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Abstract

We study a controlled stochastic system whose state is described by a stochastic dif-
ferential equation with anticipating coefficients. This setting is used to model markets
where insiders have some influence on the dynamics of prices. We give a character-
ization theorem for the optimal logarithmic portfolio of an investor with a different
information flow from that of the insider. We provide explicit results in the partial
information case which we extend in order to incorporate the enlargement of filtration
techniques for markets with insiders. Finally, we consider a market with an insider
who influences the drift of the underlying price asset process. This example gives a
situation where it makes a difference for a small agent to acknowledge the existence of
an insider in the market.
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1 Introduction

In most of the research in modelling of insiders problems (see Karatzas-Pikovsky [KP],
Imkeller [Im], Grorud-Pontier [GP], . . . ) one postulates the asset price dynamics as given
for the small investor. The insider has an additional information for example in the form of a
random variable which depends on future events. The problem is to evaluate the advantage
of the insider in the form of additional utility and optimal portfolio. Mathematically, the
problem is to determine the semimartingale decomposition of the Wiener process in the
filtration enlarged with the additional information of the insider. Then one can express the
dynamics of the prices for the informed agent and compute the optimal investment strategy
for this informed agent.

In this article we study this problem from a different point of view. That is, we assume
there exists an insider who is also a large trader and therefore influences the prices of the
underlying assets with his/her financial behavior. The small investor is a price taker and
the dynamics he assigns to these prices may differ from the one observed by the insider due
to the information difference. We are interested in analyzing the question of the optimal
investment strategy of the small investor in front of such a situation. This point of view
was already partly studied in Øksendal-Sulem [ØS] although the financial consequences and
modelling possibilities for models of markets with insiders were not exploited there.

Mathematically, the asset price is generated by an anticipating stochastic differential
equation, since asset prices have coefficients which are not necessarily adapted to the filtration
generated by the Brownian motion. We suppose that the investor’s portfolio is adapted to
a filtration which may be different from the filtration of the insider or the one generated by
the Brownian motion, for example the filtration generated by the underlying asset price. We
study a logarithmic utility maximization problem of final wealth at time T in this anticipating
market.

We give a characterization theorem (Theorem 4.1) of optimal portfolios. The optimal
portfolios can be interpreted as projection formulas of Merton type solutions plus an extra
term (denoted by a(t), see Corollary 4.2) which is interpreted through examples.

In Section 5 we consider and extend the example of partial information. We first consider
the typical situation of a small investor who does not have the information of the random
drift driving the price process (see Example 5.1). That is, the stochastic differential equation
is adapted to the filtration generated by the Brownian motion and the filtration of the small
investor is smaller than this filtration. We then extend this situation to the case when the
random drift is anticipating (Proposition 5.3). This includes all known models of insiders
built with an initial enlargement of filtration technique. In this case, the optimal portfolio
of the insider coincides with the optimal portfolio of an investor when the coefficients of the
price dynamics are adapted to the enlarged filtration (see Example 5.5). In this generalized
set-up one can also consider the optimal portfolio of a small investor (see Example 5.6).
We will see that in a market where the price dynamics are driven by an insider, using the
enlargement of filtration approach, an investor with a filtration smaller than the enlarged
filtration becomes only a partially informed agent in an anticipating world. In conclusion the
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initial enlargement of filtration approach for insiders modelling becomes a particular case of
our generalization of partial information with a(t) = 0.

On the other hand, it remains to be seen if the general result given in Theorem 4.1 always
corresponds to a initial enlargement of filtration setup. A partial negative answer to this
question is given in Section 6. It seems that the fact a(t) 6= 0 is related to the relationship
between three filtrations: (i) the natural filtration of the Brownian motion: {Ft}0≤t≤T , (ii)
the filtration the coefficients of the SDE are adapted to: {Gt}0≤t≤T , (iii) the information of
the investor: {Ht}0≤t≤T .

We thus address the issue: Is there a situation where a(t) 6= 0 and what is the interpreta-
tion of a(t)? To answer this question we consider stock dynamics where the drift is influenced
by the insider through a smooth (in the sense of stochastic derivatives) random variable and
the noise is given by the original Brownian motion (see Section 6). We suppose that a small
investor observes the price of the underlying asset and computes his/her optimal portfolio
using a logarithmic utility. The results lead to the following conclusion: If the small agent
decides that there is no insider in the market, he/she estimates the drift of the underlying
with the best estimator (the conditional expectation) with respect to his information, builds
a geometric Brownian motion as his/her model to maximize the logarithmic utility. This
calculation gives a suboptimal portfolio. The difference between this suboptimal portfolio
and the optimal one assuming an anticipating model for the market with insiders is propor-
tional to a(t). Furthermore the difference in utilities is given by a quantity depending on a(t)
which appears due to the anticipating nature of the modelling (see Remark 6.8.2.). Finally,
we consider the case where the insider has an effect on the drift through information that is
δ units of time ahead. This model seems to lead to some generalizations of insider modelling
which may not be tractable by enlargement of filtration techniques.

2 Some preliminaries on forward stochastic integrals

We introduce here the forward integral. We change somewhat the definition to fit our goals.
We refer to [NP], [RV1], [RV2] and [RV3] for more information about these integrals and to
[BØ] for a discussion on the pertinence of the use of forward integrals in insider modelling.
Let B(t) be a Brownian motion on a filtered probability space (Ω,F , {Ft}t≥0, P ) and T > 0
a fixed horizon.

Definition 2.1 Let φ : [0, T ]× Ω → R be a measurable process. The forward integral of φ
with respect B(.) is defined by

(2.1)

∫ T

0

φ(t)d−B(t) = lim
ε→0

∫ T

0

φ(t)
B(t + ε) − B(t)

ε
dt,

if the limit exists in L1(Ω).

Note that if the forward integral exists in this L1(Ω)-sense, then it also exists in the Russo-
Valois sense (convergence of (2.1) in probability).
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We state a relation between forward and Skorohod integrals. From now on, δ denotes
the Skorohod integral and D denotes the stochastic derivative operator. For details on the
notation, see [N]. We also refer to Proposition 2.3 of [RV1] for related results.

Lemma 2.2

Suppose that φ : [0, T ] × Ω → R belongs to L1,2[0, T ], that is φ satisfies

E
(∫ T

0

|φ(t)|2dt +

∫ T

0

∫ T

0

|Duφ(t)|2du dt

)
< +∞.

Moreover, assume that

lim
ε→0

1

ε

∫ u

u−ε

φ(t)dt = φ(u) for a.a. u ∈ [0, T ] in L1,2[0, T ]

and that Dt+φ(t) := lims→t+ Dsφ(t) exists uniformly in t ∈ [0, T ] in L1((0, T ) ⊗ Ω). Then
the forward integral of φ exists and

(2.2)

∫ T

0

φ(t)d−B(t) =

∫ T

0

φ(t)δB(t) +

∫ T

0

Dt+φ(t)dt.

Moreover

(2.3) E
[ ∫ T

0

φ(t)d−B(t)
]

= E
[ ∫ T

0

Dt+φ(t)dt
]
.

Proof. We provide a sketch of the proof.

lim
ε→0

∫ T

0

φ(t)
B(t + ε) − B(t)

ε
dt = lim

ε→0

∫ T

0

φ(t)

ε

∫ t+ε

t

dB(u) dt

= lim
ε→0

{∫ T

0

∫ t+ε

t

φ(t)

ε
δB(u) dt +

∫ T

0

∫ t+ε

t

Duφ(t)

ε
du dt

}
(see (1.49) in [N])

= lim
ε→0

{∫ T

ε

∫ u

u−ε

φ(t)

ε
dt δB(u) +

∫ ε

0

∫ u

0

φ(t)

ε
dt δB(u)

+

∫ T

ε

∫ u

u−ε

Duφ(t)

ε
dt du +

∫ ε

0

∫ u

0

Duφ(t)

ε
dt du

}
.

