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Abstract

We study the risk indifference pricing principle in incomplete mar-
kets: The (seller’s) risk indifference price pseller

risk is the initial payment
that makes the risk involved for the seller of a contract equal to the
risk involved if the contract is not sold, with no initial payment. We
use stochastic control theory and PDE methods to find a formula for
pseller
risk and similarly for pbuyer

risk . In particular, we prove that

plow ≤ pbuyer
risk ≤ pseller

risk ≤ pup,

where plow and pup are the lower and upper hedging prices, respec-
tively.

1 Introduction

Consider a financial market with two investment possibilities

(i) a risk free investment, with unit price S0(t) = 1 at all times t ≥ 0.
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(ii) a risky investment, where the unit price is described by a semimartin-
gale S(t) on a filtered probability space (Ω,F , {Ft}t≥0P ).

A contingent claim with maturity T > 0 (also called a T -claim) is an
FT -measurable random variable G = G(ω); ω ∈ Ω, representing the payoff
that the seller of a contract guarantees to deliver to the buyer at time T .

A portfolio in this market is an Ft-predictable process π(t) = π(t, ω),
representing the number of units of the risky asset held at time t, which is
self-financing, i.e. satisfies the equation

(1.1) X(π)
x (t) := π(t)S(t) = x+

∫ t

0

π(s)dS(s).

The process X
(π)
x (t) is called the wealth process associated to the portfolio π

and with initial value X
(π)
x (0) = x.

The market is called complete if for every bounded T -claim G there exists
x ∈ R and a portfolio π such that

(1.2) X(π)
x (T ) = G a.s.

If this is the case, then there is a unique linear arbitrage free pricing rule at
time t = 0 for a contract with payoff G at time t = T . This price is

(1.3) p(G) = EQ[G],

where EQ denotes expectation with respect to the (unique) equivalent mar-
tingale measure (EMM).

In incomplete markets, however, the situation is not so clear. There are
infinitely many equivalent martingale measures Q and it is not clear which
one to use in the pricing formula (1.3). In this paper we study a class of
incomplete markets, namely the jump diffusion markets, and we investigate
a pricing formula based on the risk indifference principle. This gives a price
pseller

risk for the seller and a corresponding price pbuyer
risk for the buyer of the

contract. We prove that we always have

(1.4) plow ≤ pbuyer
risk ≤ pseller

risk ≤ pup,

where plow and pup are the lower and upper hedging prices, respectively. (See
Section 2 for details). Thus the gap between the seller and buyer prices is
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smaller with the risk indifference pricing than with upper and lower hedging
pricing.

Our paper is organized as follows: In Section 2 we give a short presen-
tation of some principles of pricing in incomplete markets. In Section 3 we
give a precise formulation of our jump diffusion market model. In Section
4 we use dynamic programming for stochastic differential games to find an
explicit relation between the value function ΦG of the stochastic differential
game involved in the risk indifferent pricing and the value function ΨG for
a corresponding stochastic control problem involving only equivalent mar-
tingale measures. In Section 5 we prove the same relation in the setting of
viscosity solutions of the corresponding HJBI and HJB equations. Finally, in
Section 6 we apply the results from the earlier sections to derive formulas for
the risk indifference prices pseller

risk and pbuyer
risk and we discuss conditions under

which these prices coincide.

2 Pricing in incomplete markets

Superreplication The upper hedging price of G at time t = 0 is defined
by

(2.1) pup(G) = inf{x; there exists π ∈ P such that X
(π)
x (T ) ≥ G a.s.}

This price is sometimes called the seller’s price, because it represents the
minimal initial payment x needed in order to be able to hedge a terminal
wealth X

(π)
x (T ) which is no less than the guaranteed payoff G, a.s.

One can show that

(2.2) pup(G) = sup
Q∈M1

EQ[G]

(see e.g. [Ku]) where M1 denotes the set of equivalent martingale measures
Q, i.e. the set of probability measures Q on FT such that Q� P and P � Q
and the discounted price process S(t) is a martingale with respected to Q.

