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Abstract

We study the regularity of the viscosity solution of a quasilinear parabolic
partial differential equation with Lipschitz coefficients by using its connection
with a forward backward stochastic differential equation (in short FBSDE)
and we give a probabilistic representation of the generalized gradient (deriva-
tive in the distribution sense) of the viscosity solution. This representation is
a kind of nonlinear Feynman-Kac formula. The main idea is to show that the
FBSDE admits a unique linearized version interpreted as its distributional
derivative with respect to the initial condition. If the diffusion coefficient
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of the forward equation is uniformly elliptic, we approximate the FBSDE by
smooth ones and use Krylov’s estimate to prove the convergence of the deriva-
tives. In the degenerate case, we use techniques of Bouleau-Hirsch on absolute
continuity of probability measures.

Key words: stochastic integrals; Brownian motion; stochastic differential equa-
tions; distributional derivative; forward backward stochastic differential equations.

1 Introduction

Backward stochastic differential equations (in short BSDEs) have been introduced
in the linear case by Bismut in [4],[5] when he was studying the adjoint equations
associated with the stochastic maximum principle in optimal stochastic control. The
nonlinear form was initiated by Pardoux-Peng [19], [20] and found numerous appli-
cations, especially in optimal stochastic control (see, e.g., [12]) and mathematical
finance (see [11]). In [3], Barles and Lesigne present the connections between SDEs,
BSDEs and PDEs from an analytical point of view and in [2], Bally and Matoussi
consider stochastic BSDEs.

The original motivation for the study of BSDEs was to give a probabilistic
interpretation of the solutions of parabolic quasilinear partial differential equations
(in short PDEs) of the form:

∂u

∂t
+ Lu(t, x) + f(t, x, u(t, x), ∂xu(t, x)σ(t, x)) = 0 in [0, T )× Rd

u(T, x) = g(x) in Rd
(1)

where

L =
1

2

d∑
i,j=1

(σσT )i,j(t, x)
∂2

∂xi∂xj

+
d∑

i=1

bi(t, x)
∂

∂xi

.

If f, g and the coefficients of the second order differential operator L are sufficiently
smooth (e.g. of class C 3) in their spatial variables, then the PDE (1) has a classical
solution which can be interpreted via the FBSDE1: for all t ≤ s ≤ T

X t,x
s = x+

∫ s

t
b(r,X t,x

r )dr +
∫ s

t
σ(r,X t,x

r )dWr

Y t,x
s = g(X t,x

T ) +
∫ T

s
f(r,X t,x

r , Y t,x
r , Zt,x

r )dr −
∫ T

s
Zt,x

r dWr.

(2)

1Observe that equation (2) is a special (decoupled) case of a FBSDE which consists of a forward
SDE and a Markovian backward SDE.
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More precisely, it is proved in [20] that

u(t, x) = Y t,x
t = E

(
g(X t,x

T ) +

∫ T

t

f(r,X t,x
r , Y t,x

r , Zt,x
r )dr

)
. (3)

This formula can be seen as a generalization of the classical Feyman-Kac formula.
Moreover, the following explicit representation of the solution of the BSDE in (2)
was obtained by Ma-Protter-Yong [15]:

Y t,x
s = u(s,X t,x

s ) and Zt,x
s = ∂xu(s,X

t,x
s )σ(s,X t,x

s ), ∀ s ∈ [t, T ], ∀x ∈ Rd. (4)

Recently, the smoothness conditions on the coefficients have been weakened by Ma-
Zhang [17]: they proved that (3) and (4) remain true when the coefficients are only
C 1 and when the diffusion coefficient of the forward equation is uniformly elliptic.
They also obtain two representations of the gradient of the viscosity solution u of
the PDE (1). Let (∇X t,x,∇Y t,x,∇Zt,x) be the solution of the variational equation
of (2):

for all t ≤ s ≤ T and i = 1, . . . , d

∇iX
t,x
s = ei +

∫ s

t
∂xb(r,X

t,x
r )∇iX

t,x
r dr +

d∑
j=1

∫ s

t
∂xσ

j(r,X t,x
r )∇iX

t,x
r dW j

r

∇iY
t,x
s = ∂xg(X

t,x
T )∇iX

t,x
T +

∫ T

s
[∂xf(r,Θt,x(r))∇iX

t,x
r + ∂yf(r,Θt,x(r))∇iY

t,x
r

+〈∂zf(r,Θt,x(r)),∇iZ
t,x
r 〉]dr −

∫ T

s
∇iZ

t,x
r dWr,

where ei = (0, . . . ,
i

1, . . . , 0) is the i-th coordinate vector of Rd; σj is the j-th column
of the matrix σ; Θt,x(r) denotes (X t,x

r , Y t,x
r , Zt,x

r ) and

∇X t,x = (∇1X
t,x, . . . ,∇dX

t,x), ∇Y t,x = (∇1Y
t,x, . . . ,∇dY

t,x),∇Zt,x =

 ∇1Z
t,x

...
∇dZ

t,x


∗

.

Ma-Zhang [17] proved that for all (t, x) ∈ [0, T ]× Rd, we have

∂xi
u(t, x) = E

{
∂xg(X

t,x
T )∇iX

t,x
T +

∫ T

t

[∂xf(r,Θt,x(r))∇iX
t,x
r

+∂yf(r,Θt,x(r))∇iY
t,x
r + 〈∂zf(r,Θt,x(r)),∇iZ

t,x
r 〉]dr

}
(5)

and

∂xu(t, x) = E
{
g(X t,x

T )N t,x
T +

∫ T

t

f(r,X t,x
r , Y t,x

r , Zt,x
r )N t,x

r dr

}
, (6)
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where N t,x
· is some process defined on [t, T ], depending only on the forward diffusion

and the solution of its variational equation. Equation (6) can be thought of as a new
type of a nonlinear Feyman-Kac formula for derivatives of solutions of PDEs. The
advantage of the representation (6) comes from the fact that it does not depend on
the derivatives of the coefficients of the BSDE.

On the other hand, if f, g are only Lipschitz continuous and the coefficients of
the diffusion process are continuously differentiable with bounded derivatives then
Ma-Zhang [17] established that

Zt,x
s = E

{
g(Xs,x

T )N s,x
T +

∫ T

s

f(r,Xx
r , Y

x
r , Z

x
r )N s,x

r dr | F t
s

}
σ(s,X t,x

s ) (7)

where F t
s = σ {Wu −Wt : t ≤ u ≤ s} . This formula leads to path regularity of the

process Zt,x (see [12, 13]).

The objective of this paper is to extend the above results of Ma-Zhang [17] to the
case where the coefficients of the diffusion process are only Lipschitz continuous. In
addition to the uniformly elliptic case, we also consider the case where the diffusion
coefficient can be degenerate. First, if g, b,and σ are Lipschitz continuous and f is
of class C 1, we prove that the analogue of (4)-(5) holds, provided that the classical
derivatives are replaced by the generalized one (in the distribution sense). In the
nondegenerate case, the proof is essentially based on Krylov estimate for the diffusion
process X t,x, whereas the degenerate case is treated by using techniques introduced
by Bouleau-Hirsch [8], [10]. The nondegenerate case has an intrinsic interest and
we shall restrict to it for stating a representation theorem. Second, we drop the
smoothness condition on the coefficients of the diffusion process and establish (6)
with N s,x replaced by a process depending only on the forward diffusion and its
variational equation (in the distribution sense)

The superscript t,x indicates the dependence of the solution on the initial data
(t, x), and will be omitted when the context is clear.

The paper is organized as follows. In section 2, we set the assumptions and
recall some results on SDEs. Section 3 deals with the regularity of the viscosity
solution of the PDE (1) and its connection with (2). In section 4, we establish a
probabilistic representation for the generalized derivative of u via BSDEs.

