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Abstract

We consider the problem of pricing step double barrier options with binomial lattice

methods. We introduce an algorithm, based on interpolation techniques, that is robust and

efficient, that treats the “near barrier” problem for double barrier options and permits the

valuation of step double barrier options with American features. We provide a complete

convergence analysis of the proposed lattice algorithm in the European case.

Keywords: step double barrier options, American options, binomial method, interpolation, rate
of convergence.

Premia 18

Introduction

Double Barrier options have become quite popular especially in the foreign exchange markets.
A double barrier option has a lower barrier and an upper barrier which control the option.
Once either of these barriers is breached, the status of the option is immediately determined:
either the option comes into existence if the barrier is of knock-and-in type, or ceases to exist
if the barrier is of knock-and-out type. Step double barrier options are more flexible contracts
that allow investors to set knock-and-out or knock-and-in levels they want. The feature of
these contracts is that the double barrier is not constant as in the standard case, but it evolves
as a step function of time. Guillame [12] presents closed-form formulae for different types of
two-step double barrier options in the Black-Scholes model, but no analytical expressions are
given for more general step barrier options. In the latter case the author proposes a conditional
Monte Carlo method scheme enhanced with control variate.

In this article we deal with numerical tree methods because they permit to easily treat
general multi-step double barrier options, including early exercise features.

The classical CRR approach may be problematic when applied to barrier options because
the convergence is very slow compared with the standard case. A possible solution widely
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shared in literature is to feed the algorithm with the right value of the barrier. In fact the
convergence behavior improves when the barrier lies exactly (or is very close) on a layer of the
tree nodes. Boyle-Lau [2] choose the number of time steps in order to minimize the distance
between the barrier and a layer of nodes. Figlewky-Gao [6] introduce an Adaptive Mesh Model
that refine the tree mesh near the barrier. Ritchken [15] aligns a layer of nodes of the trinomial
tree with each barrier. Later Cheuck-Vorst [3] present a modification of the trinomial method
(based on a change of the geometry of the tree) which allows to set a layer of nodes exactly
on the barrier for every choice of the number of time steps. Gaudenzi-Lepellere [8] introduce
suitable interpolations of binomial values and Gaudenzi-Zanette [9] construct a tree where all
the mesh points are generated by the barrier itself. However, all the previous methods are not
able to price efficiently double barrier options.

In order to deal with double barrier options Dai-Lyuu [5] introduce the bino-trinomial tree
that is constructed so that both barriers exactly hit two lines of the tree nodes. Numerical
results show that this method is not able to treat the “near barrier” problem, occurring when
the initial asset price is very close to one of the barriers.
To overcome this problem we introduce a method (called Binomial Interpolated Lattice) that
generates the binomial tree points using the Dai-Lyuu [5] binomial mesh but forgets the trino-
mial part using just simple interpolations. Moreover, the extension of this method to multi-step
double barrier options (including American features) is straightforward and it allows to obtain
accurate estimates of the prices in a very short time.

We analyze the convergence of the proposed method and those of the Dai-Lyuu procedure.
We show that the rate of convergence of the methods is the same, proving that the approxima-
tion error is equal in both cases and that it is o( 1

N1−α ), for all α ∈ (0, 1) (where N is the number
of steps of the binomial lattice). The analysis allows us to clarify the conditions in which the
Dai-Lyuu method presents some drawbacks in the “near barrier” case.

The paper is organized as follows. In Section 1 we present the model and the bino-trinomial
tree method for continuous double barrier options and in Section 2 we describe the new proposed
lattice algorithm for double barrier options. In Section 3 we provide rate of convergence results
of our proposed binomial method and we remark that it is the same as Dai and Lyuu algorithm.
Moreover, we describe an analysis of the troubles of the bino-trinomial method in the “near
barrier” case. In Section 4 we provide the extension of this method to step double barrier
options. Finally, in Section 5, we compare the results obtained with our algorithm with Dai-
Lyuu bino-trinomial tree (double barrier options), Guillaume closed-form formulae (two step
double barrier options) and Monte Carlo method (multi-step double barrier options).

1 The model and the bino-trinomial method

In this paper, we consider a market model where the evolution of a risky asset is governed by
the Black-Scholes stochastic differential equation

dSt

St

= rdt+ σdBt, S0 = s0, (1)

where (Bt)0≤t≤T is a standard Brownian motion under the risk neutral measure Q. The non-
negative constant r is the force of interest rate and σ is the volatility of the risky asset.
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Let M be the number of steps of the binomial tree and ∆τ = T
M

the corresponding time-step.
The standard discrete binomial process is given by

S(i+1)∆τ = Si∆τYi+1, 0 ≤ i ≤ M − 1,

where the random variables Y1, . . . , YM are independent and identically distributed with values
in {d, u}. Let us denote by p = P(YM = u). The Cox-Ross-Rubinstein tree corresponds to the

choice u = 1
d

= eσ
√

∆τ and

p =
er∆τ − e−σ

√
∆τ

eσ
√

∆τ − e−σ
√

∆τ
.

