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Abstract

We study the optimal reinsurance policy and dividend distribution of an insurance

company under excess of loss reinsurance. The objective of the insurer is to maximize

the expected discounted dividends. We suppose that in the absence of dividend dis-

tribution, the reserve process of the insurance company follows a compound Poisson

process. We first prove existence and uniqueness results for this optimization problem

by using singular stochastic control methods and the theory of viscosity solutions. We

then compute the optimal strategy of reinsurance, the optimal dividend strategy and the

value function by solving the associated integro-differential Hamilton-Jacobi-Bellman

Variational Inequality numerically.
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1 Introduction

A basic problem in insurance is the problem of optimal risk control and/or dividend distri-

bution. In the literature, various criteria are used to formulate this problem such that (i)

maximizing expected utility of terminal reserve process, (ii) minimizing the ruin probability

of the insurer or (iii) maximizing the cumulative expected discounted dividends.

Touzi (2000) studied the problem of maximizing the expected utility of the terminal re-

serve in the case of a proportional reinsurance contract. He modelled the reserve process

by a Doléans-Dade exponential of jump process and characterized the optimal strategy of

reinsurance via a dual formulation. The criterion of maximizing the expected utility of

the terminal reserve is usually not relevant in insurance modelling since the insurer who is

invited to cover a large risk wants to be risk neutral (see Aase (2002)).

The second criterion is useful for consumers and supervisors and is extremely conservative

especially for rich companies. Schmidli (2001) studied the optimal proportional reinsurance

policy which minimizes the ruin probability in infinite horizon. He derived the associated

Hamilton-Jacobi-Bellman equation, proved the existence of a solution and a verification

theorem in the diffusion case. He proved that the ruin probability decreases exponentially

and that the optimal proportion to insure is constant. Moreover, he gave some conjecture

in the Cramér-Lundberg case.

The third criterion is preferable for shareholders. Jeanblanc-Piqué and Shirayev (1995)

studied the problem of optimal dividend distribution policy without optimal risk con-

trol. They modelled the evolution of the capital X = (Xt)t≥0 of a company by dXt =

µdt + σdWt − dZt where µ and σ are constants, W = (Wt)t≥0 is a standard Brownian

motion and Z = (Zt)t≥0 is a nonnegative, nondecreasing right-continuous and adapted

process. The process Z represents the strategy of payment of dividends by the company.

They showed that there exists a threshold u1 such that every excess of the reserve above

u1 is distributed as dividend instantaneously. Højgaard and Taksar (1999) studied the

problem of risk control and dividend distribution policies. They modelled the evolution of

the process X of the company by dXt = at(µdt + σdWt) − dZt, where a = (at)t≥0 repre-

sents the risk exposure with 0 ≤ at ≤ 1 for all t ≥ 0. They found the optimal strategy

which maximizes the expected total discounted dividends when there is no restriction on

the rate of dividend pay-out. They showed that there exists u0 and u1 with u0 ≤ u1 such

that every excess of the reserve above u1 is distributed as dividend and the optimal risk

exposure is given by a(x) = u0

x
∧ 1 where x is the current reserve. Asmussen, Højgaard

and Taksar (2000) considered the issue of optimal risk control and dividend distribution

policies under excess of loss reinsurance which is the most common in the reinsurance in-

dustry. Under this contract with dynamic retention level (αt)t≥0, the reinsurer covers the

excess amount (y − αt)+ of a claim of size y occuring at time t and receives a certain

part of the premium. The authors used a diffusion approximation for the reserve process

and reparametrized the problem by considering the drift term as the basic control param-

eter, which leads to a mixed regular/singular stochastic control problem. They derived an

Hamilton Jacobi Bellman variational inequality (HJBVI in short) in the case of unbounded

rate of dividends and proved that the value function is a classical solution of the associated
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HJBVI. They constructed the solution in the case of unbounded and bounded support of

the distribution of the claims. In this paper, we study the same problem but we model the

reserve process of the insurer by using a compound Poisson process. Due to the Markovian

context, our problem may be studied by a direct dynamic programming approach leading

to an integro-differential HJBVI. In general, the value function of control problems is not

smooth enough to be a strong solution of the associated HJBVI. The notion of viscosity

solution, first introduced by Crandall and Lions (1983), is known to be a powerful tool for

this type of problems. We prove here an existence and uniqueness result for the associated

HJBVI and then solve it by using an efficient numerical method, the convergence of which

is ensured by the uniqueness result. The paper is organized as follows. The problem is for-

mulated in Section 2. In Section 3, we prove that the value function is a viscosity solution

of the associated HJBVI. In Section 4 we prove the uniqueness of the viscosity solution.

Section 5 is devoted to the numerical analysis of the HJBVI: we perform a finite difference

approximation of the HJBVI and then solve the problem by using an algorithm based on

a ”Howard” or policy iteration algorithm. Numerical results are presented. They provide

the optimal policy of reinsurance and the optimal dividend strategy.

2 Formulation of the problem

Let (Ω,F , P ) be a complete probability space. We assume that the claims are generated

by a compound Poisson process. More precisely, we consider an integer-valued random

measure µ(dt, dy) with compensator π(dy)dt. We denote by µ̃(dt, dy) = µ(dt, dy)−π(dy)dt

the compensated Poisson random measure. We assume that π(dy) = βG(dy) whereG(dy) is

a probability distribution on B ⊆ IR+ and β is a positive constant. In this case, the integral

with respect to the random measure µ(dt, dy) is simply a compound Poisson process. We

have
∫ t

0

∫

B
yµ(du, dy) =

∑Nt

i=1 Yi, where N = {Nt, t ≥ 0} is a Poisson process with intensity

β and {Yi, i ∈ IN} is a sequence of random variables with common distribution G which

represent the sizes of the claims. We set ν := EYi for all i = 1 . . . Nt, for all t ≥ 0.

We denote by IF = (Ft)t≥0 the filtration generated by the random measure µ(dt, dy).