We can prove that each of these 4 terms converge when ε goes to 0 by straightforward
computations. Since Skorohod integrals have expectation 0, we deduce (2.3). �

Lemma 2.3 Let φ be as in Lemma 2.2 of the form φ(t) =
∑n−1

i=0 φ(ti)1(ti,ti+1](t) for a fixed
partition p := {0 = t0 < . . . < tn = T}. Then

∫ T

0

φ(t)d−B(t) =

n−1∑

j=0

φ(ti)(B(ti+1) − B(ti)) in L1(Ω).
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Proof. We have
∫ T

0

φ(t)

(
B(t + ε) − B(t)

ε

)
dt =

n−1∑

i=0

φ(ti)

ε

∫ ti+1

ti

∫ t+ε

t

δB(u)dt

=

n−1∑

i=0

∫ ti+1

ti

∫ t+ε

t

φ(ti)

ε
δB(u)dt +

∫ ti+1

ti

∫ t+ε

t

Duφ(ti)

ε
du dt.

Applying Fubini theorem, we get

ti+1∫

ti

t+ε∫

t

φ(ti)

ε
δB(u)dt =

ti+ε∫

ti

u∫

ti

φ(ti)

ε
dt δB(u) +

ti+1∫

ti

u∫

u−ε

φ(ti)

ε
dt δB(u) +

ti+1+ε∫

ti+1

ti+1∫

u−ε

φ(ti)

ε
dt δB(u)

=

ti+ε∫

ti

φ(ti)(u − ti)

ε
δB(u) +

ti+1∫

ti+ε

φ(ti)δB(u) +

ti+1+ε∫

ti+1

φ(ti)(ti+1 − u + ε)

ε
δB(u)

and

ti+1∫

ti

t+ε∫

t

Duφ(ti)

ε
du dt =

ti+ε∫

ti

Duφ(ti)(u − ti)

ε
du+

ti+1∫

ti+ε

Duφ(ti)du+

ti+1+ε∫

ti+1

Duφ(ti)(ti+1 − u + ε)

ε
du.

Similarly,

φ(ti)(B(ti+1) − B(ti)) =

∫ ti+1

ti

φ(ti)δB(u) +

∫ ti+1

ti

Duφ(ti)du.

Therefore
∫ T

0

φ(t)

(
B(t + ε) − B(t)

ε

)
dt −

n−1∑

j=0

φ(ti)(B(ti+1) − B(ti)) =

n−1∑

j=0

∫ ti+ε

ti

φ(ti)(u − ti)

ε
δB(u) −

∫ ti+ε

ti

φ(ti)δB(u) +

∫ ti+1+ε

ti+1

φ(ti)(ti+1 − u + ε)

ε
δB(u)

+

∫ ti+ε

ti

Duφ(ti)(u − ti)

ε
du −

∫ ti+ε

ti

Duφ(ti)du +

∫ ti+1+ε

ti+1

Duφ(ti)(ti+1 − u + ε)

ε
du.

Now we prove that each term goes to 0 in L1(Ω) as ε → 0. We have

E
∣∣∣
∫ ti+ε

ti

φ(ti)(u − ti)

ε
δB(u)

∣∣∣ ≤ ‖φ(ti)
(· − ti)

ε
‖L1,2[ti,ti+ε] → 0 as ε → 0,

E
∣∣∣
∫ ti+ε

ti

Duφ(ti)(u − ti)

ε
du

∣∣∣ ≤ ‖φ(ti)
(· − ti)

ε
‖L1,2 [ti,ti+ε] → 0 as ε → 0

and similarly for all other terms. �
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Lemma 2.4 Suppose that φ satisfies the conditions of Lemma 2.2. For any sequence of
partitions pn = {t0 = 0 < t1 < . . . < tn = T} such that ∆n := supi=0...N−1(ti+1 − ti) goes to
0 when n → +∞, define φn(t) := φ(ti) for ti < t ≤ ti+1. Suppose

(2.4) ‖φ − φn‖L1,2[0,T ] + E
∫ T

0

|D+(φ − φn)(u)|du → 0 as n → +∞

then

(2.5)

∫ T

0

φ(t)d−B(t) = lim
n→+∞

n−1∑

i=0

φ(ti)(B(ti+1) − B(ti)).

Proof. By Lemma 2.3, we have that

∫ T

0

φn(t)d
−B(t) =

n−1∑

i=0

φ(ti)(B(ti+1) − B(ti)).

Furthermore

∫ T

0

(φ − φn)(t)d−B(t) = lim
ε→0

∫ T

0

(φ − φn)(t)

(
B(t + ε) − B(t)

ε

)
dt

= lim
ε→0

{
1

ε

∫ T

0

∫ t+ε

t

(φ − φn)(t)δB(u) dt +
1

ε

∫ T

0

∫ t+ε

t

Du(φ − φn)(t)du dt

}

= lim
ε→0

{
1

ε

∫ T

ε

∫ u

u−ε

(φ − φn)(t)dt δB(u) +
1

ε

∫ T

ε

∫ u

u−ε

Du(φ − φn)(t)dt du

+
1

ε

∫ ε

0

∫ u

0

(φ − φn)(t)dt δB(u) +
1

ε

∫ ε

0

∫ u

0

Du(φ − φn)(t)dt du

+
1

ε

∫ T+ε

T

∫ T

u−ε

(φ − φn)(t)dt δB(u) +
1

ε

∫ T+ε

T

∫ T

u−ε

Du(φ − φn)(t)dt du

}
.

Now we prove that each term goes to 0 in L1(Ω) as n → +∞. We have

E
∣∣∣1
ε

∫ T

ε

∫ u

u−ε

(φ − φn)(t)dt δB(u)
∣∣∣ ≤ 1

ε
‖

∫ ·

·−ε

(φ − φn)(t)dt‖L1,2[0,T ].

Consider first

E
∫ T

0

∣∣∣
∫ u

u−ε

(φ − φn)(t)dt
∣∣∣
2

du = E
∫ T

0

∣∣∣
∫ T

0

(φ − φn)(t)1{t−u ∈[−ε, 0]}dt
∣∣∣
2

du

≤ ε E
∫ T

0

(φ − φn)
2(t)dt
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by Young’s inequality for convolutions. Similarly

E

T∫

0

T∫

0

∣∣∣
u∫

u−ε

Ds(φ − φn)(t)dt
∣∣∣
2

ds du = E

T∫

0

T∫

0

∣∣∣
T∫

0

Ds(φ − φn)(t)1{t−u ∈[−ε, 0]}dt|2dsdu

≤ ε E
∫ T

0

∫ T

0

|Ds(φ − φn)(t)|2ds dt.

Then by Fatou’s lemma

E lim
ε→0

∣∣∣1
ε

∫ T

ε

∫ u

u−ε

(φ − φn)(t)dt δB(u)
∣∣∣ ≤ C‖φ − φn‖L1,2[0,T ] → 0 as n → +∞.

The other terms follow similarly: We have

E lim
ε→0

1

ε

∣∣∣
∫ ε

0

∫ u

0

Du(φ − φn)(t)dtdu
∣∣∣ =

1

ε
E
∣∣∣
∫ ε

0

∫ u

0

Du(φ − φn)(t)dtdu
∣∣∣

≤ C‖φ − φn‖L1,2[0,ε] → 0 as n → +∞

Moreover

lim
ε→0

1

ε

∫ T

ε

∫ u

u−ε

Du(φ − φn)(t)dtdu =

∫ T

0

Du+(φ − φn)(u)du a.s.

and

E
∫ T

0

|Du+(φ − φn)(u)|du → 0 as n → +∞.

Consequently

E
(∣∣∣ lim

ε→0

1

ε

∫ T

ε

∫ u

u−ε

Du(φ − φn)(t)dtdu
∣∣∣
)

→ 0 as n → +∞.

�

See [BØ] for a related result.

Remark 2.5 Condition (2.4) is a continuity type condition of the forward integral. That is,
if for any sequence (un) satisfying the conditions of Lemma 2.2, we have

‖φ − un‖L1,2 + E
∫ T

0

|D+(φ − un)(u)|du → 0 as n → +∞

then

(2.6)

∫ T

0

un(t)d−B(t) →

∫ T

0

φ(t)d−B(t) in L1(Ω).
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3 Formulation of the utility maximisation problem

Let {Gt}t≥0 be a filtration such that

(3.1) Ft ⊆ Gt ⊆ F for all t ≥ 0.