2 Assumptions and preliminaries

Let (Ω,F ,Ft,P) be a filtered, complete probability space satisfying the usual condi-
tions, on which is defined a d−dimensional standard Brownian motion {Wt; 0 ≤ t ≤ T};
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F
4
= (Ft)0≤t≤T is the natural filtration generated by Wt augmented with P-null sets.

We denote by E a generic Euclidean space (or E1, E2, . . . , if different spaces are used
simultaneously). Regardless of their dimensions we denote by 〈·, ·〉 and | · | the inner
product and norm in all E ′s, respectively. We put ∂x = ( ∂

∂x1
, . . . , ∂

∂xd
). Note that if

ψ = (ψ1, . . . , ψd) : Rd 7−→ Rd, then ∂xψ
4
= (∂xj

ψi)d
i,j=1 is a matrix. Let χ denote a

generic Banach space. We consider the following spaces :

• for t ∈ [0, T ], L0([t, T ];χ) is the space of all measurable functions ϕ : [t, T ] 7−→
χ;

• for t ∈ [0, T ], C([t, T ];χ) is the space of all continuous functions ϕ : [t, T ] 7−→
χ. For p > 0 we denote |ϕ|∗,pt,T

4
= supt≤s≤T |ϕ(s)|pχ;

• for integers k and l, Ck,l([0, T ]×E;E1) is the space of all E1−valued functions
ϕ(t, e), (t, e) ∈ [0, T ] × E, which are k times continuously differentiable in t
and l times continuously differentiable in e;

• Ck,l
b ([0, T ]×E;E1) is the space of functions ϕ in Ck,l([0, T ]×E;E1) such that

all the partial derivatives are uniformly bounded;

• W 1,∞(E,E1) is the space of all measurable functions ϕ : E 7−→ E1, such that
for some constant K > 0 it holds that |ϕ(x)−ϕ(y)|E1 ≤ K |x−y|E, ∀x, y ∈ E;

• for any sub-σ−field G ⊆ FT and 0 ≤ p <∞, Lp(G;E) denotes all E−valued,
G−measurable random variable ξ such that E|ξ|p <∞.Moreover, ξ ∈ L∞(G;E)
means it is G-measurable and bounded;

• for 0 ≤ p < ∞, Lp(F, [0, T ];χ) is the space of all χ−valued, F-adapted pro-

cesses ξ satisfying E
∫ T

0
|ξt|pχdt < ∞. Moreover ξ ∈ L∞(F, [0, T ]; Rd) means it

is a F-adapted process uniformly bounded in (t, ω);

• C(F,[0, T ] × E;E1) is the space of all E1−valued, continuous random fields
ϕ : Ω× [0, T ]× E 7−→ E1, such that for fixed e ∈ E, ϕ(·, ·, e) is an F-adapted
process.

To simplify the notation, we often denote C([0, T ] × E;E1) for C0,0([0, T ] ×
E;E1). Moreover, if E1 = R, we suppress E1 (e.g., Ck,l([0, T ]×E; R) = Ck,l([0, T ]×
E), C(F,[0, T ]×E; R) = C(F,[0, T ]×E),. . . etc.). Finally, unless otherwise specified
(such as process Z), all vectors are regarded as column vectors.

Throughout this paper we make the following assumptions (except (A2) in
section 3.2).
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(A1) The functions σ ∈ C([0, T ] × Rd; Rd×d) ∩ L0([0, T ];W 1,∞(Rd; Rd×d)), b ∈
C([0, T ]×Rd; Rd)∩L0([0, T ];W 1,∞(Rd; Rd)) with a common Lipschitz constant
K > 0 independent of t.

(A2) There exists a constant c > 0 such that

ξ∗σ (t, x)σ∗ (t, x) ξ ≥ c |ξ|2 ∀ (x, ξ) ∈ Rd × Rd, ∀t ∈ [0, T ]

where the transpose of any matrix B is denoted by B∗.

(A3) The functions f ∈ C([0, T ]×Rd ×R× Rd)∩L0([0, T ];W 1,∞(Rd ×R× Rd));
and g ∈ W 1,∞(Rd). We denote the Lipschitz constants of f and g by a common
one K > 0 as in (A1) and we assume that

sup
0≤t≤T

{|b(t, 0)|+ |σ(t, 0)|+ |f(t, 0, 0, 0)|+ |g(0)|} ≤ K.

The following lemmas are standard or slight variations of well-known results on
SDEs and BSDEs (see, e.g. [13] and [18]).

Lemma 2.1 Suppose b ∈ C(F, [0, T ] × Rd; Rd) ∩ L0(F, [0, T ];W 1,∞(Rd; Rd)), σ ∈
C(F, [0, T ]×Rd; Rd×d)∩L0(F, [0, T ];W 1,∞(Rd; Rd×d)), with common Lipschitz con-
stant K > 0. Let X be the solution of the following SDE:

Xt = x+

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s,Xs)dWs.

Then for any p ≥ 2, there exists a constant C > 0 depending only on p, T, and K,
such that

E|X|∗,pt,T ≤ C

(
|x|p + E

∫ T

0

[|b(t, 0)|p + |σ(t, 0)|p]dt
)
.

Lemma 2.2 Suppose that f ∈ C(F, [0, T ]× R× Rd) ∩ L0(F, [0, T ];W 1,∞(R× Rd))
with a uniform Lipschitz constant K > 0. For any ξ ∈ L2(FT ,R), let (Y, Z) be the
adapted solution of the BSDE

Yt = ξ +

∫ T

t

f(s, Ys, Zs)ds−
∫ T

t

ZsdWs.

Then there exists a constant C > 0 depending only on T and K such that

E
∫ T

0

|Zt|2dt ≤ CE
(
|ξ|2 +

∫ T

0

|f(t, 0, 0)|2dt
)
.

Moreover, for all p ≥ 2, there exists a constant Cp > 0 such that

E|Y |∗,pt,T ≤ CpE
(
|ξ|p +

∫ T

0

|f(t, 0, 0)|pdt
)
.

6



3 Regularity of viscosity solutions of PDEs

Let h be a continuous positive function on Rd such that∫
Rd

h(x)dx = 1 and

∫
Rd

|x|2 h(x)dx < +∞.

We setD =
{
f ∈ L2(hdx), such that ∂f

∂xj
∈ L2(hdx)

}
, where ∂f

∂xj
denotes the deriva-

tive in the distribution sense. Equipped with the norm

‖f‖D =

[∫
Rd

f 2hdx+
∑

1≤j≤d

∫
Rd

(
∂f

∂xj

)2

hdx

]1/2

,

D is a Hilbert space, which is a classical Dirichlet space (see [7]) . Moreover D is a
subset of the Sobolev space H1

loc(Rd).

3.1 The nondegenerate case

Let ϕ be a nonnegative smooth function defined on Rd, with support in the unit ball
such that

∫
Rd ϕ (y) dy = 1. Define the following smooth functions by convolution

bn(t, x) = nd
∫

Rd b(t, x− y)ϕ (ny) dy

σj,n (t, x) = nd
∫

Rd σ
j(t, x− y)ϕ (ny) dy

gn(x) = nd
∫

Rd g(x− y)ϕ (ny) dy.

(8)

It is well known that the functions bn(t, x), σj,n(t, x) and gn(x) are Borel measurable
bounded functions and Lipschitz continuous with constant K in x such that:

|bn(t, x)− b(t, x)|+
∣∣σj,n (t, x)− σj (t, x)

∣∣+ |gn(x)− g(x)| ≤ C

n
,

where C > 0 is a constant (independent of t, x and n).