A retention level process is an Ft-adapted process α = (αt, t ≥ 0) representing an excess

of loss treaty specifying that, of any claim of size y at time t, the direct insurer is to cover

y ∧ αt and the reinsurer is to cover the excess amount (y − αt)+.

Given a retention level αt at time t, we denote by p(αt) the difference between the premium

rate per unit of time received by the direct insurer and the premium rate per unit of time

paid by the direct insurer to the reinsurer at time t.

We consider a premium rate of the same form as in Asmussen, Højgaard and Taksar (2000):

p(αt) = (1 + k1)βν − (1 + k2)βE [(Yi − αt)+] for all t ≥ 0, (2.1)

where k1 and k2 are proportional factors satisfying 0 ≤ k1 ≤ k2. In Equation (2.1), the

term βν represents the expectation of the amount of the claims during a unit of time. The

second term of the r.h.s of Equation (2.1) is the premium paid to the reinsurance company

to support the difference between the amount of the claims and the retention level α, during
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a unit of time. Regulations lay down that premia must be nonnegative, which means that

p(αt) ≥ 0 for all t ≥ 0. (2.2)

Condition (2.2) is equivalent to

αt ≥ α for all (t, w) a.e. (2.3)

where α, the lowest admissible retention, is the unique solution of p(α) = 0. We make the

following assumption on α:

(H) α ≤ supB.

Remark 2.1 When the mark space is reduced to B = {δ} with δ > 0, then we have an

explicit expression of α which is α = δ(k2−k1)
1+k2

.

We denote by L = (Lt, t ≥ 0) the Ft-adapted process of the cumulative amount of dividends

paid out by the direct insurer. Given an initial reserve x and a policy (α,L), the reserve of

the insurance company at time t under this excess of loss contract is then given by :

Xx,α,L
t = x+

∫ t

0
p(αu)du−

∫ t

0

∫

B

(y ∧ αu)µ(du, dy) −
∫ t

0
dLu. (2.4)

A strategy (α,L) is said to be admissible if α = (αt, t ≥ 0) satisfies (2.3) and

L is right-continuous, nondecreasing, L0− = 0 and 4Lt ≤ Xx,α,L
t for (t, w) a.e. (2.5)

where 4Ls := Ls − Ls− . The last inequality expresses the fact that the insurer is not

allowed to pay out dividends at time t which exceed the level of his reserve at this time.

Given an initial reserve x, we denote by Π(x) the set of all admissible policies. For (α,L) ∈
Π(x), we define the return function as

J(x, α, L) = Ex

∫ τ̄

0
e−rtdLt,

where r > 0 is a discount factor and τ̄ is the ruin time defined by

τ̄ = inf{t ≥ 0, Xx,α,L
t ≤ 0}.

The objective is to find the value function which is defined as

v(x) = sup
(α,L)∈Π(x)

J(x, α, L). (2.6)

For x ∈ IR+ and (α,L) ∈ Π(x), we have for all t ∈ [0, τ̄ ), Xx,α,L
t ≥ 0. Sending t −→ 0+, we

get x− α0 ∧ y − L0 ≥ 0 for all y ∈ B and so

x− α0 ∧ y ≥ 0 for all y ∈ B. (2.7)

The constraint (2.2), the inequality (2.7) and the assumption (H) imply that it is optimal to

distribute all the current reserve as dividend when x ≤ α and so v(x) = x for all x ∈ [0, α].
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3 Characterization of the value function as a viscosity solu-

tion of a HJBVI

In this section, we prove that the value function defined in (2.6) is a viscosity solution of

the integro-differential Hamilton Jacobi Bellman variational inequality

max
{

H(x, v, v
′

), 1 − v
′

(x)
}

= 0 in (α,∞) (3.1)

with Dirichlet boundary conditions

v(α) = α (3.2)

where

H(x, v, v
′

) := sup
α∈Λ(x)

{

−rv(x) + p(α)v
′

(x) +

∫

B

(v(x− y ∧ α) − v(x))π(dy)

}

,

and

Λ(x) = {α ≥ α s.t. x ≥ α ∧ y for all y ∈ B}.

We begin by giving a heuristic derivation of (3.1) by following the technique used e.g.

by Davis and Norman (1990) and He and Pagès (1993). Assume that L is absolutely

continuous with respect to t, i.e there exists λ = (λt)t≥0 such that dLt = λtdt and λt ≥ 0.

The evolution of the reserve process X is then

Xx,α,L
t = x+

∫ t

0
p(αu)du−

∫ t

0

∫

B

(y ∧ αu)µ(du, dy) −
∫ t

0
λudu.

and the associated Hamilton Jacobi Bellman equation becomes

sup
λ≥0

{

H(x, v, v′) + λ(1 − v
′

(x))
}

= 0 in (α,∞) (3.3)

with Dirichlet boundary conditions v(α) = α. This is only valid if 1−v ′(x) ≤ 0. We obtain

the following charaterization for λ:

λ ∈ [0,+∞] if 1 − v
′

(x) = 0,

λ = 0 if 1 − v
′

(x) < 0.

Since λ(1 − v
′

(x)) = 0 and 1 − v
′

(x) ≤ 0, equation (3.3) can be written as (3.1).

We can also apply a verification theorem for integro-differential HJBVIs which states

that a solution of (3.1)-(3.2) in C2((α,∞)) ∩ C([α,∞)) which satisfies some technical con-

ditions actually coincides with the value function (2.6) (see Theorem 5.2 in Øksendal and

Sulem (2005) and Ishikawa (2004)).

However, our value function is not C1 in general and not even a priori continuous

everywhere. Indeed the value function is not concave and one cannot derive as usual the

continuity of the value function as a consequence of the concavity property. Nevertheless,

we will show that the value function does satisfy equation (3.1)-(3.2) if we interpret these

equations in the appropriate sense of viscosity solutions.

We now state some useful properties for the value function.
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Lemma 3.1 The value function v is nondecreasing in IR+ and satisfies

v(x) ≤ x+K

where K is a positive constant.

Proof. Let x, x′ in IR+ such that x ≤ x′. Then clearly Π(x) ⊂ Π(x′) and consequently

v(x) ≤ v(x′).