Similarly, the lower hedging price (or the buyer’s price) can be defined by

(2.3) plow(G) = inf
Q∈M1

EQ[G]

In incomplete markets there are infinitely many measures Q ∈M1 and there
is usually a big gap between plow(G) and pup(G).
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Utility indifference pricing. This pricing principle was introduced by
Hodges and Neuberger [HN]. It is based on a given (chosen) utility function
U : R → R ∪ {−∞}.

(i) If a person sells a liability to pay out the amount G(ω) at time T and
receives an initial payment p for such a contract, the maximal expected utility
for the seller is

(2.4) VG(x+ p) = sup
π∈P

E[U(X
(π)
x+p(T )−G)],

where x is the sellers wealth before the contract is being made.

(ii) If, on the other hand, no such contract is made, the maximal expected
utility is

(2.5) V0(x) = sup
π∈P

E[U(X(π)
x (T ))].

The (seller’s) utility indifference price is the value of the initial payment p
that makes the seller indifferent to whether to sell the contract or not, i.e. p
is the solution p = putility of the equation

(2.6) VG(x+ p) = V0(x)

To find p one has to solve the two stochastic control problems (2.4) and (2.5).
In general this is difficult, and an explicit solution is known only in special
cases and only for the exponential utility function

U(x) = −1

c
e−cx; x ∈ R

where c > 0 is a constant. See e.g. [MZ], [ST], [BeM].

Risk indifference pricing. The purpose of this paper is to study a pricing
principle based on risk rather than utility. Thus the starting point is a given
convex risk measure

ρ : F → R
where F is the set of FT -measurable random variables (see below for a defi-
nition). We may regard F as the family of all possible financial positions at
time T , and if F ∈ F then ρ(F ) is the amount that has to be added to F to
make the financial position “acceptable” (in some sense). We now argue as
in the utility indifference case:
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(i) If a person sells a contract which guarantees a payoff G ∈ F at time T
and receives an initial payment p for this, then the minimal risk involved for
the seller is

(2.7) ΦG(x+ p) = inf
π∈P

ρ(X
(π)
x+p(T )−G)

(ii) If, on the other hand, no contract is sold (and hence no initial payment
is received), then the minimal risk for the person is

(2.8) Φ0(x) = inf
π∈P

ρ(X(π)
x (T ))

Definition 2.1 The(seller’s) risk indifference price p = prisk of the claim
G ∈ F is the solution p of the equation

(2.9) ΦG(x+ p) = Φ0(x)

Thus prisk is the initial payment that makes a person risk indifferent between
selling the contract with liability payoff G and not selling the contract (and
not receiving any payment either).

A convex risk measure ρ is usually defined as a map ρ : F → R satis-
fying certain axioms (convexity, non-positivity, translation, constancy and
lower semicontinuity). (See [ADEH], [FR] or [FS].) We will use the following
representation of convex risk measures:

Theorem 2.2 ([FöS], [FR]) A map ρ : F → R is a convex risk measure if
and only if there exists a family L of measures Q� P on FT and a convex
“penalty function” ζ : L → R ∪ {+∞} with inf

Q∈L
ζ(Q) = 0 such that

(2.10) ρ(F ) = sup
Q∈L

{EQ[−F ]− ζ(Q)}; F ∈ F.

In view of this representation we see that choosing a risk measure ρ is
equivalent to choosing the family L of measures and the penalty function ζ.
If we choose ζ = 0 then ρ becomes a coherent risk measure (see [ADEH] and
[D]).

Using the representation (2.10) we see that the problem of finding the risk
indifference price p = prisk given by (2.9) amounts to solving the following
two stochastic differential (zero-sum) game problems :

(2.11) ΦG(x+ p) = inf
π∈P

(
sup
Q∈L

{EQ[−X(π)
x+p(T ) +G]− ζ(Q)}

)
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and

(2.12) Φ0(x) = inf
π∈P

(
sup
Q∈L

{EQ[−X(π)
x (T )]− ζ(Q)}

)
,

for a given family of measures L and a given penalty function ζ.
We will make a choice of L which makes it possible to solve such games

using Hamilton-Jacobi-Bellman-Isaacs (HJBI) equations.
The idea of using a risk indifference principle rather than a utility indif-

ference principle has appeared in various settings in several papers recently.
Perhaps the paper which is closest to ours is [X], where the risk measure
pricing is studied. See also [KS] and the references therein. However, the
methods and results of these papers are different from ours.