Since b, σj and g are Lipschitz continuous functions in the state variable they are
differentiable almost everywhere in the sense of Lebesgue measure. Let us denote
by bx, σ

j
x and gx any Borel measurable functions such that

∂xb(t, x) = bx(t, x) dx a.e.
∂xσ

j(t, x) = σj
x(t, x) dx a.e.

∂xg(x) = gx(x) dx a.e.
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It is clear that the generalized derivatives are bounded by the Lipschitz constant
K. The functions bn(t, x), σj,n (t, x) and gn(x) are C∞− functions in x, and for all
t ∈ [0, T ], we have

lim
n→+∞

∂xb
n(t, x) = bx(t, x) dx a.e.

lim
n→+∞

∂xσ
j,n(t, x) = σj

x(t, x) dx a.e.

lim
n→+∞

∂xg
n(x) = gx(x) dx a.e.

Let us consider the sequence of FBSDEs
X t,x,n

s = x+
∫ s

t
bn(r,X t,x,n

r )dr +
∫ s

t
σn(r,X t,x,n

r )dWr

Y t,x,n
s = gn(X t,x,n

T ) +
∫ T

s
f(r,X t,x,n

r , Y t,x,n
r , Zt,x,n

r )dr −
∫ T

s
Zt,x,n

r dWr.

(9)

The approximating coefficients bn (t, x), σj,n (t, x) satisfy the conditions (A1) , (A2),
moreover they are smooth in x with bounded derivatives. We recall Krylov’s esti-
mate for diffusion processes which play a key role in this subsection.

Theorem 3.1 (Krylov [14]) Let (Ω,F ,Ft,P) be a filtered probability space, (Wt)t≥0

a d-dimensional Brownian motion, b : Ω×R+ → Rd, σ : Ω×R+ → Rd⊗Rd bounded
adapted processes such that:

∃ c > 0 ,∀ξ ∈ Rd , ∀(t, x) ∈ [0, T ]× Rd, ξ∗σ(t, x)σ∗(t, x)ξ ≥ c |ξ|2 .

Let Xt = x +
∫ t

0
b(t, ω)dt +

∫ t

0
σ (t, ω) dWt be an Itô process. Then for every Borel

function f : R+ ×Rd → R with support in [0, T ]×B(0,M), the following inequality
holds:

E
[∫ T

0

|f(t,Xt)| dt
]
≤ K

[∫ T

0

∫
B(0,M)

|f(t, x)|d+1 dt dx

] 1
d+1

where K is a constant and B(0,M) is the ball of center 0 and radius M.

Now we state some preliminaries lemmas which are needed later.

Lemma 3.1 (i) For all 0 ≤ t ≤ T, x ∈ Rd

lim
n→∞

E
(
|X t,x,n −X t,x|∗,2t,T + |Y t,x,n − Y t,x|∗,2t,T +

∫ T

0

|Zt,x,n
r − Zt,x

r |2dr
)

= 0

(ii) For all 0 ≤ t ≤ T ,

lim
n→∞

E
[∫

Rd

(
|X t,x,n −X t,x|∗,2t,T + |Y t,x,n − Y t,x|∗,2t,T +

∫ T

0

|Zt,x,n
r − Zt,x

r |2dr
)
h(x)dx

]
= 0
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Proof. This lemma follows from Lemma 2.1, Lemma 2.2 and the Lebesgue
Dominated Convergence Theorem.

For i = 1, . . . , d, let us denote formally
{
(Φt,x

i (s),Ψt,x
i (s),Γt,x

i (s)) : t ≤ s ≤ T
}

the solution of:

Φt,x
i (s) = ei +

∫ t

s
bx(r,X

t,x
r )Φt,x

i (r)dr +
d∑

j=1

∫ t

s
σj

x(r,X
t,x
r )Φt,x

i (r)dW j
r

Ψt,x
i (s) = gx(X

t,x
T )Φt,x

i (T ) +
∫ T

s
[∂xf(r,Θ(r))Φt,x

i (r) + ∂yf(r,Θ(r))Ψt,x
i (r)

+〈∂zf(r,Θ(r)),Γt,x
i (r)〉]dr −

∫ T

s
Γt,x

i (r)dWr

(10)

where ei = (0, . . . ,
i

1, . . . , 0) is the i-th coordinate vector of Rd, σj is the j-th col-
umn of the matrix σ, Θ(r) ≡ (X t,x

r , Y t,x
r , Zt,x

r ) and bx, σx, and gx are generalized
derivatives of b, σ and g with respect to x. We denote

Φ = (Φ1, . . . ,Φd), Ψ = (Ψ1, . . . ,Ψd) and Γ =

 Γ1
...

Γd


∗

.

(Φ,Ψ,Γ) is formally the solution to the first variation of equation (2). We prove
that this process is well defined.

Since bn ∈ C0,∞
b ([0, T ]×Rd; Rd), σn ∈ C0,∞

b ([0, T ]×Rd; Rd×d) and gn ∈ C∞b (Rd),
if f ∈ C0,1

b ([0, T ]×Rd ×R× Rd) then by virtue of Ma-Zhang [17] or Pardoux-Peng
[19], there exists a process {(Φt,n,x(s),Ψt,n,x(s),Γt,n,x(s)); t ≤ s ≤ T} solution of the
following FBSDE of first variation of equation (9):

Φt,x,n
i (s) = ei +

∫ t

s
∂xb

n(r,X t,x,n
r )Φt,x,n

i (r)dr +
d∑

j=1

∫ t

s
∂xσ

n,j(r,X t,x,n
r )Φt,x,n

i (r)dW j
r

Ψt,n,x
i (s) = ∂xg

n(X t,x,n
T )Φt,x,n

i (T ) +
∫ T

s
[∂xf(r,Θn(r))Φt,x,n

i (r) + ∂yf(r,Θn(r))Ψt,x,n
i (r)

+〈∂zf(r,Θn(r)),Γt,x,n
i (r)〉]dr −

∫ T

s
Γt,x,n

i (r)dWr

(11)
where Θn(r) denotes (X t,x,n

r , Y t,x,n
r , Zt,x,n

r ). Let

Φt,x,n = (Φt,x,n
1 , . . . ,Φt,x,n

d ), Ψt,x,n = (Ψt,x,n
1 , . . . ,Ψt,x,n

d ) and Γt,x,n =

 Γt,x,n
1

Γt,x,n
d

∗ .
In the sequel, we denote by C a positive constant which may vary from line to line.

9



Lemma 3.2 Assume (A1)-(A3) and suppose that f ∈ C0,1
b ([0, T ]×Rd×R× Rd).

Then {(Φt,x(s),Ψt,x(s),Γt,x(s)); t ≤ s ≤ T} is a well defined process, that is it does
not depend on Borel versions of the generalized derivatives of b, σ and g up to
P̃−almost sure equality.

Proof. Let b1x, b
2
x be two Borel versions of the derivative of b at x, that is for all

t ∈ [0, T ] , b1x (t, x) = b2x (t, x) dx a.e. Let σj,1
x , σj,2

x and g1
x, g

2
x defined in a likewise

manner. Define (Φ1(s),Ψ1(s),Γ1(s)), (resp. (Φ2(s),Ψ2(s),Γ2(s))) the solution of
equation (10) corresponding to b1x, σ

j,1
x , g1

x (resp.b2x, σ
j,2
x , g2

x).Then by using Gronwall’s
inequality, we have

E
(

sup
t≤s≤T

|Φ1 (s)− Φ2 (s)|2
)
≤ C

{
E
[∫ T

0
|b1x (s,X t,x

s )− b2x (s,X t,x
s )|2 ds

]
+
∑

1≤j≤d

E
[∫ T

0
|σj,1

x (s,X t,x
s )− σj,2

x (s,X t,x
s )|2 ds

]}
=: C {I1 + I2} .

