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Abstract

We develop methods of risk sensitive impulsive control theory in
order to solve an optimal asset allocation problem with transaction
costs and a stochastic interest rate. The optimal trading strategy and
the risk-sensitized expected exponential growth rate of the investor’s
portfolio are characterized in terms of a nonlinear quasi-variational
inequality. This problem can then be interpreted as the ergodic Isaac-
Hamilton-Jacobi equation associated with a min-max problem. We
use a numerical method based on an extended two-stage policy iter-
ation algorithm for min-max problems and provide numerical results
for the case of two assets and one factor that is a Vasicek interest rate.

1 Introduction

The mathematical problem of optimally managing a portfolio of securities
when there are transaction costs has received considerable research attention
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in recent years. See Cadenillas [9] for a recent survey of this literature. Most
such research has been concerned with the classical economic objectives of
maximizing expected utility of terminal wealth and/or utility of consumption
over a planning horizon that can be finite or infinite. Researchers such as
Akian, Menaldi, and Sulem [1], Akian, Sulem, and Taksar [2], Cvitanic and
Karatzas [14], and Shreve and Soner [26] were concerned with cases where
the cost of a transaction is proportional to the amount of money that is
shifted between securities. Typically the optimal strategy is characterized
by a no-trade region, with “local-time” trading on the boundary used to
keep a certain process in the region. Other researchers such as Korn [18],
Morton and Pliska [22], Øksendal and Sulem [25] and Chancelier, Øksendal
and Sulem [12] assumed the transaction cost has a fixed component, thereby
precluding the optimality of local-time trading because it is, essentially, con-
tinuous. In this case the optimal strategy is again typically characterized by
a no-trade region, only when a certain process such as the vector of portfolio
proportions hits the boundary, a transaction is made causing the process to
jump to a point in the interior of the region, from which the process resumes
as before.
In a somewhat different direction, researchers such as Buckley and Korn

[8], Connor and Leland [13], and Leland [20] have looked at optimal tracking
problems, where the tracking error is some measure of the differences between
specified fixed target proportions and the actual proportions for each asset
with respect to the total value of the portfolio. Since there are transaction
costs, there is an obvious trade-off between large tracking errors and large
transaction costs. The optimal strategies that emerge from these studies
resemble those mentioned in the preceding paragraph, with no-trade regions
and so forth.
For all of these studies the underlying models of the securities are com-

plete. Indeed, in most cases the asset appreciation rates and volatilities are
constants, that is, the so-called “investment opportunity sets” are constants.
Meanwhile, in a seminal paper, Merton [21] proposed a portfolio optimiza-
tion model, the so-called intertemporal capital asset pricing model (ICAPM),
where the asset appreciation rates and volatilities depend on one or more ex-
ogenous, stochastic factors. The added realism of his model comes with a
cost, however: perhaps because the model is incomplete, explicit results are
known for only a very few, special cases.
The objective for Merton’s ICAPM was the classical, economic one of

maximizing expected utility of terminal wealth and/or consumption. With
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the aim of obtaining explicit results for a wider variety of cases, in recent
years researchers such as Bielecki and Pliska [3], [5], Bielecki, Pliska, and
Sherris [7], Fleming and Sheu [16], and Kuroda and Nagai [19] have studied
the very same model, only replacing the original economic objective with a
so-called “risk sensitive” one: maximizing the portfolio’s risk adjusted growth
rate. Indeed, this approach has produced explicit results for cases with many
assets, many Gaussian factors, and, very recently (see Nagai [23]), even non-
Gaussian factors. And these explicit results come with only a small cost
for abandoning classical expected utility criteria, because it has been shown
that the risk sensitive criterion is simply an approximation of a fundamental
objective in financial practice: the trade-off between a portfolio’s average
return and its average volatility. See Bielecki and Pliska [6] for a recent
study of the economic properties of the risk sensitive criterion for portfolio
management.
For most of these ICAPM models, whether they involve classical or risk

sensitive objectives, there are no transaction costs. But there are a few ex-
ceptions. Weiner [28] studied a problem where there is a trade-off involving
stochastic volatility, which is the factor. Another exception is a study by
Bielecki and Pliska [4] that combined the risk sensitive ICAPM model with
transaction costs having a fixed component. They used impulse control meth-
ods to show that solutions can be obtained via risk sensitive quasi-variational
inequalities (RSQVIs). They demonstrated their methods by obtaining ex-
plicit, numerical results for a simple zero-factor case involving just two assets
(in particular, for a modest generalization of the two-asset model by Morton
and Pliska [22]). Bielecki and Pliska did not solve more complicated risk
sensitive quasi-variational inequalities due to computational challenges.
Indeed, while theoretical results for transaction cost problems are avail-

able for rather general models featuring many assets, many stochastic factors,
and various kinds of transaction costs, it remains true that numerical results,
let alone explicit results, have been obtained only for a very few, relatively
simple cases. The theory seems to be far ahead of the practical matter of
actually solving problems. The research challenge is to be able to solve mean-
ingful transaction cost problems in order to obtain economic insight if not
optimal trading strategies for realistic applications.
The main goal of this paper is to advance this “computational barrier”