Let (α,L) ∈ Π(x). Using generalized Itô’s formula for e−rtLt, we have

d(e−rtLt) = e−rtdLt − rLt−e
−rtdt. (3.4)

From (2.4) and since p(αt) ≤ (1+k1)βνt for all t ∈ [0, τ̄ ] and L is nondecreasing we deduce

that for all t ∈ [0, τ̄ ]

Lt− ≤ Lt ≤ L0 + x+ (1 + k1)βνt. (3.5)

Setting by convention dLt = 0 for all t ≥ τ̄ , we obtain, by combining (3.4) and (3.5)

lim
t→∞

e−rtLt − L0 ≥
∫ ∞

0
e−rtdLt − r

∫ ∞

0
e−rt (L0 + x+ (1 + k1)βνt) dt.

Consequently
∫ ∞

0
e−rtdLt ≤ x+K

where K is a positive constant independent of (α,L). Taking the supremum over all admis-

sible strategies, we get

v(x) ≤ x+K.

2

We define now the upper and the lower semicontinuous envelope of the function v.

Definition 3.1 (i) The upper semi-continuous envelope of the function v is defined as

v∗(x) := lim sup
x′→x

v(x′) (3.6)

= lim
%↘0

sup{v(y), y ∈ [α,∞) and |y − x| ≤ %}, for all x ∈ [α,∞).

(ii) The lower semi-continuous envelope of the function v is defined as

v∗(x) := lim inf
x′→x

v(x′) (3.7)

= lim
%↘0

inf{v(y), y ∈ [α,∞) and |y − x| ≤ %}, for all x ∈ [α,∞).

Since the Hamiltonian H may not be continuous w.r.t. its arguments, we define the upper

and the lower semi-continuous envelope of H by H ∗(x, v, v
′

) = lim sup
x′→x

H(x′, v, v
′

) and

H∗(x, v, v
′

) = lim inf
x′→x

H(x′, v, v
′

).

Extending the definition of viscosity solutions introduced by Crandall and Lions (1983) and

then by Soner (1986) and Sayah (1991) to first integro-differential operators, we define the

viscosity solution as follows:
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Definition 3.2 (i) A function v is a viscosity super-solution of (3.1) in (α,∞) if

max
{

H∗(x, ψ, ψ
′

), 1 − ψ
′

(x)
}

≤ 0 (3.8)

whenever ψ ∈ C1(Nx), Nx is a neighbourhood of x and v∗ −ψ has a global strict minimum

at x ∈ (α,∞).

(ii)A function v is a viscosity sub-solution of (3.1) in (α,∞) if

max
{

H∗(x, ψ, ψ
′

), 1 − ψ
′

(x)
}

≥ 0 (3.9)

whenever ψ ∈ C1(Nx), Nx is a neighbourhood of x and v∗ −ψ has a global strict maximum

at x ∈ (α,∞).

(iii) A function v is a viscosity solution of (3.1) in (α,∞) if it is both a super and a

sub-solution in (α,∞).

We define

S1(IR+) = {f : IR+ −→ IR, f is nondecreasing and sup
x∈IR+

f(x)

1 + x
<∞}.

Remark 3.1 It is easy to check that v∗ and v∗ are in S1(IR+).

We need the following dynamic programming principle: For any stopping time τ ∈ [0, τ̄ ]

and any 0 ≤ t ≤ T ,

v(x) = sup
(α,L)∈Π(x)

E

[

e−r(t∧τ)v
(

Xx,α,L
t∧τ

)

+

∫ t∧τ

0
e−rsdLs

]

, (3.10)

where a∧b = min(a, b). This principle is well known in the diffusion case (see Krylov (1980)

(Theorem 9 and Theorem 11, p. 134) and Fleming-Soner (1993)(Theorem 2.1 p. 219). In

the case of jump diffusions the proof can be found in Ishikawa (2004).

Theorem 3.1 The value function v is a viscosity solution of (3.1) in (α,∞) .

Proof. We first prove that v is a viscosity super-solution of (3.1) in (α,∞). Let x0 ∈ (α,∞)

and ψ ∈ C1(IR+) such that without loss of generality

0 = (v∗ − ψ)(x0) = min
(α,∞)

(v∗ − ψ).

From the definition of v∗, there exists a sequence (xn)n≥1 ∈ (α,∞) such that xn −→ x0

and v(xn) −→ v∗(x0) when n −→ ∞.

For α ≥ α and δ > 0, we set Ls = δ and αs = α for all s ≥ 0. Then Xxn,α,L

0+ = xn − δ. The

dynamic programming principle (3.10) yields

ψ(xn) + γn ≥ ψ(xn − δ) + δ, (3.11)

where the sequence

γn := v(xn) − ψ(xn)
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is deterministic and converges to zero when n tends to infinity. Sending n −→ ∞ in (3.11),

we get

ψ(x0) ≥ ψ(x0 − δ) + δ.

Sending now δ −→ 0+, we obtain

1 − ψ
′

(x0) ≤ 0. (3.12)

It remains to prove

H∗(x0, ψ, ψ
′

) ≤ 0. (3.13)

We choose Ls = 0 and αs = α for all s ≥ 0. We set

θn = inf{t ≥ 0, Xxn,α,L
t /∈ B(xn, η)},

where η is a positive constant and B(xn, η) = {x, |x − xn| ≤ η}. Applying Itô’s formula to

e−r(t∧θn)ψ(Xxn ,α,L
t∧θn

), using (3.11) and the martingale property of

∫ t∧θn

0

∫

B

e−rs
(

ψ(Xxn ,α,L

s−
− y ∧ αs) − ψ(Xxn,α,L

s−
)
)

µ̃(ds, dy),

we get for all t ∈ [0, T ]

E

[

1

t

∫ t∧θn

0
−re−rsψ(Xxn,α,L

s ) + e−rsp(αs)ψ
′

(Xxn,α,L
s )ds

]

+ E

[

1

t

∫ t∧θn

0

∫

B

e−rs
(

ψ(Xxn ,α,L

s−
− y ∧ αs) − ψ(Xxn,α,L

s−
)
)

π(dy)ds

]

≤ γn

t
. (3.14)

Two cases are now to be considered:

case 1: the set {n ≥ 0 : γn = 0} is finite. Then there exists a subsequence renamed (γn)n≥0

such that γn 6= 0 for all n and we take t =
√
γn.

case 2: the set {n ≥ 0 : γn = 0} is not finite. Then there exists a subsequence renamed

(γn)n≥0 such that γn = 0 for all n.