Consider a financial market with one risk-free investment, with price S0 given by

dS0(t) = ρ(t)S0(t)dt; S0(0) = 1

and one risky investment, whose price S(t) at time t is described by

(3.2) dS(t) = S(t)
[
µ(t)dt + σ(t)d−B(t)

]
, S(0) > 0

where ρ(t) = ρ(t, ω), µ(t) = µ(t, ω) and σ(t) = σ(t, ω) ≥ 0 are Gt-adapted real-valued
processes. We assume E

∫ t

0
(|ρ(s)| + |µ(s)| + σ(s)2) ds < +∞ for all t and σ satisfies the

conditions of Lemma 2.4. Since B(t) need not be a semimartingale with respect to {Gt}t≥0,
the last integral in (3.2) is an anticipating stochastic integral that we interpret as a forward
integral.

Moreover we consider another filtration {Ht}t≥0 for modelling the information of the
investor but no assumption is made on the relation between {Ht}t≥0 and {Ft}t≥0 or {Gt}t≥0.

We introduce the set of admissible strategies defined as Ht-adapted processes p(t) =
(p0(t), p1(t)) giving the numbers of shares held in each asset, such that p1σ satisfies the
conditions of Lemma 2.4. The associated wealth process is given by

W (p)(t) = p0(t)S0(t) + p1(t)S(t).

We assume that the portfolio p is self-financing, that is

dW (p)(t) = p0(t)dS0(t) + p1(t)d
−S(t).

Note that this definition of “self-financing strategy” with forward integrals corresponds to
the usual one.

We restrict ourselves to tame portfolios, that is to portfolios p such that W (p)(t) > 0 for
all t ∈ [0, T ]. We can thus parametrize our problem by using the fraction of wealth invested
in the risky asset π(t) = π(t, ω) = p1(t)S(t)/W (p)(t) for all t ∈ [0, T ].

We define the set AH of admissible portfolios as follows:

Definition 3.1 The space AH consists of all Ht-adapted processes π such that πσ satisfies
the conditions of Lemma 2.4 and

E[

∫ T

0

(|µ(t) − ρ(t)|.|π(t)| + σ2(t)π2(t))dt] < ∞.
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The dynamics of the discounted wealth process

X(t) = X (π)(t) = exp(−

∫ t

0

ρ(s)ds)W (π)(t)

corresponding to the portfolio π is then:

(3.3) dX(t) = X(t)
[
(µ(t) − ρ(t))π(t)dt + π(t)σ(t)d−B(t)

]
X(0) = x > 0.

This equation is justified by using Itô’s formula for forward integrals (see [RV2]) and has the
solution

X(π)(T ) = x exp
{ ∫ T

0

((µ(t) − ρ(t))π(t)(3.4)

− 1
2
π2(t)σ2(t))dt +

∫ T

0

π(t)σ(t)d−B(t)
}

.

We consider the following performance criterion:

J(π) := E[ ln X (π)(T )] − ln x =

= E
[ ∫ T

0

((µ(t) − ρ(t))π(t) − 1
2
π2(t)σ2(t))dt +

∫ T

0

π(t)σ(t)d−B(t)
]
.(3.5)

The goal is to find the optimal portfolio π∗ ∈ AH for the logarithmic utility portfolio
problem:

(3.6) sup
π∈AH

J(π) = J(π∗).

The case when Ht ⊆ Ft ⊆ Gt ⊆ F is considered in [ØS] and Ft ⊆ Gt ⊆ Ht in [BØ].

4 Characterisation of the optimal portfolio

We give a theorem that characterizes optimal portfolios. We suppose that the optimal utility
is finite (see Remark 4.5).

Theorem 4.1 The following assertions are equivalent:
(i) There exists an optimal portfolio π∗ ∈ AH for Problem (3.6).
(ii) There exists π∗ ∈ AH such that the process

(4.1) Mπ∗(t) := E
[ ∫ t

0

(µ(s) − ρ(s) − σ2(s)π∗(s))ds +

∫ t

0

σ(s)d−B(s)|Ht

]

is an H-martingale.
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(iii) the function

s 7→ E[

∫ s

0

σ(u)d−B(u)|Ht] ; s > t

is absolutely continuous and there exists π∗ ∈ AH such that for a.a. t, ω,

(4.2)
d

ds
E[

∫ s

0

σ(u)d−B(u)|Ht] = −E
[
µ(s) − ρ(s) − σ2(s)π∗(s)|Ht] ; a.a. s > t

Proof. (i) ⇒ (ii): Suppose (i) holds. Since π∗ ∈ AH is optimal, we have

J(π∗) ≥ J(π∗ + rβ)

for all β ∈ AH and r ∈ R. Therefore

d

dr
J(π∗ + rβ)

∣∣∣
r=0

= 0.

This gives

(4.3) E
[ ∫ T

0

{µ(t) − ρ(t) − σ2(t)π∗(t)}β(t)dt +

∫ T

0

β(t)(σ(t)d−B(t))
]

= 0

for all β ∈ AH. In particular, applying this to

β(u) = β0(t)1[t,s](u)

for 0 ≤ t < s ≤ T , u ∈ [t, s], where β0(t) is Ht-measurable and bounded, we obtain

(4.4) E
[
(

∫ s

t

{µ(u) − ρ(u) − σ2(u)π∗(u)}du +

∫ s

t

σ(u)d−B(u))β0(t)
]

= 0.

Since this holds for all such β0(t) we conclude that

(4.5) E
[
(

∫ s

t

{µ(u) − ρ(u) − σ2(u)π∗(u)}du +

∫ s

t

σ(u)d−B(u))|Ht

]
= 0.

This is equivalent to saying that the process

Kπ∗(t) :=

∫ t

0

{µ(u) − ρ(u) − σ2(u)π∗(u)}du +

∫ t

0

σ(u)d−B(u)

satisfies

(4.6) E[Kπ∗(s)|Ht] = E[Kπ∗(t)|Ht] for all s ≥ t.

From this we get, for s ≥ t

E[Mπ∗(s)|Ht] = E[E[Kπ∗(s)|Hs]|Ht] = E[Kπ∗(s)|Ht] = E[Kπ∗(t)|Ht] = Mπ∗(t),
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which is (ii).
(ii) ⇒ (iii): Suppose (ii) holds. Then, for s ≥ t,

E[Kπ∗(s)|Ht] = E[E[Kπ∗(s)|Hs]|Ht] = E[Mπ∗(s)|Ht] = Mπ∗(t) = E[Kπ∗(t)|Ht].

Hence (4.6) - and then also (4.5) - holds. And (4.5) clearly implies (iii).
(iii) ⇒ (i): Suppose (iii) holds.
Then integrating (4.2), we get (4.5), which again implies (4.4). By taking linear combi-

nation of (4.4), we obtain that (4.3) holds for all β = β∆ ∈ AH of the form

β∆(u) = ΣN
i=1βi(ti)1(ti,ti+1](u)

where 0 = t0 < t1 < . . . < tN+1 = T , ∆ = supi=0...N−1(ti+1 − ti), and βi(ti) is Hti-measurable
and bounded. Moreover, for all β ∈ AH such that

‖β∆σ − βσ‖L1,2[0,T ] + E
∫ T

0

|Dt((β
∆σ − βσ))(u)|du → 0,

we have by Remark 2.5 that

∫ T

0

β(t)σ(t)d−B(t) = lim
∆→0

∫ T

0

β∆(t)σ(t)d−B(t) = lim
∆→0

ΣN−1
i=0 β(ti)

∫ ti+1

ti

σ(s)d−B(s)

in L1(Ω). Hence, by a density argument, (4.3) holds for all β ∈ AH.
This means that the directional derivative of J at π∗ with respect to the direction β,

denoted by DβJ(π∗) is 0, i.e.

(4.7) DβJ(π∗) := lim
r→0

J(π∗ + rβ) − J(π∗)

r
= 0 ; β ∈ AH.