For each p > 0, E
(
|X t,x|∗,pt,T

)
< +∞. Thus,

lim
M→+∞

P
(

sup
t≤s≤T

∣∣X t,x
s

∣∣ > M

)
= 0. (12)

Therefore without loss of generality, we may suppose that b1x, b
2
x, σ

j,1
x , σj,2

x (resp.
g1

x, g
2
x) have compact support [0, T ] × B (0,M) (resp. B (0,M)). By applying

Krylov’s inequality (thanks to condition (A2)), we obtain

I1 ≤ C
∥∥b1x − b2x

∥∥
d+1,M

= 0,

where for every function v(t, x) with compact support [0, T ]×B (0,M)

||v||d+1,M =

[∫ T

0

∫
B(0,M)

|v(t, x)|d+1dtdx

] 1
d+1

.

The fact that I2 = 0 can be obtained similarly.

Now, in view of of the boundness of the coefficients bx and σj
x, the forward

part in equation (10) satisfies the Itô conditions. Therefore it has a unique strong
solution, which implies that the process {Φt,x(s); t ≤ s ≤ T} is well defined. In view
of Lemma 2.2, we have

E
(∣∣Ψ1 −Ψ2

∣∣∗,2
t,T

+

∫ T

0

∣∣Γ1(r)− Γ2(r)
∣∣2 dr) ≤ CE

(∣∣g1
x(XT )Φ1(T )− g2

x(XT )Φ2(T )
∣∣) ,

10



hence
Ψ1 = Ψ2 and Γ1 = Γ2 .

Since the BSDE part of equation (10) has an unique solution, we conclude that the
processes Ψt,x and Γt,x are well defined.

Lemma 3.3 Assume (A1)-(A3) and suppose that f ∈ C0,1
b ([0, T ]×Rd×R× Rd).

Then,

(i) for all 0 ≤ t ≤ T, x ∈ Rd

lim
n→∞

E
(
|Φt,x,n − Φt,x|∗,2t,T + |Ψt,x,n −Ψt,x|∗,2t,T +

∫ T

0

|Γt,x,n
r − Γt,x

r |2dr
)

= 0.

(ii) for all 0 ≤ t ≤ T

lim
n→∞

E
[∫

Rd

(
|Φt,x,n − Φt,x|∗,2t,T + |Ψt,x,n −Ψt,x|∗,2t,T +

∫ T

0

|Γt,x,n
r − Γt,x

r |2dr
)
h(x)dx

]
= 0.

Proof. Applying the Burkholder-Davis-Gundy, Schwartz inequalities and the
Gronwall lemma, we obtain for all n ∈ N, x ∈ Rd,

E
[∣∣Φt,x,n − Φt,x

∣∣∗,2
t,T

]
≤ CE

[∣∣Φt,x,n
∣∣∗,4
t,T

]1/2

×

{
E
[∫ T

0

∣∣∂xb
n
(
s,X t,x,n

s

)
− bx

(
s,X t,x

s

)∣∣4 ds]1/2

+
∑

1≤j≤d

E
[∫ T

0

∣∣∂xσ
j,n
(
s,X t,x,n

s

)
− σj

x

(
s,X t,x

s

)∣∣4 ds]1/2
}
.

Since the coefficients in the forward part of the linear FBSDE (11) are bounded by
the Lipschitz constant, we have

sup
n

E
(∣∣Φt,x,n

∣∣∗,4
t,T

)
< +∞.

Set

In
1 := E

[∫ T

0

∣∣∂xb
n
(
s,X t,x,n

s

)
− bx

(
s,X t,x

s

)∣∣4 ds]
Ij,n
2 := E

[∫ T

0

∣∣∂xσ
j,n
(
s,X t,x,n

s

)
− σj

x

(
s,X t,x

s

)∣∣4 ds] , j = 1, 2, ..., d.

11



Let n0 ≥ 1 be a fixed integer, then it holds that

lim
n→+∞

In
1 ≤ lim sup

n→+∞
C

{
E
[∫ T

0

∣∣∂xb
n
(
s,X t,x,n

s

)
− ∂xb

n0
(
s,X t,x,n

s

)∣∣4 ds]

+ E
[∫ T

0

∣∣∂xb
n0
(
s,X t,x,n

s

)
− ∂xb

n0
(
s,X t,x

s

)∣∣4 ds]

+E
[∫ T

0

∣∣∂xb
n0
x

(
s,X t,x

s

)
− bx

(
s,X t,x

s

)∣∣4 ds]}
=: C (Jn

1 + Jn
2 + Jn

3 ) .

As in [14] page 87, let w(t, x) be a continuous function such that w(t, x) = 0 if
t2 + x2 ≥ 1 and w(0, 0) = 1. Then for M > 0, we have

lim sup
n→+∞

Jn
1 ≤ C

{
E
[∫ T

0

(
1− w

(
s

M
,
X t,x

s

M

))
ds

]

+ lim sup
n→+∞

E
[∫ T

0

w

(
s

M
,
X t,x

s

M

) ∣∣∂xb
n
(
s,X t,x,n

s

)
− ∂xb

n0
(
s,X t,x,n

s

)∣∣4 ds]} .
By applying Krylov’s inequality, we obtain

lim sup
n→+∞

Jn
1 ≤ C

{
E
[∫ T

0

(
1− w

(
s

M
,
X t,x

s

M
)

))
ds

]
+ lim sup

n→+∞

∥∥|∂xb
n − ∂xb

n0|4
∥∥

d+1,M

}
.

Note that we have used the fact that the diffusion matrix σn (t, x) satisfies the non
degeneracy condition with the same constant c as σ (t, x) . Since ∂xb

n converges to
bx dx-a.e, the last expression in the right hand side of the above inequality tends
to 0 as n0 tends to +∞. Next, let M goes to +∞, then from the properties of the
function w(t, x) we conclude that lim sup

n→+∞
Jn

1 = 0.

Estimating Jn
3 by a similar argument, we obtain that lim sup

n→+∞
Jn

3 = 0.

Finally, we use the continuity of bn0
x in x and the convergence in probability

(uniformly in s) of X t,x,n
s to X t,x

s to deduce that bn0
x (s,X t,x,n

s ) → bn0
x (s,X t,x

s ) in
probability as n→ +∞ and to infer by using the Dominated Convergence theorem
that lim sup

n→+∞
Jn

2 = 0. Hence lim
n→+∞

In
1 = 0. One proves similarly that lim

n→+∞
Ij,n
2 = 0. It

follows that
lim

n→+∞
E
[∣∣Φt,x,n − Φt,x

∣∣∗,2
t,T

]
= 0.

12



Now, by using the boundness of the derivatives of the coefficients in equations (10),
(11) and Lemma 2.2, we have

E
(∣∣Ψt,x,n −Ψt,x

∣∣∗,2
t,T

+

∫ T

0

∣∣Γt,x,n(r)− Γt,x(r)
∣∣2 dr) ≤ CE

(
|ζn|2 +

∫ T

0

|hn(r)|2 dr
)

where
ζn = ∂xg

n(X t,x,n
T )Φt,x,n(T )− gx(X

t,x
T )Φt,x(T ),

hn(s) = (∂xf(s,Θn(s))− ∂xf(s,Θ(s))) Φt,x,n(s) + (∂yf(s,Θn(s))− ∂yf(s,Θ(s))) Ψt,x,n(s)

+ 〈(∂zf(s,Θn(s))− ∂zf(s,Θ(s))) ,Γt,x,n(s)〉.

By combining Lemma 3.1 (i) and the Dominated Convergence theorem, we obtain

lim
n−→∞

E
(
|ζn|2 +

∫ T

0

|hn(r)|2 dr
)

= 0

which completes the proof of part (i). Part (ii) of Lemma 3.3 can be treated similarly.

