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Abstract

We consider a stochastic differential game in a financial jump dif-
fusion market, where the agent chooses a portfolio which maximizes
the utility of her terminal wealth, while the market chooses a scenario
(represented by a probability measure) which minimizes this maximal
utility. We show that the optimal strategy for the market is to choose
an equivalent martingale measure.

1 Introduction

When pricing derivatives in a financial market (not necessarily complete), it
is common to apply no-arbitrage arguments to show that the price has to
be given by an expectation of the discounted payoff of the derivative, the
expectation taken with respect to some equivalent martingale (or risk free)
measure P0. Such a measure P0 can then be found by using the Girsanov
theorem. However, if the market is incomplete the measure P0 is not unique,
and the no-arbitrage argument gives no information about which measure to
use.

The purpose of this paper is to put the pricing question into the framework
of a stochastic differential game:

We represent the traders by a representative agent with a given utility
function U . This agent is player number 1. Player number 2 is the market
itself. Player number 1 chooses a portfolio which maximizes her expected
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discounted utility, the expectation being taken with respect to a probability
measure Q. The measure Q represents the “scenario”, which is chosen by the
market. And the market chooses the scenario which minimizes the maximal
expected utility of the representative agent. This leads to a min-max prob-
lem. We put this problem into a stochastic differential game framework by
representing the market prices by a jump diffusion S(t) and the scenarios by
a parametrized family {Qθ}θ∈Θ of the probability measures. Then we show
that the solution of this game is for the market to choose a risk free measure
Qθ̂ and for the agent to put all the money in the risk free asset. Thus the
use of a risk free measure by the market appears as an equilibrium point in
this game.

In the next section we explain this in more detail.
The problem studied in this paper is related to some “worst case scenario”

problems studied in the literature. See e.g. [BMS], [ES], [G], [KM] and [S].
For more information about differential games we refer to [FS], [FlSo], [I] and
[KS]. Our Theorem 2.1 may be regarded as a generalization of Example 3.1
in [MØ], which again is an extension of a result in [PS].

2 The stochastic differential game model

Consider the following jump diffusion market

(risk free asset) dS0(t) = r(t)S0(t)dt; S0(0) = 1(2.1)

(risky asset) dS1(t) = S1(t
−)

[
α(t)dt + β(t)dB(t)(2.2)

+

∫
R

γ(t, z)Ñ(dt, dz)
]
; S1(0) > 0,

where B(t) and Ñ(dt, dz) is a Brownian motion and a compensated Poisson
random measure, respectively, on a filtered probability space (Ω,F , {Ft}t≥0, P ).
Here r(t), β(t) and γ(t, z) are given Ft-adapted processes, satisfying the fol-
lowing integrability condition:

E
[ T∫

0

{|r(s)|+ |α(s)] + 1
2
β2(s)

+

∫
R

| log(1 + γ(s, z))− γ(s, z)|ν(dz)}ds
]

< ∞(2.3)

where T > 0 is a fixed given constant. We also assume that

(2.4) γ(s, z) ≥ −1 for a.a. s, z ∈ [0, T ]× R0,

where R0 = R \ {0}.
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Then it is well-known (see e.g. [ØS, Ch. 1]) that the solution S1(t) of
(2.2) is

S1(t)=S1(0) exp
[ t∫

0

{α(s)− 1
2
β2(s) +

∫
R

(log(1 + γ(s, z))− γ(s, z))ν(dz)}ds

+

t∫
0

β(s)dB(s) +

t∫
0

∫
R

γ(s, z)Ñ(ds, dz)
]
; t ∈ [0, T ].(2.5)

We now introduce a family M of measures Qθ parametrized by processes
θ = (θ0(t), θ1(t, z)) such that

(2.6) dQθ(ω) = Zθ(T )dP (ω) on FT ,

where

(2.7)

dZθ(t) = Zθ(t
−)[−θ0(t)dB(t)−

∫
R

θ1(t, z)Ñ(dt, dz)]; 0 ≤ t ≤ T

Zθ(0) = 1.

We assume that

θ1(t, z) ≤ 1 for a.a. t, z, ω and(2.8)

T∫
0

{θ2
0(s) +

∫
R

θ2
1(s, z)ν(dz}ds < ∞ a.s.(2.9)

Then the solution of (2.7) is given by

Zθ(t) = exp
[
−

t∫
0

θ0(s)dB(s)− 1
2

t∫
0

θ2
0(s)ds

+

t∫
0

∫
R

log(1− θ1(s, z))Ñ(ds, dz)

+

t∫
0

∫
R

{log(1− θ1(s, z)) + θ1(s, z)}ν(dz)ds
]
; 0 ≤ t ≤ T(2.10)

If

(2.11) E[Zθ(T )] = 1

then Qθ(Ω) = 1, i.e. Qθ is a probability measure.
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If, in addition, θ0(t) and θ1(t, z) satisfy the equation

(2.12) β(t)θ0(t) +

∫
R

γ(t, z)θ1(t, z)ν(dz) = α(t)− r(t); t ∈ [0, T ]

then the measure Qθ is an equivalent local martingale measure. See e.g. [ØS,
Ch. 1].