Now, let us consider a continuous double barrier option with barrier levels L (lower barrier)
and H (higher barrier). In order to treat the double barrier options pricing problem Dai-Lyuu
[5] introduce the following bino-trinomial method. After a logarithmic change of the barriers
l = log( L

s0

) and h = log( H
s0

) they first construct in the log-space a binomial CRR random walk

with space step σ
√

∆T , where the new time step ∆T is defined as follows.
Considering the CRR choice of time step ∆τ = T

M
, the new time step is defined such that

∆T =
(

h− l

2kσ

)2

where k = ⌈ h−l
2σ

√
∆τ

⌉. By this way, the layers coincide with down barrier L and up barrier H and

the new number of steps is M ′ = ⌊ T
∆T

⌋. Now, it is possible to build a binomial structure of M ′

time steps with binomial coefficient u = 1
d

= eσ
√

∆T and probability

p =
er∆T − e−σ

√
∆T

eσ
√

∆T − e−σ
√

∆T
. (2)

The remaining amount of time to make the whole tree span T years, that we denote with ∆T ′,
is defined as

∆T ′ = T −












T

∆T







−1



∆T

and corresponds to the length of the first time step of the bino-trinomial tree. Finally, Dai-Lyuu
construct a 1-step trinomial tree, using a moment matching procedure, starting from s0 and
reaching three nodes of the previous binomial CRR tree at time ∆T ′. Specifically, at time ∆T ′

they select the central node, that we call Yl, such that it is the closest lattice point to the mean
of the logarithmic stock price process Yt = logSt. Once this point is chosen they consider two
points, one below and one above Yl: Yl−1 and Yl+1, respectively. Then, in order to connect
these three points to the starting one, they match the mean and the variance in ∆T ′ of the
continuous process Yt with the mean and the variance of the discrete process. We recall that
the mean and the variance of Yt are equal to

µ = (r − σ2/2)∆T ′,

V ar = σ2∆T ′,
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respectively. So, the branching probabilities (that we call pl−1, pl, pl+1) can be derived by solving
the following three equations

pl−1Yl−1 + plYl + pl+1Yl+1 = µ,

pl−1(Yl−1 − µ)2 + pl(Yl − µ)2 + pl+1(Yl+1 − µ)2 = V ar,

pl−1 + pl + pl+1 = 1.

Then, the merge of the binomial tree of M ′ steps and the 1-step trinomial tree provide all the
mesh structure. The pricing of European or American continuous double barrier options can be
done by backward dynamic programming procedure using this bino-trinomial mesh structure.
The numerical results in Section 5 show that this binomial-trinomial structure is not able to
treat the “near barrier” problem. In order to overcome this, we introduce a simpler binomial
structure called the "Binomial Interpolated Lattice" approach.

2 The Binomial Interpolated Lattice approach for dou-

ble Barrier options

In the following, we will use the same binomial parameters ∆T , u, d and p of Dai-Lyuu [5],
computed as described in the previous section. Moreover, we modify the number of steps
considering a new number of time steps N := M ′+2 in order to perform a suitable interpolation
in time.

First of all, we construct a binomial mesh structure where all the binomial nodes are gen-
erated by the barriers. Therefore we build a tree which nodes at maturity are indeed all of
type

Lu2j, j = 0, ..., k,

so that Lu2k = H (where, as in the previous section, k = ⌈ h−l

2σ
√

T

M

⌉ ).

The underlying asset at a generic node (i, j), ∀ i = 0, ..., N − 1, is

Si,j =







Lu2j, j = 0, ..., k if N − i is even

Lu2j+1, j = 0, ..., k − 1 if N − i is odd

We now proceed to the description of the pricing algorithm in the case of double barrier knock-
and-out options. We shall denote by vN(ti, Si,j) the option prices at time ti depending on the
underlying Si,j.

The option prices at maturity are

vN(tN , SN,0) = vN(tN , SN,k) = 0 and vN(tN , SN,j) = ψ(SN,j), ∀j = 1..., k − 1,

where ψ(x) is the payoff function. For call options ψ(x) = max{x−K, 0}, while for put options
ψ(x) = max{K − x, 0}, where K is the strike price.

At time steps i = N − 1, ..., 0 the option prices are backwardly computed by means of the
formulas

vN(ti, Si,j) = e−r∆T [pvN(ti+1, Si+1,j+1)+(1−p)vN(ti+1, Si+1,j)], j = 0, ...k−1, if N−i is odd,
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vN(ti, Si,j) = e−r∆T [pvN(ti+1, Si+1,j)+(1−p)vN(ti+1, Si+1,j−1)], j = 1, ...k−1, if N−i is even.

The values at the barriers vN(ti, L), vN(ti, H), are set equal to 0 at every step i with N − i
even, in order to take into account the “out” feature of the barrier option.

At time steps i = 0 and i = 2 we choose four nodes (two less and two greater than s0).
In order to approximate the price of the double barrier option we first interpolate in time the
points chosen so that we obtain four “precise” prices of the option at time 0. Then we proceed
with a Lagrange four points interpolation in space, i.e. we interpolate the four prices at s0. So,
we provide the estimation of the option price at time 0 and initial underlying asset s0. The
procedure is illustrated in Figure 1.

Figure 1: Binomial Interpolated Lattice Method. Double Knock-Out Barrier Option. The price
at s0 is obtained by a Lagrange four points interpolation in space of the prices at the empty
circles, such prices are obtained by a linear interpolation in time of the prices at the nodes
denoted by squares.

