor points, etc...

— To avoid repeating the same calculations, we’ve chosen to store in each
node the partition step of the interval [¢,,in, Omaz] as well as the array
of ¢ successors : for each element of the ¢(k) partition, we calculate
the ¢(k)* that will succede it and we store it in a new array (in reality
comparing it to the minimum and maximum of a new array, to keep
only those two elements).

— To avoid visiting the same node twice while building the lattice, we
shall embed the nodes with a flog that is toggled from 0 to 1 when
the node is visited.

— During the recursion (while climbing back the lattice from the termi-
nal nodes), we need to know the prices of the option at each node, as
well as the upjump probability ; since these two values depend on ¢
(and since we have m different values for ¢ at each node) , we shall
represent them them as arrays of m elements. While handling an ame-
rican option we shall need to know the value of the bond price at each
node and for the different ¢’s (since it’s calculated using equation (2)) :
we thus need to store the bond price in the form of an array of size
m, which is the number of partition points of the interval [d,in, Pmaz]-

5 Simplifying hypotheses

— We consider the term structure to be flat initially. That is we take
f(0,t) constant.

— This strike is taken at-the-money, meaning that the strike is equal to
the forward price of the bond.

— We only consider the case of a proportionnel volatility structure.

7?7 pages 9

6 Source code description

We shall use the type double for all the real numbers used. We need three
auxiliary functions, that are given in the beginning of our code, as well as a
new structure, well-suited for storing the information contained in each node.

6.1 The auxiliary functions

They are the min function and the max function, and they calculate the
minimum and maximum of a couple.
The function calcule J calculates the coefficient J according to the rules

defined in (10).

6.2 The structure BOX :

We shall need to store in each node specific information relative to ¢, r,
the upjump probability p, etc. To that end, we use the BOX structure. It
includes the following elements :

— a flag of type int to detect if the node has already been visited during
the lattice exploration.

— An array containing two elements phi[2] of type double, where we shall
store the maximum and the minimum of the ¢ that we’ve calculated
using the ¢’s of the node in the precedent generation.

— A pointer bondprice on an element of type double, that we shall use
to represent the price of the bond. This information is only necessary
in the case of an american option, where one has to calculate the
maximum between the option price calculated through recursion and
the payoft if the option is exercised immediatement, in order to derive
the option price.

— A pointer optionprice on an element of type double, that we shall
sue to store the option price

— A pointer upjump of type double, where we shall store the upjump
probability.

6.3 The main functions

There is one main function, called "pricer", which calculates the call/put
european/american option. To distinguish between the different cases, two
boolean operators specify which case is to be considered. The function is of

7?7 pages 10

type void, and takes in input the following arguments suivants :

— The number of elements in the time partition, given by time__partition,
of type int.

— The number of elements in the partition of ¢ (the accumulated va-
riance of the forward rate), given by nb__partition__phi, of type int.

— The maturity of the option, given by maturity of type int.

— The initial interest rate r and ¢, given by r__0 and phi_ 0, of type
double.

— The duration of the contract, given by contract__duration.
— The face value of the bond considered, face__value of type double.
— The strike of the option : strike_ price, of type double.

— The volatility sigma, of type double.
— The exogenous factor k, of type double.

— Finally result the result of the calculation passed as address to the
function.

The function uses several local variables of which :

maturity
nb__partition__phi—1) "

— time_increment is the time increment At = (

— sqrt__time__increment is simply the square root of the precedent
variable, calculated once to avoid repeating it at each loop.

— forward__price is the bond’s forward price.

These functions store the option price they calculate in the memory space
indexed by the result pointer .

We shall use a triangular inferior matrix ro represent the lattice. The first
node will be the first element of the first line and the first column, the next
two nodes will be the first two elements of the second line, etc...

