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Premia 18

Credit Derivatives
The following method to compute the hedge of a CDO tranche is based on the article of R. Frey and
J. Backhaus [1]. Compared to this paper, we consider the simplified case where there is no spread risk
(Ψt = ψ).

1 The model

We fix some probability space (Ω,F , (Ft), Q). The σ-field Ft represents the information available
to investors at time t; all the processes introduced below will be (Ft)-adapted. We consider a fixed
portfolio of m firms, indexed by i ∈ {1, · · · ,m}. The (Ft)-stopping time τi with values in (0,∞)
represents the default time of firm i. The default state of the portfolio is thus described by the default
indicator process Y = (Yt,1, · · · , Yt,m)t≥0 where Yt,i = 1τi≤t; note that Yt ∈ {0, 1}m. Since we consider
only models without simultaneous defaults, we can define the ordered default times T0 < T1 < · · · < Tm

recursively by T0 = 0 and for 1 ≤ n ≤ m, Tn = min{τi : 1 ≤ i ≤ m, τi > Tn−1}.
We assume that the default-free interest rate is deterministic and equal to r ≥ 0; p0(t, T ) = e−r(T −t)

denotes the price of the default-free zero-coupon bond with maturity T . The measure Q represents a
risk-neutral measure. The default intensity of firm i is given by some nonnegative function λ(t, Yt).
Since λ depends on the current portfolio state Yt, the default intensity of a firm may change if there is
a change in the default state of other firms in the portfolio, so that default contagion can be modelled
explicitly.

λ(t, Yt) = h(t,Mt) where Mt =
m

∑

i=1

Yt,i

and

h(t, l) = λ0ψ +
λ1

λ2

(

exp(λ2
[l − µ(t)]+

m
) − 1

)

, λ0 > 0, λ1, λ2 ≥ 0

.

Here, µt is some deterministic threshold measuring the expected number of defaults up to time
t. In the algorithm, we set µt := (1 − e

− sp

1−R
t)m where sp is the single name CDS spread (assuming

constant for all firms) and 1 − R is the loss-given-default (again constant and deterministic for all
firms). (We set sp = 26bp and R = 40%). The term λ0ψ gives the linear dependency on the factor
process, λ0 determines the credit quality of firms in the portfolio. λ1 models the strength of the default
contagion for a ’normal’ number of defaults. λ2 gives the tendency of the model to generate default
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cascades. We set ψ = 0.005, λ0 = 0.8591, λ1 = 0.18803 and λ2 = 22.125 (calibrated to the index-level
and to observed tranche spreads of the iTraxx with a maturity of 5 years).

2 Credit Derivatives

In this section we present the payments, the market value and the gain process of CDSs and CDOs,
useful to study the dynamic hedging of portfolio credit derivatives. We consider the case where an
investor tries to hedge a protection-seller position in a CDO tranche by taking a protection buyer
position in the CDSs or in the CDS index underlying the transaction, so we model the cash flows
of the CDO tranche from the viewpoint of a protection seller and the cash flows of CDSs from the
viewpoint of a protection buyer. T denotes the maturity, the nominal of eah CDS is normalized to
one, we set δ = 1−R the default payment. The spread payments of all credit derivatives are scheduled
at N payment dates 0 < z1 < · · · < zN = T . We define z0 := 0 and ∆zn := zn − zn−1. For t ≥ 0,

nz
t := |{i = 1, · · · , N : zi ≤ t}|;

so that nz
t is the number of spread payment dates up to time t.

2.1 Single-name CDSs

The market value of a protection-buyer position in a CDS on firm k with fixed spread sk is given by
the difference between the value of the default payment and the value of the future premium payments
(regular and accrued). Hence we get

V CDS
t,k =1τk>tEQ (δp0(t, τk)1τk≤T

−sk
N

∑

n=nz
t +1

(

∆znp0(t, zn)1τk>zn + (τk − zn−1)p0(t, τk)1{zn−1<τk≤zn

)

|Ft



 .

The gain process has dynamics

dGCDS
t,k = −sk(∆znz

t
)(1 − Yt,k)dnz

t + (δ − sk(t− zt
n))dYt,k + dV CDS

t,k . (1)

2.2 CDO Tranches

A synthetic CDO tranche on the reference portfolio is characterized by a fixed lower and upper bound
attachment points 0 ≤ l < u ≤ 1. The tranche consists of a default payment leg and a premium
payment leg. We denote by Lt the cumulative portfolio loss up to time t: Lt :=

∑m
i=1 δYt,i. The

cumulative tranche loss L[l,u]
t is defined by

L
[l,u]
t := (Lt −ml)+ − (Lt −mu)+,

and denote the remaining notional of the tranche by N
[l,u]
t := m(u − l) − L

[l,u]
t . At a default time

Tk ≤ T there is a default payment of size ∆L[l,u]
Tk

:= L
[l,u]
Tk

− L
[l,u]

T −

k

. The market value of a protection

seller position equals

V
[l,u]

t = EQ



−

∫ T

t
p0(t, s)dL[l,u]

s + s[l,u]
N

∑

n=nz
t +1

{p0(t, zn)(∆zn)N [l,u]
zn

+
m

∑

k=1

p0(t, Tk)(Tk − zn−1)∆L[l,u]
Tk

1{zn−1<Tk≤zn}}|Ft

)

.