We remark that there are some cases in which we need to modify the choice of the interpo-
lation points and this happens when s0 is close to the barrier. Let us suppose that s0 is near to
the lower barrier L. Now we have two possible cases: there are no points between s0 and the
barrier L and there is only one point between s0 and the barrier L. In the first case we select
at times t0 and t2 the two points above s0 and the point on the barrier. So we perform three
interpolations in time using the chosen points and we obtain three different prices at time 0.
Then we consider the polynomial passing through these three points and we evaluate it at s0

(see Figure 2, cases a) and b)). We remark that in case a) the mesh constructed provides at
times t0 and t2 a node on the barrier L, while in case b) there is not a node on the barrier
by construction but we can always consider it in the interpolation procedure because here we
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know that the price is equal to 0. In the second case we choose four points at t0 and t2: the
two above s0, the point below s0 and the point on the barrier. So we interpolate linearly four
times and then we evaluate at s0 the polynomial passing through the four points obtained at 0.
See Figure 2, cases c) and d). We observe again that in the case in which there is not a node
on the barrier by construction we can always consider it in the interpolation procedure.

Figure 2: Binomial Interpolated Lattice Method. Double Barrier Knock-Out Options in the
“near barrier case”. In cases a) and b) the interpolation in space involves three nodes: at times
t0 and t2 we select the two nodes above s0 and the node on the barrier. We observe that case
a) occurs when N − 2 is even and case b) when N − 2 is odd. In cases c) and d), instead, we
select four nodes at times t0 and t2. Case c) occurs when N − 2 is odd and case d) when N − i
is even.

In the American case the procedure is similar with suitable differences for the prices values
on the barriers. In particular we set vN(ti, L) = ψ(L) and vN(ti, H) = ψ(H) for each time step
i = N, ..., 0 with N − i even (see Remark 5.1 in [8]). In the backward procedure, as usual, we
need to compare the early exercise with the continuation value at each node of the tree.

The procedure previously described provides an efficient evaluation of double barrier options
both in European and American case. We will show this in the last section, concerning the
numerical results, where our method will be compared with the bino-trinomial algorithm.

3 Rate of convergence in the European case

In this section we study the rate of convergence of the Binomial Interpolated Lattice approach.
Gobet in [10] gives an asymptotic expansion of the standard binomial tree error and proves
that the main contribution term depends on the distance between the effective barrier and
the tree overshoot of the barrier itself (see Theorem 3.3 in [10]). In the following we use this
result and some properties of the Lagrange polynomials providing the final interpolations to
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show that the approximation error of the Binomial Interpolated Lattice scheme is o(∆T 1−α),
for every α ∈ (0, 1). We recall that vN(ti, Si,j) is the approximated price on the lattice at time
ti and asset price Si,j. Moreover, we call v(ti, Si,j) the corresponding price in the continuous
model at time ti and asset price on the lattice Si,j and v(t, s) the continuous price at time t
and underlying price s with (t, s) ∈ [0, T ] × R+. We fix now the starting point s0. According
to what developed in Section 2, at time step i = 2 , i.e. at time T − (N − 2)∆T , we choose
four nodes (two less and two greater than s0) and similarly we do at time step i = 0, i.e. at
time T −N∆T . We observe that the mesh constructed provides the same four nodes at times
t0 and t2 and we set them as follows

Sj−2 < Sj−1 ≤ s0 < Sj < Sj+1,

where Sk := S0,k = S2,k, for all k ∈ {j − 2, j − 1, j, j + 1}. At the chosen points the algorithm
gives the prices

vN(ti, Sj−2), v
N(ti, Sj−1), v

N(ti, Sj), v
N(ti, Sj+1), i = 0, 2,

respectively. Now, as k = j−2, j−1, j, j+1, we write down the expressions of the approximated
option prices vN(0, Sk) obtained by linearly interpolating in time the points

(t0, v
N(t0, Sk)), (t2, v

N(t2, Sk)), k = j − 2, j − 1, j, j + 1.

This means that we set

vN(0, Sk) = qk(0), k = j − 2, j − 1, j, j + 1,

where qk(t) are the linear interpolating polynomials given by

qk(t) = a0(t)v
N(t0, Sk) + a2(t)v

N(t2, Sk), with a0(t) =
t− t2
t0 − t2

, a2(t) =
t− t0
t2 − t0

.

Then, in order to define the precise price at time 0 we interpolate in space through a Lagrange
polynomial the points

(0, vN(0, Sj−2)), (0, v
N(0, Sj−1)), (0, v

N(0, Sj)), (0, v
N(0, Sj+1)).

This means that we set
vN(0, s0) = q(s0),

where q(x) is the Lagrange polynomial given by

q(x) = bj−2(x)vN(0, Sj−2) + bj−1(x)vN(0, Sj−1) + bj(x)vN(0, Sj) + bj+1(x)vN(0, Sj+1),

with (for details see [16])

bj−2(x) =
(x− Sj−1)(x− Sj)(x− Sj+1)

(Sj−2 − Sj−1)(Sj−2 − Sj)(Sj−2 − Sj+1)
,

bj−1(x) =
(x− Sj−2)(x− Sj)(x− Sj+1)

(Sj−1 − Sj−2)(Sj−1 − Sj)(Sj−1 − Sj+1)
,

bj(x) =
(x− Sj−2)(x− Sj−1)(x− Sj+1)

(Sj − Sj−2)(Sj − Sj−1)(Sj − Sj+1)
,

bj+1(x) =
(x− Sj−2)(x− Sj−1)(x− Sj)

(Sj+1 − Sj−2)(Sj+1 − Sj−1)(Sj+1 − Sj)
.
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So, by resuming, we set the approximated price at time 0 as

vN(0, s0) =
j+1
∑

k=j−2

∑

i∈{0,2}
ai(0)bk(s0)v

N(ti, Sk).

Proposition 1. The Binomial Interpolated Lattice error

ErrBIL(N) = |vN(0, s0) − v(0, s0)|

resulting from the algorithm behaves as follows:

ErrBIL(N) = o(∆T 1−α),

for every α ∈ (0, 1).