Note that J : AH → R is concave, in the sense that

J(λα + (1 − λ)β) ≥ λJ(α) + (1 − λ)J(β); λ ∈ [0, 1], α, β ∈ AH.

Therefore, for all α, β ∈ AH and ε ∈ (0, 1), we have

(4.8)

J(α + εβ) − J(α) = J((1 − ε)
α

1 − ε
+ εβ) − J(α)

≥ (1 − ε)J(
α

1 − ε
) + εJ(β) − J(α)

= J(
α

1 − ε
) − J(α) + ε(J(β) − J(

α

1 − ε
)).

Now, with
1

1 − ε
= 1 + η we have

lim
ε→0

1

ε
(J(

α

1 − ε
) − J(α)) = lim

η→0

1 + η

η
(J(α + ηα) − J(α)) = DαJ(α).

11



Combining this with (4.8) we get

DβJ(α) = lim
ε→0

1

ε
(J(α + εβ) − J(α)) ≥ DαJ(α) + J(β) − J(α).

We conclude that
J(β) − J(α) ≤ DβJ(α) − DαJ(α) ; α, β ∈ AH.

In particular, applying this to α = π∗ and using that DβJ(π∗) = 0 by (4.7), we get

J(β) − J(π∗) ≤ 0 for all β ∈ AH,

which proves that π∗ is optimal. �

This characterization theorem provides a closed formula for the optimal strategy π∗.

Corollary 4.2 Suppose that an optimal portfolio π∗ ∈ AH for Problem (3.6) exists. Then
it must satisfy

(4.9) π∗(t)E[σ2(t)|Ht] = E[(µ(t) − ρ(t))|Ht] + a(t).

where

(4.10) a(t) := lim
h→0+

1

h
E[

∫ t+h

t

σ(s)d−B(s)|Ht].

Note that the optimal portfolio has a similar form as the solution of the Merton prob-
lem. Here the rate of appreciation and volatility are replaced by their best estimators, the
conditional expectations. There is an extra term a(t) which appears due to the anticipative
nature of the original equation. An interpretation of this term is given in Section 6.

Remark 4.3 If Gt+δ ⊆ Ht, δ > 0, then in most cases a(t) does not exist, because then

1

h
E[

∫ t+h

t

σ(s)d−B(s)|Ht] =
1

h

∫ t+h

t

σ(s)d−B(s) for h ≤ δ.

Similarly, if Ht = Ft+δ, a(t) does not exist. This is also related to the fact that such insiders
obtain an infinite amount of wealth and that the market admits arbitrage by the insider.

We compute now the value function when the optimal portfolio exists.

Theorem 4.4 Suppose that σ(t) 6= 0 for a.a. (t, ω). Suppose there exists an optimal port-
folio π∗ ∈ AH for Problem (3.6). The optimal utility is then given by

J(π∗) =E
[ ∫ T

0

{1

2

E[µ(s) − ρ(s)|Hs]
2

E[σ2(s)|Hs]
−

1

2

a(s)2

E[σ2(s)|Hs]

+ Ds+

(
σ(s)

E[µ(s) − ρ(s)|Hs] + a(s)

E[σ2(s)|Hs]

) }
ds

]
.(4.11)
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Proof. From (4.9) we have

(4.12) π∗(t) =
E[ν(t)|Ht] + a(t)

E[σ2(t)|Ht]

where we have set ν(s) = µ(s) − ρ(s). Plugging (4.12) into (3.5) we obtain

J(π∗) =E
[ ∫ T

0

{
ν(s)(

E[ν(s)|Hs] + a(s)

E[σ2(s)|Hs]
) −

σ2(s)

2

[
E[ν(s)|Hs] + a(s)

E[σ2(s)|Hs]

]2
}

ds

+

∫ T

0

σ(s)

[
E[ν(s)|Hs] + a(s)

E[σ2(s)|Hs]

]
d−B(s)

]
.

Now we use that
E

[
ν(s)E[ν(s)|Hs]] = E[E[ν(s)|Hs]

2
]
,

and a(s) is Hs-measurable 0 ≤ s ≤ T , so that

E [ν(s)a(s)] = E [ν(s)E[a(s)|Hs]] = E [E[ν(s)|Hs]a(s)] .

Moreover

E
[

σ2(s)

E[σ2(s)|Hs]

]
= 1

and by Lemma 2.2

E
[∫ T

0

σ(s)
E[ν(s)|Hs] + a(s)

E[σ(s)2|Hs]
d−B(s)

]
= E

[∫ T

0

Ds+

(
σ(s)

E[ν(s)|Hs] + a(s)

E[σ(s)2|Hs]

)
ds

]
.

The conclusion follows. �

Remark 4.5 Note that the performance π 7→ J(π) given in (3.5) is strictly concave. Con-
sequently, if a(t) exists, the candidate π∗ given by (4.9) is indeed an optimal control if J(π∗)
is finite. If J(π∗) is infinite, then the optimal control problem has no solution.

5 An extension of the partial information framework

In this section we consider a generalization of the partial observation control problem which
includes most known cases of utility maximization for markets with insiders where enlarge-
ment of filtration techniques are used.

Example 5.1 [Partial observation case.] Suppose Ht ⊆ Ft and Ft = Gt. Then, we have

d

ds
E[

∫ s

0

σ(u)dB(u)|Ht] = 0, s > t.

13



That is, a(t) = 0 and the optimal portfolio π∗ is thus given by

π∗(t) =
E[µ(t) − ρ(t)|Ht]

E[σ2(t)|Ht]
,

if the right hand side is well defined as an element in AH. Furthermore the optimal utility is

J(π∗) =
1

2
E
[ ∫ T

0

E[µ(s) − ρ(s)|Hs]
2

E[σ2(s)|Hs]
ds

]
.

This result follows directly from Theorem 4.1 (iii). One set of conditions that assures
that π∗ ∈ AH is that µ and ρ are uniformly bounded and |σ(t)| ≥ c > 0 for all (t, ω). Similar
existence conditions can also be found for the following examples.

Remark 5.2 Note that the uniform ellipticity condition σ(t) ≥ c > 0 guarantees the exis-
tence of an equivalent martingale measure which precludes the existence of an arbitrage in
this case.

We consider now a more general situation:

Proposition 5.3 [Partial observation in an anticipative market]. Suppose Ht ⊆ Ft ⊆ Gt.
Moreover suppose that σ satisfies the conditions of Lemma 2.4. Then

π∗(t) =
E[µ(t) − ρ(t) + Dt+σ(t)|Ht]

E[σ2(t)|Ht]

provided that the right hand side is a well defined element of AH. Furthermore if the condi-
tions of Theorem 4.4 are satisfied then

J(π∗) =
1

2
E
[ ∫ T

0

{E[µ(s) − ρ(s)|Hs]
2

E[σ2(s)|Hs]
−

1

2

a(s)2

E[σ2(s)|Hs]

}
ds

]

where a(s) = E[Ds+σ(s)|Hs].

Proof. Let M be a smooth Ht-measurable random variable. Then

E
[
M

∫ t+h

t

σ(s)d−B(s)
]

= E
[ ∫ t+h

t

Mσ(s)d−B(s)
]

= E
[ ∫ t+h

t

Ds+(Mσ(s))ds
]

= E
[ ∫ t+h

t

MDs+σ(s)ds
]

= E
[
M

∫ t+h

t

Ds+σ(s)ds
]
.
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This proves that

E
[ ∫ t+h

t

σ(s)d−B(s)|Ht

]
= E

[ ∫ t+h

t

Ds+σ(s)ds|Ht

]
.

Hence, by Lemma 2.4

a(t) ≡ lim
h→0+

1

h
E
[ ∫ t+h

t

σ(s)d−B(s)|Ht

]
= E[Dt+σ(t)|Ht].

We conclude by using Theorems 4.1 and 4.4.�

Remark 5.4 If B is a G-semimartingale and Ht ⊂ Gt, then it is clear by the Girsanov
theorem that there is no arbitrage.