The operations performed by the function are the following :

7?7 pages 11

1. We start by dynamically allocatin the necessary memory : in order
to do that, we do a loop on the lines while allocating the necessary
memory to a pointer of type BOX. We then perform a second loop
on the elements of the matrix (those under the diagonal), to allocate
in each element of type BOX - actually each node of the lattice - the
necessart memory for the different arrays. We are referring of course
to the arrays option__price and up__jump (if we were handling an
american option, the array bond__price) of size nb__partition__phi.

2. We then initialize the first node of the lattice, since we know all the
necessary information to fill this box : the initial interest rate r__ 0,
and the accumulated variance of the forward rate phi_ 0.

3. We then loop on the elements of the triangular matrix (using, like
above, two loops of type for, the first on the lines and the second on
the columns), except the last line, to calculate for each node its suc-
cessor, that is calculating the interest rate and the ¢ elements of the
successor nodes.

At the node (i,j) (line i, column j), we calculate the ¢ partition step
(that we allocate in the variable pas), since we know the extreme-
ties of the interval and the number of elements of the partition. We
also calculate v and m using equations (8b) and (8c), as well as the
successor of phi[0], and the variation of the successor (accroisse-
ment__phi_ successeur) when we move from ¢(k) to ¢(k+1) in the
partition : this allows us, while performing a loop on all elements of the
partition and adding after each loop to the variable phi__successeur
the value accroissement__phi_ successeur, to derive the successor
phi__successeur[n] of the partition element (phi[n]) on which we
are looping.

4. Inside the previous loop on the matrix elements, that is at the level of
each node being processed, we loop on all the elements of the ¢ parti-
tion of the node : we calculate J using m and sqrt__time__increment
(see (10)) which allows us to calculate the interest rate r of the suc-
cessor, and depending on whether the son has allready been visited or
not, we store that interest rate.

In the same manner, if the successor has not been accessed, we store
the value of phi__successeur in the two elements of the array, and if it

7?7 pages 12

has already been visited we take the maximum of the previous maxi-
mum and phi_ successeur, and we attribute that value to phi[l].
We perform a similar operation for the minimum, that we attribute
to phi[0]. The calcultion of m and J allows us, using equation (13), to
derive the upjump probability that we attribute to the proper array
location (up__jump|[n]).

5. We then loop on the terminal nodes to allocate the partition step to
the according variable pas.

6. We loop again on the terminal nodes : for each node, we loop on the
¢ partition to calculate the option price at the maturity date and al-
locate it in the corresponding variable option__price[n]. In order to
do that it is sufficient to calculate the bond price using (2),then using
the call or put formula depending on the case : ((Sy — K); for a call
or (K — Sr), for a put).

7. We shall finally climb back the lattice : this is done through an upward

loop on the lines (from the bottom of the matrix to the top), which
includes a loop on the columns, which itself includes a loop on the ¢
partition : in this last loop, we calculate using the linear interpolation
of equation (15) the termes g;1(y*", ™) and g;41(y*~,) that are
then stored in the variables gplus and gmoins.
In order to determin which terms surround ¢*, we verify if the latter
is the maximum element of the partition : if it is, then we don’t need
to do a linear interpolation, and if not we calculate the number of the
elements that surrounds ¢* in the partition de ¢ (we take the integer
value of the distance between ¢* and the minimum of the partition
divided by the partition step). Finally, we use equation (14) for the
upward recursion, which concludes the loop.

7 Limitations

Limited memory available : in the case of a european option, a time
partition of 800, with a phi partition of 300 is impossible to calculate with
256 MB RAM computers.

7?7 pages 13

8 Typing errors in the LRS article

Page 728, Figure 2 : “computed using équation 6a” instead of “computed
using équation 8b” Page 730, Figure 3 : “The strike price is 22.3130” instead
of “The strike price is 21.3130”

	Introduction
	The mathematical equations
	Introduction : calculating the bond price
	Dynamic of the state variables
	Jump Probability
	Recursion and linear interpolation
	Summary: the essential equations

	General presentation of the lattice method
	The constraints of the model
	Simplifying hypotheses
	Source code description
	The auxiliary functions
	The structure BOX:
	The main functions

	Limitations
	Typing errors in the LRS article