Theorem 3.2 Assume (A1)-(A3) and suppose that f ∈ C0,1
b ([0, T ]×Rd×R× Rd).

Then,

(i) for every s ≤ t ≤ T, the function x 7−→ (X t,x
s , Y t,x

s ) belongs P−almost surely to
Dd ×D;

(ii) For every t ≤ s ≤ T, P−almost surely

∂xX
t,x
s = Φt,x(s), ∂xY

t,x
s = Ψt,x(s) dx a.e.,

where the derivatives are taken in the distribution sense.

Proof. By virtue of Lemma 2.2, there exists a constant C > 0 such that for all
t ≤ s ≤ T, x ∈ Rd, n ∈ N, we have

E
(
|Ψt,n,x|∗,2t,T +

∫ T

t

∣∣Γt,n,x(r)
∣∣2 dr) ≤ C(1 + E(|Φt,n,x(T )|2)).

In view of Lemma 2.1, for all t ∈ [0, T ], x ∈ Rd, we have

sup
n

E
(
|Φt,n,x|∗,2

)
≤ C(1 + |x|2).

13



It follows that

sup
n

∫
Rd

E
(∣∣Φt,x,n

∣∣∗,2
t,T

+ |Ψt,n,x|∗,2t,T +

∫ T

t

∣∣Γt,n,x(r)
∣∣2 dr)h(x)dx <∞.

Therefore by using Lemma 3.1 (ii) and a result of Bouleau–Hirch [8], we deduce that
the function x 7−→ (X t,x

s , Y t,x
s ) belongs P− almost surely to Dd ×D.

For the point (ii), let us note that in view of Theorem 3.1 in Ma-Zhang [17] or
Pardoux-Peng [19], we have

∂xX
t,n,x
s = Φt,n,x(s), ∂xY

t,n,x
s = Ψt,n,x(s), ∂xZ

t,n,x
s = Γt,n,x(s) .

By using again the Bouleau-Hirch result and Lemmas 3.1 and 3.3, we conclude.

Corollary 3.1 Assume (A1)-(A3) and suppose that f ∈ C0,1
b ([0, T ] × Rd ×

R× Rd). Let (X t,x, Y t,x, Zt,x) be the adapted solution of (2) and define u(t, x) = Y t,x
t .

Then,

(i) for every 0 ≤ t ≤ T, the function x 7−→ u(t, x) belongs to D and for each t and
i = 1, . . . , d, the following representation holds:

∂xi
u(t, ·) = E

{
∂xi
g(X t,·

T )Φt,·
i (T ) +

∫ T

t

[∂xf(r,Θt,·(r))Φt,·
i (r)

+∂yf(r,Θt,·(r))Ψt,·
i (r) + 〈∂xf(r,Θt,·(r)),Γt,·

i (r)〉]dr
}

dx a.e.

where Θt,x(r) ≡ (X t,x
r , Y t,x

r , Zt,x
r ) and (Φt,x(r),Ψt,x(r),Γt,x(r)) is the solution

of the variational equation (10);

(ii) for every t ∈ [0, T ], we have Zt,x
s = ∂xu(t,X

t,x
s )σ(s,X t,x

s ) ds⊗ dx⊗ dP a.e.
where the derivative of u is taken in the distribution sense.

Proof. Since u(t, x) = Y t,x
t , we have ∂xi

u(t, x) = Ψt,x
i dx a.e. Taking the

expectation in the BSDE part of equation (10) and letting s = t, we obtain (i).

Now, for every (t, x) ∈ [0, T ]× Rd :

∂xi
un(t, x) = E{∂xi

gn(X t,x,n
T )Φt,x,n

i (T ) +

∫ T

t

[∂xf(r,Θt,x,n(r))Φt,x,n
i (r)

+ ∂yf(r,Θt,x,n(r))Ψt,x,n
i (r) + 〈∂xf(r,Θt,x,n(r)),Γt,x,n

i (r)〉]dr},
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where (X t,x,n, Y t,x,n, Zt,x,n) is the solution of equation (9), (Φt,x,n(.),Ψt,x,n(.),Γt,x,n(.))
is the solution of the corresponding first variation equation (11), Θt,x,n(r) = X t,x,n

r , Y t,x,n
r , Zt,x,n

r

and un(t, x) = Y t,x,n
t . By using Lemmas 3.1 and 3.3, we deduce that

lim
n→∞

∂xi
un(t, x) = lim

n→∞
E{∂xi

gn(X t,x,n
T )Φt,x,n

i (T ) +

∫ T

t

[∂xf(r,Θt,x,n(r))Φt,x,n
i (r)

+ ∂yf(r,Θt,x,n(r))Ψt,x,n
i (r) + 〈∂xf(r,Θt,x,n(r)),Γt,x,n

i (r)〉]dr}

= E{∂xi
g(X t,x

T )Φt,x
i (T ) +

∫ T

t

[∂xf(r,Θt,x(r))Φt,x
i (r)

+ ∂yf(r,Θt,x(r))Ψt,x
i (r) + 〈∂xf(r,Θt,x(r)),Γt,x

i (r)〉]dr}, dx a.e.

= ∂xi
u(t, x), dx a.e.

It follows that along a subsequence

Zt,x
s = limn→∞ Z

t,x,n
s

= limn→∞ ∂xu
n(t,X t,x,n

s )σn (s,X t,x,n
s )

= ∂xu(t,X
t,x
s )σ (s,X t,x

s ) ds⊗ dx⊗ dP a.e.

3.2 The degenerate case

The method performed in the previous section is intimately linked to the Krylov
estimate. In some sense, this inequality says that the law of the random variableXs is
absolutely continuous with respect to Lebesgue measure. This property was the key
fact to define a unique linearized version of the stochastic differential equation (2).
That is, if we choose two versions of the generalized derivatives of b, σ and g then
the corresponding solutions are equal. In this section we drop the uniform ellipticity
condition on the diffusion matrix σ(t, x)σ∗(t, x). It is clear that the method used
earlier will no longer be valid, and the kind of derivative (with respect to the initial
condition) defined will have no sense.

The idea is then to define a slightly different stochastic differential equation
defined on an enlarged probability space, where the initial condition x will be taken
as a random element. This allows us to perform operations outside negligible sets
(in x), which are not possible for the initial equation. The method is inspired
from a result of Bouleau and Hirsch [8] where the authors have proved an absolute
continuity result extending the well known Malliavin calculus method.
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Let us recall some preliminaries and notation on the Bouleau-Hirsch method
which will be applied in this section to establish the regularity of the viscosity
solution of the PDE (1). See [8] for details and proofs.

¿From now on, we let Ω = C0(R+,Rd) be the space of continuous functions ω
such that ω(0) = 0, endowed with the topology of uniform convergence on compact
subsets of R+.

F is the Borel σ-field over Ω.

P is the Wiener measure on (Ω,F) .

(Ft)t≥0 is the filtration of coordinates augmented with P-null sets of F .

We define the canonical process Wt(ω) = ω(t), for all t ≥ 0.(
Ω,F , (Ft)t≥0 ,P,Wt

)
is a Brownian motion.

Let Ω̃ = Rd × Ω, and F̃ the Borel σ-field over Ω̃ and P̃ = hdx⊗ dP.

Let W̃t (x, ω) = Wt (ω) and F̃t the natural filtration of W̃t augmented with

P̃-negligible sets of F̃ . It is clear that (Ω̃, F̃ , (F̃t)t≥0, P̃, W̃t) is a Brownian motion
starting from 0.

Let (e1, . . . , ed) be the canonical basis of Rd.

