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Abstract

There are two classes of nonlinear expectations, one is the Choquet expectation
given by Choquet (1955), the other is the Peng’s g-expectation given by Peng (1997)
via backward differential equations (BSDE). Recently, Peng raised the following
question: can a g-expectation be represented by a Choquet expectation? In this
paper, we provide a necessary and sufficient condition on g-expectations under which
Peng’s g-expectation can be represented by a Choquet expectation for some random
variables (Markov processes). It is well known that Choquet expectation and g-
expectation (also BSDE) have been used extensively in the pricing of options in
finance and insurance. Our result also addresses the following open question: given
a BSDE (g-expectation), is there a Choquet expectation operator such that both
BSDE pricing and Choquet pricing coincide for all European options? Furthermore,
the famous Feynman-Kac formula shows that the solutions of a class of (linear)
partial differential equations (PDE) can be represented by (linear) mathematical
expectations. As an application of our result, we obtain a necessary and sufficient
condition under which the solutions of a class of nonlinear PDE can be represented
by nonlinear Choquet expectations.
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1 Introduction

The concept of expectation is crucial in probability theory. Given a probability measure
P, the expectation Eξ of a random variable ξ under P can be calculated by

Eξ =

∫ 0

−∞

[P (ξ ≥ t) − 1]dt +

∫ ∞

0

P (ξ ≥ t)dt.

One of the important properties of mathematical expectations is its linearity, that is

E(ξ + η) = Eξ + Eη

when both sides are finite. Choquet [Ch] introduced a definition of nonlinear expectations
of ξ under a non-additive probability measure V as

C(ξ) :=

∫ 0

−∞

[V (ξ ≥ t) − 1]dt +

∫ ∞

0

V (ξ ≥ t)dt.

This expectation, usually called the Choquet expectation, has no longer the linearity
property because of the non-additivity of V in the sense that V (A + B) 6≡ V (A) + V (B),
even if A ∩ B = ∅ .

The Choquet expectation was originally motivated by potential theory in physics, but
it has found many applications in various fields. In particular, owing to Schmeidler’s work
[Sc2] the Choquet expectation has become an important tool in describing individuals’
behavior under uncertainty in economics.

Peng [P1, P2] introduced the notion of g-expectation via a class of nonlinear backward
stochastic differential equations (BSDEs). He showed that g-expectations preserve many
of the basic properties of mathematical expectations except linearity (see [P1, P2, CP] for
details). A natural question is to ask for which class of random variables does a Peng’s
g-expectation can be represented by a Choquet expectation? In this paper, we discuss
this issue and provide a necessary and sufficient condition under which a g-expectation
can be represented by a Choquet expectation for some random variables.

The paper is organized as follows: In Section 2, we recall briefly some notions of BSDEs
and related g-expectations. In Section 3, we give a necessary and sufficient condition
under which a g-expectation can be represented as a Choquet expectation. In Section
4 we consider an extension to multiple dimensions. As an application, in Section 5, we
consider a relation between nonlinear PDE and Choquet expectations, which implies that
the famous Feynman-Kac formula can be extended to nonlinear case. For the reader’s
convenience, Section 6 is an appendix which contains several lemmas which are used in
this paper.
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2 BSDEs and g-expectations

Pardoux and Peng [PP1] showed an existence and uniqueness theorem for nonlinear BS-
DEs. Furthermore, Peng [P1] introduced the notion of g-expectation via this kind of
BSDEs. This section gives a brief review of BSDEs and related g-expectations.

Fix T ∈ [0,∞), let (Wt)0≤t≤T be a d-dimensional standard Brownian motion defined
on a completed probability space (Ω,F , P ). Suppose {Ft}0≤t≤T is the natural filtration
generated by (Wt)0≤t≤T , i.e.

Ft = σ{Ws; s ≤ t}.

We also assume FT = F .

Set

L2(0, T ) :=
{

V ; V is a (Ft)-adapted process with [E
∫ T

0
|V (s)|2ds]

1
2 < ∞

}

;

L2(Ω,F , P ) := {ξ; ξ is a F -measurable random variable with E|ξ|2 < ∞}.

Let g be a function from R × Rd × [0, T ] into R such that

(H1) For any (y, z) ∈ R × Rd, g(y, z, t) is continuous in t and
∫ T

0
|g(y, z, s)|2ds < ∞ .

(H2) Lipschitz condition: There exists a constant µ > 0 such that
|g(y1, z1, t) − g(y2, z2, t)| ≤ µ(|y1 − y2| + |z1 − z2|]),∀(yi, zi) ∈ R × Rd, i = 1, 2 .

(H3) g(y, 0, t) = 0,∀(y, t) ∈ R × [0, T ].

By Pardoux and Peng’s Theorem [PP1], for any ξ ∈ L2(Ω,F , P ), there exists a unique
pair of adapted processes (y, z) ∈ L2(0, T ) × L2(0, T ) satisfying the BSDE

yt = ξ +

∫ T

t

g(ys, zs, s)ds −

∫ T

t

zsdWs , 0 ≤ t ≤ T . (1)

When d > 1 we interpret zsdWs as a matrix product. Furthermore, Peng [P1] introduced
the notion of g-expectation via the BSDE (1).