Proof. Since
∑

k∈{j−2,j−1,j,j+1}
bk(s0) = 1,

∑

i∈{0,2}
ai(0) = 1,

we can write

ErrBIL(N) =

∣

∣

∣

∣

∣

∣

∑

k

∑

i

ai(0)bk(s0)(v
N(ti, Sk) − v(0, s0))

∣

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∣

∑

k

∑

i

ai(0)bk(s0)(v
N(ti, Sk) − v(ti, Sk))

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∑

k

∑

i

ai(0)bk(s0)(v(ti, Sk) − v(0, s0))

∣

∣

∣

∣

∣

∣

.

Let us consider first the generic term in the second sums above: by applying Taylor’s formula
around the point (0, s0) we can write

v(ti, Sk) − v(0, s0) = ∂tv(0, s0)ti + ∂xv(0, s0)(Sk − s0) +
1

2
R(i, k),

where

R(i, k) = ∂2
x,xv(0, s0 + θi,k(Sk − s0))(Sk − s0)

2 + ∂t,tv(θi,kti, s0)t
2
i

+ 2∂2
t,xv(θi,kti, s0 + θi,k(Sk − s0))(Sk − s0)ti,

and θi,k, θi,k are suitable points in [0, 1]. By using the global estimates in Gobet [10] (Lemma
3.1), we conclude that all the partial derivatives of v(t, s) are bounded around (0, s0). So, we
can immediately conclude that

∣

∣

∣

∣

∣

∣

∑

k

∑

i

ai(0)bk(s0)R(i, k)

∣

∣

∣

∣

∣

∣

≤ O(∆T ).
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Moreover we have

∑

k

∑

i

ai(0)bk(s0)(∂tv(0, s0)ti + ∂xv(0, s0)(Sk − s0))

= ∂tv(0, s0)
∑

i

ai(0)ti + ∂xv(0, s0)
∑

k

bk(s0)(Sk − s0) = 0

because, by construction, q1(t) =
∑

i ai(t)ti is the linear polynomial which interpolates the
points (ti, ti), i = 0, 2, so that q1(t) = t and then q1(0) = 0. Similarly, the polynomial
q2(x) =

∑

k bk(x)(Sk −s0) is the Lagrange polynomial which interpolates the points (Sk, Sk −s0),
k ∈ {j − 2, j − 1, j, j + 1}, so that q2(x) = x− s0 and again q2(s0) = 0. Therefore, we get

ErrBIL(N) ≤
∣

∣

∣

∣

∣

∣

∑

k

∑

i

ai(0)bk(s0)(v
N(ti, Sk) − v(ti, Sk))

∣

∣

∣

∣

∣

∣

+O(∆T ).

In order to deal with the generic term in the above sums we define Yk := logSk, for all
k ∈ {j − 2, j − 1, j, j + 1}, uN(ti, Yk) := vN(ti, e

Yk) and u(ti, Yk) := v(ti, e
Yk). We apply now

Theorem 3.3 in Gobet [10]. We stress that the probability p of an up jump in (2) differs from
the probability defined in Gobet for an O(

√
∆T ), but it is easy to see that the result in [10]

still remains valid in our case. Moreover, we remark that asymptotic expansion of the standard
binomial tree error, that we call Err(N), given in [10] is

Err(N) = C1(HN −H) + C2(L− LN) + o(
√

∆T ),

where HN is the first node of the tree over H, LN is the first node of the tree lower than L
and C1 and C2 are two positive constants. Actually, straightforward computations give that
the error above can be written as follows

Err(N) = C1(HN −H) + C2(L− LN) + R∆T ,

where R∆T ≤ O(∆T log(1/∆T )) (for details see pag.11 of Gobet [10]). As a consequence, one
has for every α ∈ (0, 1) that

Err(N) = C1(HN −H) + C2(L− LN) + o(∆T 1−α).

Now, the Binomial Interpolated Lattice is constructed so that two layers of nodes coincide with
the down barrier L and the upper barrier H, therefore the main contribution term in the error
expansion, that is of order O(

√
∆T ), vanishes. So, we get

vN(ti, Sk) − v(ti, Sk) = uN(ti, Yk) − u(ti, Yk) = o(∆T 1−α) for every i, k.

The statement now follows. �

Remark 1. We observe that Gobet convergence result is the only one that deals with the double
barrier case and, moreover, it is applicable to a generic payoff function (for details see [10]).
Lin and Palmer [14] have recently given explicit formulas for the coefficients of the asymptotic
expansion of the CRR binomial price, but they treat single barrier European call options. In
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that case they obtain that the rate of convergence is of order ∆T if the barrier lies exactly on a
node of the tree. For double barrier options it may be possible to derive similar formulas for the
coefficients. In fact, we remark that in Gobet error expansion, since α can be taken arbitrarily
close to zero, one essentially can assert that

Err(N) = C1(HN −H) + C2(L− LN) +O(∆T ).

Remark 2. We observe that the use of the interpolation technique is strategic in order to get
that the rate of convergence of the Binomial Interpolated Lattice is o(∆T 1−α), for α ∈ (0, 1).
In fact, we do not know a priori if the initial point s0 is a point of the lattice and in general
it is not: our procedure allows us to numerically compute the option price for every observed
starting condition s0 ∈ (L,H). So if we want to directly approximate v(0, s0) with vN(t1, s̃),
where (t1, s̃) is a point of the lattice “close” to (0, s0), then one could have |s0 − s̃| = O(

√
∆T ).