Next we want to show that Proposition 5.3 which generalizes the partial information
framework also includes the case of financial markets with insiders modelled through en-
largement of filtrations. To this purpose, let us first recall the classical set-up for models of
markets with insiders through enlargement of filtrations in a simple case:

Let Gt = Ft ∨ σ(B(T )) and Ht = Gt. Consider an insider who can influence the asset
prices in the following way

dS(t) = (µ + σ
B(T ) − B(t)

T − t
)S(t)dt + σS(t)dB̃(t), t ∈ [0, T ′], T ′ < T

where B̃(t) = B(t) −
∫ t

0
B(T )−B(t)

T−t
dt is a Gt-Brownian motion, µ and σ are constants, and

B(t) is a Ft-Brownian motion.
Note that in this case Ht " Ft and B̃ is not a Ft-Brownian motion and thus it may seem

that Proposition 5.3 can not be applied here. Therefore, instead of continuing in this way,
we now modify the above formulation in order that the enlargement of filtration approach
fits this proposition.

Consider the following model:

(5.1) dS(t) = (µ + σ
B(T ) − B(t)

T − t
)S(t)dt + σS(t)dB̃(t),

where now Ft := FB
t ∨ σ(B(T )), FB stands for the filtration generated by the Brownian

motion B and B̃(t) is an Ft-Brownian motion. Furthermore, let Gt = FB
t ∨ σ(B(T )). We

consider two examples:

Example 5.5 [The insider strategy]. Let Ht = FB
t ∨ σ(B(T )) and consider model (5.1).

We are in the case of Example 5.1 with Ft = Gt = Ht. We have

a(t) = lim
h→0+

1

h
σE[B̃t+h − B̃(t)|Ht] = 0.
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The optimal policy for the insider is

π∗(t) =
1

σ2
(µ − ρ(t) + σ

B(T ) − B(t)

T − t
)

and the optimal utility is

E ln(Xπ∗

(T ′))−ln x =
1

2σ2
E

∫ T ′

0

(µ−ρ(t)+σ
B(T ) − B(t)

T − t
)2dt ∼ ln

√
1

T − T ′
when T ′ → T .

Consequently the optimal utility is infinite:

lim
T ′→T

E ln(Xπ∗

(T ′)) = ∞.

This is the well-known result of Karatzas-Pikovsky [KP]. The case Ht ⊂ Gt can be considered
similarly.

Example 5.6 [The small investor strategy]. Let Ht = FB
t and consider model (5.1). Then

a(t) = lim
h→0+

1

h
σE[B̃t+h − B̃(t)|FB

t ] = 0.

Consequently, if ρ(t) ≡ ρ, then

π∗(t) =
µ − ρ

σ2

and the optimal utility is

J(π∗) =
(µ − ρ)2T

2σ2
(Merton problem).

One can generalize model (5.1) as follows.

Corollary 5.7 Let S be described as the unique solution of

dS(t) = (µ + X(t))S(t)dt + σS(t)d−B(t),

where (X(t), t ≥ 0) is a FT -measurable process and B(t) is a Ft-Brownian motion. Suppose
Ht ⊂ Ft. Then a(t) = 0, and the optimal portfolio is

(5.2) π∗(t) =
E[µ + X(t) − ρ(t)|Ht]

σ2
.

provided it is an element of AH.

An extension of this model is studied in section 6.4.
A further generalization to any enlargement of filtration is the following.

Proposition 5.8 Consider the following model

dS(t) = µ(t)S(t)dt + σS(t)d−B(t)

where σ is constant, µ(t) is Gt-adapted, B(t) is a Ft-Brownian motion, Ft ⊆ Gt for all t
and {Ht}t≥0 is a general filtration. If B(t) = B̃(t) +

∫ t

0
β(s)ds where B̃(t) is a Ht-Brownian

motion and β is an H-adapted càdlàg process with
∫ T

0
|β(s)|ds < ∞, then a(t) defined in

(4.10) exists and we have
a(t)

σ
= β(t).
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6 The case of portfolios adapted to the filtration of the

price process

In this section we consider examples where Ht " Ft and thus do not fit the framework of
Proposition 5.3. We consider a small investor acting in a market influenced by an insider.
We suppose that this investor can observe neither the Brownian motion B nor the drift µ,
but only the stock price process S given by (3.2), that is his portfolio is adapted to

(6.1) Ht = σ(S(s), 0 ≤ s ≤ t),

the filtration generated by the price process S. The quadratic variation process of S is given
by (see [RV2])

< S, S >t=

∫ t

0

σ(s)2S(s)2ds, 0 ≤ t ≤ T.

It follows that the process (σ(t), 0 ≤ t ≤ T ) is Ht-adapted and E[σ2(t)|Ht] = σ2(t). The
optimal portfolio if it exists, must then satisfy (see Corollary 4.2)

(6.2) π∗(t)σ2(t) = E[(µ(t) − ρ(t))|Ht] + lim
h→0

1

h
E[

∫ t+h

t

σ(s)d−B(s)|Ht].

6.1 The arbitrage issue

Theorem 6.1 Suppose that ρ(t) ∈ Ht for all t and Ht is given by (6.1). Suppose that there
exists an optimal portfolio π∗ in AH leading to a finite utility. Then there exists an equivalent
martingale measure in this anticipative market and therefore there is no arbitrage.

Proof. Note first that

Ht = σ(S(s), 0 ≤ s ≤ t) = σ

(∫ s

0

(µ(u) −
1

2
σ2(u))du +

∫ s

0

σ(u)d−B(u), s ≤ t

)
.

Now we compute

E
(∫ t

s

(µ(u) −
1

2
σ2(u))du +

∫ t

s

σ(u)d−B(u) |Hs

)
= E

(∫ t

s

(µ(u) − ρ(u) − σ2(u)π∗(u))du |Hs

)

+E
(∫ t

s

ρ(u) + σ2(u)(π∗(u) −
1

2
)du |Hs

)
+ E

(∫ t

s

σ(u)d−B(u)|Hs

)

= 0 + E
(∫ t

s

ρ(u) + σ2(u)(π∗(u) −
1

2
)du |Hs

)

by using (6.2). Using that
∫ t

s
(µ(u)− 1

2
σ2(u))du+

∫ t

s
σ(u)d−B(u) is Ht-adapted, we have that

(6.3)

Nπ∗(t) :=

∫ t

0

(µ(u)−
1

2
σ2(u))du−

∫ t

0

E
(

ρ(u) + σ2(u)(π∗(u) −
1

2
)|Hu

)
du +

∫ t

0

σ(u)d−B(u)
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is an H-martingale. Actually Nπ∗(t) ≡ Mπ∗(t) defined in (4.1).
Furthermore the quadratic variation of Nπ∗ is (see [RV2]):

< Nπ∗, Nπ∗ >t=

∫ t

0

σ(s)2ds

and the process (σ(t), t ≥ 0) is Ht-adapted. Consequently, there exists a H-Brownian motion,
say B̂π∗ such that

Nπ∗(t) =

∫ t

0

σ(u)dB̂π∗(u).

For any H-adapted portfolio π, the wealth equation can thus be rewritten as

X(π)(t) = x exp
{ ∫ t

0

(((µ(s) − ρ(s))π(s) − 1
2
π2(s)σ2(s))ds +

∫ t

0

π(s)σ(s)dB̂π∗(t)

−

∫ t

0

(µ(s) − 1
2
σ2(s))π(s)ds +

∫ t

0

π(s)(ρ(s) + σ2(s)(π∗(s) − 1
2
))du

}

= x exp
{ ∫ t

0

1
2
σ2(s)π(s)(−π(s) + 2π∗(s))ds +

∫ t

0

π(s)σ(s)dB̂π∗(t)(s)
}

where 1
2
σ2(s)π(s)(−π(s) + 2π∗(s)) is Hs-adapted. Therefore the usual Girsanov theorem in

H implies that there is no arbitrage in this market. �

We can express a(t) in terms of π∗ by using (6.3):

a(t) = lim
h→0

1

h
E[

∫ t+h

t

σ(s)d−B(s)|Ht]

= lim
h→0

1

h
E
[
Nπ∗(t + h) − Nπ∗(t) −

∫ t+h

t

(µ(u) −
1

2
σ2(u))du

+

∫ t+h

t

E(ρ(u) + σ2(u)(π∗(u) −
1

2
)|Hu)du|Ht

]

= E[−µ(t) + ρ(t) + σ2(t)π∗(t)|Ht].