Definition 1 Suppose that g satisfies (H1), (H2) and (H3). For any ξ ∈ L2(Ω,F , P ),
let (yt, zt) be the solution of BSDE (1).

(1) We call Eg[ξ] defined by
Eg[ξ] := y0

the g-expectation of the random variable ξ.

(2) We call Eg[ξ|Ft] defined by
Eg[ξ] := yt, t ∈ [0, T )

the conditional g-expectation of the random variable ξ.
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(3) Let 1A be the indicator function of the set A. For any A ∈ F , Pg(A) is called the
g-probability of the event A, where

Pg(A) := Eg[1A] .

Remark 1 If g = 0, then Eg[ξ|Ft] = E[ξ|Ft], Eg[ξ] = Eξ and Pg(A) = P (A). See [P1]
for details.

Peng [P1] showed that g-expectations and conditional g-expectations preserve many
of the basic properties of mathematical expectations except for linearity. Some of these
important properties are given below.

Property 1 (i) Eg[c] = c,∀c ∈ R;

(ii) Eg[ξ] = Eg[Eg[ξ|Ft]];

(iii) Eg[Eg[ξ|Ft]|Fr] = Eg[ξ|Fr∧t];

(iv) Eg[ξ + η|Ft] = ξ + Eg[η|Ft], if ξ is Ft-measurable;

(v) If g is deterministic and ξ is independent of Ft, then Eg[ξ|Ft] = Eg[ξ].

(iv) η := Eg[ξ|Ft] is the unique Ft-measurable random variable satisfying the following
equation

Eg[ξ1A] = Eg[η1A] , for all A ∈ Ft .

We now recall briefly the notions of capacity and Choquet expectation.

Definition 2 (1) A real valued set function V : F → [0, 1] is called a capacity if

(i) V (∅) = 0, V (Ω) = 1

(ii) V (A) ≤ V (B) for any A ⊂ B where A,B ∈ F .

(2) Choquet expectation: Let V be a capacity. For any ξ ∈ L2(Ω,F , P ), the func-
tional C(ξ) defined by

C(ξ) :=

∫ 0

−∞

(V (ξ ≥ t) − 1) dt +

∫ ∞

0

V (ξ ≥ t)dt

is called the Choquet expectation of ξ with respect to V .

(3) Random variables ξ and η are called comonotonic if

[ξ(ω) − ξ(ω′)][η(ω) − η(ω′)] ≥ 0 , ∀ω, ω′ ∈ Ω .
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(4) A real function F defined on L2(Ω,F , P ) is called comonotonic additive if for all
comonotonic ξ and η

F (ξ + η) = F (ξ) + F (η) .

The results of Dellacherie [De] and Schmeidler [Sc1] can be rewritten as the following
Lemma.

Lemma 1 Suppose F is a real continuous functional on L2(Ω,F , P ). Then F can be
represented by a Choquet expectation for all random variables in L2(Ω,F , P ) if and only
if F is comonotonic additive.

3 Main Result

In order to simplify the notation, in this section, we shall discuss our main result under
the assumption that Brownian motion {Wt} is 1-dimensional, that is d = 1. The case of
a multidimensional Brownian motion will be discussed in Section 4.

Let b(t, x) and σ(t, x) be continuous in t and Lipschitz continuous in x, then the
following SDE has a unique solution {Xa,σ

t } (shortly {Xt}) which depends on coefficients
a, σ:

{

dXs = b(s,Xs)ds + σ(s,Xs)dWs, 0 ≤ s ≤ T,

X0 = x ∈ R
(2)

Define H as

H := {Xa,σ
T ∈ L2(Ω,F , P ) : b, σ are continuous in t and Lipschitz continuous in x} .

Let Φ(x) be an increasing function such that Φ(XT ) ∈ L2(Ω,F , P ).
We consider the question: under which condition on g is there a Choquet expectation

operator C(·) such that

Eg[Φ(XT )] = C[Φ(XT )],∀XT ∈ H?

In this case, we say that g-expectation can be represented by a Choquet expectation on
H. This question is answered in Theorem 1.

Remark 2 The question can be explained in finance as follows:
Suppose {Xt} is the price of a stock. Let Φ(XT ) = (XT − k)+ be the value of a

European option at exercise time T . Then by the viewpoint of El Karoui, Peng and Quenz
[KPQ], Eg[Φ(XT )] is the price of an European option with payoff Φ(XT ). If g is linear,
then the corresponding market model is a complete market model and Eg[Φ(XT )] is the
classical mathematical expectation, that is the Black-Scholes formula. If g is nonlinear,
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then the corresponding market is incomplete. Our question is the following: for which
class of incomplete market models can the price of an European option be obtained by a
Choquet expectation? Similarly to the Black-Scholes formula which shows that the price
of a contingent claim in a complete market is a mathematical expectation, our result
shows that the price of a contingent claim in some incomplete market model is a Choquet
expectation.