Therefore, in this case one could have

v(0, s0) − vN(t1, s̃) ≃ O(t1) +O(|s0 − s̃|) = O(
√

∆T ).

Thus, it is only thanks to the interpolation rule that the error contribute of order O(
√

∆T )
always vanishes.

Remark 3. Let us consider the rate of convergence of the bino-trinomial tree. As described in
Section 1, Dai and Lyuu build the grid in the log-space until time t2 and then they construct a 1-
step trinomial tree in the remaining amount of time ∆T ′ using a moment matching procedure.
Specifically they select at time t2 three nodes that are closer to the mean of the logarithmic
process at time ∆T ′ and they define the three branching probabilities such that the first two
moments of the logarithmic stock price process are matched (see Dai-Lyuu [5] for details). As
in the proof of Proposition 1 we call Yi,k = logSi,k and uN(ti, Yk) = vN(ti, e

Sk) for all i, k.
Moreover we define y0 := log s0 and we call u(t, y) = v(t, ey) for all (t, y) ∈ [0, T ] × R. Now if
we call the chosen points at time t2

Y2,l−1, Y2,l and Y2,l+1,

then the Dai and Lyuu algorithm gives the prices

uN(t2, Y2,l−1), uN(t2, Y2,l), u
N(t2, Y2,l+1)

and the option price of the bino-trinomial tree at time 0 is obtained by one more application of
the backward induction that uses the trinomial approach, i.e.

uN
DL(0, y0) = e−r∆T ′

1
∑

k=−1

pku
N(t2, Y2,l+k).

We can now proceed in the analysis of the convergence rate using arguments similar to the ones
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in Proposition 1. In fact, we can write

ErrDL(N) = |uN
DL(0, y0) − u(0, y0)|

≤ O(∆T ′) +

∣

∣

∣

∣

∣

∣

1
∑

k=−1

pk(uN(t2, Y2,l+k) − u(t2, Y2,l+k))

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

1
∑

k=−1

pk(u(t2, Y2,l+k) − u(0, y0))

∣

∣

∣

∣

∣

∣

≤ O(∆T log(1/∆T )) +

∣

∣

∣

∣

∣

∣

1
∑

k=−1

pk(u(t2, Y2,l+k) − u(0, y0))

∣

∣

∣

∣

∣

∣

,

where the estimate on the right hand side follows by applying Gobet’s result. Again by using
Taylor’s expansion, one gets for every α ∈ (0, 1)

ErrDL(N) = o(∆T 1−α) +

∣

∣

∣

∣

∣

∣

∂xu(0, y0)
1

∑

k=−1

pk(Y2,l+k − y0)

∣

∣

∣

∣

∣

∣

.

Now, the sum in the above r.h.s. is of order O(∆T ′). In fact we recall that the mean of the
logarithmic process Yt = log(St) at time ∆T ′ is y0 + (r − σ2/2)∆T ′ and that the probabilities
pk are calculated such that it coincides with the mean of the discrete approximating process, so
we can state that

∑1
k=−1 pk(Y2,l+k − y0) = O(∆T ′). Therefore, we obtain

ErrDL(N) = o(∆T 1−α),

and we conclude that the rate of convergence of the bino-trinomial tree is the same as our
Binomial Interpolated Lattice.

Remark 4. We observe that there are some cases in which the procedure of the bino-trinomial
tree can bring to numerical problems. In fact, if we fix the number N of time steps, it may
happen that for some values of the starting point s0 one or two of the three nodes required at
time ∆T ′ to build the 1-step trinomial tree fall out of the grid. We briefly recall that in the
bino-trinomial tree procedure the central node (we call it Y2,l from Remark 3) is selected such
that it is the closest to the mean of the process (i.e. log s0 + (r − σ2/2)∆T ′), while the nodes
Y2,l+1 and Y2,l−1 are the two nodes adjacent to Y2,l (above and below Y2,l respectively). In the
following we suppose that r− σ2/2 ≥ 0. Let us consider first the case in which the initial point
log s0 is near the higher barrier logH. We need to consider two different cases:
i) the mean of the process is above the barrier logH:

log s0 + (r − σ2/2)∆T ′ ≥ logH;

ii) the mean of the process is below the barrier logH:

log s0 + (r − σ2/2)∆T ′ < logH.

The case i) is verified when

He−(r−σ2/2)∆T ′ ≤ s0 < H, (3)
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so for this range of values for s0 the node Y2,l lies on the barrier (i.e. Y2,l = logH), so that
node Y2,l+1 falls out of the grid. Also in case ii) it may happen the same phenomenon. It is
easy to see that if

He−(r−σ2/2)∆T ′−σ
√

∆T ≤ s0 < H, (4)

then again Y2,l = logH. From (3) and (4) we deduce that for the values of s0 such that

He−(r− σ
2

2
)∆T ′−σ

√
∆T ≤ s0 < H, (5)

the bino-trinomial tree may degenerate in the above sense. As for the lower barrier, a similar
discussion gives that if

L < s0 ≤ Le−(r−σ2/2)∆T ′+σ
√

∆T , (6)

then Y2,l = logH. We observe that we can write the above inequality because the exponent on
the right side is greater than 0 for a sufficiently large value of N . And whenever r − σ2/2 < 0,
one can proceed similarly and obtain the same intervals. It is clear that for N large enough any
s0 ∈ (L,H) does not satisfy both (5) and (6). Nevertheless, for fixed values of N (5) and/or (6)
may hold, so that in practice the bino-trinomial approach converges slowly than our procedure.
So we conclude that asymptotically the two methods behave the same, but when s0 is a “near
barrier” point the Binomial Interpolated Lattice has the advantage of converging faster than the
bino-trinomial method.