In both cases
γn

t
−→ 0 as n tends to ∞ . Sending n to infinity, using dominated convergence

theorem and mean value theorem, (3.14) implies

−rψ(x0) + p(α)ψ
′

(x0) +

∫

B

(ψ(x0 − y ∧ α) − ψ(x0)) π(dy) ≤ 0

and so (3.13) is proved. Combining (3.13) and (3.12), we conclude that v is a viscosity

super-solution.

For sub-solution inequality (3.9), let ψ ∈ C1(IR+), and let x0 ∈ (α,∞) be a strict global

maximizer of v∗ − ψ such that (v∗ − ψ)(x0) = max
(α,∞)

(v∗ − ψ) = 0. We have to show that

max
{

H∗
(

x0, ψ, ψ
′

)

, 1 − ψ
′

(x0)
}

≥ 0. (3.15)
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Suppose that (3.15) does not hold. Hence the left-hand side of (3.15) is negative. By

smoothness of ψ and since H∗ is upper semi-continuous, there exists δ and ξ satisfying:

max
{

H∗
(

x, ψ, ψ
′

)

, 1 − ψ
′

(x)
}

< −rξ (3.16)

for all x ∈ B(x0, δ) as well as

v∗(x′) ≤ −ξ + ψ(x′) (3.17)

where x′ = x0 ± δ. By changing δ, we may assume that B(x0, δ) ⊂ (α,∞).

From the definition of v∗, there exists a sequence (xn)n≥1 ∈ (α,∞) such that xn −→ x0

and v(xn) −→ v∗(x0) when n −→ ∞. We suppose that xn ∈ B(x0, δ) for all n ∈ IN . Let

(α,L) ∈ Π(xn) be given and define the stopping time τn as

τn = inf{t ≥ 0, Xxn ,α,L
t /∈ B(x0, δ)}.

We truncate τn by a constant T in order to make it finite and set τ ∗ = τn ∧ T . On the set

{τ∗ = τn}, using that v is nondecreasing, we get from (3.17)

v(Xτ∗) ≤ v(x′) ≤ ψ(x′) − ξ ≤ ψ(Xτ∗−) − ξ.

On the set {τ ∗ = T}, we have

v(Xτ∗) ≤ ψ(Xτ∗−).

Applying Itô’s formula to e−rτ∗

ψ(Xxn,α,L

τ∗−
), we get (with Lc

t denoting the continuous part

of Lt)

e−rτ∗

v(Xxn ,α,L
τ∗ ) ≤ e−rτ∗−

ψ(Xxn,α,L

τ∗−
) − ξe−rτ∗

1{τ∗=τn}

≤ ψ(xn) +

∫ τ∗

0
(−re−rsψ(Xxn ,α,L

s ) + e−rsp(αs)ψ
′

(Xxn,α,L
s ))ds

+

∫ τ∗−

0

∫

B

e−rs
(

ψ(Xxn ,α,L

s−
− y ∧ αs) − ψ(Xxn,α,L

s−
)
)

µ(ds, dy)

−
∫ τ∗−

0
e−rsψ

′

(Xxn,α,L
s )dLc

s (3.18)

+

τ∗−

∑

s=0

e−rs
(

ψ(Xxn ,α,L

s−
−4Ls) − ψ(Xxn ,α,L

s−
)
)

− ξe−rτ∗

1{τ∗=τn}

where 4Ls = Ls − Ls− . For 0 ≤ s ≤ τ ∗−, (3.16) implies

− rψ(Xxn,α,L
s ) + p(αs)ψ

′

(Xxn,α,L
s )

+

∫

B

(ψ(Xxn,α,L
s − y ∧ αs) − ψ(Xxn ,α,L

s ))π(dy) < −rξ (3.19)

and

1 − ψ
′

(Xxn,α,L
s ) < 0. (3.20)
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Integrating (3.20), we get

−
∫ τ∗−

0
e−rsψ

′

(Xxn,α,L
s )dLc

s +

τ∗−

∑

s=0

e−rs
(

ψ(Xxn ,α,L

s−
−4Ls) − ψ(Xxn,α,L

s−
)
)

≤ −
∫ τ∗

0
e−rsdLs. (3.21)

Substituting (3.19) and (3.21) into (3.18) and using the martingale property of

∫ τ∗−

0

∫

B

e−rs
(

ψ(Xxn,α,L

s−
− y ∧ αs) − ψ(Xxn ,α,L

s−
)
)

µ̃(ds, dy),

we obtain

ψ(xn) ≥ E

[

e−rτ∗

v(Xxn,α,L
τ∗ ) +

∫ τ∗

0
e−rsdLs

]

+ ξ(1 − e−rT ). (3.22)

Inequality (3.22) implies

v(xn) + δn ≥ E

[

e−rτ∗

v(Xxn ,α,L
τ∗ ) +

∫ τ∗

0
e−rsdLs

]

+ ξ(1 − e−rT ), (3.23)

where δn := ψ(xn)−v(xn). Since δn = ψ(xn)−ψ(x0)+v∗(x0)−v(xn), there exists n0 ∈ IN

such that for all n ≥ n0, δn ≤ ξ
2(1 − e−rT ) and inequality (3.23) implies

v(xn) ≥ sup
(α,L)∈Π(xn)

E

[

e−rτ∗

v(Xxn ,α,L
τ∗ ) +

∫ τ∗

0
e−rsdLs

]

+
ξ

2
(1 − e−rT ),

which is a contradiction with the dynamic programming principle. 2

Remark 3.2 The proof of Theorem 3.1 remains valid in the case of a general Poisson

random measure µ.