The main result in this section is

Theorem 1 Suppose that g satisfies (H1), (H2) and (H3). Eg[ξ] can be represented as
a Choquet expectation for any ξ ∈ H if and only if there exist two continuous functions
{α(t)}, {β(t)} such that g does not depend on y and has the form

g(y, z, t) = α(t)|z| + β(t)z. (3)

To investigate a necessary condition, we need the following lemma (see [BCMP]):

Lemma 2 Suppose that {Xt} is of the form

Xt = x +

∫ t

0

σsdWs , 0 ≤ t ≤ T

where {σt} is a continuous bounded process. Consider the BSDE (1) with a given function
g that satisfies conditions (H1), (H2) and (H3), and for which ξ = XT . Then

(i) Eg[Xτ |Ft] → Xt, τ → t

(ii) limτ→t+
Eg[Xτ |Ft]−E[Xτ |Ft]

τ−t
= g(Xt, σt, t)

where the limits are in the sense of L2(Ω,F , P ).

The proof of necessary condition in Theorem 1:
If for any ξ ∈ H, Eg[ξ] can be represented by a Choquet expectation, by Dellacherie’s

Theorem (Lemma 1), then Eg[·] is comonotonic additive, that is whenever ξ and η are
comonotonic then

Eg[ξ + η] = Eg[ξ] + Eg[η] . (4)

Choose constants (y1, z1, t), (y2, z2, t) ∈ R2 × [0, T ] with z1z2 ≥ 0. For any τ ∈ [t, T ] the
random variables ξτ = y1 + z1(Wτ −Wt) and ητ = y2 + z2(Wτ −Wt) are comonotonic and
independent of Ft.

Recall in (1) that g : R×R× [0, T ] is a non-random function, and also that yi and zi

(i = 1, 2) are constants. Applying Property 1(v),

Eg[ξτ |Ft] = Eg[ξτ ] , Eg[ητ |Ft] = Eg[ητ ] , Eg[ξτ + ητ |Ft] = Eg[ξτ + ητ ].
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This together with (4) implies

Eg[ξτ + ητ |Ft] − E[ξτ + ητ |Ft]

τ − t
=

Eg[ξτ |Ft] − E[ξτ |Ft]

τ − t
+

Eg[ητ |Ft] − E[ητ |Ft]

τ − t
. (5)

Taking limits as τ → t on both sides of (5), by Lemma 2(ii), we obtain

g(y1 + y2, z1 + z2, t) = g(y1, z1, t) + g(y2, z2, t) , ∀z1z2 ≥ 0 , y1, y2 ∈ R , (6)

which then implies that g is linear with respect to y in R and z in R+ (or R−). Applying
(6), it is easy to check that for any a > 0, g(0, a, t) = ag(0, 1, t).

Thus, for any (y, z, t) ∈ R2 × [0, T ], by assumption (H3), that is g(y, 0, t) = 0, and by
the fact that z1[z≤0] · z1[z≥0] = 0, then (6) implies

g(y, z, t) = g
(

y + 0, z1[z≥0] + z1[z≤0], t
)

= g
(

y, z1[z≥0], t
)

+ g
(

0, z1[z≤0], t
)

= g
(

y + 0, 0 + z1[z≥0], t
)

+ g
(

0,−(−z)1[z≤0], t
)

= g(y, 0, t) + g
(

0, z1[z≥0], t
)

+ g
(

0,−(−z)1[z≤0], t
)

= g(0, 1, t)z1[z≥0] − g(0,−1, t)z1[z≤0]

= g(0, 1, t) |z|+z

2
+ g(0,−1, t) |z|−z

2

= g(0,1,t)+g(0,−1,t)
2

|z| + g(0,1,t)−g(0,−1,t)
2

z .

Set α(t) := g(0,1,t)+g(0,−1,t)
2

and β(t) := g(0,1,t)−g(0,−1,t)
2

to complete the proof of the necessary
condition. �

Before proving the sufficient condition part of Theorem 1, we state and prove Lemmas
3, 4 and 5.

Consider the SDE (2) and its solution {Xt}. Then XT ∈ H. We will also be interested
in random variables ξ = Φ(XT ) for various functions Φ.

Lemma 3 Suppose that {Xs} is the solution of the SDE (2). Suppose also that Φ and Ψ
are two increasing functions such that Φ(XT ) , Ψ(XT ) ∈ L2(Ω,F , P ). Let (yΦ

t , zΦ
t ) and

(yΨ
t , zΨ

t ) be the solutions of the BSDE (1) with terminal values ξ = Φ(XT ) and ξ = Ψ(XT )
respectively. If b and σ in (2), the function g in (1), Φ and Ψ are assumed to be C3, then

zΦ
t zΨ

t ≥ 0 , a.e. t ∈ [0, T ] .