Remark 5. We remark that the proof of the rate of convergence in the case in which we take
into account only three points in the space interpolation (“near to the barrier” case) can be
treated similarly to the previous one (“far from the barrier” case), so we omit it. Moreover, we
observe that in this specific case we always find the three points used in the interpolations.

4 The Binomial Interpolated Lattice approach for step

double Barrier options

In this section we apply the Binomial Interpolated Lattice algorithm introduced in Section 2 for
pricing step double barrier options. Let us introduce the regular step double barrier options as
explained in Guillaume [12]. Let {T0, T1, ..., Tn−1, Tn} be a partition of the option lifetime [0, T ]
with 0 = T0 < T1 < ... < Tn = T . A standard n-step double barrier option is an option in which
the barriers are constant in every interval [Ti, Ti+1], i = 0, ..., n − 1. Hence, at each interval
[Ti, Ti+1] is associated a constant double barrier with down barrier Li and up barrier Hi. A
standard n-step double knock-out option with payoff function ψ, has this payoff at maturity
provided that the underlying asset price stayed in (Li, Hi) in every interval [Ti, Ti+1], otherwise
it expires worthless or provides a contractual rebate. It is possible to include in the step
double barrier options the possibility to remove the knock-out barrier provision (partial-time
step double barrier options). For example an early ending n-step double knock-out option with
maturity Tn has the same payoff of a standard call or put on the condition that the underlying
asset price stayed in (Li, Hi) in every interval [Ti, Ti+1], i = 0, .., n− 2 (hence there are no "out"
condition on the last time interval). A windows n-step double knock-out option has the same
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payoff of a standard call or put on condition that the underlying asset price stayed in (Li, Hi)
in every interval [Ti, Ti+1], i = 1, .., n − 2 (hence there are no "out" condition on the first and
last time interval).

A partial-time step double barrier option will always be more valuable that the correspond-
ing standard step double barrier option. Moreover, it is possible to take into account knock-in
features in all these contracts. In the European case the knock-in options prices are obtained by
taking the difference between the prices of the corresponding vanilla option and the knock-out
option.

We can apply the Binomial Interpolated Lattice approach to treat standard and partial-time
step double barrier options in a straightforward way. Let us consider for example a two-step
double knock-out option. We globally take M times steps and we consider M ′

1 = ⌊T1−T0

T
⌋ time

steps in the first interval [T0, T1] and M ′
2 = M − M ′

1 time steps in the second interval [T1, T2].
We first consider the time period [T1, T2] and we apply the double barrier procedure used in the
previous section. So we compute the binomial parameters N2 = M ′

2 + 2, ∆T2, u2, d2, p2, k2 in
order to hit exactly the barriers L2 and H2. This leads to a new binomial mesh {S2

i,j} defined
∀ i = 0, ..., N2 as follows

S2
i,j =







L2u
2j
2 , j = 0, ..., k2 if N2 − i is even

L2u
2j+1
2 , j = 0, ..., k2 − 1 if N2 − i is odd

We can then proceed using the backward procedure for i = N2, ..., 0 as described in the previous
section. With the linear interpolation in time at T1 we can obtain at every node S2

0,j the
corresponding option price vN2(T1, S

2
0,j).

Now we proceed in the same way in time interval [T0, T1]. We compute the new binomial
parameters N1, ∆T1, u1, d1, p1, k1 in order to hit exactly the barriers L1 and H1. This leads to
a new binomial mesh structure {S1

i,j}. In order to obtain the option prices on the new nodes
with underlying S1

N1,j, j = 0, ..., k1, we interpolate at every S1
N1,j, j = 0, ..., k1 by a Lagrange

interpolation using 4 suitable points in the set {(S2
0,j, v

N2(T1, S
2
0,j))}, with j = 0, ..., k2 if N2

is even and with j = 0, ..., k2 − 1 if N2 is odd. In order to perform such interpolation we set
vN2(T1, S

2
0,j) = 0, for j such that S2

0,j ≤ L2 or S2
0,j ≥ H2. Moreover, the values vN1(T1, S

1
N1,j)

will be set equal to zero if either S1
N1,j ≤ L1 or S1

N1,j ≥ H1.
Finally, we proceed backward for i = N1, ..., 0 and we compute the price at s0 by a Lagrange

interpolation in space and a linear interpolation in time as described before. We represent the
mesh described above in Figure 3.

In the early ending two-step double knock-out option we just need to add the treatment of
the period [T2, T3] where there are no ”out” conditions. We start by considering the number of
time steps M3 and the corresponding ∆τ3. Then we compute k3 and ∆T3 in order to hit exactly

the barriers L2, H2, i.e. k3 = ⌈ h2−l2
2σ

√
∆τ3

⌉ and ∆T3 =
(

h2−l2
2k3σ

)2

. The parameters M ′
3, N3, u3, d3, p3

are computed as usual. Now, starting from the nodes evaluated at time T2 we can consider a
tree structure {S3

i,j} in the time interval [T2, T3] of N3 time steps. At maturity T3 we obtain

the underlying assets SN3,j = L2u
j
3, j = −N3, ..., 2k3 +N3. Then we apply the backward CRR

binomial procedure starting with the maturity condition at time T3. The prices at the nodes
SN2,j = L2u

j
2, j = 0, ..., k2 at time T2 are obtained with the interpolation in time and space.
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Figure 3: Binomial Interpolated Lattice Method. Two Step Double Knock-Out Options. The
prices at time T1 are obtained by a Lagrange space interpolation of the prices at the nodes
denoted by empty circles, such prices are obtained by a linear interpolation in time of the prices
at the adjacent nodes denoted by squares. Similarly we obtain the prices at time T0.