by providing a computational algorithm and numerical results for a version
of the Bielecki and Pliska [4] model. Our analysis is for a case where there
are two assets (a risky asset and a bank account) and a single factor that
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one can interpret as the (Gaussian) short interest rate for the bank account.
The stochastic dynamics of the risky asset explicitly depend on this inter-
est rate, and the transaction cost is a fixed fraction of the portfolio’s value
when a transaction occurs. While this is only a modest generalization of
the Bielecki-Pliska [4] numerical example, now with one factor instead of
none, our solution approach is not simply a straightforward application of
established computational procedures such as dynamic programming itera-
tive methods, discrete time Markov chain approximations, or finite difference
methods. First we make a transformation that reduces the number of un-
derlying state variables from five to two, namely, the interest rate factor and
the fraction of the funds that are invested in the risky asset. This is pos-
sible due to the form of the transaction cost. Then, due to non-linearities
in the differential equation that is part of the risk sensitive QVI, we make
a further transformation that results in what can be interpreted as the er-
godic Isaac-Hamilton-Jacobi equation associated with a max-min problem.
Finally, we use a numerical method based on an extended two-stage policy
iteration algorithm to solve this min-max problem.
¿From the economic standpoint our numerical results for the optimal

trading strategy are as one would intuitively anticipate. For a fixed interest
rate the no-trade region is an interval, and, with lower values of the interest
rate factor being bullish for the risky asset, the end points of the interval are
decreasing, in a continuous fashion, with respect to the factor level. When
the two-dimensional process hits the boundary, one rebalances by restarting
the process from a specified point in the interior of the interval corresponding
to the current factor value. And as one changes the risk sensitivity parameter
so as to make the investor more risk averse, the no-trade region shifts in a
direction toward smaller proportions in the risky asset.
The plan for this paper is as follows. In the next section we formulate

the problem and present the RSQVI which must be solved for the optimal
trading strategy. In Section 3 we explain how to transform this RSQVI into
an equivalent Isaac-Hamilton-Jacobi equation. Our computational approach
is presented in Section 4, and then in Section 5 we validate our approach by
using it to reconstruct the results obtained with different methods by Bielecki
and Pliska [4] for their zero-factor example. Then in Section 6 we illustrate
our computational approach by numerically solving an example which in-
cludes the stochastic interest rate factor. These results not only demonstrate
the efficiency of our algorithm, but by including comparative statics analyses
they also provide some economic understanding of the underlying portfolio
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optimization problem. We conclude with some remarks in Section 7 on the
vanishing transaction cost case and explicit solutions.

2 Model and Problem Formulation

We start with a two-asset, one-factor market model consisting of a bank
account S0

dS0(t)

S0(t)
= (a0 + A0X(t))dt, S0(0) = s0,

a risky security S1 such as a stock or stock index

dS1(t)

S1(t)
= (a1 + A1X(t))dt+ σ1dW1(t), S1(0) = s1,

and one exogenous economic factor X(t)

dX(t) = (b+BX(t))dt+ λ1dW1(t) + λ2dW2(t), X(0) = x.

Here W (t) = (W1(t),W2(t)) is a two-dimensional Brownian motion while
a0, A0, a1, A1, σ1, b, B, λ1, and λ2 are various scalar parameters. Presumably,
one could takeB < 0 so that the factor process will have the “mean reverting”
property. Notice that this factor can explicitly affect the appreciation rate
of the risky asset. Moreover, if one takes a0 = 0 and A0 = 1, then the factor
coincides with the bank’s interest rate, and so one in this case one should
interpret the factor as the short interest rate, as in the so-called Vasicek
model.
In this market we consider an investor who is dynamically trading the two

securities: S0 and S1. The information available to this investor is modeled
by the filtration Gt := σ((S1(s), X(s)), 0 ≤ s ≤ t). However, due to the
presence of fixed transaction costs, the investor does not trade continuously
in time. Rather, the investor is restricted to the use of impulsive investment
strategies of the form u = ((τk, Nk), k = 0, 1, 2, . . .) where

• τ0 ≡ 0 < τ1 < . . . < τk < τk+1 < . . . are Gt-stopping times (portfolio
rebalancing times) with τk →∞ a.s. when k →∞, and

• Nk := [Nk,0, Nk,1]
T is Gτk-measurable, whereNk,i is the number of shares

of security i to which the investor rebalances his portfolio at time τk,
and Nk,i ≥ 0 (no borrowing or short selling is allowed).
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As we mentioned above, the trading is subject to transaction costs. Let
C(s,N,N ′) denote the cost of the transaction when the security prices are
s = (s0, s1)

T and the portfolio share-holding positions change from N :=
(n0, n1) to N

′ := (n′0, n
′
1). We envision two main examples:

• Proportional to the transaction volume:

C(s,N,N ′) := c+ c1|s · (N −N ′)|, c, c1 > 0

• Proportional to the investor’s wealth level (as in Morton-Pliska [22])

C(s,N,N ′) := αs ·N, α ∈ (0, 1).