We do not assume a priori that (2.12) holds. The set of all θ = (θ0, θ1)
such that (2.8)–(2.11) hold is denoted by Θ. These are the admissible controls
of the market.

Next we introduce a portfolio in this market, represented by the fraction
π(t) of the wealth invested in the risky asset at time t. We assume that π(t)
is self-financing, which means that the corresponding wealth process X(π)(t)
will have the dynamics

dX(π)(t) = X(π)(t−)
[
{r(t) + (α(t)− r(t))π(t)}dt

+ β(t)π(t)dB(t) + π(t)

∫
R

γ(t, z)Ñ(dt, dz)
]
; X(π)(0) = x > 0.(2.13)

We assume that π(t)γ(t, z) ≥ −1 a.s. and

T∫
0

{|r(s)|+ |α(s)− r(s)| |π(s)|+ β2(s)π2(s)

+ π2(s)

∫
R

γ2(s, z)ν(dz)}ds < ∞ a.s.(2.14)

Then the solution of (2.13) is

X(π)(t) = x exp
[ t∫

0

{r(s) + (α(s)− r(s))π(s)− 1
2
β2(s)π2(s)

+

∫
R

(ln(1 + π(s)γ(s, z))− π(s)γ(s, z))ν(dz)}ds

+

t∫
0

π(s)β(s)dB(s) +

t∫
0

∫
R

ln(1 + π(s)γ(s, z))Ñ(ds, dz)
]
; t ≥ 0(2.15)

The set of portfolios above is denoted by A. Fix a utility function U :
[0,∞) → [−∞,∞), assumed to be increasing, concave and twice continuously
differentiable on (0,∞).

Consider the following stochastic differential game between the represen-
tative agent and the market : Given the scenario represented by the measure
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Qθ, the agent chooses the portfolio which maximizes the Qθ-expected utility
of her terminal wealth. The market reacts to this choice by choosing the
scenario Qθ which minimizes this maximal expected utility. This can be ex-
pressed as the zero-sum stochastic differential game to find Φ(s, y1, y2) and
θ∗ ∈ Θ, π∗ ∈ A such that

(2.16) Φ(s, y1, y2)= inf
θ∈Θ

(
sup
π∈A

EQθ
[U(X(π)(T−s))]

)
=EQθ∗ [U(X(π∗)(T−s))].

Here s = Y0(0), y1 = Y1(0), y2 = Y2(0) are the initial values of the process
Y (t) = Y θ,π(t) ∈ R3 given by

dY (t) =

dY0(t)
dY1(t)
dY2(t)

 =

 dt
dZθ(t)

dX(π)(t)

 = (dt, dZθ(t), dX(π)(t))T

= (1, 0, X(t)[r(t) + (α(t)− r(t))π(t)])T dt

+ (0,−θ0(t)Zθ(t), X(t)π(t)β(t))T dB(t)

+

∫
R

(0,−Zθ(t
−)θ1(t, z), X(t−)π(t)γ(t, z))T Ñ(dt, dz).(2.17)

We assume from now on that r(t) is deterministic and that α(t) = α(Y (t)),
β(t) = β(Y (t)), γ(t, z) = γ(Y (t), z), π(t) = π(Y (t)) and θ(t) = (θ0(Y (t)),
θ1(Y (t), z)) are Markovian. Thus we identify π with a map π : R3 → R and
we identify θ with a map θ = (θ0, θ1(·)) : R3 → R× RR (feedback controls).

Then Y θ,π(t) is a Markov process with generator Aθ,π given by

Aθ,πϕ(s, y1, y2) = ∂ϕ
∂s

+ y2(r + (α− r)π) ∂ϕ
∂y2

+ 1
2
θ2
0y

2
1

∂2ϕ
∂y2

1
+ 1

2
y2

2π
2β2 ∂2ϕ

∂y2
2
− θ0πy1y2β

∂2ϕ
∂y1∂y2

+

∫
R

{
ϕ(s, y1 − y1θ1(·, z), y2 + y2πγ(·, z))− ϕ(s, y1, y2)

+ y1θ1(·, z) ∂ϕ
∂y1

− y2πγ(·, z) ∂ϕ
∂y2

}
ν(dz) for ϕ ∈ C1,2,2(R3).(2.18)

To solve the problem (2.16) we apply the Hamilton-Jacobi-Bellman (HJB)
equation for stochastic differential games given in [MØ]. Applied to our
setting this HJB gets the following form:

Theorem 2.1 ([MØ]) Put S = (0, T )× (0,∞)× (0,∞), y = (y0, y1, y2) =
(s, y1, y2). Suppose there exists a function ϕ ∈ C2(S) ∩ C(S̄) and a Markov
control (θ̂(y), π̂(y))) ∈ Θ×A such that

(i) Aθ,π̂(y)ϕ(y) ≥ 0 for all θ ∈ R× RR, y ∈ S

(ii) Aθ̂(y),πϕ(y) ≤ 0 for all π ∈ R, y ∈ S
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(iii) Aθ̂(y),π̂(y)ϕ(y) = 0 for all y ∈ S

(iv) lim
t→T−

ϕ(Y θ,π(t)) = Y θ,π
1 (T )U(Y θ,π

2 (T ))

(v) the family { ϕ(Y θ,π(τ))}τ∈T is uniformly integrable for all y ∈ S, where
T is the set of stopping times τ ≤ T .