3 Precise formulation of the model

Let η(t) = η(t, ω); (t, ω) ∈ [0,∞)× Ω be a Lévy process on a filtered proba-
bility space (Ω;F , { Ft}t≥0, P ). For simplicity we assume that

(3.1) E[η2(t)] <∞ for all t ≥ 0.

Then by the Itô-Lévy decomposition theorem we can write

(3.2) η(t) = at+ bB(t) +

t∫
0

∫
R0

zÑ(ds, dz); t ≥ 0 (R0 = R\{0})

where a and b are constants, B(t) is a Brownian motion and

(3.3) Ñ(dt, dz) = N(dt, dz)− ν(dz)dt

is the compensated jump measure of η, ν being the Lévy measure and N the
jump measure, respectively.

Because of our assumption (3.1) we have that

(3.4)

∫
R0

z2ν(dz) <∞.

We refer the reader to [Ap], [B] and [Sa] for more information about Lévy
processes. A short review useful for this paper is given in [ØS].
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Consider a financial market where there are two investment possibilities:

(i) A risk free investment, with discounted unit price S0(t) = 1; t ∈ [0, T ]
where T > 0 is a fixed terminal time.

(ii) A risky investment, where the discounted unit price S(t) at time t is
given by

dS(t) = S(t−)
[
α(t)dt+ β(t)dB(t)

+

∫
R0

γ(t, z)Ñ(dt, dz)
]

S(0) = s > 0; t ∈ [0, T ](3.5)

Here α(t), β(t) and γ(t, z) are Ft-predictable processes. We assume that
γ(t, z) > −1 for a.a. t, z and that

(3.6)

T∫
0

{
|α(s)|+ β2(t) +

∫
R0

| log(1 + γ(t, z))|2ν(dz)
}
dt <∞ a.s.

We represent a portfolio in this market by the number π(t) of units of the
risky asset invested in the risky asset. The dynamics of the corresponding
discounted wealth X(t) = X(π)(t) will then be

dX(t) = π(t)dS(t) = π(t)S(t)
[
α(t)dt+ β(t)dB(t)(3.7)

+

∫
R0

γ(t, z)Ñ(dt, dz)
]
; t ∈ [0, T ]

X(0) = x > 0(3.8)

The portfolio π(t) is called admissible if π(t) is predictable and satisfies

T∫
0

{
|α(t)| |π(t)|S(t) + β2(t)π2(t)S2(t)(3.9)

+ π2(t)S2(t)

∫
R

γ2(t, z)ν(dz)
}
<∞

and

(3.10) X(π)(t) ≥ 0 for t ∈ [0, T ], a.s.
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The set of all admissible portfolios is denoted by P .

It is well-known that such a market is in general incomplete. There-
fore there is no unique equivalent martingale measure and hence no unique
method of pricing a given contingent claim with discounted payoff G in an
arbitrage free way.

We first describe two sets L,M of measures. For given Ft-predictable
processes θ0(t) and θ1(t, z); t ≥ 0, z ∈ R0 such that

(3.11)

T∫
0

{
θ2
0(t) +

∫
R0

(log(1 + θ1(t, z)))
2ν(dz)

}
dt <∞ a.s.

(in particular, θ1(t, z) ≥ −1 for a.a. t, z, ω), define the process Kθ(t) as the
solution of the stochastic differential equation

dKθ(t) = Kθ(t
−)

[
θ0(t)dB(t) +

∫
R0

θ1(t, z)Ñ(dt, dz)
]
; t ∈ [0, T ](3.12)

Kθ(0) = k > 0,

i.e.

Kθ(t) = k exp
( t∫

0

θ0(s)dB(s)− 1
2

t∫
0

θ2
0(s)ds(3.13)

+

t∫
0

∫
R0

log(1 + θ1(s, θ))Ñ(ds, dz)

+

t∫
0

∫
R0

log(1 + θ1(s, z))− θ1(s, z)ν(dz)ds
)
; t ∈ [0, T ].