Now the procedure is the same as in the standard two-step double barrier options (see Figure
4).

The treatment of the windows two-steps double knock-out options is similar. In the n-step
double barrier options case we just apply the procedure for two-step double barrier options
recursively.

5 Numerical results

We provide some numerical results of the algorithms presented in the Sections 2 and 4 in the
case of double barrier options, two step double barrier options and multi-step double barrier
options. All the computations presented in the tables have been performed in double precision
on a PC with a processor Intel Core i5 at 1.7 Ghz.

5.1 Double Barrier Options

In order to test the efficiency of the Binomial Interpolated Lattice (BIL) approach we first con-
sider the numerical experiments proposed in Day-Lyuu (DL) [5] for pricing knock-out double-
barrier call options and then we propose other comparisons with different parameters. The
volatility of the stock price is σ = 0.25, the interest rate is r = 0.1, the time to maturity is
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Figure 4: Binomial Interpolated Lattice Method. Early Ending Knock-Out Options. The prices
at time T2 are obtained by a Lagrange space interpolation of the prices at the nodes denoted
by empty circles, such prices are obtained by a linear interpolation in time of the prices at the
adjacent nodes denoted by squares. Similarly we obtain the prices at time T0 and T1.

T = 1, the strike price is K = 100 and the two barriers are L = 90 and H = 140. We consider
three possible values for the initial stock price: s0 = 95, 90.05, 139.95. We observe that in the
tables below the number of time steps is M and it refers to the original CRR model, as defined
in Section 1. We use as benchmark value the price computed with the closed formula provided
by Kunitomo and Ikeda [13]. We observe that in the cases in which s0 is a point near to the
barrier, the Binomial Interpolated Lattice performs better than the bino-trinomial procedure.
The results are given in Table 1.

s0 = 95
M DL KI BIL

100 1.423589 1.422126
200 1.440976 1.440586
400 1.449705 1.458435 1.450008
800 1.453358 1.453441
1600 1.456403 1.456350
3200 1.457183 1.457179

s0 = 90.05
DL KI BIL

0.313771 0.016004
0.279768 0.016235
0.226927 0.016268 0.016267
0.149755 0.016263
0.084767 0.016254
0.059701 0.016259

s0 = 139.95
DL KI BIL

0.196833 0.006562
0.176563 0.006688
0.144278 0.006656 0.006673
0.093742 0.006661
0.051903 0.006650
0.035926 0.006653

Table 1: Knock-Out Double Barrier Call Options Prices with T = 1, r = 0.1, σ = 0.25,
K = 100, L = 90, H = 140 and s0 varying.

In Table 2 we give the price of a knock-out double barrier call option in the “near to the
barrier” case. Here σ = 0.25, r = 0.1, T = 1 and K = 100. Now we vary s0, L and H so that
we can consider both the case in which s0 is close to L and the case in which s0 is close to H.
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In the table on the left we choose s0 = 95, L = 94.9 and H = 140, so we have that the starting
point s0 is near to the lower barrier L. Instead, in the table on the right s0 is near to the higher
barrier H and we choose s0 = 139.9, L = 95 ad H = 140. The results are given in Table 2.

s0 = 95, L = 94.9, H = 140
M DL KI BIL

100 0.274716 0.024774
200 0.227618 0.025281
400 0.109875 0.025305 0.025182
800 0.128411 0.025305
1600 0.062742 0.025274
3200 0.053451 0.025286

s0 = 139.9, L = 95, H = 140
DL KI BIL

0.211312 0.011449
0.085969 0.011148
0.083269 0.011238 0.011188
0.087552 0.011253
0.060058 0.011243
0.048296 0.011239

Table 2: Knock-Out Double Barrier Call Options Prices with T = 1, r = 0.1, σ = 0.25,
K = 100. The values of s0, L and H vary.

We remark that in Table 1 and in Table 2 for each value of M the starting point s0 belongs
to the critical intervals (5) and (6) defined in Section 3. So, thanks to the sufficient condition
given in Remark 5, we explain why the Binomial Interpolated Lattice method performs better
than the bino-trinomial tree. In fact if s0 belongs to the interval (L,Le−(r−σ2/2)∆T ′+σ

√
∆T ] or to

the interval [He−(r− σ
2

2
)∆T ′−σ

√
∆T , H) the Dai and Lyuu procedure may degenerate. As pointed

out in Remark 5, it is clear that if we choose M such that

s0 > Le−(r−σ2/2)∆T ′+σ
√

∆T , (7)

(in the case in which s0 is near to the lower barrier L), or if we choose M such that

s0 < He−(r−σ2/2)∆T ′−σ
√

∆T , (8)

(when s0 is near to the higher barrier H), then the bino-trinomial tree may not degenerate.
But the values of M we need to consider in order to satisfy these conditions are very large. In
fact in the case of Table 1 with s0 = 90.05, we have to choose M ≥ 201840. Instead, in the
case in which s0 = 139.95 we need to choose M ≥ 489104 in order to satisfy condition (8).
Similarly, in Table 2, we need to choose M ≥ 55987 if s0 = 95 and M ≥ 122107 if s0 = 139.9
to satisfy conditions (7) and (8) respectively.