We need now to specify the boundary conditions for the usc and lsc envelopes of v.

Since v may be discontinuous, we need to characterize v∗(α) and v∗(α).

Theorem 3.2 The upper and the lower semi-continuous envelope of v satisfy

v∗(α) = v∗(α) = α. (3.24)

Proof. Since v(x) ≥ α for all x ∈ [α,∞), we also have v∗(x) ≥ α and so v∗(α) ≥ α. The

opposite inequality holds since v∗(α) ≤ v(α) = α.

It remains to prove v∗(α) = α. Obviously we have v∗(α) ≥ v(α) = α. We need to show

v∗(α) ≤ α. Suppose it is not true: there exists η > 0 such that v∗(α) ≥ 2η + α. From

the definition of v∗, there exists a sequence (xn)n such that xn −→ α and v(xn) −→ v∗(α)

when n −→ ∞, which implies that there exists n0 ∈ IN such that for all n ≥ n0, we have

v(xn) ≥ η + α. Let (α,L) ∈ Π(xn) be given and define the stopping time τn as

τn = inf{t ≥ 0, Xxn ,α,L
t ≤ 0}.
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Since xn −→ α when n −→ ∞, we have τn −→ 0+. From hypothesis (2.5), we have

4L0 ≤ Xxn,α,L
0 = xn − L0 and so 4L0 ≤ xn. Let ε > 0, there exists n1 ∈ IN such

that for all n ≥ n1, we have
∫ τn

0 e−rsdLs ≤ α + ε. Taking the expectation and then the

supremum over all admissible strategies we obtain v(xn) ≤ α + ε. Sending ε to 0+, we

obtain a contradiction. 2

4 Uniqueness of the viscosity solution

Some uniqueness proofs for viscosity solutions of first-order integro-differential operators

are given in Soner (1986) for bounded viscosity solutions and in Sayah (1991) and in Pham

(1998) for unbounded viscosity solutions. As in Soner (1986) Lemma 2.1 or in Sayah (1991)

Proposition 2.1, we give an equivalent formulation for viscosity solutions which is needed

to prove a comparison theorem.

Proposition 4.1 Let v be a function defined on IR+, then

i) v is a viscosity super-solution of (3.1) in (α,∞) if and only if

max
{

H∗(x0, v∗, ψ
′

), 1 − ψ
′

(x0)
}

≤ 0 (4.1)

whenever ψ ∈ C1(Nx0
), v∗ − ψ has a global strict minimum at x0 ∈ (α,∞), Nx0

is a

neighbourhood of x0 and

H∗(x0, v∗, ψ
′

) = lim inf
x−→x0

H(x, v∗, ψ
′

).

ii) v is a viscosity sub-solution of (3.1) in (α,∞) if and only if

max
{

H∗(x0, v
∗, ψ

′

), 1 − ψ
′

(x0)
}

≥ 0 (4.2)

whenever ψ ∈ C1(Nx0
), v∗ − ψ has a global strict maximum at x0 ∈ (α,∞), Nx0

is a

neighbourhood of x0 and

H∗(x0, v
∗, ψ

′

) = lim sup
x−→x0

H(x, v∗, ψ
′

).

Proof. We prove the statement for sub-solutions only, the other statement is proved

similarly. Let v be such that

max
{

H∗(x0, v
∗, ψ

′

), 1 − ψ
′

(x0)
}

≥ 0,

whenever ψ and x0 are as above. Since v∗(x) − v∗(x0) ≤ ψ(x) − ψ(x0) for all x ∈ (α,∞),

then

H∗(x0, v
∗, ψ

′

) ≤ H∗(x0, ψ, ψ
′

).

Hence v is a viscosity sub-solution of (3.1) in (α,∞).

Conversely, let ψ ∈ C1(Nx0
) and x0 ∈ (α,∞) such that

(v∗ − ψ)(x0) = max
(α,∞)

(v∗ − ψ)(x) = 0.
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For each ε, δ > 0 , we define

Φε,δ(x) =

{

ψ(x) if x ∈ B(x0, ε)

v∗(x) + δ if x /∈ B(x0, ε),

where B(x0, ε) is the open ball centred in x0 with radius ε. We have v∗(x0) = Φε,δ(x0) and

v∗(x) − Φε,δ(x) < 0 for all x ∈ (α,∞) − {x0}. Hence

(v∗ − Φε,δ)(x0) = max
x∈(α,∞)

(v∗ − Φε,δ)(x).

Thus the hypothesis of the Proposition yields

max
{

H∗(x0,Φε,δ,Φ
′

ε,δ), 1 − ψ
′

(x0)
}

≥ 0.

From the definition of H, we have the following estimate

H∗(x0,Φε,δ, ψ
′

) −H∗(x0, v
∗, ψ

′

) ≤ G∗(x0), (4.3)

where G∗(x0) := lim sup
x−→x0

G(x) and

G(x) := sup
α∈Λ(x)

{

−r (Φε,δ(x) − v∗(x)) + p(α)
(

Φ
′

ε,δ(x) − ψ
′

(x)
)

+

∫

B

(Φε,δ(x− y ∧ α) − v∗(x− y ∧ α)) π(dy) −
∫

B

(Φε,δ(x) − v∗(x)) π(dy)

}

.

From the definition of G∗, there exists a sequence (xn)n ∈ (α,∞) such that xn −→ x0 and

G(xn) −→ G∗(x0) when n −→ ∞. We suppose that xn ∈ B(x0, ε) for all n ∈ IN . From the

definition of Φε,δ we have Φ
′

ε,δ(x)(xn) = ψ
′

(xn) and v∗(xn) − Φε,δ(xn) ≤ 0 and so

G(xn) ≤ sup
α∈Λ(xn)

{
∫

B

(Φε,δ(xn − y ∧ α) − v∗(xn − y ∧ α)) π(dy) −
∫

B

(Φε,δ(xn) − v∗(xn)) π(dy)

}

.