Then define the measure Qθ by

(3.14) dQθ(ω) = Kθ(T )dP (ω) on FT .

To put our problems (2.11) and (2.12) into a Markovian framework we define
our (controlled) process Y (t) = Y θ,π(t) ∈ R3, as follows:

dY (t) =

dY1(t)
dY2(t)
dY3(t)

 =

 dKθ(t)
dS(t)
dX(π)(t)

 =

0
S(t−)α(t)
S(t−)α(t)π(t)]

 dt
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+

 Kθ(t
−)θ0(t)

S(t−)β(t)
S(t−)β(t)π(t)

 dB(t) +

∫
R0

 Kθ(t
−)θ1(t, z)

S(t−)γ(t, z)
S(t−)π(t)γ(t, z)

 Ñ(dt, dz)(3.15)

and

(3.16) Y (0) = y = (y1, y2, y3) = (k, s, x) ∈ R3.

Similarly we let Ỹ (t) = Y θ(t) be the state process obtained by deleting the
3rd component, X(π)(T ), from Y (t), i.e.

(3.17) Ỹ (t) =

[
Y1(t)
Y2(t)

]
=

[
K(t)
S(t)

]
; Ỹ (0) = ỹ = (y1, y2) = (k, s) ∈ R2.

We assume that all the coefficients are Markovian with respect to Ỹ (·), i.e.

α(t) = ᾱ(t, Ỹ (t)), β(t) = β̄(t, Ỹ (t)) and γ(t) = γ̄(t, Ỹ (t), z),

for given functions

ᾱ : R3 → R, β̄ : R3 → R and γ̄ : R3 × R0 → R.

For simplicity of notation we will in the following not distinguish between α
and ᾱ etc., i.e. we write (with abuse of notation)

α(t) = α(t, Ỹ (t)) etc.

Let L be the set of all Ỹ (t)-Markovian controls θ(t) = (θ0(t), θ1(t, z)), where
θ0(t) = θ0(t, Ỹ (t)) and θ1(t, z) = θ1(t, Ỹ (t), z), z ∈ R, satisfying (3.11) and
such that

(3.18) E[Kθ(T )] = Kθ(0) = k > 0

(this implies that Kθ(t) is a martingale).
Similarly let

(3.19) Π = {π ∈ P ; π is Y (t)-Markovian, i.e. π(t) = π(t, Y (t))}

We now define two sets L,M of measures as follows:

L = {Qθ; θ ∈ L},(3.20)

9



M = {Qθ; θ ∈ M},(3.21)

where

(3.22) M = {θ ∈ L;Mθ(t, ỹ) = 0 for all t, ỹ},

where

Mθ(t, ỹ) = M(θ)(t, k, s) = α(t, ỹ) + θ0(t, ỹ)β(t, ỹ)(3.23)

+

∫
R0

θ1(t, ỹ, z)γ(t, ỹ, z)ν(dz); (t, ỹ) ∈ [0, T ]× R2.

Note that, by the Girsanov theorem, all the measures Qθ∈M with Kθ(0)=1
are equivalent martingale measures. (See e.g. [ØS], Section 1.4.)

We now return to the stochastic differential game problems (2.11) and
(2.12). We will assume that the penalty function ζ has the form
(3.24)

ζ(Qθ) = E
[ T∫

0

∫
R0

λ(θ0(t, Ỹ (t)), θ1(t, Ỹ (t), z), Ỹ (t), z)ν(dz)dt+ h(Ỹ (T ))
]

for some convex functions λ ∈ C1(R2 × R0), h ∈ C1(R) s.t.

E
[ T∫

0

∫
R0

∣∣λ(t, θ0(Ỹ (t)), θ1(t, Ỹ (t), z), Ỹ (t), z)
∣∣ν(dz)dt+

∣∣h(Ỹ (T ))
∣∣] <∞

for all (θ, π) ∈ L× Π.
Moreover, we assume that the given claim G has the (Markovian) form

(3.25) G = g(S(T ))

for some g : R → R such that

EQθ
(|g(S(T ))|] <∞ for all θ ∈ L.