In Table 3 we show two more examples of pricing a knock-out double barrier call option
with σ = 0.25, r = 0.1, T = 1, K = 100, L = 90 and H = 140 in the “near to the barrier”
case. Now we vary the starting point and we choose s0 = 92 and s0 = 138. The numerical
results show that the BIL method converges faster than the bino-trinomial tree also in the case
in which s0 is chosen not so much close to the barriers. We also observe that when s0 = 92 we
need M ≥ 104 to satisfy (7) and when s0 = 138 we have to choose M ≥ 289 to verify condition
(8). Moreover, also if M is such that (7) or (8) is satisfied, the Binomial Interpolated Lattice
converges faster than the bino-trinomial tree.
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s0 = 92, L = 90, H = 140
M DL KI BIL

100 0.753689 0.611674
200 0.675166 0.620375
400 0.667178 0.626377 0.623008
800 0.624209 0.624220
1600 0.625457 0.625476
3200 0.625861 0.625833

s0 = 138, L = 90, H = 140
DL KI BIL

0.365983 0.265373
0.338188 0.270340
0.316626 0.271825 0.270702
0.281821 0.270875
0.271367 0.271286
0.271534 0.271548

Table 3: Knock-Out Double Barrier Call Options Prices with T = 1, r = 0.1, σ = 0.25,
K = 100. The values of s0, L and H vary.

5.2 Two Step Double Barrier Options

Let us now consider the numerical experiments proposed in Guillame [12] in pricing two step
double barrier knock-out put options. In the European case we compare our method with the
benchmark value given by the closed formula (GUI) provided in Guillaume [12]. No benchmark
is available in the American case. The volatility of the stock price is σ = 0.3, the interest rate
is r = 0.03, the current stock price is s0 = 100 and the strike price varies: K = 90, 100, 110.
In Table 2 we report the values of two-step double knock-out put options with double barrier
with parameters: T1 = 0.25, T2 = T = 0.5, L1 = 70, H1 = 130, L2 = 75 and H2 = 125.

K = 90
M BIL-EU GUI BIL-AM

100 0.806457 3.549508
200 0.819128 3.541653
400 0.815156 0.821806 3.545095
800 0.820657 3.555169
1600 0.821165 3.555965
3200 0.821348 3.556271

K = 100
BIL-EU GUI BIL-AM
3.152257 7.694393
3.186487 7.694650
3.187184 3.194080 7.703400
3.191445 7.712047
3.192845 7.713536
3.192542 7.713324

K = 110
BIL-EU GUI BIL-AM
7.089792 13.516271
7.196594 13.574689
7.186754 7.186905 13.576866
7.182939 13.580487
7.184522 13.581967
7.184678 13.582068

Table 4: Two-step Double Knock-Out Put Options Prices with s0 = 100, r = 0.03, σ = 0.3,
T1 = 0.25, T2 = T = 0.5, L1 = 70, H1 = 130, L2 = 75, H2 = 125 and K varying.

In Table 3 we consider an early-ending two step double knock-out call with K = 120,
s0 = 100, r = 0.03 and double barrier parameters T1 = 0.125, T2 = 0.25, T3 = T = 0.5,
L1 = 75, H1 = 125, L2 = 70, H2 = 130. The volatility varies: σ = 0.15, 0.3.

σ = 0.15
M BIL-EU GUI BIL-AM

100 0.263380 9.962265
200 0.265933 9.962439
400 0.271830 0.2755 9.962422
800 0.273739 9.962533
1600 0.275081 9.962435
3200 0.275201 9.962400

σ = 0.3
BIL-EU GUI BIL-AM
1.575926 9.728607
1.613757 9.741826
1.605417 1.6165 9.745550
1.608395 9.750609
1.612841 9.755035
1.615489 9.758268

Table 5: Early-ending Two Step Double Knock-Out Call Options Prices with s0 = 100, r = 0.03,
K = 120, T1 = 0.125, T2 = 0.25, T3 = T = 0.5, L1 = 75, H1 = 125, L2 = 70, H2 = 130 and σ
varying.

The numerical results show that the method is accurate also in the two-step double knock-
out option case.
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5.3 Multi Step Double Barrier Options

Finally, in Table 4, we propose the results obtained with our method for a 16-steps knock
out double barrier put option. The volatility of the stock price is σ = 0.3, the interest rate is
r = 0.03, the current stock price is s0 = 100, the strike price is K = 110, the time to maturity is
T = 2 and the barrier parameters are: Ti = i·0.125, Li = 70−i, Hi = 130+i, for all i = 1, ..., 16.
In the European case we use as benchmark value the Monte Carlo method provided in Baldi-
Caramellino-Iovino [1] with 10 millions simulations and 1000 Euler time discretization steps
(with the confidence interval in parenthesis). We observe that the computation times are very
fast. For example, for M = 12800 and M = 25600 they are respectively 0.028221 and 0.072933
seconds.

M BIL-EU MC BIL-AM
100 6.585345 17.570376
200 6.399257 17.598079
400 6.288664 6.197331 17.623151
800 6.243341 [6.187387-6.207276] 17.627720
1600 6.233008 17.629993
3200 6.208183 17.633762
6400 6.203391 17.634432
12800 6.194374 17.635186
25600 6.191878 17.635486

Table 6: 16-step Double Knock-Out Put Options Prices with σ = 0.3, r = 0.03, s0 = 100,
K = 110, T = 2. The barrier parameters are Ti = i · 0.125, Li = 70 − i, Hi = 130 + i.

Acknowledgment: The authors want to thank Professor Lucia Caramellino for her valuable
advice.
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