We have

E[

∫ t

0

σ(s)d−B(s)|Ht] −

∫ t

0

a(s)ds =

∫ t

0

σ(s)dB̂π∗(s),

so that a(t) can be interpreted as the projection on Ht of the compensator of
∫ t

0
σ(s)d−B(s).

Remark 6.2 The fact that there exists an equivalent martingale measure in this model does
not lead easily to the optimal portfolio π∗ since this measure depends itself on π∗.

Remark 6.3 There is no arbitrage when H is any subfiltration of σ(S(s), 0 ≤ s ≤ t), but
there is arbitrage if Ht = σ(S(s + δ), 0 ≤ s ≤ t) with δ > 0.
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6.2 The case when prices are affected by large investors

We consider a market with an insider who is also a large investor.
To motivate what follows, we first consider the case where the portfolio choices of the

large investor affect the instantaneous expected returns on the traded assets (see [CC]).
We denote by G the filtration modelling the large investor’s information. We suppose that
ρ(t) = ρ and the prices of the underlying risky asset is modelled by

(6.4) dS(t) = (µ + bπ(t)) S(t)dt + σS(t)d−B(t)

where π represents the strategy of the large investor which is adapted to G and 0 < b < σ2/2.
Suppose that B is a G-semimartingale with the decomposition B(t) = B̂(t)+

∫ t

0
α(s)ds where

α is a G-adapted process and B̂ is a G-Brownian motion. Here anticipative calculus is not
necessary and direct computations lead to the optimal portfolio for the insider:

π̂ =
µ − ρ + σα(s)

σ2 − 2b
.

Consider a small investor which has only access to the filtration Ht := σ(S(s); s ≤ t) and
models the price process as

dS(t) = E(µ + bπ̂(t)|Ht)S(t)dt + σS(t)dB̃(t)

where B̃ is a H-Brownian motion. His optimal portfolio is µ−ρ

σ2 + b
σ2 E (π̂(s)|Hs).

In the particular case when Gτ = Ft ∨ σ(B(T )) then α(t) = B(T )−B(t)
T−t

. This model gives
us a hint of how to introduce anticipations due to insiders. It suggests to use an anticipative
drift in the dynamics of the price process.

6.3 The particular case: µ(t) = µ + bB(T )

We consider the case when the dynamics of the prices are given by

(6.5) dS(t) = S(t)(µ + bB(T ))dt + σS(t)d−B(t)

where µ and b are real numbers, σ > 0. We suppose moreover that ρ(t) = ρ = constant. The
interpretation of this model when b ≥ 0 is that the insider introduces a higher appreciation
rate in the stock price if B(T ) > 0. Given the linearity of the equation of S this indicates
that the higher the final stock price the bigger the value of the drift of the equation driving
S. Some cases of negative values for b can also be studied but the practical interpretation
of such a study is dubious.
Although this model may be studied by using enlargement of filtration techniques, we use
here the approach we developped in Section 4 in order to provide an interpretation of a(t).

Lemma 6.4 Suppose that S(t) satisfies (6.5) and Ht is given by (6.1). Then the quantity
a(t) defined in (4.10) is explicitly given by

(6.6) a(t) ≡ lim
h→0+

1

h
E[σ(B(t + h) − B(t))|Ht] =

σb(bB(T )t + σB(t))

(b2T + 2bσ)t + σ2
.
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Proof. Integrating equation (6.5), we obtain

S(t) = S0 exp(µt + btB(T ) −
1

2
σ2t + σB(t)).

Consequently,
Ht = σ(µs − 1

2
σ2s + bsB(T ) + σB(s), 0 ≤ s ≤ t)

= σ(bsB(T ) + σB(s), 0 ≤ s ≤ t).

and
σE[B(t + h) − B(t)|Ht] = σE[B(t + h) − B(t)|bsB(T ) + σB(s), 0 ≤ s ≤ t).

Consider the following partition

0 = s0 < s1 < . . . < sn = t with time interval ∆ = si+1 − si.

and denote Hn
t the σ-algebra generated by {bsiB(T ) + σB(si), i = 0 . . . n}.

Since (bsiB(T ) + σB(si), i = 0 . . . n) is a Gaussian vector, the conditional expectation
can be expressed as

σE[B(t+h)−B(t)|bsiB(T )+σB(si), i = 0, . . . n] =

n−1∑

i=0

αi(bB(T )(si+1−si)+σ(B(si+1)−B(si)))

where the constant coefficients αi have to be determined by using the correlations of each
term with bB(T )(sj+1 − sj) + σ(B(sj+1) − B(sj)). Doing this calculations, one gets

σbh∆ =
n−1∑

i=0,i6=j

αi(b
2T∆2 + 2bσ∆2) + αj(b

2T∆2 + 2bσ∆2 + σ2∆).

In matrix form this gives

σbh1n×1 = ((b2T + 2bσ)∆1n×n + σ2In×n)α,

where 1a×b denotes the matrix of order a × b with all entries equal to 1, Ia×a denotes the
identity matrix of order a × a and α = (α0, ..., αn−1)

T . By linear combinations of these
equations we get

α0 = α1 = · · ·αn−1 ≡ α

σbh = α(b2T + 2bσ)∆(n − 1) + α(b2T∆ + 2bσ∆ + σ2)

which gives

α =
σbh

(b2T + 2bσ)∆n + σ2
.

We thus get

σE[B(t + h) − B(t)|Hn
t ] =

σbh

(b2T + 2bσ)∆n + σ2
(bB(T )n∆ + σB(t)).

20



Since n∆ = t the above expression is independent of n and

(6.7) σE[B(t + h) − B(t)|Ht] =
σbh

(b2T + 2bσ)t + σ2
(bB(T )t + σB(t)).

Consequently

(6.8) a(t) = lim
h→0+

1

h
σE[B(t + h) − B(t)|Ht] =

σb

(b2T + 2bσ)t + σ2
(bB(T )t + σB(t)).�

Note that this is an example where a(t) 6= 0. Furthermore, as Ht = σ(bsB(T ) + σB(s), 0 ≤

s ≤ t), the small investor cannot determine B(T ) out of the observed B(T ) + σB(s), s ≤ t.
But as s → T the knowledge of the small investor about BT improves. This is in the spirit
of a continuous enlargement of filtration setting introduced in Corcuera et al. [CIKN].

Lemma 6.5

(6.9) E[B(T )|Hs] =
(bT + σ)

(b2T + 2bσ)s + σ2
(bB(T )s + σB(s)).

Proof. We proceed as before. Let 0 = s0 < s1 < . . . < sn = t and ∆ = si+1 − si.

E(B(T )|Hn
t ) = E(B(T )|bsiB(T ) + σB(si), 0 ≤ i ≤ n)

=

n−1∑

i=0

αi(bB(T )∆ + σ(B(si+1) − B(si))).

By computing the correlation with bB(T )∆ + σ(B(sj+1) − B(sj)) we get

bT∆ + σ∆ =

n−1∑

i=0,i6=j

αi(b
2∆2T + 2σb∆2) + αj(b

2∆2T + 2σb∆2 + σ2∆).

In matrix form this leads to

(bT + σ)1n×1 = ((bT + 2σ)b∆1n×n + σ2In×n)α.

As before, this gives
α0 = α1 = · · ·αn−1 ≡ α

α =
bT + σ

(b2T + 2bσ)t + σ2
.

which implies (6.9).�
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Theorem 6.6 Suppose that S(t) is given by (6.5) with b ≥ 0 and Ht is given by (6.1). Then
(i) The optimal portfolio for problem (3.6) exists and is given by

(6.10) π∗(t) =
E [µ(t)|Ht] − ρ

σ2
+

b(bB(T )t + σB(t))

σ((b2T + 2bσ)t + σ2)

which can be rewritten as

π∗(t) =
µ − ρ

σ2
+

b(bB(T )t + σB(t))(bT + σ + σ−1)

σ2((b2T + 2bσ)t + σ2)
.