We choose α ∈ Λ(xn), and consider the two cases: α > 0 and α = 0.

(i) If α > 0, then α > 0. We set Bα
1 := {y ∈ B, xn − y ∧ α ∈ B(x0, ε)} and Bα

2 :=

{y ∈ B, xn − y ∧ α /∈ B(x0, ε)}. Observe that for (xn − y ∧ α) /∈ B(x0, ε), we have

Φε,δ(xn − y ∧α)− v∗(xn − y ∧α) = δ and for (xn − y ∧α) ∈ B(x0, ε), we have Φε,δ(x0 − y ∧
α) − v∗(x0 − y ∧ α) = ψ(xn − y ∧ α) − v∗(xn − y ∧ α). Since v∗(xn) − Φε,δ(xn) ≤ 0 we get

∫

B

(

Φε,δ(xn − y ∧ α) − v∗(xn − y ∧ α)
)

π(dy) −
∫

B

(Φε,δ(xn) − v∗(xn)) π(dy)

≤ δ

∫

Bα

2

π(dy) +Kπ(Bα
1 )

≤ δ

∫

B

π(dy) +Kπ([0, ε]) < +∞ (4.4)

where K is a constant independent of α and the last inequality is derived for ε sufficiently

small (ε ≤ α

2
) and n sufficiently large .
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(ii) If α = 0, then α = 0 or α > 0. If α = 0, we have

∫

B

(Φε,δ(xn − y ∧ α) − v∗(xn − y ∧ α)) π(dy) −
∫

B

(Φε,δ(xn) − v∗(xn)) π(dy) = 0. (4.5)

The case α > ε is similar to case (i). If 0 < α ≤ ε, there exists ε
′

such that α > ε
′

. As in

(4.4), we obtain

∫

B

(

Φε,δ(xn − y ∧ α) − v∗(xn − y ∧ α)
)

π(dy) −
∫

B

(Φε,δ(xn) − v∗(xn)) π(dy)

≤ δ

∫

B

π(dy) +Kπ([0, ε
′

])

≤ δ

∫

B

π(dy) +Kπ([0, ε]). (4.6)

From (4.4), (4.5) and (4.6) we deduce that

sup
α∈Λ(xn)

{
∫

B

(Φε,δ(xn − y ∧ α) − v∗(xn − y ∧ α))π(dy)

}

−→ 0

when ε and δ tend to 0+. Sending n to infinity, inequality (4.3) implies

H∗(x0, v
∗, ψ

′

) ≥ 0,

and so (4.2) is proved. 2

Uniqueness of the solution of the HJBVI (3.1) with boundary conditions (3.2) is a conse-

quence of the following theorem.

Theorem 4.1 (Comparison theorem) Let v1 and v2 in S1(IR+) be a viscosity sub-

solution and a super-solution respectively of (3.1) in (α,∞) such that v∗1(α) = (v2)∗(α) = α.

Then

v∗1(x) ≤ v2∗(x) for all x ∈ (α,∞). (4.7)

Proof. Due to the linear growth of the viscosity sub-solution v1 (resp. super-solution

v2), the function u1 (resp u2) defined by u1(x) = v1(x)e
−λx (resp u2(x) = v2(x)e

−λx) for

λ ∈ IR∗
+ and x ∈ [α,∞) is bounded. For ε > 0, we define Φ : [α,∞)× [α,∞) −→ IR∪{−∞}

as

Φ(x, z) := u∗1(x) − u2∗(z) −
1

ε
(x− z)2.

Since u1 and u2 are bounded and Φ is upper semi-continuous, Φ has a global maximum

at point (x∗, z∗) ∈ [α,∞) × [α,∞) . Using Φ(α, α) ≤ Φ(x∗, z∗) and that u1 and u2 are

bounded, it follows that

|x∗ − z∗|2 ≤ ε(u∗1(x
∗) − u2∗(z

∗))

≤ Cλε, (4.8)
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where Cλ is a constant depending only on λ.

If x∗ = α, then using Φ(x, x) ≤ Φ(α, z∗) for all x ∈ [α,∞) and u∗1(α) = αe−λα, we get

u∗1(x) − u2∗(x) ≤ αe−λα − u2∗(z
∗). (4.9)

From inequality (4.8) and since x∗ = α, we deduce that z∗ −→ α when ε −→ 0 .

Since u2∗ is lower semi-continuous, it follows that lim inf
ε→0

u2∗(z
∗) ≥ u2∗(α).

Taking the limit when ε −→ 0+ in (4.9), we obtain u∗1(x) ≤ u2∗(x) and so

v∗1(x) ≤ v2∗(x).

If z∗ = α, then for all x ∈ [α,∞), we have

u∗1(x) − u2∗(x) ≤ u∗1(x
∗) − αe−λα. (4.10)

From inequality (4.8) and since z∗ = α, we deduce that x∗ −→ α when ε −→ 0.

Since u∗1 is upper semi-continuous, it follows that lim sup
ε→0

u∗1(x
∗) ≤ u∗1(α).

Taking the limit when ε −→ 0+ in (4.10), we obtain u∗1(x) ≤ u2∗(x) and so

v∗1(x) ≤ v2∗(x).

It remains to study the case when z∗ 6= α and x∗ 6= α. The functions u∗1 and u2∗ are

respectively sub-solution and super-solution of the variational inequality

max
{

H
′

(x, u, u
′

), 1 − eλx(u
′

(x) + λu(x))
}

= 0 in (α,∞), (4.11)

where

H
′

(x, u, u
′

) := sup
α∈Λ(x)

{

−ru(x) + p(α)
(

u
′

(x) + λu(x)
)

+

∫

B

(u(x− y ∧ α)eλy∧α − u(x))π(dy)

}

.

The function (u∗1 − ψ1)(x) reaches its maximum in x∗ where

ψ1(x) ≡ u2∗(z
∗) +

1

ε
(x− z∗)2.