Proof. Let {X t,x
s } be the solution of the SDE:

{

dX t,x
s = b(s,X t,x

s )ds + σ(s,X t,x
s )dWs ,

Xt = x , s ∈ [t, T ] .

Obviously, the solution {X0,x
s } of the above SDE with t = 0 is indeed the solution {Xs}

of SDE (2). Let (yt,x,Φ
s , zt,x,Φ

s ) and (yt,x,Ψ
s , zt,x,Ψ

s ) be the solutions of the BSDE (1) corre-
sponding to terminal values ξ = Φ(X t,x

T ) and ξ = Ψ(X t,x
T ), respectively, then
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(i) Since XT = X
0,x
T , thus zΦ

s = z0,x,Φ
s , zΨ

s = z0,x,Ψ
s ; s ∈ [0, T ].

(ii) Since Φ, Ψ are increasing, applying the Comparison Theorem for SDEs and BSDEs,
we get that y

t,x,Φ
t and y

t,x,Ψ
t are increasing in x.

Let u(t, x) := y
t,x,Φ
t and v(t, x) := y

t,x,Ψ
t . By Lemma 7(ii) in Section 6

{

zt,x,Φ
s = σ(s,X t,x

s )∂xu(s,X t,x
s ) , a.e. s ∈ [t, T ] ,

zt,x,Ψ
s = σ(s,X t,x

s )∂xv(s,X t,x
s ) , a.e. s ∈ [t, T ] .

(7)

This together with (ii) above implies

zt,x,Φ
s zt,x,Ψ

s = σ2(s,X t,x
s )∂xu(s,X t,x

s )∂xv(s,X t,x
s ) ≥ 0 , a.e. s ∈ [t, T ] .

Letting t = 0 and applying (i), it then follows that

zΦ
s zΨ

s = z0,x,Φ
s z0,x,Ψ

s

= σ(s,Xs)∂xu(s,Xs)σ(s,Xs)∂xv(s,Xs)
= σ2(s,Xs)∂xu(s,Xs)∂xv(s,Xs) ≥ 0 , a.e. s ∈ [0, T ].

(8)

The proof is complete. �

We next consider the case where Φ and Ψ are indicator functions.
Suppose that {Xt} is the solution of SDE (2). For given constants α, c ∈ R and α ≤ c,

set B = {XT ≥ α} and C = {XT ≥ c} and let (yB, zB) and (yC , zC) be the solutions of
the BSDE (1) corresponding to terminal values ξ = 1B and ξ = 1C respectively. Clearly
C ⊂ B.

Lemma 4 Suppose that the functions b and σ in (2), and the function g in (1) satisfy
the assumptions of Lemma 3. Then

zC
t zB

t ≥ 0, a.e. t ∈ [0, T ] . (9)

Proof. Indeed for the indicator functions 1(x≥α) and 1(x≥c), we can construct a sequence
of C3-increasing functions Φn(·, α), Φn(·, c) such that

Φn(x, α) → 1(x≥α), Φn(x, c) → 1(x≥c) as n → ∞.

For example, for any n = 1, 2, · · · define

Φn(x, α) := e−nd(α)(x) , Φn(x, c) := e−nd(c)(x)

where

d(α)(x) =

{

(α − x)3 if x < α

0 if x ≥ α
; d(c)(x) =

{

(c − x)3 if x < c

0 if x ≥ c .
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Let (yn,α, zn,α) and (yn,c, zn,c) be the solutions of the BSDE (1) corresponding to ξ =
Φn(XT , α) and ξ = Φn(XT , c) respectively. Applying Lemma 3, we have

zn,α
s zn,c

s ≥ 0 , a.e. s ∈ [0, T ] .

Note that Φn(XT , α) → 1B and Φn(XT , c) → 1C as n → ∞ in L2(Ω,F , P ). By Lemma 6
in Section 6, then zn,α → zB and zn,c → zC as n → ∞ in L2(0, T ).
The proof is complete. �

Note that if Φn(x, α) is the function defined above, and Φ is an increasing function,
then Φn(Φ(x), α) is increasing, and we get immediatly

Remark 3 Suppose Φ is an increasing function, and let B = {Φ(XT ) ≥ α}, C =
{Φ(XT ) ≥ c}, then Lemma 4 is still true.

We next consider the case where g is of the form:

g(y, z, t) = a(t)|z| (10)

where a is a continuous function bounded by µ. In order to signify the dependence on a

when g is of the form (10) we rewrite Eg[ξ], Eg[ξ|Ft] and Pg(·) as Ea[ξ] , Ea[ξ|Ft] and Pa(·).

Lemma 5 Suppose that XT ∈ H and k1 ≤ k2 ≤ · · · kn is a sequence in R. Let Ai :=
{ω : XT (ω) ≥ ki}, i = 1, 2, · · · , n. Then for any sequence of positive constants {bi}

n
i=1,

we have

Ea[
n

∑

i=1

bi1Ai
] =

n
∑

i=1

biPa[Ai] .