(ii) The optimal utility is finite and is given by

(6.11) J(π∗) =
(µ − ρ)2T

2σ2
+

1

2γ
(1 − γ ln(1 +

1

γ
))

where we have set

(6.12) γ ≡
σ2

bT (bT + 2σ)
.

Remark 6.7 If ρ(t) is not constant, then the optimal portfolio and utility are respectively
given by

π∗(t) =
µ − E [ρ(t)|Ht]

σ2
+

b(bB(T )t + σB(t))(bT + σ + σ−1)

σ2((b2T + 2bσ)t + σ2)
,

J(π∗) =
1

2σ2
E

[∫ T

0

E[µ(s) − ρ(s)|Hs]
2ds

]
−

1

σ

∫ T

0

E [Ds+E[ρ(s)|Hs]] ds

+

(
bT

σ
+

3

2

) (
(bT )2γ

σ2

) (
1 − γ ln(1 +

1

γ
)

)
,

provided sufficient hypotheses are assumed on ρ(t) in order that π∗ ∈ AH and the conditions
of Theorem 4.4 are satisfied.

Proof. The expression (6.10) is obtained using (6.8) and Corollary 4.2. To check that the
candidate π∗ given by (6.10) is indeed an optimal portfolio, we have to prove that Mπ∗(t) is
a H-martingale. One can verify easily that π∗ ∈ AH. Plugging (6.10) into (4.1), we get

Mπ∗(t) = E
[∫ t

0
(µ(s) − ρ(s) − E(µ(s) − ρ(s)|Hs))ds|Ht

]

−E
[∫ t

0
σb(bB(T )s + σB(s))((b2T + 2bσ)s + σ2)−1ds|Ht

]
+ σE[B(t)|Ht]

≡ M1
π∗(t) + M2

π∗(t) + M3
π∗(t).

Let u < t. We want to prove

E[Mπ∗(t) − Mπ∗(u)|Hu] = 0.
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First, we show that M 1
π∗ satisfies the martingale property. For u < t,

E[M1
π∗(t) − M1

π∗(u)|Hu] = E
[
E

[∫ t

0
(µ(s) − ρ(s) − E(µ(s) − ρ(s)|Hs))ds|Ht

]
|Hu

]

−E
[∫ u

0
(µ(s) − ρ(s) − E(µ(s) − ρ(s)|Hs))ds|Hu

]

= E
[
E

[∫ u

0
(µ(s) − ρ(s) − E(µ(s) − ρ(s)|Hs))ds|Ht

]
|Hu

]

+
∫ t

u
(E[µ(s) − ρ(s)|Hu] − E[µ(s) − ρ(s)|Hu]) ds

−
∫ u

0
(E[µ(s) − ρ(s)|Hu] − E[µ(s) − ρ(s)|Hu]) ds

= 0

Next we prove that M 2
π∗ + M3

π∗ is a H-martingale. We have using Lemmas 6.4 and 6.5,

−E[M2
π∗(t) − M2

π∗(u)|Hu] = E
[
E

[∫ t

u
σb(bB(T )s + σB(s))((b2T + 2bσ)s + σ2)−1ds|Ht

]
|Hu

]

= E
[∫ t

u
σb(bB(T )s + σB(s))((b2T + 2bσ)s + σ2)−1ds|Hu

]

and

E[M3
π∗(t) − M3

π∗(u)|Hu] = σE [E(B(t)|Ht) − B(u)|Hu] = σE[B(t) − B(u)|Hu].

Let u = t0 < t1 < . . . < tn = t be a partition of [u, t] with time interval ∆ = si+1 − si. We
have
(6.13)

σE[B(t) − B(u)|Hu] = σE[
∑n−1

i=0 (B(ti+1) − B(ti))|Hu]

= σ
∑n−1

i=0 E[B(ti+1) − B(ti)|Hu]

= σ
∑n−1

i=0 E[E(B(ti+1) − B(ti)|Hti)|Hu]

= σ
∑n−1

i=0 E[b∆(bB(T )ti + σB(ti))((b
2T + 2bσ)ti + σ2)−1|Hu]

by using (6.9), and this last expression converges to

E
[∫ t

u

σb(bB(T )s + σB(s))((b2T + 2bσ)s + σ2)−1ds|Hu

]

when n → ∞. Consequently

E[M2
π∗(t) + M3

π∗(t) − M2
π∗(u) − M3

π∗(u)|Hu] = 0

and Mπ∗ is a H-martingale.
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We compute now the value function. We use (4.11) together with equalities (6.6) and
(6.9). We have

−
1

2σ2
E

T∫

0

a(s)2ds = −
b2

2

T∫

0

1

((b2T + 2σb)s + σ2)2
E

(
b2s2B(T )2 + σ2B(s)2 + 2bσsB(s)B(T )

)
ds

= −
b2

2

T∫

0

b2s2T + σ2s + 2bσs2

((b2T + 2σb)s + σ2)2 ds

= −
b2

2

T∫

0

s

(b2T + 2bσ)s + σ2
ds.

Moreover we have

Ds+E[B(T )|Hs] =
(bT + σ)bs

(b2T + 2bσ)s + σ2

Ds+a(s) =
σb2s

(b2T + 2bσ)s + σ2

so that

Ds+

[
E[µ(s) − ρ|Hs] + a(s)

σ

]
=

1

σ

(
b2s(bT + σ)

(b2T + 2σb)s + σ2
+

σb2s

(b2T + 2σb)s + σ2

)

=
b2s(bT + 2σ)

σ((b2T + 2σb)s + σ2)
.

We thus get

J(π∗) =
1

2σ2
E

∫ T

0

E[µ(s) − ρ|Hs]
2ds −

b2

2

∫ T

0

s

(b2T + 2bσ)s + σ2
ds

+
b2

σ
(bT + 2σ)

∫ T

0

s

(b2T + 2bσ)s + σ2
ds

=
1

2σ2
E

∫ T

0

E[µ(s) − ρ|Hs]
2ds + b2(

bT

σ
+

3

2
)

∫ T

0

s

(b2T + 2bσ)s + σ2
ds.

We now use that b ≥ 0 and by integration we have
∫ T

0

s

(b2T + 2bσ)s + σ2
ds =

T

b2T + 2bσ

(
1 −

σ2

(b2T + 2bσ)T
ln(1 +

b2T + 2bσ

σ2
T )

)

which can also be written as
T 2γ

σ2
(1 − γ ln(1 +

1

γ
))

which is positive. Similarly, one computes b2

2σ2

∫ T

0
E[E[B(T )|Hs]

2]ds. We thus get (6.11). �
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Remark 6.8 1. The coefficient 1
γ

(see (6.12)) can be interpreted as the insider effect on

the utility of the H-investor. When γ → +∞ (which is implied by b → 0, that is the insider
effect vanishes) the utility of the H-investor is closer to the optimal utility in the classical
Merton problem. A similar interpretation can be applied for γ → 0. From (6.11), we obtain

lim
b→0

J(π∗) =
(µ − ρ)2T

2σ2
(Merton problem)

lim
b→∞

J(π∗) = +∞ (Strong drift problem).

2. Consider an investor who estimates the appreciation rate of the prices by using the
best linear estimate given by E[µ(t)|Ht] and builds his price model as

(6.14) dS̃t = E[µ(t)|Ht]S̃tdt + σS̃tdB̃t,

where B̃ is a H-Brownian motion. He faces the following optimization problem:

J0(π
∗
0) = max

π∈H
J0(π)

where
J0(π) = E(ln(X̃(T )))

and
dX̃(t) = X̃(t)

[
(E[µ(t)|Ht] − ρ)π(t)dt + π(t)σdB̃(t)

]
X̃(0) = x > 0.

The solution of this problem is similar to the“classical” Merton case. The optimal portfolio
is

π∗
0(t) =

E[µ(t) − ρ|Ht]

σ2

which is different from (6.10) and the optimal utility for this investor is

(6.15)

J0(π
∗
0) =

1

2σ2

∫ T

0

E[E[µ(s) − ρ|Hs]
2]ds

=
(µ − ρ)2T

2σ2
+

(bT + σ)2

2(bT + 2σ)2γ
(1 − γ ln(1 +

1

γ
))

< J(π∗) (given by (6.11) under the model (6.5)).