We define the Hilbert space D̃i which is a general Dirichlet space by

D̃i =

{
u : Ω̃ → R, ∃ũ : Ω̃ → R Borel measurable such that u = ũ , P̃-a.e and

∀ (x, ω) ∈ Ω̃, t→ ũ(x+ tei, ω) is locally absolutely continuous.

}

D̃i is considered as a set of classes (with respect to the P̃-a.e equality). If u is in D̃i

and ũ is associated with it according to the above definition, we can write

Oiu(x, ω) = lim
t→0

ũ(x+ tei, ω)− ũ(x, ω)

t
.

We denote by D̃ the space

D̃ =

{
u ∈ L2(P̃)

⋂(
n⋂

i=1

D̃i

)
; ∀1 ≤ i ≤ d , Oiu ∈ L2(P̃)

}
.

The space D̃ equipped with the norm

‖u‖D̃ =

(∫
Rd×Ω

u2dP̃ +
d∑

i=1

∫
Rd×Ω

(Oiu)
2dP̃

)1/2
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is a Hilbert space which is a general Dirichlet space.

We introduce the process
{(
X̃ t

s, Ỹ
t
s , Z̃

t
s

)
; t ≤ s ≤ T

}
defined on the enlarged

space (Ω̃, F̃ , (F̃t)t≥0, P̃, W̃t), solution of the forward backward stochastic differential
equation 

X̃ t
s = x+

∫ s

t
b(r, X̃ t

r)ds+
∫ s

t
σ
(
r, X̃ t

r

)
dW̃s

Ỹ t
s = g(X̃ t

T ) +
∫ T

s
f(r, X̃ t

r, Ỹ
t
r , Z̃

t
r)−

∫ T

s
Z̃t

rdW̃r.

(13)

Since the coefficients are Lipschitz continuous and grow at most linearly, equa-
tion (13) has a unique F̃t− adapted solution with continuous trajectories. Equa-
tions (2) and (13) are almost the same except that uniqueness for (13) is slightly
weaker. One can easily prove that the uniqueness implies that for each t ≤ s ≤ T,(
X̃ t

s, Ỹ
t
s , Z̃

t
s

)
= (X t,x

s , Y t,x
s , Zt,x

s ) , P̃-a.s.

Theorem 3.3 (Bouleau-Hirsch [8] [10]). For P-almost every ω

(i) For all t ≤ s ≤ T ≥ 0, X t,.
s (ω) ∈ Dd ⊂

(
H1

loc(Rd)
)d

(ii) There exists a F̃t−adapted GLd(R)-valued continuous process (Φ̃t) such that

for P̃-almost every ω :

∀t ≤ s ≤ T,
∂

∂x
(Xx

s (ω)) = Φ̃t
s(x, ω) dx a.e

where ∂
∂x

denotes the derivative in the distribution sense.

Remark 3.1 It is proved in [8] that the image measure of P̃ by the map X̃ t
s is

absolutely continuous with respect to the Lebesgue measure.

Lemma 3.4 The distributional derivative Φ̃t is the unique solution of the linear
stochastic differential equation

Φ̃t
i(s) = ei +

∫ t

s

bx(r, X̃
t
r)Φ̃

t
i(r)dr +

d∑
j=1

∫ t

s

σj
x(r, X̃

t
r)Φ̃

t
i(r)dW̃

j
r (14)

where bx and σj
x are versions of the almost everywhere derivatives of b and σj.

Proof. First of all, we observe that since the law of X̃ t
s is absolutely continuous

with respect to the Lebesgue measure, Φ̃t is well defined and does not depend on the

17



possible choices of the Borel derivatives bx, σ
j
x.Moreover the coefficients bx(s, X̃

t
s) and

σj
x(s, X̃

t
s) are bounded, therefore equation (14) satisfies the classical Itô conditions

and has a unique F̃t-adapted continuous solution.

The fact that Φ̃t satisfies equation (14) is based on the absolute continuity of

the law of X̃ t
s and on approximations of the coefficients b and σ by smooth ones (see

[8] for details).

Let us consider formally
{

(Φ̃t(s), Ψ̃t(s), Γ̃t(s)), t ≤ s ≤ T
}

the solution of the

FBSDE of first variation associated to
{

(X̃ t
s, Ỹ

t
s , Z̃

t
s), t ≤ s ≤ T

}
:

Φ̃t
i(s) = ei +

∫ t

s
bx(r, X̃

t
r)Φ̃

t
i(r)dr +

d∑
j=1

∫ t

s
σj

x(r, X̃
t
r)Φ̃

t
i(r)dW̃

j
r

Ψ̃t
i(r) = gx(X̃

t
T )Φ̃t

i(T ) +
∫ T

s
[∂xf(r, Θ̃(r))Φ̃t

i(r) + ∂yf(r, Θ̃(r))Ψ̃t
i(r)

+〈∂zf(r, Θ̃(r)), Γ̃t
i(r)〉]dr −

∫ T

s
Γ̃t

i(r)dW̃r.

(15)

Lemma 3.5 Assume (A1), (A3) and suppose that f ∈ C0,1
b ([0, T ]×Rd×R× Rd).

Then
{

(Φ̃t(s), Ψ̃t(s), Γ̃t(s)); t ≤ s ≤ T
}

is a well defined process, that is, it does not

depend on Borel versions of the generalized derivatives of b, σ, g up to P̃−almost sure
equality.

Proof. Let b1x, b
2
x be two Borel versions of the derivative of b at x, that is for

each t ∈ [0, T ] , b1x (t, ·) = b2x (t, ·) dx-a.e. Let σj,1
x , σj,2

x and g1
x, g

2
x be defined in a

likewise manner.

Define (Φ̃1(s), Ψ̃1(s), Γ̃1(s)), (resp.(Φ̃2(s), Ψ̃2(s), Γ̃2(s))) the solution of (15) cor-

responding to b1x, σ
j,1
x , g1

x (resp. b2x, σ
j,2
x , g2

x). By virtue of Lemma 3.4, Φ̃1 = Φ̃2 P̃−a.e.
In view of Lemma 2.2, we have

E
(∣∣∣Ψ̃2 − Ψ̃1

∣∣∣∗,2
t,T

+

∫ T

0

∣∣∣Γ̃2(r)− Γ̃1(r)
∣∣∣2 dr) ≤ CE

(∣∣∣g2
x(X̃T )Φ̃2(T )− g1

x(X̃T )Φ̃1(T )
∣∣∣2) .

Using the absolute continuity of the law of the X̃s and the fact that Φ̃1 = Φ̃2 P̃−a.e.,
it is easy to see that the right hand side of the above inequality is null. It follows
that (

Φ̃1, Ψ̃1, Γ̃1
)

=
(
Φ̃2, Ψ̃2, Γ̃2

)
P̃− a.e.
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Let bn, σn, gn be the regularized functions of b, σ, g as in (8). Let us define for
n ∈ N,

X̃ t,n
s = x+

∫ s

t

bn
(
r, X̃ t

r

)
dr +

∫ s

t

σn
(
r, X̃ t

r

)
dW̃r,

Φ̃t,n
i (s) = ei +

∫ s

t

∂xb
n
(
r, X̃ t

r

)
Φ̃t

i(r)dr +
d∑

j=1

∫ s

t

∂xσ
n,j
(
r, X̃ t

r

)
Φ̃t

i(r)dW̃
j
r (16)

and consider the sequence of BSDEs

Ỹ t,n
s = gn(X̃ t

T ) +

∫ T

s

f(r, X̃ t
r, Ỹ

t,n
r , Z̃t,n

r )−
∫ T

s

Z̃t,n
r dW̃r,

Ψ̃t,n
i (s) = ∂xg

n(X̃ t
T )Φ̃t

i(T ) +
∫ T

s
[∂xf(r, Θ̃n(r))Φ̃t

i(r) + ∂yf(r, Θ̃n(r))Ψ̃t,n
i (r)

+〈∂zf(r, Θ̃n(r)), Γ̃t,n
i (r)〉]dr −

∫ T

s
Γ̃t,n

i (r)dW̃r

where Θ̃n ≡
(
X̃ t

r, Ỹ
t,n
r , Z̃t,n

r

)
. Since the coefficient bn, σn, gn are C∞−functions in

the spatial variable and f ∈ C0,1
b ([0, T ] × Rd × R× Rd), for all t ≤ s ≤ T , n ∈ N,

we have (
X̃ t,n

s , Ỹ t,n
s , Z̃t,n

s

)
∈ D̃d × D̃ × D̃d×d,

with
∇iX̃

t,n
s = Φ̃t,n

i (s), ∇iỸ
t,n
s = Ψ̃t,n

i (s) , and ∇iZ̃
t,n
s = Γ̃t,n

i (s) . (17)

Lemma 3.6 Assume (A1), (A3) and suppose that f ∈ C0,1
b ([0, T ]×Rd×R× Rd).