We consider the following set of admissible strategies:

U := {u = ((τk, Nk), k = 0, 1, . . .), Nk ∈ A(S(τk), Nk−1), S(τk) ·Nk > 0}

where

A(s,N) := {N ′[0,+∞)2 : s ·N − C(s,N,N ′) ≥ s ·N ′}.

Thus for a trading strategy to be admissible it must be self-financing, that
is, the portfolio value immediately after a transaction cannot be greater than
the portfolio value immediately before a transaction less the cost of the trans-
action. Moreover, it is required that the investor retains a positive amount
of money in the portfolio after any transaction.

Let N(t) = Nu(t) := Nk ∈ R
2
+, t ∈ [τk, τk+1), k = 0, 1, 2, . . . , denote the

share holding process. The investor’s objective is to trade optimally according
to the risk-sensitive performance criterion, that is, for θ > 0, maximize the
risk sensitive expected exponential growth rate of the investor’s portfolio:

Ju
θ := lim inf

t→∞

(

−
2

θ

)

t−1 lnE[S(t) ·Nu(t))−
θ
2 ]. (2.1)

As discussed above and explained more fully in various references cited above,
this criterion can be interpreted as providing a trade-off between a portfolio’s
exponential growth rate and its asymptotic variance, that is, its average
volatility. Moreover, the bigger the value of the parameter θ, the more risk
averse the investor.
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This model is a special case of the one in Bielecki and Pliska [4], so to solve
this optimization problem we shall initially follow their approach. Consider
the following state process (a piecewise Itô process):

Y u
t = (S(t), X(t), N

u(t)) ∈ O := (0,∞)2 × R× [0,∞)2.

We denote the current state by y = (s0, s1, x, n0, n1).
The wealth process Zu

t := S(t) ·Nu(t) evolves according to:

dZu
t = Zu

t (f(Y
u
t )dt+ γ̄(Y

u
t )dWt) +

∞
∑

k=0

∆Zu
τk
1{τk≤t}

where

f(y) = (a0 + A0x)
s0N0

s0N0 + s1N1

+ (a1 + A1x)
s1N1

s0N0 + s1N1

γ̄(y) = (0, γ(y))T

γ(y) =
(

σ1
s1N1

s0N0 + s1N1

, 0
)

Note for future use that the functions γ̄ and f depend on y = (s0, s1, x,N0, N1)
only through x and the fraction of wealth held in the risky security: siNi

s0N0+s1N1
.

Using Itô’s formula, we obtain:

d ln(Zu
t ) = (f(Y

u
t )− 1/2‖γ(Y

u
t )‖

2)dt

+γ̄(Y u
t )dWt +

∞
∑

k=0

∆ ln(Zu
τk
)1{τk≤t}.

Hence

E[(Zu
t )
−θ/2] = E[exp

(

−
θ

2
(

∫

fθ(Y
u
r )dr +

∞
∑

k=0

∆ lnZu
τk
1{τk≤t})

)

exp

(

−1/2

∫ t

0

‖γθ(Y
u
r )‖

2dr +

∫ t

0

γθ(Y
u
r )dWr

)

]

where

fθ(y) = f(y)− 1/2(
θ

2
+ 1)‖γ(y)‖2

and γθ = −
θ
2
γ.
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For each u ∈ U and θ > 0, define an equivalent measure P u,θ by

dP u,θ

dP

∣

∣

∣

Ft
= exp

(

−1/2

∫ t

0

‖γθ(Y
u
r )‖

2dr +

∫ t

0

γθ(Y
u
r )dWr

)

,

where F := (Ft, t ≥ 0) is the Wiener filtration associated with the Brownian
motions W1 and W2. Then the performance can be rewritten:

Ju
θ (s, x) = lim inf

t→∞
−
2

θ
t−1 lnE

s,x
Pu,θ

(

exp(−
θ

2
(

∫ t

0

fθ(Y
u
r )dr +

∞
∑

k=0

∆ lnZu
τk
1{τk≤t}))

)

.

We know by Bielecki and Pliska [4] that the solution to the investor’s
problem can be characterized in terms of the following Risk-Sensitive Quasi-
Variational Inequality (RSQVI):

Find a scalar λ and a suitable, real-valued function Φ solving

{

max{LθΦ(y)− θ
4
‖Φy(y) · β(y)‖

2 − λ+ fθ(y),MΦ− Φ} = 0 in int(O)
MΦ− Φ ≤ 0 on ∂O

where

LθΦ(y) := (a0 + A0x)s0Φs0 + [(a1 + A1x)s1 −
θ
2

σ2s2
1
N1

s0N0+s1N1
]Φs1

+[(b+Bx)−
θ

2

λ1σ1s1N1

s0N0 + s1N1

]Φx +
1

2
s21σ

2
1Φs1s1 + λ1σ1s1Φxs1 +

1

2
(λ21 + λ

2
2)Φxx,

MΦ(y) := sup
N ′∈A(s,N)

{ln(s ·N ′)− ln(s ·N) + Φ(s, x,N ′)},

β(y) :=













0 0
sσ1 0
λ1 λ2
0 0
0 0













,

fθ(y) := f(y)− 1/2(
θ

2
+ 1)‖γ(y)‖2,

f(y) := (a0 + A0x)
s0n0

s0n0 + s1n1
+ (a1 + A1x)

s1n1
s0n0 + s1n1

,
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and
γ(y) := (σ1

s1n1
s0n0 + s1n1

, 0).