The utility generated by the portfolio π∗
0 in the “real” model (6.5), J(π∗

0), is different from

J0(π
∗
0) obtained in (6.15). The quantity J(π∗

0)−J0(π
∗
0) = σ(bT+σ)

(bT+2σ)2γ
(1−γ ln(1+ 1

γ
)) represents

the difference between the actual earnings of the policy π∗
0 under model (6.5) and the earnings

expected by the small investor using model (6.14). Notably this quantity is positive.
Moreover, J(π∗)−J(π∗

0) = σ2

2(bT+2σ)2γ
(1−γ ln(1+ 1

γ
)) represents the difference between the

optimal earnings if the small investor uses π∗ acknowledging an anticipating model (6.11)
and the actual earnings of the small investor that uses portfolio π∗

0 taking (6.14) as model
for the underlying prices. This difference comes from considering a ≡ 0 or not in Theorem
4.4. The difference in utility is obviously positive due to the optimal property of the portfolio
with a(t) 6= 0.
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6.4 A more general case: µ(t) = µ + bX, X ∈ FT

We consider a generalization of the previous section to the case when µ(t) = µ + bX, where
X is a general smooth FT -measurable random variable. The dynamics of the prices is

dS(t) = S(t)(µ + bX)dt + σS(t)d−B(t)

where µ and b are real numbers, σ > 0. The goal here is just to show that a(t) exists in
other situations provided J(π∗) is finite. We shall not write down here the long and tedious
expressions for the optimal portfolio and optimal utility.

Lemma 6.9 The quantity a(t) defined in (4.10) is given by

a(t) ≡ lim
h→0+

1

h
E[σ(B(t + h) − B(t))|Ht] = σE[

∫ T

t

DvXDtX∫ T

t
(DrX)2dr

δB(v)|Ht],

if the right hand side above is well defined and right continuous in t.

Proof. Consider the following partition

0 = s0 < s1 < . . . < sn = t with time interval ∆ = si+1 − si.

and denote Hn
t the σ-algebra generated by {bsiX + σB(si), i = 0 . . . n}. We have for a

smooth bounded function f

E[B(t + h) − B(t)|bsiX + σB(si), i = 0, . . . n]

= E[(B(t + h) − B(t))f(bX(sn − sn−1) + σ(B(sn) − B(sn−1)), . . . , bXs1 + σB(s1))].

Denote
Z = (bX(sn − sn−1) + σ(B(sn) − B(sn−1)), . . . , bXs1 + σB(s1)).

By duality formula and Fubini theorem, we can write

(6.16) E[(B(t + h) − B(t))f(Z)] =

∫ t+h

t

E[

n∑

i=1

∂f

∂xi

(Z)b(si − si−1)DuX]du.

Now, we have for α2 > α1 ≥ t

∫ α2

α1

DvXDvf(Z)dv =

n∑

i=1

∂f

∂xi

(Z)b(si − si−1)

∫ α2

α1

(DvX)2dv.

Multiplying both sides by DuX
R α2
α1

(DuX)2du
and using the duality principle in Malliavin calculus,

we get

(6.17) E
∫ α2

α1

DvXDuX∫ α2

α1
(DvX)2dv

Dvf(Z)dv = E

[
f(Z)

∫ α2

α1

DvXDuX∫ α2

α1
(DvX)2dv

δB(v)

]
.
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Combining (6.16) and (6.17), we get

E((B(t + h) − B(t))f(Z)) =

∫ t+h

t

E

[
f(Z)E[

∫ α2

α1

DvXDuX∫ α2

α1
(DvX)2dv

δB(v)|Hu]

]
du

since f(Z) is Ht-measurable. The process

B̃t ≡ E[B(t)|Ht] −

∫ t

0

E

[∫ α2

α1

DvXDuX∫ α2

α1
(DvX)2dv

δB(v)|Hu

]
du

is a H-martingale. We deduce under the continuity hypothesis that for any t ≤ α1 < α2 ≤ T

(6.18) lim
h→0+

1

h
E[B(t + h) − B(t)|Ht] = E[

∫ α2

α1

DvXDtX∫ α2

α1
(DvX)2dv

δB(v)|Ht].

We can take in the above formulas α1 = t and α2 = T .�

6.5 Continuous stream of information

Consider now a model where the insider has an effect on the drift through information that
is δ units of time ahead:

S(t) = S(0) +

∫ t

0

(µ + bB(s + δ)) S(s)ds +

∫ t

0

σS(s)dB(s).

We assume for simplicity δ ≥ T fixed. We are interested in computing the optimal policy of
the small investor with filtration Ht = σ(Ss; s ≤ t). We have

S(t) = S(0) exp

((
µ −

1

2
σ2

)
t + b

∫ t+δ

δ

B(s)ds + σB(t)

)

and therefore Ht = σ
(
b
∫ s+δ

δ
B(r)dr + σB(s); s ≤ t

)
.

Theorem 6.10 Define Y (t) = b
∫ t+δ

δ
B(r)dr + σB(t). Then for δ ≥ T

(6.19)
a(t)

σ
= lim

h→0+
E

(
B(t + h) − B(t)

h

∣∣∣Ht

)
= bM

∫ t

0

g(t, u)dY (u),

E
(
B(t + δ)

∣∣∣Ht

)
= (b(t + δ) + σ)M

∫ t

0

g(t, u)dY (u)

where

M ≡ Mt = σ−1
(
(bδ + 2σ)

(
e

2bt
σ − 1

)
+ σ

(
e

2bt
σ + 1

))−1

,

g(t, u) = e
b
σ

(2t−u) + e
b
σ

u.

Furthermore

π∗(t) =
µ − ρ

σ2
+

b

σ2
M(b(t + δ) + 2σ)

∫ t

0

g(t, u)dY (u).
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Proof. First note that Y is a Gaussian process. Therefore E (B(s)|Ht) =
∫ t

0
h(s, t, u)dY (u)

where h is some deterministic function. To determine h, we compute the covariances between
B(s) and the stochastic integral and Y (v) for some v ≤ t. We have

E(B(s)Y (v)) = bsv + σ(s ∧ v)

and

E
(∫ t

0

h(s, t, u)dY (u)Y (v)

)
= b2

∫ t

0

∫ v

0

h(s, t, θ1)(θ1 ∧ θ2 + δ)dθ2dθ1

+ 2bσv

∫ t

0

h(s, t, θ)dθ + σ2

∫ v

0

h(s, t, θ)dθ.

The above two expressions have to be equal. Differentiating w.r.t. v ≤ t three times, we
obtain

−b2h(s, t, u) + σ2∂2h

∂u2
(s, t, u) = 0

with the initial conditions ∂h
∂u

(s, t, t) = 0 and bs + σ = b(bδ + 2σ)
∫ t

0
h(s, t, θ)dθ + σ2h(s, t, 0).

Solving this differential equation gives

h(s, t, u) = C1(s, t)e
− b

σ
u + C2(s, t)e

b
σ

u,

with

C2(s, t) = σ−1(bs + σ)
(
(bδ + 2σ)(e

2bt
σ − 1) + σ(e

2bt
σ + 1)

)−1

C1(s, t) = e
2bt
σ C2(s, t).

Therefore we have that

E
(

B(s) − B(t)

s − t

∣∣∣Ht

)
=

∫ t

0

h(s, t, u) − h(t, t, u)

s − t
dY (u)

and (6.19) holds. We deduce the expression of π∗ after verifing that π∗ ∈ AH.
The case δ ≤ T can also be studied although explicit expressions are long to write. The

case δ ≤ T
2

is especially interesting because it involves “continuous” stream of information
into the market, preserving still finite utility. This problem cannot in general be approached
through enlargement of filtration techniques.

Concluding remarks: In this article we have studied markets where insiders are also
large traders and therefore have an influence on the drift of the price dynamics. This leads
naturally to the study of optimization problems in an anticipative framework. We believe
that this formalism goes beyond the classical formulation of markets with insiders using
initial enlargement of filtration approach.
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