Proof. For any ǫ > 0, the function gǫ defined by gǫ(y, z, t) := a(t)
√

|z|2 + ǫ is differen-
tiable with respect to z and its derivative is uniformly bounded.

Let (yi,ǫ
t , z

i,ǫ
t ) be the solution of the BSDE

yt = 1Ai
+

∫ T

t

a(s)
√

(|zs|2 + ǫ)ds −

∫ T

t

zsdWs , i = 1, 2, · · · , n .

Applying Lemma 6 of Section 6, then (yi,ǫ
t , z

i,ǫ
t ) → (yi, zi) as ǫ → 0 in L2(0, T )×L2(0, T ),

where (yi, zi) are the solutions of the BSDE:

yi
t = 1Ai

+

∫ T

t

a(s)|zi
s|ds −

∫ T

t

zi
sdWs , i = 1, 2, · · · , n . (11)

Applying Lemma 4, we have for any i, j = 1, 2, · · · , n

z
i,ǫ
t z

j,ǫ
t ≥ 0 .
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Hence,
zi

tz
j
t ≥ 0 , a.e. t ∈ [0, T ], i, j = 1, 2, · · · , n

which implies

|
n

∑

i=1

zi
t| =

n
∑

i=1

|zi
t| a.e. t ∈ [0, T ] . (12)

Multiplying both sides of BSDE (11) by bi, summing from i = 1 to n and applying (12)
with bi ≥ 0, we obtain

n
∑

i=1

biy
i
t =

n
∑

i=1

bi1Ai
+

∫ T

t

a(s)|
n

∑

i=1

biz
i
s|ds −

∫ T

t

n
∑

i=1

biz
i
sdWs .

Therefore (
∑n

i=1 biy
i
t ,

∑n

i=1 biz
i
t) is the solution of the BSDE

yt =
n

∑

i=1

bi1Ai
+

∫ T

t

a(s)|zs|ds −

∫ T

t

zsdWs .

By uniqueness of the solution of the BSDE, we get

Ea[
n

∑

i=1

bi1Ai
|Ft] =

n
∑

i=1

biy
i
t , t ∈ [0, T ] .

By the definition of g-expectation, we have from (11),

n
∑

i=1

biy
i
t =

n
∑

i=1

biEa[1Ai
|Ft] =

n
∑

i=1

biPa[Ai|Ft] , t ∈ [0, T ] .

Thus

Ea[
n

∑

i=1

bi1Ai
|Ft] =

n
∑

i=1

biPa[Ai|Ft] , t ∈ [0, T ] .

In particular, taking t = 0, we obtain the conclusion of Lemma 5.
�

Remark 4 Lemma 4 and Lemma 5 can be modified to remove the assumption that g,
Φ and Ψ are C3-functions. The proofs would be modified to construct a sequence of C3-
functions gn, Φn and Ψn such that gn → g, Φn → Φ and Ψn → Ψ, as n → ∞.
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We now prove the sufficiency part of Theorem 1, that is if g is of the form (3), then
Eg[ξ] can be represented by a Choquet expectation. Without loss of generality, we can
assume β in (3) satisfies β ≡ 0. This can be seen as follows. If yt := Eg[ξ|Ft] is the
solution of the BSDE (1) then

yt = ξ +

∫ T

t

[α(s)|zs| + β(s)zs]ds −

∫ T

t

zsdWs

= ξ +

∫ T

t

α(s)|zs|ds −

∫ T

t

zsdW s

where W t := Wt −
∫ t

0
β(s)ds is a Q-Brownian motion under Q defined by

dQ

dP
= exp{−

1

2

∫ T

0

β2(s)ds +

∫ T

0

β(s)dWs} .

Thus we can consider BSDE (1) with g(y, z, t) = α(t)|z| on the probability space (Ω,F , Q).
The proof of the sufficiency of Theorem 1 now follows from Theorem 2 which shows

that a Choquet representation holds in the special case where g is of the form (10).
�.

Theorem 2 Assume g is of the form (10), then, for any ξ ∈ H, Ea[ξ] can be represented
as a Choquet expectation.

Proof. The proof is divided into two steps.
Step 1: Assume that ξ is strictly bounded by N , that is |ξ| < N .

First, assume ξ ≥ 0. Set

ξ
(n)
− :=

2n−1
∑

i=0

iN

2n
1

( iN
2n ≤ξ<

(i+1)N
2n )

; ξ
(n)
+ :=

2n−1
∑

i=0

(i + 1)N

2n
1

( iN
2n ≤ξ<

(i+1)N
2n )

.

Then

(i) : 0 ≤ ξ
(n)
− ≤ ξ ≤ ξ

(n)
+

(ii) : ξ
(n)
− → ξ, ξ

(n)
+ → ξ as n → ∞ in L2(Ω,F , P ).