Using the Y (t)-notation, we see that problem (2.11) can be written as follows:
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Problem A Find ΦG(t, y) and (θ∗, π∗) ∈ L × Π (called an optimal pair)
such that

(3.26) ΦG(t, y) := inf
π∈Π

(
sup
θ∈L

Jθ,π(t, y)
)

= Jθ∗,π∗(t, y),

where

Jθ,π(t, y) = Ey
[
−

T∫
t

Λ(θ(u, Ỹ (u)))du− h(Ỹ (T ))(3.27)

+Kθ(T )g(S(T ))−Kθ(T )X(π)(T )
]
,

and
(3.28)

Λ(θ) = Λ(θ(t, ỹ)) =

∫
R

λ(t, θ0(ỹ), θ1(t, ỹ, z), ỹ, z)ν(dz), ỹ = (k, s).

We will relate Problem A to the following stochastic control problem:

(3.29) ΨG = sup
Q∈M

{EQ[G]− ζ(Q)}

Putting this into a Markovian context as above, the problem gets the follow-
ing form:

Problem B Find ΨG(t, ỹ) and θ̌ ∈ M such that

(3.30) ΨG(t, ỹ) = sup
θ∈M

Jθ
0 (t, ỹ) = J θ̌

0 (t, ỹ),

where

Jθ
0 (t, ỹ) = E ỹ

[
−

T∫
t

Λ(θ(u, Ỹ (u)))du− h(Ỹ (T ))(3.31)

+Kθ(T )g(S(T ))
]
; ỹ = (k, s).

Note that
Jθ,π(t, y) = Jθ

0 (t, ỹ)− Ey[Kθ(T )X(π)(T )]
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For given (θ, π) ∈ L×Π the process Y θ,π(t) is Markovian with generator
Aθ,π given by

Aθ,πϕ(t, y) =
∂ϕ

∂t
+ αs

∂ϕ

∂s
+ sαπ

∂ϕ

∂x

+ 1
2
θ2
0k

2∂
2ϕ

∂k2
+ 1

2
β2s2∂

2ϕ

∂s2
+ 1

2
s2β2π2∂

2ϕ

∂x2

+ θ0βks
∂2ϕ

∂k∂s
+ θ0πβks

∂2ϕ

∂k∂x
+ πβ2s2 ∂

2ϕ

∂s∂x

+

∫
R0

{
ϕ(t, k + kθ1, s+ sγ, x+ sπγ)

− ϕ(t, k, s, x)− kθ1
∂ϕ

∂k
− sγ

∂ϕ

∂s
− sπγ

∂ϕ

∂x

}
ν(dz),(3.32)

for all ϕ = ϕ(t, k, s, x) ∈ C1,2([0, T ]× R3
+).

(See e.g. [ØS] for more information about stochastic control of jump diffu-
sions.)

If we delete the third component Y3(t) = X(π)(t) and only consider the
corresponding Markov process Ỹ θ(t) = (Kθ(t), S(t)), its generator Aθ is given
by

Aθψ(t, ỹ) =
∂ψ

∂t
+ αs

∂ψ

∂s

+ 1
2
θ2
0k

2∂
2ψ

∂k2
+ 1

2
β2s2∂

2ψ

∂s2
+ θ0βks

∂2ψ

∂k∂s

+

∫
R0

{
ψ(t, k + kθ1, s+ sγ)− ψ(t, k, s)

− kθ1
∂ψ

∂k
− sγ

∂ψ

∂s

}
ν(dz),(3.33)

for all ψ = ψ(t, k, s) ∈ C1,2([0, T ])× R2
+).

The following simple result will be useful:

Lemma 3.1 Let ψ ∈ C1,2([0, T ]× R2
+) and define

(3.34) ϕ(t, k, s, x) := ψ(t, k, s)− kx.