Consequently, from Proposition (4.1), we get

max
{

H
′∗(x∗, u∗1, ψ

′
1), 1 − eλx∗

(ψ′
1(x

∗) + u∗1(x
∗))

}

≥ 0,

which implies

max
{

H
′

(x∗, u∗1, ψ
′
1), 1 − eλx∗

(ψ′
1(x

∗) + u∗1(x
∗))

}

≥ 0.

Similarly (u2∗ − ψ2)(z) reaches its minimum in z∗ where

ψ2(z) ≡ u∗1(x
∗) − 1

ε
(x∗ − z)2.

Since u2∗ is a super-solution of (4.11), we have

max
{

H
′

∗(z
∗, u2∗, ψ

′

2), 1 − eλz∗(ψ
′

2(z
∗) + u2∗(z

∗))
}

≤ 0,
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which implies

max
{

H
′

(z∗, u2∗, ψ
′

2), 1 − eλz∗(ψ
′

2(z
∗) + u2∗(z

∗))
}

≤ 0.

Observing that max {a, b} − max {d, e} ≤ 0 implies either a ≤ d or b ≤ e, we consider two

cases:

(i) the case

H
′

(z∗, u2∗, ψ
′

2) −H
′

(x∗, u∗1, ψ
′
1) ≤ 0,

which implies

0 ≤ sup
α∈Λ(x∗)∩Λ(z∗)

{

− r (u∗1(x
∗) − u2∗(z

∗)) (4.12)

+ p(α)
(

ψ′
1(x

∗) − ψ′
2(z

∗) + λ (u∗1(x
∗) − u2∗(z

∗))
)

+

∫

B

(

u∗1(x
∗ − y ∧ α)e−λ(y∧α) − u2∗(z

∗ − y ∧ α)e−λ(y∧α) − u∗1(x
∗) + u2∗(z

∗)
)

π(dy)
}

.

Since (x∗, z∗) is a maximum point of Φ in [α,∞)× [α,∞) and Φ(x∗, z∗) ≥ Φ(α, α) = 0, we

have

Φ(x∗, z∗) ≥ Φ(x∗ − y ∧ α, z∗ − y ∧ α)e−λ(y∧α) for all y ∈ B,

which implies

(u∗1(x
∗ − y ∧ α) − u2∗(z

∗ − y ∧ α)) e−λ(y∧α) − u∗1(x
∗) + u2∗(z

∗) ≤ 0 for all y ∈ B.

From inequality (4.12) and using the fact that ψ ′
1(x

∗) = ψ′
2(z

∗) = 2
ε
(x∗ − z∗), we have

sup
α∈Λ(x∗)∩Λ(z∗)

{(−r + λp(α)) (u∗1(x
∗) − u2∗(z

∗))} ≥ 0.

Since p(α) is bounded, choosing λ sufficiently small, we obtain

u∗1(x
∗) − u2∗(z

∗) ≤ 0.

Using that Φ(x, x) ≤ Φ(x∗, z∗), we conclude that u∗1(x) ≤ u2∗(x) and

v∗1(x) ≤ v2∗(x).

(ii) the second case occurs if

eλx∗

(
2

ε
(x∗ − z∗) + u∗1(x

∗)) − eλz∗(
2

ε
(x∗ − z∗) + u2∗(z

∗)) ≤ 0,

which implies

eλx∗

u∗1(x
∗) − eλz∗u2∗(z

∗) ≤ 2

ε
(eλz∗ − eλx∗

)(x∗ − z∗) ≤ 0,

and so we obtain

v∗1(x) ≤ v2∗(x).

2
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5 Numerical study

Given an initial reserve x and a policy (α,L), the reserve of the insurance company at time

t is then given by (2.4) where α ∈ Π(x), L satisfies (2.5) and p(αt) is given by (2.1). Our

purpose is to solve the following equation











max

{

sup
α∈Λ(x)

{

Aα(x, v, v
′

)
}

, 1 − v
′

(x)

}

= 0 in (α,∞)

v(x) = x in [0, α],

(5.1)

where

Aα(x, v, v
′

) = −rv(x) + p(α)v
′

(x) +

∫

B

(v(x− α ∧ y) − v(x)) π(dy).

We proceed with a technical change of variable which brings IR+ into [0, 1), namely

{

z = x
1+x

ψ(z) = v(x).

The function ψ is defined in [0, 1) and satisfies











max

{

sup
α∈Λ(z)

{

Āα(z, ψ, ψ
′

)
}

, 1 − (1 − z)2ψ
′

(z)

}

= 0 in ( α
1+α

, 1)

ψ(z) = z
1−z

in [0, α
1+α

],

(5.2)

where

Āα(z, ψ, ψ
′

) = −rψ(z) + p(α)(1 − z)2ψ
′

(z) +

∫

B

(

ψ(
z − (1 − z)α ∧ y
1 − (1 − z)α ∧ y ) − ψ(z)

)

π(dy),

and Λ(z) = {α ≥ α s.t. z
1−z

≥ α ∧ y for all y ∈ B}.
In Sections 3 and 4, we have proved that the value function (2.6), within a change of

variables, is the unique viscosity solution of HJBVI (5.2). This solution is approximated

by performing the following numerical method:

(i) approximate HJBVI (5.2) by using a finite difference approximation

(ii) solve the approximating equation by means of the Howard or policy iteration algorithm.

Finally a reverse change of variables is performed in order to display the solution of Equation

(5.1).

5.1 Finite difference approximation

First, we compute α solution of the equation

p(α) = (1 + k1)βν − (1 + k2)βE [(Yi − α)+] = 0.