Then, for all 0 ≤ t ≤ T

lim
n→∞

Ẽ
(
|X̃ t,n − X̃ t|∗,2t,T + |Ỹ t,n − Ỹ t|∗,2t,T +

∫ T

0

|Z̃t,n
s − Z̃t

s|2ds
)

= 0.

Proof. This lemma is proved by combining Lemma 2.1, Lemma 2.2, and the
Dominated Convergence Theorem.

Lemma 3.7 Assume (A1), (A3) and suppose that f ∈ C0,1
b ([0, T ]×Rd×R× Rd).

Then, for all 0 ≤ t ≤ T,

lim
n→∞

Ẽ
(
|Φ̃t,n − Φ̃t|∗,2t,T + |Ψ̃t,n − Ψ̃t|∗,2t,T +

∫ T

0

|Γ̃t,n
s − Γ̃t

s|2ds
)

= 0.
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Proof. First, let us prove that

lim
n→∞

Ẽ
[∣∣∣Φ̃t,n (s)− Φ̃t (s)

∣∣∣∗,2
t,T

]
= 0. (18)

In view of the Burkholder-Gundy, Schwartz inequalities and the Gronwall lemma,
we have

Ẽ
[∣∣∣Φ̃t,n (s)− Φ̃t (s)

∣∣∣∗,2
t,T

]
≤M Ẽ

[∣∣∣Φ̃t
∣∣∣∗,4
t,T

]1/2

×

{
Ẽ
[∫ T

0

∣∣∣∂xb
n
(
s, X̃ t

s

)
− bx

(
s, X̃ t

s

)∣∣∣4 dt]1/2

+
∑

1≤j≤d

Ẽ
[∫ T

0

∣∣∣∂xσ
j,n
(
s, X̃ t

s

)
− σj

x

(
s, X̃ t

s

)∣∣∣4 dt]1/2
}
.

Since the coefficients in the linear stochastic differential equation (16) are bounded,
we have

sup
n

Ẽ
[∣∣∣Φ̃t,n

∣∣∣∗,4
t,T

]
< +∞.

To derive (18), it is sufficient to prove the following :

Ẽ
[∫ T

0

∣∣∣∂xb
n
(
s, X̃ t

s

)
− bx

(
s, X̃ t

s

)∣∣∣4 ds]→ 0 as n→ +∞

and

Ẽ
[∫ T

0

∣∣∣∂xσ
j,n
(
s, X̃ t,n

s

)
− σj

x

(
s, X̃ t

s

)∣∣∣4 ds]→ 0 as n→ +∞, j = 1, 2, ..., d.

Let us prove the first limit. Since the law of X̃ t
s is absolutely continuous with respect

to the Lebesgue measure, let p̃t(s, y) its density. Then

Ẽ
[∫ T

0

∣∣∣bnx (s, X̃ t
s

)
− bx

(
s, X̃ t

s

)∣∣∣4 dt] =

∫ T

0

∫
Rd

|bnx (s, y)− bx (s, y)|4 p̃t(s, y)dyds.

Since ∂xb
n, bx are bounded by the Lipschitz constant and ∂xb

n converges to bx, we
conclude by the Dominated Convergence Theorem. The case of the second limit can
be treated by the same technique.

Now, by using the boundness of the derivatives of the coefficients and Lemma 2.2,
we have

Ẽ
(
|Ψ̃t,n − Ψ̃t|∗,2t,T +

∫ T

0

|Γ̃t,n(r)− Γ̃(r)|2dr
)
≤ CE

(
|ζ̃n|2 +

∫ T

0

|h̃n(r)|2dr
)
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where
ζ̃n = ∂xg

n(X̃ t
T )Φ̃t(T )− gx(X̃

t
T )Φ̃t(T )

h̃n(s) =
(
∂xf(s, Θ̃n(s))− ∂xf(s, Θ̃(s))

)
Φ̃t(s) +

(
∂yf(s, Θ̃n(s))− ∂yf(s, Θ̃(s))

)
Ψ̃t(s),

+ 〈
(
∂zf(s, Θ̃n(s))− ∂zf(s, Θ̃(s))

)
, Γ̃t(s)〉.

We have

E|ζ̃n|2 ≤
(
E|Φ̃t(T )|2

)1/2 (
E|∂xg

n(X̃ t
T )− gx(X̃

t
T )|2

)1/2

.

By using the boundness of ∂xg
n, gx by the Lipschitz constant, the convergence of

∂xg
n to gx, the absolute continuity of the law of X̃ t

T with respect to the Lebesgue

measure and the Dominated Convergence Theorem, we obtain limn→0 E|ζ̃n|2 = 0.
Combining Lemma 3.6 and the Dominated Convergence Theorem, one can prove
that

lim
n−→∞

E
∫ T

0

|h̃n(r)|2dr = 0.

Theorem 3.4 Assume (A1), (A3) and suppose that f ∈ C0,1
b ([0, T ] × Rd ×

R× Rd). Then, for P−almost every ω :

(i) for every s ≤ t ≤ T, the function x 7−→ (X t,x
s (ω), Y t,x

s (ω)) belongs to Dd × D
P−almost surely

(ii) for every t ≤ s ≤ T, P−almost surely ∂xX
t,x
s (ω) = Φ̃t

s(x, ω), ∂xY
t,x
s (ω) =

Ψ̃t
s(x, ω) dx a.e.

Proof. By Lemma 2.2, there exists a constant C > 0 such that for all t, n, s, it
holds

Ẽ
(
|Ψ̃t,n|∗,2t,T +

∫ T

t

|Γ̃t,n(r)|2dr
)
≤ C(1 + Ẽ

(
|Φ̃t,n(T )|2

)
.

By Lemma 2.1, we have for all t,

sup
n

Ẽ
(
|Φ̃t,n(T )|2

)
≤ C.

It follows that

sup
n

Ẽ
(
|Ψ̃t,n|∗,2t,T +

∫ T

t

|Γ̃t,n(r)|2dr
)
<∞.
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Using (17), Lemma 3.2, Lemma 3.3 and the Bouleau Hirch result, we deduce that

the function (X̃ t
s, Ỹ

t
s ) belongs P̃−almost surely to D̃d × D̃ with

∇iX̃
t
s = Φ̃t

i(s), ∇iỸ
t
s = Ψ̃t

i(s) P̃− almost surely.

We deduce that for every t ≤ s ≤ T, P−almost every ω ∈ Ω, the function x 7−→
(X t,x

s (ω), Y t,x
s (ω)) belongs to Dd ×D and

∂xX
t,x
s (ω) = Φ̃t

s(x, ω), ∂xY
t,x
s (ω) = Ψ̃t

s(x, ω) dx a.e.