The optimal trading strategy can be constructed from the solution (λ,Φ)
in a very straightforward fashion. The Verification Theorem associated with
this characterization was provided (for a more general version of this model)
by Bielecki and Pliska [4], but that was as far as they took it. It remains
to find the scalar λ and the smooth, real-valued function Φ satisfying this
RSQVI.

3 Preliminary Transformations

We concentrate on the case where the transaction cost is

C(s,N,N ′) = αs ·N, α ∈ (0, 1).

The following change of variables reduces the number of state variables from
five to two, thereby simplifying the analysis of our RSQVI. Consider the new
state variable

z :=
n1s1

n0s0 + n1s1
,

representing the current fraction of wealth in the risky asset (we call this the
risky fraction), and define a new function by taking

Ψ(z, x) := Φ(s0, s1, x, n0, n1)

on D := (0, 1)×R. Now writing various partial derivatives of Φ in terms of Ψ,
substituting these in the above RSQVI, and doing some algebra, it becomes
apparent that our original RSQVI is equivalent to the following one:







max{LΨ(z, x)− θ
4
(σ1z(1− z)Ψz(z, x) + λ1Ψx(z, x))

2 − θ
4
λ22Ψx(z, x)

2

−λ+ f̄(z, x),MΨ(z, x)−Ψ(z, x)} = 0 in D
MΨ−Ψ(z, x) ≤ 0 on ∂D

(3.2)
where

LΨ(z, x) := b1(z, x)Ψz + b2(z, x)Ψx + d11(z)Ψzz + d22Ψxx + d12(z)Ψzx (3.3)

MΨ(z, x) := ln(1− α) + sup
0≤z′≤1

Ψ(z′, x) (3.4)
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with

b1(z, x) := ((a1 − a0) + (A1 − A0)x− (θ/2 + 1)σ
2
1z) z(1− z),

b2(z, x) := b+Bx− θ
2
λ1σ1z,

d11(z) := 1
2
σ21z

2(1− z)2, d22 :=
1
2
(λ21 + λ

2
2), d12(z) := λ1σ1z(1− z),

f̄(z, x) := (a0 + A0x)(1− z) + (a1 + A1x)z −
σ2
1

2
( θ
2
+ 1)z2.

(3.5)
The economic intuition associated with this transformation is fairly clear:

the two resulting state variables, namely, the risky fraction process and the
factor process, together constitute a sufficient statistic for the purposes of
the optimization problem.
Unfortunately, the terms in (3.2) that are nonlinear with respect to partial

derivatives of Ψ present difficulties when one attempts to solve this RSQVI
with a standard computational approach. Our approach for circumventing
this difficulty is to linearise the RSQVI by using an auxiliary control variable.
The quadratic part in RSQVI (3.2), namely

−
θ

4
(σ1z(1− z)Ψz + λ1Ψx)

2 −
θ

4
λ22Ψ

2
x,

can be expressed as

θ

2
min
c1∈R

{−(σ1z(1− z)Ψz + λ1Ψx)c1 +
1

2
c21}+

θ

2
min
c2∈R

{−λ2Ψxc2 +
1

2
c22}.

The RSQVI can then be rewritten as

{

max{minc∈R2 [LcΨ− λ+ gc]MΨ−Ψ} = 0 in D
MΨ−Ψ ≤ 0 on ∂D

(3.6)

where

LcΨ := (b1−
θ

2
c1σ1z(1−z))Ψz+(b2−

θ

2
λ1c1−

θ

2
λ2c2)Ψx+d11Ψzz+d22Ψxx+d12Ψzx,

(3.7)

gc(z, x) := f̄(z, x) +
θ

4
c21 +

θ

4
c22,

andM is given in (3.4). Thus we have introduced a game theoretic aspect to
our problem, thereby making it more complicated in some respects. However,
now all the partial derivatives of Ψ enter the RSQVI in a linear fashion, and
so it is ready to be solved for (λ,Ψ), as will be explained in the following
section.
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Remark 3.1 It is essential to emphasize here that our RSQVI (3.6) should
not be mistaken for an eigenfunction/eigenvalue type problem (or a Sturm-
Liouville type problem). In fact, we do not know of any way of characterizing
the optimal investment problem considered in this paper in terms of an eigen-
function/eigenvalue type problem. One of the reasons that such a characteri-
zation does not appear to be possible is that the optimization problem we deal
with is essentially a free-boundary problem, where the free boundary depends
on the bias function. Moreover, our problem is an ergodic type problem,
which – in distinction from discounted type problems – does not lend itself to
the eigenfunction/eigenvalue characterization. Thus a special computational
approach had to be devised for dealing with our problem.

4 Computational Approach

The purpose of this section is to present an algorithm for computing a solu-
tion to the max-min problem (3.6) and thus the original RSQVI.