We take B = [bmin, bmax] with 0 ≤ bmin ≤ bmax < ∞. We suppose that the claims are

uniformly distribued on [bmin, bmax].
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To approximate the integral term, we use the following approximation with uniform step

4b:
∫ bmax

bmin

(

ψ(
z − (1 − z)α ∧ y
1 − (1 − z)α ∧ y ) − ψ(z)

)

π(dy)

≈ β4b
bmax − bmin

k−1
∑

i=0

(

ψ(
z − (1 − z)α ∧ yi

1 − (1 − z)α ∧ yi

) − ψ(
z

1 − z
)

)

,

where yi = bmin + i ∆b; i = 0 . . . k − 1. Let h = 1
M
, (M ∈ IN ∗) denote the finite difference

step in the state coordinate. Define the grids Ω1h = {zi ≡ ih, zi >
α

1+α
, 0 ≤ i ≤ M − 1}

and Ω2h = {zi ≡ ih, zi ≤ α
1+α

, 0 ≤ i ≤M − 1}. We define the finite-difference operators

∂+ψ(z) := 1
h
(ψ(z + h) − ψ(z))

∂−ψ(z) := 1
h
(ψ(z) − ψ(z − h))

∂2ψ(z) := 1
h2 (ψ(z + h) − 2ψ(z) + ψ(z − h)).

We want to find a monotone, stable and consistent scheme : indeed we know by a result

of Barles and Souganidis (1991) that such a scheme will converge to the viscosity solution

of HJBVI (5.2) since a comparison theorem holds for the limiting equation (Theorem 4.1).

This is achieved by using the one sided difference approximation

p(α)ψ′(x) ∼ p(α)∂+ψ(z) (5.3)

since the operator Āα is degenerate and p(α) > 0. (see Kushner and Dupuis (1992) and

Lapeyre, Sulem and Talay). However, to increase the numerical stability of our method,

we split p(α)ψ′(x) into a negative and a positive part and use the following scheme:

p(α)ψ′(x) ∼ −(1 + k2)βE [(Yi − α)+] ∂−ψ(z) + (1 + k1)βν∂
+ψ(z). (5.4)

The approximation (5.4) is equivalent to adding a viscosity term to the operator. This

scheme satisfies all the requirements of stability, consistency and monotonicity.

This finite difference approximation leads to a system of inequalities with unknowns

{ψ(zi) , zi ∈ Ω1h}:










max

{

sup
α∈[α,δ]

{

Āα
hψh

}

,1 − B̄ψh

}

= 0 in Ω1h

ψ(zi) = zi

1−zi
in Ω2h

(5.5)

where ψh is the vector (ψ(zi))zi∈Ω1h
, Āα

h is the matrix associated to the approximation of

the operator Āα, B̄ is the matrix associated to the second term of our variational inequality,

defined as










B̄(i, i) = − (1−zi)
2

h
for all zi ∈ Ω1h

B̄(i, i − 1) = (1−zi)2

h
for all zi ∈ Ω1h

B̄(i, j) = 0 if j /∈ {i, i − 1},

and 1 is the vector which all entries equal to 1.
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5.2 The Howard algorithm

To solve Equation (5.5), we use the Howard algorithm (see Howard (1960) and Lapeyre,

Sulem and Talay), also named policy iteration. It consists of computing two sequences

{αn, Dn}n≥1 and (ψn
h)n≥1, (starting from ψ1

h) defined by:

• Step 2n− 1. Given ψn
h , compute a feedback strategy αn defined as

αn ∈ argmaxα∈[α,δ]

{

Āα
hψ

n
h

}

and define the subset Dn of the grid Ωh as

Āαn

ψn
h ≥ 1− B̄ψn

h in Dn,

Āαn

ψn
h < 1− B̄ψn

h in Ωh\Dn.

• Step 2n. Define ψn+1
h as the solution of the linear systems:

Āαn

ψn+1
h = 0 in Dn,

and

1− B̄ψn+1
h = 0 in Ωh\Dn.

• If |ψn+1
h − ψn

h | ≤ ε stop, otherwise, go to step 2n+ 1.

Assume that that there exists states z ∈ Ω1h such that

Āα
hψh(z) > 1 − B̄ψh(z).

Then the Howard algorithm converges to (5.5) since the matrices Āαn

are diagonally dom-

inant (see Chancelier-Messaoud-Sulem (2004)).

5.3 Numerical results

Equation (5.5) has been solved by using the Howard algorithm. This algorithm is very effi-

cient and converges in twenty iterations. Three tests have been performed with parameter

values given in Table 1.

k1 k2 r β bmin bmax

Test 1 0.1 0.15 0.07 0.5 1.1 1.5

Test 2 0.1 0.2 0.07 0.5 1.1 1.5

Test 3 0.1 0.2 0.07 0.6 1.1 1.5

Table 1: The parameters of the numerical tests

The optimal policy has the following form: every excess of the reserve above some critical

threshold u is distributed as dividend. When the reserve process is below a level l, it is
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optimal to distribute all the current reserve as dividends because of the constraint (2.3).

When the reserve process is in (l, u), then the insurer doesn’t distribute any dividend.

When the cost of reinsurance k2 increases, the optimal critical level decreases (Compare

Tests 1 and 2 in Table 2). When the intensity of the claims β increases, the level u in-

creases (Compare Tests 2 and 3 in Table 2). These phenomena have the following economic

explanation: When k2 increases, the premium p(α) decreases and the potential dividends

also decrease. Consequently the dividend payments are started at a low level. On the other

hand, when β increases, the premium p(α) increases and the potential reserve is higher.

The dividends are thus distributed at a higher level.

Test 1 l = α=0.42 u=2.57

Test 2 l = α=0.64 u=2.12

Test 3 l = α=0.64 u=3.16

Table 2: Lower and upper critical thresholds

The optimal retention level α is displayed in Figures 1 and 2 as a function of the reserve

level x. It has the following form: α(x) = x for l ≤ x ≤ bmax and α(x) = bmax for bmax ≤
x ≤ u. Similar results were obtained by Højgaard and Taksar (1999) in the case of a diffu-

sion model and proportional reinsurance. Figures 3 and 5 display the value function v in

terms of the reserve level x. The value function v is nondecreasing. It is linear in [0, l] and

[u,∞). Figures 4 and 6 enlarge the region of the level l.

x

The optimal retention level

l u
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Figure 1: The optimal retention level α(x) for Test 1
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Figure 2: The optimal retention level α(x) for Test 3
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Figure 3: The value function for Test 1
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