Thus (i) and the comparison theorem of BSDEs give

Ea[ξ
(n)
− ] ≤ Ea[ξ] ≤ Ea[ξ

(n)
+ ],

and from (ii) we have

lim
n→∞

Ea[ξ
(n)
− ] = lim

n→∞
Ea[ξ

(n)
+ ] = Ea[ξ] .
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Note that it is easy to rewrite ξ
(n)
− and ξ

(n)
+ as

ξ
(n)
− =

N

2n

2n−1
∑

i=1

1(ξ≥ iN
2n ) , ξ

(n)
+ =

N

2n

2n
∑

i=1

1
(ξ≥

(i−1)N
2n )

.

Applying Lemma 5, and recalling Pa(A) = Ea[1A], we obtain

Ea[ξ
(n)
− ] =

2n−1
∑

i=1

N

2n
Pa(ξ ≥

iN

2n
) , Ea[ξ

(n)
+ ] =

2n
∑

i=1

N

2n
Pa(ξ ≥

(i − 1)N

2n
) .

Since
2n−1
∑

i=1

N

2n
Pa(ξ ≥

iN

2n
) ≤

∫ N

0

Pa(ξ ≥ t)dt ≤
2n
∑

i=1

N

2n
Pa(ξ ≥

(i − 1)N

2n
)

hence

Ea[ξ
(n)
− ] ≤

∫ N

0

Pa(ξ ≥ t)dt ≤ Ea[ξ
(n)
+ ] .

Letting n → ∞

Ea[ξ] =

∫ N

0

Pa(ξ ≥ t)dt . (13)

Thus Ea[ξ] can be represented by the Choquet expectation.
Secondly if ξ is not positive, let ξ = ξ + N , then 0 ≤ ξ < 2N . Applying (13) gives

Ea[ξ] =

∫ 2N

0

Pa(ξ ≥ t)dt =

∫ N

−N

Pa(ξ ≥ t)dt .

By Property 1(iv), we have

Ea[ξ] = Ea[ξ + N ] = Ea[ξ] + N.

Consequently,

Ea[ξ] = Ea[ξ] − N =

∫ 0

−N

[Pa(ξ ≥ t) − 1]dt +

∫ N

0

Pa(ξ ≥ t)dt. (14)

Step 2: For sufficient large number N > 0, let Φ(x) = x ∨ (−N + 1) ∧ (N − 1). Then
Φ is increasing in x and for any ξ ∈ H, ξN := Φ(ξ) is strictly bounded by N , that is
|Φ(ξ)| < N . By Step 1, Ea[ξ

N ] satisfies (14).
Letting N → ∞ and noting that limN→∞ Ea[ξ

N ] = Ea[ξ] we then obtain

Ea[ξ] =

∫ 0

−∞

(Pa(ξ ≥ t) − 1) dt +

∫ ∞

0

Pa(ξ ≥ t)dt .
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This concludes the proof of Theorem 2. �

It is interesting to note that the necessary and sufficient condition for the Choquet
representation is related to Jensen’s inequality.

The following is a combination of Theorem 1 and Jensen’s inequality in [CKL].

Corollary 1 Suppose that g satisfies (H1), (H2) and (H3). If g is convex in z, then the
following statements are equivalent.

(i) the g-expectation satisfies Jensen’s inequality, e.g. for any convex function f

f (Eg[ξ]) ≤ Eg[f(ξ)], whenever f(ξ) and ξ ∈ L2(Ω,F , P ) ;

(ii) g is of the form (3), e.g there exist two continuous functions α ≥ 0, β such that

g(y, z, t) = α(t)|z| + β(t)z;

(iii) the g-expectation Eg[ξ] is a Choquet expectation for all ξ ∈ H.

4 Extension to multiple dimensional Brownian mo-

tion

In Section 3, we have proven our theorems under the assumption that the Brownian
motion {Wt} is 1−dimensional, that is d = 1. For the multiple Brownian motion, that is
when {Wt} := {W 1

t ,W 2
t , · · · ,W d

t }
∗ with d > 1, the results still hold. Here {· · · }∗ denotes

transpose.
Indeed, let H be the set of all F -measurable random variables XT ∈ L2(Ω,F , P ),

where XT is the value of the solution {Xt} of the following SDE at time T

{

dXs = b(s,Xs)ds + σ(s,Xs) · dWs , 0 ≤ s ≤ T ,

X0 = x ∈ R .

Here σ(t, x) : [0, T ] × R1×d → Rd, b(t, x) : R → R are continuous in (t, x) and uniformly
Lipschitz in x. The notation x · y is the inner product of x, y ∈ Rd. Furthermore, we
assume that d > 1 and that there exist gi such that

g(y, z, t) =
d

∑

i=1

gi(y, zi, t) (15)

where zi is the i-th component of z.
Theorem 1 can then be extended as follows.
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Theorem 3 Suppose g is of the form (15) and that gi satisfies (H1), (H2) and (H3) for
each i. Then Eg[ξ] can be represented as a Choquet expectation for any ξ ∈ H if and only
if there exist two sequences of continuous functions {αi(t)} and {βi(t)} such that g is of
the form

g(y, z, t) =
d

∑

i=1

αi(t)|z
i| +

d
∑

i=1

βi(t)z
i .