4.1 Localisation

With regard to boundary conditions, the original, transformed problem sits
on a strip in R

2. The risky fraction process lives between 0 and 1 due to
the nature of the problem, which stipulates that after any rebalancing the
fraction in the risky asset must start strictly between 0 and 1. For a contin-
uous time diffusion the boundaries 0 and 1 are probably totally inaccessible
(for example, see Morton and Pliska [22]), and so the boundary condition for
the risky fraction component should not matter; we make it reflecting. The
factor process lives between plus and minus infinity, but for computational
purposes this must be changed to a compact interval. Since the factor process
is stable (i.e., mean reverting), its boundaries can be set at levels which are
rarely reached. If they are set in this way, then the specific kind of boundary
behavior is not important; we shall make these reflecting. Consequently, the
discretized problem ends up being an approximation of a two dimensional
process that lives on a compact rectangle Ω = [0, 1]× [L1, L2] with reflection
on all four boundaries.
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4.2 Finite-difference approximation

The operator Lc defined in (3.7) can be rewritten as:

LcΨ := b̄1Ψz +Ψx + d11Ψzz + d22Ψxx + d12Ψzx,

where
b̄1 := b1 − θ/2c1σ1z(1− z)
b̄2 := b2 − θ/2(λ1c1 + λ2c2)

and b1 and b2 defined in (3.5). We consider a finite difference approximation,
based upon a two-dimensional grid that is denoted Dδ = EZ × EX and has
space discretization steps denoted δ1 and δ2 such that 1/δ1 ∈ N and L2−L1

δ2
∈

N. Here EZ = {iδ1, i = 0....1/δ1} and EX = {L1+ jδ2, j = 0....
L2−L1

δ2
} denote

respectively the z-grid and the x-grid.
Let (iδ1, jδ2) be a point of the grid Dδ. We approximate LcΨ(iδ1, jδ2) by

Lδ
cΨ(iδ1, jδ2) defined as:

Lδ
cΨ = b̄1∂

sgnb̄1
z Ψ+ b̄2∂

sgnb̄2
x Ψ+ d11∂zzΨ+ d22∂xx + d12∂zxΨ,

where

∂+z (iδ1, jδ2) =
Ψ((i+ 1)δ1, jδ2)−Ψ(iδ1, jδ2)

δ1
,

∂−z (iδ1, jδ2) =
Ψ(iδ1, jδ2)−Ψ((i− 1)δ1, jδ2)

δ1
,

∂zz(iδ1, jδ2) =
Ψ((i+ 1)δ1, jδ2)− 2Ψ(iδ1, jδ2) + Ψ((i− 1)δ1, jδ2)

δ21
,

∂zx(iδ1, jδ2) =
1

δ1
δ2

(

2Ψ(iδ1, jδ2) + Ψ((i+ 1)δ1, (j + 1)δ2) + Ψ((i− 1)δ1, (j − 1)δ2),

−Ψ((i+ 1)δ1, jδ2)Ψ((i− 1)δ1, jδ2)Ψ(iδ1, (j + 1)δ2)Ψ(iδ1, (j − 1)δ2)
)

,

and ∂±x and ∂xx are similarly defined. The discrete operator L
δ
c has a square

matrix representation denoted by Lδ
c. The approximation is stable in the

sense of the L∞-norm when the matrix Lδ
c is invertible and if there exists a

uniform upper bound of ‖(Lδ
c)
−1‖∞. This is achieved when L

δ
c is diagonally

dominant. This condition is met when the spatial steps δ1 and δ2 satisfy

d11
δ1
−
|d12|

δ2
≥ 0 and

d22
δ2
−
|d12|

δ1
≥ 0 (4.8)
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(see [15, p.108]), which is equivalent to

|λ1|σ1z(1− z)

λ21 + λ
2
2

≤
δ1
δ2
≤
σ1z(1− z)

|λ1|
for all z ∈.

This is true if

max
z∈[0,1]

|λ1|σ1z(1− z)

λ21 + λ
2
2

≤
δ1
δ2
≤ min

z∈[0,1]

σ1z(1− z)

|λ1|
.

Note that this cannot be satisfied for z = 0 and 1. In order to be satisfied
for all z ∈ EZ we add a viscosity term ε∆ to the Lc operator

1. This leads
to the following sufficient stability condition:

|λ1|σ1
4(λ21 + λ

2
2)
≤
δ1
δ2
≤
σ1ε

|λ1|
. (4.9)

We thus obtain the discrete approximation of Equation (3.6):

max
(

min
c∈
Bδ

c(λ, V ),M
δV − V

)

= 0 in Dδ, (4.10)

where

Bδ
c(λ, V ) = −λ+ Lδ,ε

c V + gc

MδV (z, x) = max
z′∈EZ

V (z′, x) + ln(1− α)

and Lδ,ε
c is the discrete operator obtained from the finite difference of Lc+ε∆.