Then, with ỹ = (y1, y2) = (k, s) as before,

Aθ,πϕ(t, y) = Aθψ(t, ỹ)− ksπ(y)
[
α(t, ỹ) + θ0(t, ỹ)β(t, ỹ)(3.35)
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+

∫
R0

θ1(t, ỹ, z)γ(t, ỹ, z)ν(dz)
]

Proof. From (3.32) and (3.33) we see that

Aθ,πψ(t, ỹ) = Aθψ(t, ỹ),

so it only remains to compute

Aθ,π(kx) = sαπk + sθ0πβk +

∫
R0

{(k + kθ1)(x+ sxπγ)

− kx− kθ1x− sπγk}ν(dz) = skπ
[
α+ θ0β +

∫
R0

θ1γν(dz)
]
.

�

Lemma 3.2 Let ψ and ϕ be as in Lemma 3.1. Suppose that for all π ∈ R,
(t, k, x) ∈ S̃ there exists a maximum point θ̂ = θ̂(π) of the function

θ → Aθψ − Λθ − ksπMθ; θ ∈ Θ

and that π → θ̂(π) is a C1-function. Moreover, suppose the map

π → Aθ̂(π)ψ − Λθ̂(π)− ksπMθ̂(π); π ∈ R

has a minimum point π̂ ∈ R. Define

(3.36) θ̌ := θ̂(π̂).

Then

(3.37) Mθ̌ = 0

and

(3.38) inf
π

(
sup

θ
{Aθ,πϕ− Λθ}

)
= Aθ̌ψ − Λθ̌ = sup

θ:Mθ=0
{Aθψ − Λθ}.
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Proof. The first order conditions for a maximum point θ̂ = θ̂(π) of the
map

θ → Aθψ − Λθ − ksπMθ; θ ∈ Θ

(for fixed t, k, s and π) are

(3.39) ∇θ(A
θψ − Λθ − ksπMθ)θ=θ̂ = 0,

where ∇θ = ( ∂
∂θ0
, ∂

∂θ1
) denotes the gradient operator. The first order condi-

tion for a minimum point π̂ of the map

π → Aθ̂(π)ψ − Λθ̂(π)− ksπMθ̂(π); π ∈ R
is, by the chain rule,

∇θ(A
θψ − Λθ − ksπMθ)θ=θ̂(π̂)

(dθ̂(π)

dπ

)
π=π̂

− ksMθ̂(π̂) = 0.

By (3.39) the first term is 0 and we conclude that

Mθ̂(π̂) = 0.

Therefore
θ̌ := θ̂(π̂)

satisfies the constraint Mθ̌ = 0, as claimed. Hence

inf
π

(
sup

θ
{Aθψ − Λθ − ksπMθ}

)
= inf

π
(Aθ̂(π)ψ − Λθ̂(π)− ksπMθ̂(π))

= Aθ̌ψ − Λθ̌ ≤ sup
θ:Mθ=0

{Aθψ − Λθ}.(3.40)

On the other hand, we always have

inf
π

(
sup

θ
{Aθψ − Λθ − ksπMθ}

)
≥ inf

π

(
sup

θ:Mθ=0
{Aθψ − Λθ − ksπMθ}

)
= sup

θ:Mθ=0
{Aθψ − Λθ}.(3.41)

Combining (3.40) and (3.41) we get

inf
π

(
sup

π
{Aθψ − Λθ − ksπMθ}

)
= Aθ̌ψ − Λθ̌ = sup

θ:Mθ=0
{Aθψ − Λθ}.(3.42)

By Lemma 2.1 this is equivalent to (2.28). �
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4 HJBI-equations for stochastic differential

games

Problem A is related to the class of stochastic differential games studied in
[MØ]. In the following we put S = (0, T ) × R3

+, S̃ = (0, T ) × R2
+ and Θ =

{(θ0, θ1); θ0 ∈ R and θ1 is a function from R0 to R}. By applying Theorem
3.2 in [MØ] to our situation we get the following verification theorem:

Theorem 4.1 [MØ]. (HJBI-equation)
Suppose ϕ ∈ C1,2(S) ∩ C(S̄) and (θ̂, π̂) ∈ L × Π satisfy the following condi-
tions:

(i) Aθ,π̂ϕ(t, y)− Λ(θ(t, ỹ)) ≤ 0 for all θ ∈ Θ, (t, y) ∈ S

(ii) Aθ̂,πϕ(t, y)− Λ(θ̂(t, ỹ)) ≥ 0 for all π ∈ R, (t, y) ∈ S

(iii) Aθ̂,π̂ϕ(t, y)− Λ(θ̂(t, ỹ)) = 0; (t, y) ∈ S

(iv) ϕ(T, k, s, x) = kg(s)− h(k, s)− kx; (k, s, x) ∈ R+
3

(v) the family {ϕ(τ, Y θ,π(τ))}τ∈T is uniformly integrable for all (θ, π) ∈
L× Π, y ∈ S, where T is the set of all Ft-stopping times τ ≤ T .

Then

ϕ(t, y) = ΦG(t, y) = inf
π∈Π

(
sup
θ∈L

Jθ,π(t, y)
)

= sup
θ∈L

(
inf
π∈Π

Jθ,π(t, y)
)

= sup
θ∈L

Jθ,π̂(t, y) = inf
π∈Π

J θ̂,π(t, y) = J θ̂,π̂(t, y); (t, y) ∈ S.(4.1)

We can now state the first main theorem of this paper:

Theorem 4.2 Suppose the value function ΨG(t, ỹ) for Problem B satisfies
the conditions of Lemma 3.2. Then the value function for Problem A is

(4.2) ΦG(t, y) = ΨG(t, ỹ)− kx

and there exists an optimal θ̌ ∈ M for Problem B such that for all π ∈ Π the
pair

(4.3) (θ∗, π∗) = (θ̌, π)

is an optimal pair for Problem A.
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Proof. By the HJB equation for the stochastic control Problem B we know
that

sup
θ:Mθ=0

{AθΨG(t, ỹ)− Λ(θ(t, ỹ))}

= Aθ̌(t,ỹ)ΨG(t, ỹ)− Λ(θ̌(t, ỹ)) = 0, for t ∈ (0, T ),(4.4)

with terminal value

ΨG(t, ỹ) = ΨG(t, k, s) = kg(s)− h(k, s).

Define

(4.5) ϕ(t, y) = ΨG(t, ỹ)− kx; (t, y) ∈ S.

Then by Lemma 3.1 we have

(4.6) Aθ,πϕ(t, y)− Λ(θ) = AθΨG(t, ỹ)− Λ(θ)− ksπMθ

where (see (3.23))

(4.7) Mθ= Mθ(t, ỹ)= α(t, ỹ) + θ0(t, ỹ)β(t, ỹ) +

∫
R0

θ1(t, ỹ, z)γ(t, ỹ, z)ν(dz).

Therefore conditions (i)–(iii) of Theorem 4.1 get the form

(i)’ AθΨG(t, k, s)− Λ(θ)− ksπ̂Mθ(t, k, s) ≤ 0 for all θ ∈ R2

(ii)’ Aθ̂ΨG(t, k, s)− Λ(θ̂)− ksπMθ̂(t, k, s) ≥ 0 for all π ∈ R

(iii)’ Aθ̂ΨG(t, k, s)− Λ(θ̂)− ksπ̂Mθ̂(t, k, s) = 0 for all (t, k, s) ∈ S̃.

Choose π̂ and θ̌ = θ̂(π̂) as in Lemma 3.2. Combining (4.4) with Lemma 3.2
we get

AθΨG − Λθ − ksπ̂Mθ ≤ sup
θ
{AθΨG − Λθ − ksπ̂Mθ}

= Aθ̂(π̂)ΨG − Λθ̂(π̂)− ksπ̂Mθ̂(π̂) = sup
θ:Mθ=0

{AθΨG − Λθ} = 0,

which proves (i)’. Moreover, since Mθ̌ = 0 we get by (4.4)

Aθ̌ΨG − Λθ̌ − ksπMθ̌ = Aθ̌ΨG − Λθ̌ = 0 for all π ∈ R,
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which proves (ii)’ and (iii)’.
Finally we check that (iv) holds: By (4.5) and (4.4) we have

ϕ(T, k, s, x) = ΨG(T, k, s)− kx = kg(s)− h(s, x)− kx.