Then, with Jθ,π(y) = EQθ
[U(X(π)(T − s))],

ϕ(y) = Φ(y) = inf
θ∈Θ

(
sup
π∈Π

Jθ,π(y)
)

= sup
π∈Π

(
inf
θ∈Θ

Jθ,π(y)
)

= sup
π∈Π

J θ̂,π(y) = inf
θ∈Θ

Jθ,π̂(y) = J θ̂,π̂(y); y ∈ S

and (θ̂, π̂) is an optimal (Markov) control.

We guess that ϕ has the form

(2.19) ϕ(s, y1, y2) = y1U(f(s)y2)

for some deterministic function f with f(T ) = 1 (motivated by (iv)).
Note that conditions (i)–(iii) in Theorem 2.1 can be written

inf
θ

Aθ,π̂ϕ(y) = Aθ̂,π̂ϕ(y) = 0

and
sup

π
Aθ̂,πϕ(y) = Aθ̂,π̂ϕ(y) = 0.

Maximizing Aθ̂,πϕ(s, y1, y2) over all π gives the following first order condition
for a maximum point π̂:

y2(α− r(s))y1U
′(f(s)y2)f(s) + y2

2π̂β2(y)y1U
′′(f(s)y2)f

2(s)

− θ̂0y1y2β(y)U ′(f(s)y2)f(s)

+

∫
R

{(y1 − y1θ̂1(y, z))U ′(f(s)(y2 + y2π̂γ(y, z)))f(s)y2γ(y, z)

− y2γ(y, z)y1U
′(f(s)y2)f(s)}ν(dz) = 0,

i.e.

(α− r(s))U ′(f(s)y2) + y2π̂β2(y)U ′′(f(s)y2)f(s)− θ̂0β(y)U ′(f(s)y2)

+

∫
R

{(1− θ̂1(y, z))U ′(f(s)y2(1 + π̂γ(y, z)))

− U ′(f(s)y2)}γ(y, z)ν(dz) = 0.(2.20)
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We then minimize Aθ,π̂ϕ(s, y1, y2) over all θ = (θ0, θ1) and get the following
first order conditions for a minimum point θ̂ = (θ̂0, θ̂1):

(2.21) −π̂y1y2β(y)U ′(f(s)y2)f(s) = 0

and

(2.22)

∫
R

{−y1U(f(s)y2(1 + π̂γ(y, z))) + y1U(f(s)y2)}ν(dz) = 0.

From (2.21) we conclude that

(2.23) π̂ = 0,

which substituted into (2.20) gives

(α− r(s))U ′(f(s)y2)− θ̂0β(y)U ′(f(s)y2)

+

∫
R

{−θ̂1(y, z)γ(y, z)U ′(f(s)y2)}ν(dz) = 0

or

(2.24) θ̂0(y)β(y) +

∫
R

θ̂1(y, z)γ(y, z)ν(dz) = α(y)− r(s).

The HJB equation for stochastic differential games states that with these
values of π̂ and θ̂ we should have

Aθ̂,π̂ϕ(s, y1, y2) = 0

i.e.

y1U
′(f(s)y2)y2f

′(s) + y2r(s)y1U
′(f(s)y2)f(s)

+

∫
R

{y1(1− θ1(y, z))U(f(s)y2)− y1U(f(s)y2)

+ y1θ̂1U(f(s)y2)}ν(dz) = 0

or
f ′(s) + r(s)f(s) = 0

i.e.

(2.25) f(s) = exp
( T−s∫

0

r(u)du
)
.

We have proved:
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Theorem 2.2 Let U ∈ C([0,∞)) ∩ C1((0,∞)) be concave and increasing.
Then the solution of the stochastic differential game (2.16) is for the agent
to choose the portfolio

(2.26) π(t) = π̂(t) = 0

(i.e. to put all the wealth in the risk free asset) and for the market to choose
the scenario Qθ̂ where θ̂ = (θ̂0, θ̂1) satisfies the equation

(2.27) θ̂0(Y (t))β(Y (t)) +

∫
R

θ̂1(Y (t), z)γ(Y (t), z)ν(dz) = α(Y (t))− r(t).

In other words, the market chooses an equivalent martingale measure (or
risk free measure) Qθ̂.

Remark 2.3 Note that there is no no-arbitrage principle used in this pa-
per. In stead, the choice of a scenario represented by an equivalent martingale
measure is deduced as an equilibrium state of a game between a representa-
tive agent and the market.
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