Proof. The proof is similar to the case when {Wt} is 1−dimensional and so we only
sketch the proof.
Necessary condition: This is analogous to the proof of necessary condition in Section
3.

For each i = 1, 2, · · · , d choose (y1, z
i
1, t) , (y2, z

i
2, t) ∈ R × R × [0, T ] with zi

1z
i
2 ≥ 0.

For any τ ∈ [t, T ], let ξ = y1 + zi
1(W

i
τ − W i

t ) and η = y2 + zi
2(W

i
τ − W i

t ).
Let (y, z) be the solution of the BSDE with multiple Brownian motion,

yt = ξ +

∫ T

t

g(ys, zs, s)ds −

∫ T

t

zs · dWs

where {Wt} is d−dimensional, and (y, z) be the solution of BSDE with 1−dimensional
Brownian motion

yt = ξ +

∫ T

t

gi(ys, z
i
s, s)ds −

∫ T

t

zi
sdW i

s , i = 1, 2, . . . , d

where {W i
t } is the i-th component of d-dimensional Brownian motion {Wt}.

It is easy to check that

{

yt = yt ,

zt = (z1
t , · · · , zd

t ), where zi
t = zt, z

j
t = 0, j 6= i, j = 1, 2, · · · , d

where zk, k = 1, 2, · · · , d is the k-th component of z.
A corresponding result can be obtained for η, thus by the necessary condition in

Theorem 1, there exists αi(t) and βi(t) such that

gi(y, zi, t) = αi(t)|z
i| + βi(t)z

i .

It then follows by the assumption g(y, z, t) =
∑d

i=1 gi(y, zi, t) that the necessary condition
can be proved by the necessary condition in Theorem 2.
Sufficient condition: Note that all proofs of in Section 3 can be adapted to the case
where {Wt} is d−dimensional Brownian motion.
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5 A Generalized Feynman-Kac Formula

In this section, we will consider the application of our result in partial differential equa-
tions. We only consider a 1-dimensional PDE.

Let u be the solution of the partial differential equation
{

∂u(t,x)
∂t

= 1
2

∂2u(t,x)
∂x2

u(0, x) = f(x), t ≥ 0, x ∈ R
(16)

where f is a bounded function. By the Feynman-Kac formula, there exists a probability
measure such that the solution u(t, x) of PDE (16) can be represented by a mathematical
expectation

u(t, x) = Ef(Wt + x) (17)

where {Wt} is a 1−dimensional standard Brownian motion.
The Feynman-Kac formula (17) implies that under some conditions the solution of a

class of linear PDEs can be represented by a (linear) mathematical expectation, which
make it possible to solve a linear PDE using Monte Carlo methods (the Law of Large
Numbers for additive probabilities). A natural question is for which class of nonlinear
PDEs, can their solutions be represented by nonlinear Choquet expectations? If this is
feasible, then an application of the Law of Large Numbers for non-additive probabilities
[D, M] would suggest that a Monte Carlo-like method could be used to solve non-linear
PDEs. It is interesting that our result [Theorem 1] gives an answer for a class of nonlinear
PDEs.

For convenience in the exposition we now consider the following simple nonlinear PDE.
Let u be the solution of PDE

{

∂u(t,x)
∂t

= 1
2

∂2u(t,x)
∂x2 + g

(

u,
∂u(t,x)

∂x

)

u(0, x) = f(x) , t ≥ 0,
(18)

where g is a function satisfying (H1), (H2) and (H3) in Section 2 and f(x) is increasing
in x.

Theorem 4 For any bounded increasing function f , the solution u(t, x) of PDE (18) can
be represented by a Choquet expectation if and only if there exist constants α and β such
that g is of the form

g(y, z) = α|z| + βz .

Proof: Let {Wt} be a 1−dimensional Brownian motion. Denote by v(s, x) = u(t− s, x).
Then v(t, x) = u(0, x) = f(x) and from (18)

∂v(s, x)

∂s
+

1

2

∂2v(s, x)

∂x2
= −g

(

v(s, x),
∂v(s, x)

∂x

)

, s ∈ [0, t] .
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Applying Itô’s formula for v(s,Ws + x), we get

dv(s,Ws + x) =
(

∂v(s,Ws+x)
∂s

+ 1
2

∂2v(s,Ws+x)
∂x2

)

ds + ∂v(s,Ws+x)
∂x

dWs

= −g
(

v(s,Ws + x), ∂v(s,Ws+x)
∂x

)

ds + ∂v(s,Ws+x)
∂x

dWs , s ∈ [0, t]

with boundary condition v(t,Wt + x) = f(Wt + x).

This implies that ys = v(s,Ws + x), zt = ∂v(s,Ws+x)
∂x

is the solution of the BSDE

ys = f(Wt + x) +

∫ t

s

g(yr, zr)dr −

∫ t

s

zrdWr , s ∈ [0, t] .