Corollary 3.2 Assume (A1), (A3) and suppose that f ∈ C0,1
b ([0, T ] × Rd ×

R× Rd). Let (X t,x, Y t,x, Zt,x) be the adapted solution of (2) and define u(t, x) = Y t,x
t .

Then,

(i) for every 0 ≤ t ≤ T, the function x 7−→ u(t, x) belongs to D and for each t and
i = 1, . . . , d, the following representation holds:

∂xi
u(t, ·) = E{∂xi

X̃ t
T (·, ·))Φ̃t

i,T (·, ·) +

∫ T

t

[∂xf(r, Θ̃t
r(·, ·))Φ̃t

i,r(·, ·)

+ ∂yf(r, Θ̃t
r(·, ·))Ψ̃t

i,r(·, ·) + 〈∂zf(r, Θ̃t
r(·, ·)), Γ̃

t,·
i,r(·, ·)〉]dr} dx a.e.

where Θ̃t
r ≡

(
X̃ t

r, Ỹ
t
r , Z̃

t
r

)
is the solution of the FBSDE (13) and

(
Φ̃t, Ψ̃t, Γ̃t

)
is the solution of the variational equation (15);

(ii) For every t ≤ s ≤ T, P̃−almost surely, we have Zt,·
s = ∂xi

u(s,X t,·
s )σ(s,X t,·

s ).

4 The representation theorem

Our aim is now to give a probabilistic representation of the gradient of the viscosity
solution of the quasilinear PDE (1). More precisely, we prove an extension of the
nonlinear Feyman-Kac formula of Pardoux-Peng [19] and Ma-Zhang [17]. We restrict
ourselves to the nondegenerate case.

For every n ∈ N, let (Xn, Y n, Zn) and (Φn,Ψn,Γn) be the solutions of FBSDEs
(9) and (11) respectively. For every t < r1 < T , we introduce the martingales{
Mn,r1

r2
: r1 ≤ r2 ≤ T

}
:

Mx,n,r1
r2

=

∫ r2

r1

[
σ−1

n (v,Xx,n
v )Φx,n

v

]∗
dWv.
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We also consider the martingale
{
Mx,r1

r2
: r1 ≤ r2 ≤ T

}
:

Mx,r1
r2

=

∫ r2

r1

[
σ−1(v,Xx

v )Φx
v

]∗
dWv,

(Xx, Y x, Zx) and (Φx,Ψx,Γx) being the solutions of the FBSDEs (2) and (10) re-
spectively. Set

Nx,n,s
r =

1

r − s
(Mx,n,s

r )T [Φx,n
s ]−1 and Nx,s

r =
1

r − s
(Mx,s

r )∗[Φx
s ]
−1 , 0 ≤ t ≤ s < r ≤ T.

Theorem 4.1 Assume (A1)-(A3) and suppose that g ∈ C1
b (Rd). Let (Xx, Y x, Zx)

be the adapted solution of (2). Then,

(i) for every s ∈ [t, T ], we have P−almost surely

Zx
s = E

{
g(Xx

T )Nx,s
T +

∫ T

s

f(r,Xx
r , Y

x
r , Z

x
r )Nx,s

r dr | F t
s

}
σ(s,Xx

s ) dx a.e.;

(19)

(ii) for almost every x ∈ Rd, there exists a version of Zx such that for P−almost
every ω ∈ Ω, the mapping s 7−→ Zx

s (ω) is continuous;

(iii) for every t ∈ [0, T ] we have

∂xu(t, x) = E
{
g(Xx

T )Nx,t
T +

∫ T

t

f(r,Xx
r , Y

x
r , Z

x
r )Nx,t

r dr

}
dx a.e.

where ∂xu(t, x) denotes the derivative in the distribution sense of u with respect
to x.

Proof. Let us note that, in view of Theorem 4.2 in Ma-Zhang [17], we have
P−almost surely ,∀s ∈ [t, T ] ∀ x ∈ Rd :

Zx,n
s = E

{
g(Xx,n

T )Nx,n,s
T +

∫ T

s

f(r,Xx,n
r , Y x,n

r , Zx,n
r )Nx,n,s

r dr | F t
s

}
σn(s,Xx,n

s ).

(20)
Lemma 2.1 and Lemma 2.2 imply that for all p ≥ 2

lim
n→∞

E
(
|X t,x,n −X t,x|∗,pt,T + |Y t,x,n − Y t,x|∗,pt,T +

∫ T

0

|Zt,x,n
s − Zt,x

s |2ds
)

= 0, (21)

lim
n→∞

E
(
|Φt,n,x − Φt,x|∗,pt,T + |Ψt,n,x −Ψt,x|∗,pt,T +

∫ T

0

|Γt,n,x
s − Γt,x

s |2ds
)

= 0. (22)
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It follows that for any p ≥ 1,

lim
n→∞

E |M s,n −M s|∗,2p
t,T = 0. (23)

Therefore (see Bahlali-Mezerdi-Ouknine [1])

lim
n→∞

E
∣∣E{g(Xx,n

T )Nx,n,s
T | F t

s

}
− E

{
g(Xx

T )Nx,s
T | F t

s

}∣∣ = 0.

Now, we have

E
∣∣∣E{∫ T

s
f(r,Xx,n

r , Y x,n
r , Zx,n

r )Nx,n,s
r dr | F t

s

}
− E

{∫ T

s
f(r,Xx

r , Y
x
r , Z

x
r )Nx,s

r dr | F t
s

}∣∣∣
≤ E

∫ T

s
|f(r,Xx,n

r , Y x,n
r , Zx,n

r )Nx,n,s
r − f(r,Xx

r , Y
x
r , Z

x
r )Nx,s

r |

≤ E
∫ T

s
|f(r,Xx,n

r , Y x,n
r , Zx,n

r )| |Nx,n,s
r −Nx,s

r | dr

+E
∫ T

s
|f(r,Xx,n

r , Y x,n
r , Zx,n

r )− f(r,Xx
r , Y

x
r , Z

x
r )| |Nx,s

r | dr
=: In

1 + In
2

Since f is Lipschitz continuous, we have

In
2 ≤ KE

∫ T

s

(|Xx,n
r −Xx

r |+ |Y x,n
r − Y x

r |) |Nx,s
r | dr +KE

∫ T

s

|Zx,n
r − Zx

r | |Nx,s
r | dr.

By using (21) and (23), one can prove that the first term in the right hand side
converges to 0 as n goes to infinity. For the second term, we use Corollary 3.2 in
Ma-Zhang [17] and the Dominated Convergence Theorem to show that it converges
to 0 as n goes to infinity.

To prove that limn→∞ I
n
1 = 0, it suffices to observe, by using Corollary 3.2 in

Ma-Zhang [17] and Lemmas 2.1, 2.2, that for any p > 0,

sup
n

E
(
|X t,x,n|∗,pt,T + |Y t,x,n|∗,pt,T + |Zt,x,n|∗,p

)
<∞ , sup

n
E
(
|Φt,x,n|∗,pt,T + |Ψt,x,n|∗,pt,T

)
<∞

and combine (22), (23) with the Dominated convergence theorem to conclude.

Thus, by letting n → ∞ in (20), we obtain that (19) holds P−almost surely,
for each fixed s ∈ [t, T ]. Now, since part (ii) of the Theorem can be proved as in
Ma-Zhang [17], one can prove that part (i) is satisfied.

To obtain part (iii) it suffices to let s = t in (19).

Remark 4.1 In [1], a representation theorem for functionals of diffusion processes
with Lipschitz coefficients is proved. Therefore it is natural to try to obtain this kind
of result for (Y t,x, Zt,x) which can be seen as a functional of X t,x. To this purpose,
we have to prove that (Y t,x, Zt,x) = L(X t,x) and show that the functional L is Frechet
differentiable.
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