Note that equation (4.10) is valid for the points of the grid situated on the
boundary Dδ ∩ ∂Ω since we have set reflecting boundary conditions (homo-
geneous Neuman limit conditions): the value of the function V at fictitious
points situated outside the grid is equal to the value of the function V at the
inner points, symmetric with respect to the boundary. MoreoverMV−V ≤ 0
holds on the boundary since it is implied by the equation.
Denote by Lδ,ε

c the matrix representation of Lδ,ε
c . Take k ≤ |(L

δ,ε
c )ii|

−1 for
all diagonal entries (Lδ,ε

c )ii. Condition (4.9) implies that Pc ≡ I + kLδ,ε
c is a

Markov transition matrix, and equation (4.10) can be rewritten as:

max

(

min
c∈R2

{−λk + (Pc − I)V + kgc} ,M
δV − V

)

= 0 in Dδ. (4.11)

1As suggested by Nagai [24], we could also perform the change of variable y = ln z −
ln(1− z)
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4.3 A policy interation algorithm for discrete-time max-
min ergodic problems

To solve the discrete time max-min ergodic problem (4.10) we use an ex-
tended double stage policy iteration algorithm. Policy iteration algorithms
for ergodic games are studied in [10], [11], and [17]. Convergence proofs
are based on structure properties of the set of fixed points of the operators
involved.
We discribe now the algorithm but we will not address here the issue of

the proof of convergence. The algorithm involves a series of major iterations
which we index by k. And each such major iteration involves a series of
minor iterations that we index by p. We denote by ε an a priori prescribed
precision, and for any function ξ : (EZ , EX)→ EZ and any function V (z, x)
we denote by Nξ the function defined as

NξV (z, x) = V (ξ(z, x), x) + ln(1− α).

[S1] Initialization: We fix an initial partition D1
δ,1 ∪ D

1
δ,2 of Dδ (take e.g.

D1
δ,1 = Dδ and D

1
δ,2 = ∅) and an initial function ξ1 : (EZ , EX)→ EZ .

For k ≥ 1 we have a major iteration comprised of the following steps:

[S2] Step 2k − 1: Find (λk, V k), a solution of
{

minc∈R2 Bδ
c(λ, V ) = 0 in Dk

δ,1

V = NξkV in Dk
δ,2,

(4.12)

and compute the optimal strategy ck as given by

ck ∈ argminc∈R2Bδ
c(λ

k, V k).

Equation (4.12) is solved by using a policy iteration algorithm, a sep-
arate procedure described below.

[S3] Step 2k: Compute ξk+1(, x) ∈ argmaxz′∈EZ
V k(z′, x) and define a new

partition Dk+1
δ,1 ∪ Dk+1

δ,2 as

Dk+1
δ,1 =

{

(z, x) ∈ Dδmin
c∈R2

Bδ
c(λ

k, V k) ≥ Nξk+1V k

}

Dk+1
δ,2 = Dδ\D

k+1
δ,1 . (4.13)

[S4] Stop: If |λk+1 − λk| ≤ ε we stop; else we go back to [S2] to perform
step Step 2k + 1.
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Resolution of (4.12). Given a partition Dδ,1 ∪ Dδ,2 and a function ξ :
(EZ , EX) → EZ , the policy iteration algorithm used in step 2k − 1 is de-
scribed now. This algorithm is a series of iterations that we call the minor
iterations. Each such iteration, indexed by p ≥ 1, consists of the following
steps.

[s1] Initialisation: Let’s c0 be a given initial strategy: Dδ,1 7→ R
2

[s2] Step 2p− 1: given a strategy cp :

cp : Dδ,1 7→ R
2

(z, x) 7→ (c1, c2)

we solve the linear system in (λ, V ):

{

Bδ
cp(λ, V ) = 0 in Dδ,1

V = NξV in Dδ,2
(4.14)

with the additional constraint V (z, x) = 1 because V is only defined
within an additive constant by (4.12). We denote by (λp, V p) the solu-
tion of the system (4.14).

[s3] Step 2p: compute the strategy cp+1 : Dδ,1 7→ R
2 defined as

cp+1 = argmin{c∈R2}B
δ
c(λ

p, V p).

[s4] If |λ
p+1 − λp|ε stop; else go back to [s2] to perform Step 2p+ 1.

Remark : Note that problem (4.12) is not always well defined : the
equation V = NξkV (in Dk

δ,2) might have no solutions, for example if there

is a cycle in Dk
δ,2. However, this situation did not happen in the numerical

simulations.

5 Comparison with the Risk Sensitive Exten-

sion of the Morton-Pliska Problem

As mentioned in the introduction, Morton and Pliska [22] studied a two-
asset model with the same dynamics as here, only there were no factors, so
A0 = A1 = 0. Their transaction cost was also the same as here, namely,
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proportional to the investor’s wealth at the time of the transaction. Their
optimality criterion consisted in maximizing the investor’s long run, expo-
nential growth rate; this is equivalent to our risk sensitive criterion with risk
aversion parameter θ = 0. Subsequently, Bielecki and Pliska [4] extended
the Morton-Pliska results to allow for any positive value of the risk aversion
parameter θ. In particular, they were able to find the explicit solution of
the differential equation corresponding to the continuation-region portion of
the RSQVI in their case, and so by using suitable computer software they
were able to numerically compute the full solution of their RSQVI and thus
their optimal strategy. Since their numerical example is a special case of
the one-factor model studied in this paper, it provides a benchmark for the
purpose of validating our double stage policy iteration algorithm approach.
Using the notation of this paper, the Morton-Pliska problem solved in

Bielecki-Pliska [4] corresponds to the following choice of parameters (specifi-
cations of our space mesh are also given):

• a0 = 0.07, A0 = 0, a1 = 0.15, A1 = 0, σ1 = 0.4, α = 0.001.