By the definition of g-expectation, v(0, x) = y0 = Eg[f(Wt + x).
On the other hand, by the definition of v, v(0, x) = u(t, x) and thus

u(t, x) = Eg[f(Wt + x)] .

Since g does not depend on t, α(t) = α and β(t) = β in Theorem 1 and the proof of
Theorem 4 is complete. �

Remark 5 Our result shows that one can find a nonlinear function g such that both g-
expectation and Choquet expectation coincide in H. A natural question is that can one
find a nonlinear function g such that both g-expectation and Choquet expectation coincide
in L2(Ω,F , P )? Unfortunately, a recent result by Chen et.al. [CD] shows it is impossible.

6 Appendix: Lemmas

The following lemmas have been used in this paper. Lemma 6 can be found in [KPQ].

Lemma 6 Suppose that g1 and g2 satisfy (H1) and (H2). For any ξ1, ξ2 ∈ L2(Ω,FT , P ),
let (yi, zi) (i = 1, 2) be the solutions of BSDE (1) corresponding to ξ = ξ1 and g = g1,

ξ = ξ2 and g = g2 respectively. Then there exists a constant c > 0 such that

E

[

sup
t≤s≤T

|y1
s − y2

s |
2 +

∫ T

t

|z1
s − z2

s |
2ds|Ft

]

≤ cE

[

|ξ1 − ξ2|
2 +

(
∫ T

t

|gs|ds

)2

|Ft

]

where gs := g1(y
1
s , z

1
s , s) − g2(y

1
s , z

1
s , s).

Remark 6 Lemma 6 implies that if ξ2 converges to ξ1 in L2(Ω,F , P ) and g1(y
1, z1, ·) con-

verges to g2(y
1, z1, ·) in L2(0, T ), then (y2, z2) converges to (y1, z1) in L2(0, T )×L2(0, T ).
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Let b(t, x) : [0, T ] × R → R , σ(t, x) : [0, T ] × R → R be continuous in (t, x) and
uniformly Lipschitz continuous in x.

By the existence theorem for stochastic differential equations, there exists a unique
strong solution {X t,x

s } satisfying the SDE
{

dXs = b(s,Xs)ds + σ(s,Xs)dWs,

Xt = x, s ∈ [t, T ] .
(19)

Let Φ(x) be a continuous function defined on R such that Φ(X t,x
T ) ∈ L2(Ω,F , P ) and

(yt,x, zt,x) be the solution of the BSDE (1) with ξ = Φ(X t,x
T ).

ys = Φ(X t,x
T ) +

∫ T

s

g(yr, zr, r)dr −

∫ T

s

zrdWr , s ∈ [0, T ]. (20)

The following Lemma can be found in Pardoux and Peng [PP2] or in Ma, Potter and
Yong [MPY].

Lemma 7 Let (yt,x, zt,x) be the solution of the BSDE (1) with ξ = Φ(X t,x
T ), where {Xt}

is the solution of (19). Suppose b, σ of (19), g of (1) and Φ are C3. Then

(i) u(t, x) := y
t,x
t ∈ C1,2([0, T ] × R) is the unique solution of the following partial differ-

ential equation (PDE):
{

∂tu(t, x) + Lu(t, x) + g(t, u(t, x), σ(t, x)∂xu(t, x)) = 0,
u(T, x) = Φ(x),

(21)

where Lu(t, x) := 1
2
σ2(t, x)∂2

xu(t, x) + b(t, x)∂xu(t, x),

(ii) zt,x
s = σ(s,X t,x

s )∂xu(s,X t,x
s ), a.e. s ∈ [t, T ], where ∂xu is the partial derivative of u.

Acknowledgments: We have benefited from discussions with Shige Peng, Larry
Epstein, Nicole El Karoui and J.P. Lepeltier.

References

[BCMP] P. Briand, F. Coquet, Y. Hu , J. Memin, S.Peng. A converse comparison theorem
for BSDEs and related properties. Electron. Comm. Probab. 5, P.101-117, (2000).

[CD] Z. Chen, T. Chen, M. Davison. Choquet expectations and Peng’s g−expectations.
Ann. of Prob., 33(3), 1179–1199, (2005).

[CKL] Z. Chen, R. Kulpeger and J. Long. Jensens inequality for g-expectation: part 1.
C. R. Acad. Sci. Paris, Ser. I 337, 725C730, (2003)



Choquet Representation and g-Expectation 18

[CP] Z. Chen, S.Peng. A downcrossing inequality and its application. Stat. and Prob.
Letters, 46, 169–175, (2000).

[Ch] G. Choquet. Theory of capacities. Ann. Inst. Fourier (Grenoble)5, 131-295, (1955).

[D] J. Dow, and S. Werlang. Laws of large numbers for non-additive probabilities. Working
paper, London Business School, (1994).

[De] C. Dellacherie. Quelques commentaires sur les prolongements de capacités. Séminaire
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