In the Markov chain model, V [l,u] = v[l,u](t, Yt) where v[l,u] is some function from [0, T ] × {0, 1}m → R.

The gain process G[l,u]
t has dynamics

dG[l,u]
t = s[l,u](∆znz

t
)N [l,u]

t dnz
t + s[l,u](t− znz

t
)dL[l,u]

t − dL
[l,u]
t + dV [l,u]

t . (2)

3 Sensitivity-based hedging with default contagion

The default delta of a CDO tranche w.r.t. name i (∆def
t,i ) gives the number of CDSs of firm i one

has to hold at time t in order to immunize the portfolio against the change-in-value occuring in the
hypothetical scenario where name i defaults at time t. In the presence of default contagion, the default
of firm i impacts the market value V CDS

t,j , j 6= i. In a homogeneous portfolio (the case we consider)

∆def is identical for all firms, we get

∆def
t = −

∆G[l,u]
t |τi=t

∆GInd
t |τi=t

, (3)

where ∆GInd
t |τi=t represents the the change in the gain process of the CDS index, i.e.

∆GInd
t |τi=t = (m−Mt − 1)∆V CDS |τi=t − V CDS

t + δ − sCDS(t− znz
t
),

and ∆V [l,u]
t |τi=t = v[l,u](t, Y i

t−
) − v[l,u](t, Yt−).

4 Practical computation of default and payment legs of CDSs and

CDOs

4.1 Default leg of CDO

We aim at computing EQ(−
∫ T

t p0(t, s)dL[l,u]
s |Ft). An integration by parts gives

EQ[p0(t, T )L[l,u]
T |Ft] − L

[l,u]
t + r

∫ T

t
e−r(s−t)

Et[L
[l,u]
s ]ds,

and E[L[l,u]
s |Ft] = E[v(Ls)|Ft] = E[v(δMs)|Ft] =

∑m
k=1 v(δk)P(Ms = k|Ft). We refer to the next

section for the computation of P(Ms = k|Ft).

4.2 Payment leg of CDO

The first term gives

E
[

N
∑

n=nz
t +1

p0(t, zn)∆znN
[a,b]
zn

|Ft

]

=
N

∑

n=nz
t +1

p0(t, zn)∆zn

(

m(u− l) − E[L[a,b]
zn

|Ft]
)

.

The second one is

E
[

N
∑

n

m
∑

k=1

p0(t, Tk)(Tk − zn−1)∆L[a,b]
Tk

1{zn−1<Tk≤zn}|Ft

]

=
N

∑

n

m
∑

k=1

(

∆L[a,b]
Tk

)
)

∫ zn

zn−1

p0(t, s)(s− zn−1)dP(Tk ≤ s|Ft).



An integration by part formula leads to
∫ zn

zn−1

p0(t, s)(s− zn−1)dP(Tk ≤ s|Ft) = p0(t, zn)(∆zn)P(Tk ≤ zn|Ft)

−

∫ zn

zn−1

P(Tk ≤ s|Ft)p0(t, s){1 − r(s− zn−1)}ds

We refer to the next section for the computation of P(Tk ≤ s|Ft).

4.3 Default leg of CDS

We aim at computing δEQ(p0(t, τk)1τk≤T |Ft), which is δ
∫ T

t p0(t, s)P(τ ∈ ds|Ft) where P(τk ∈ ds|Ft) =
1
m

∑m−1
j=Mt

h(s, j)P(Ms = j|Ft)(m− j).

4.4 Payment leg of CDS

We aim at computing EQ

(

∑N
n=nz

t +1

(

∆znp0(t, zn)1τk>zn + (τk − zn−1)p0(t, τk)1{zn−1<τk≤zn

)

|Ft

)

. To

compute this term we need P(τk > zn|Ft) = 1 −
∫ zn

t P(τk ∈ ds|Ft), which boils down to have P(Ms =
j|Ft) for j = Mt, · · · ,m.

4.5 Computation of the conditional law of M

In this section we explain how to compute P(Ms = k|Ft), for k = Mt, · · · ,m. This will give us the
condtional law of Tk, since

P(Tk ≤ s|Ft) = P(Ms ≥ k|Ft = 1 − P(Ms < k|Ft) = 1 −
k−1
∑

i=Mt

P(Ms = i|Mt).

We compute the transition probability P(Ms = i|Mt) by using the Kolmogorov equation. The generator
of the Markov process (Mt)(t≥0) is given by

GM
[s]f(l) = (m− l)h(s, l)

(

f(l + 1) − f(l)
)

(4)

Assume that at time s ≥ 0 there is Ms defaults, the function t 7→ p(s,Ms, t, k) = P(Mt = k|Ms)
satisfies for all 0 ≤ k ≤ m,

∂p(s,Ms, t, .)

∂t
= (GM

[t] )
∗p(s,Ms, t, .). (5)

We get
∂p(s,Ms, t,Ms)

∂t
= −(m−Ms)h(t,Ms)p(s,Ms, t,Ms) (6)

and for Ms + 1 ≤ k ≤ m :

∂p(s,Ms, t, k)

∂t
= (m− k + 1)h(t, k − 1)p(s,Ms, t, k − 1) − (m− k)h(t, k)p(s,Ms, t, k), (7)

and the initial condition is p(s,Ms, s, .) = 1Ms
(.).

We solve these equations by computing the exponential of the matrix associated to the generator GM .
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