• [L1, L2] = [0, Lx] with Lx = 0.12

• Nx = 30 number of grid points on the x-axis process X(t)

• Nz = 50 number of grid points on the z-axis process z(t)

We computed the optimal trading strategy for θ ∈ {0.1, 2, 4}. When
θ = 4, we obtained λ = 0.07568 (see Figure 1). The numerical results that
we get are very close to the results published by Bielecki and Pliska in [4].
In Figure 1 and in subsequent figures, the horizontal axis is the risky

fraction (z ∈ [0, 1]) and the vertical axis is the interest rate factor (x ∈
[0, Lx]). The gray region represents the rebalancing portfolio region, the
white one is the no transaction region, and the black line is the set of levels
reached after a transaction.
The optimal policy is characterized here by the triple (z, z?, z) such that

{(x, z), z ≤ z} is the buying region, {(x, z), z ≥ z} is the selling region, and
z? is th optimal rebalancing portfolio. Figure 2 displays the sensitivity of
(z, z?, z) to the size of the z-grid.
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Figure 1: Optimal investment strategy for the risk sensitive Morton Pliska
problem with α = 0.001, θ = 4.00, Nx = 30, Nz = 50
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Figure 2: z, z? and z for the risk sensitive Morton Pliska problem with
α = 0.001, θ = 4.00, Nx = 30
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6 Numerical results for the risk sensitive prob-

lem with the interest rate factor

In this section we provide numerical results for the risk sensitive problem
with a factor, obtained by implementing our algorithm.2 Not only does this
validate the efficiency of our algorithm, but this provides some economic
understanding of the underlying problem. In fact, we do a comparative
statics analysis, investigating the sensitivity of the optimal strategy to some
of the data parameters.
Figure 3 represents a typical optimal strategy such as we obtained for

figures 4 to 10. While the locations of the various boundaries will of course
vary, the qualitative nature of the strategies corresponding to Figures 4 to
10 will all resemble the hypothetical strategy illustrated in Figure 3.

PSfrag replacements

sell sell

No transaction

Lx

1O

buy

buy

x

z

Figure 3: Typical optimal strategy

For Figure 4 the following “baseline” parameter values are used:

• a0 = 0, A0 = 1, a1 = 0.18, A1 = −1, σ1 = 0.4, b = 0.06, B = −1, λ1 =
−0.001, λ2 = 0.005, θ = 2, α = 0.01.

• [L1, L2] = [0, Lx] with Lx = 0.12

• Nx = 70: number of grid points on the x-axis, Nz = 70: number of
grid points on the z-axis.

2The C and Scilab [27] programs which were used for numerical computations can be
found at url : http://cermics.enpc.fr/∼jpc/bcp-19-nov-2003/
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For these values of parameters the risk sensitive performance λ is 0.05 (it
varies from 0.063 to 0.05 when the number of grid points increases from 30
points to 70 points in both directions).
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Figure 4: Optimal investment strategy for the risk sensitive problem α =
0.010, θ = 2.00, Nx = 70, Nz = 70

Given various values of x, Table 1 provides the values of the optimal
thresholds (z(x), z?(x), z(x)) such that buying is optimal at (x, z) when z ≤
z(x), selling is optimal at (x, z) when z ≥ z(x), and the optimal rebalancing
fraction is z?(x). This is done for the parameters used for Figure 4 and also
for a coarser grid Nx = Nz = 50.

Continuation region versus risk sensitive parameter. We investigate
the sensitivity of the numerical results to changes in the investor’s risk aver-
sion parameter. As expected, as θ increases, the investor keeps more money
in the less risky asset; see Figures 5, 6, and 7 and Tables 2 and 3 (here for
Nx = Nz = 50).

Continuation region versus transaction cost. We also investigate the
sensitivity of results to changes in the transaction cost (here for Nx = Nz =
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Nz = Nx = 50 Nz = Nx = 70
x z z? z z z? z

0.000 0.122 0.347 0.837 0.116 0.333 0.841
0.030 0.061 0.245 0.612 0.058 0.246 0.609
0.060 – 0.184 0.449 – 0.174 0.435
0.090 – 0.102 0.327 – 0.101 0.304
0.120 – 0.000 0.224 – 0.000 0.217

Table 1: z,z? and z as in Figure 4
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Figure 5: α = 0.010, θ = 0.10, Nx = 50, Nz = 50

θ z z? z δ1 λ
0.100 0.082 0.367 0.673 0.0204 0.06839
2.000 – 0.184 0.449 0.0204 0.06343
4.000 – 0.102 0.327 0.0204 0.06201

Table 2: z,z? and z for x = 0.06 and Nx = Nz = 50
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Figure 6: α = 0.010, θ = 2.00, Nx = 50, Nz = 50
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Figure 7: α = 0.010, θ = 4.00, Nx = 50, Nz = 50
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θ z z? z δ1 λ
0.100 0.069 0.345 0.655 0.0345 0.06840
2.000 – 0.172 0.448 0.0345 0.06340
4.000 – 0.103 0.310 0.0345 0.06199

Table 3: z,z? and z for x = 0.06 and Nx = Nz = 30

50). As expected, as the transaction cost α increases, the no-transaction
region increases; see Figures 8, 9, and 10 and Tables 4 and 5.
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Figure 8: α = 0.001, θ = 2.00, Nx = 50, Nz = 50

Figure 11 displays the evolution of the computed value λk with respect to
the iteration index k of the algorithm for the six examples given in Figures 5-
10. We see that only a few iterations is needed for the policy iteration
algorithm to converge.
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Figure 9: α = 0.010, θ = 2.00, Nx = 50, Nz = 50
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Figure 10: α = 0.100, θ = 2.00, Nx = 50, Nz = 50
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α z z? z δ1 λ
0.001 0.061 0.184 0.327 0.0204 0.06491
0.010 – 0.184 0.449 0.0204 0.06343
0.100 – 0.061 0.633 0.0204 0.06168

Table 4: z,z? and z for x = 0.06 and Nx = Nz = 50

α z z? z δ1 λ
0.001 0.069 0.172 0.310 0.0345 0.06493
0.010 – 0.172 0.448 0.0345 0.06340
0.100 – 0.069 0.621 0.0345 0.06165

Table 5: z,z? and z for x = 0.06 and Nx = Nz = 30
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Figure 11: Evolution of λk with respect to the iteration index k
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7 Concluding Remarks: a Vanishing Trans-

action Cost

Not surprisingly, taking α = 0 in our RSQVI (3.2) we reproduce the no-
transaction cost results of Bielecki and Pliska [3], [5]. To see this, with α = 0
we get Mψ(z, x) = supz′∈[0,1]Ψ(z

′, x) ≤ Ψ(z, x) for all z. Consequently,
equation (3.2) becomes
{

Ψ(z, x) ≡ ψ(x)
b2ψ

′(x) + d22ψ
′′(x)− θ

4
(λ21 + λ

2
2)ψ

′(x)2 − λ+ f̄(z, x) ≤ 0 in D,
(7.15)

It can be proven that the solution (ψ, λ) of the control problem is the minimal
solution of Eq. (7.15). Consequently, (ψ, λ) must satisfy:

max
z∈[0,1]

{b2ψ
′(x) + d22ψ

′′(x)−
θ

4
λ21ψ

′(x)2 −
θ

4
λ22ψ

′(x)2 − λ+ f̄(z, x)} = 0.

This suggests that the optimal investment policy must satisfy:

z∗(x) =
a1 − a0 + (A1 − A0)x− θ/2λ1σ1ψ

′(x)

σ21(θ/2 + 1)
.

Substituting this in the preceding equation, it is apparent that the function
ψ satisfies:

b2ψ
′(x) + d22ψ

′′(x)−
θ

4
λ21ψ

′(x)2 −
θ

4
λ22ψ

′(x)2 − λ+ f̄(z∗(x), x) = 0.

It turns out that the solution ψ(x), defined within an additive constant, is a
quadratic function of x, so we shall set

ψ′(x) := µx+ ν

for scalar parameters µ and ν. Substituting this in the preceding equation
and then doing some algebra, one obtains the final solution, namely,

µ =
Q−B −

√

(Q−B)2 − P (A1−A0)2

ξ

P

ν =
−µ b+ µ θ λ1 σ1 (a1 − a0)/(2 )− (A1 − A0) (a1 − a0)/ξ − A0

µP +B −Q
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and

λ = ν b+ d22 µ−
θ d22 ν

2

2
+ a0 +

((a1 − a0)− θ λ1 σ1 ν/2)
2

2 ξ

where

P := −
θ

2
(λ21 + λ

2
2) +

θ2

4
(

λ21
θ/2 + 1

), ξ = σ1
2 (
θ

2
+ 1)

and

Q :=
(A1 − A0)θλ1
2σ1(θ/2 + 1)

.

The function ψ is obviously C2. We can thus check by a verification
theorem that λ is indeed the optimal performance and ψ is the potential
function of our control problem.
We see numerically that the optimal policy converges when α goes to

zero to the solution of the no-transaction cost problem. Figure 12 displays
the optimal policy for α = 10−8, θ = 2 and the same other values of the
parameters.
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Figure 12: Optimal investment strategy for vanishing transaction cost α =
1.e− 8, θ = 2, Nx = 50, Nz = 50

We can identify ψ(x) = 3.07x2+0.25x− 0.029 as a quadratic function of
x which leads to z∗(x) as an affine function of x, as can be seen on figure 12.
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