We conclude that ϕ and θ̂(π̂), π̂ satisfy all the requirements of Theorem
4.1 and therefore

ϕ(t, k, s, x) = ΦG(t, k, s, x) = ΨG(t, k, s)− kx.

Moreover, θ∗ := θ̂(π̂) and π∗ := π̂ constitute an optimal pair.
Now let π ∈ Π be arbitrary. Note that

Ey[Kθ∗(T )X(π)(T )] = Ey[Kθ̌(T )X(π)(T )] = kEk,s,x
1
k
Qθ̌

[X(π)(T )] = kx,

since 1
k
Qθ̌ is an equivalent martingale measure. Therefore, going back to the

definition of ΦG we then have (see (3.26)–(3.28)), with Y ∗ = Y θ∗,π∗ , Y = Y θ̌,π

ΦG(t, y) = inf
π∈Π

(
sup
θ∈L

Jθ,π(t, y)
)

= J θ̂(π̂),π̂(t, y)

= Ey
[
−

T∫
t

Λ(θ̂(t, Ỹ ∗(t)))dt+Kθ∗(T )g(S(T ))

− h(Kθ∗(T ), g(S(T )))−Kθ∗(T )X(π∗)(T )
]

= Ey
[
−

T∫
t

Λ(θ̂(t, Ỹ (t))dt+Kθ̌(T )g(S(T ))

− h(Kθ̌(T ), S(T ))
]
− kx = J θ̂(π̂),π(t, y).

We conclude that for all π ∈ Π the pair

(θ∗, π) = (θ̌, π) ∈ M× Π

is optimal for Problem A, as claimed. �
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5 Viscosity solutions

In this section we present a viscosity solution approach to Theorem 4.2. The
advantage with this approach is that it requires weaker assumptions on the
value function.

The following definition is based on [BI] (see also [JK]).

Definition 5.1 (Viscosity solutions)
Let C denote the set of functions u : S̃ → R at most linear growth, where
S̃ = (0, T )× R2

+.

(i) An usc function u ∈ C is a viscosity subsolution of the HJB equation for
Problem B, i.e.

(5.1) sup
θ:Mθ=0

{Aθu− Λ(θ)} = 0 in S̃,

if for any ϕ ∈ C2(R3) ∪ C and (t0, ỹ0) ∈ S̃ such that ϕ ≥ u everywhere on S̃
and ϕ(t0, ỹ0) = u(t0, ỹ0) we have

(5.2) sup
θ:Mθ=0

{Aθϕ− Λ(ϕ)}(t0, ỹ0) ≥ 0.

(ii) An lsc function u ∈ C is a viscosity supersolution of (5.1) if for any
ϕ ∈ C2(R3) ∩ C and (t0, ỹ0) ∈ S̃ such that ϕ ≤ u everywhere on S̃ and
ϕ(t0, ỹ0) = u(t0, ỹ0) we have

(5.3) sup
θ:Mθ=0

{Aθϕ− Λ(ϕ)}(t0, ỹ0) ≤ 0.

(iii) A continuous function u ∈ C is a viscosity solution of (5.1) if u is both
a viscosity subsolution and a viscosity supersolution of (5.1).

A similar definition is given for a viscosity (sub/super) solution u of the
HJBI equation

(5.4) inf
π∈R

(
sup
θ∈R2

{Aθ,πu− Λ(θ)}
)

= 0 in S

for Problem A.
We say that a function u ∈ C(R3)∩C satisfies the dynamic programming

principle if

(5.5) u(t0, ỹ0) ≥ Et0,ỹ0

[
u(τ, Ỹ θ(τ))−

τ∫
0

Λ(θ(s))ds
]

for all bounded stopping times τ and all θ ∈ Θ and all (t0, ỹ0) ∈ R3.
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Remark It is known that the dynamic programming principle holds under
very general circumstances. See e.g. [I].

Theorem 5.2
(i) Suppose u is a viscosity subsolution of the HJB equation (5.1) of Problem
B. Then

w(t, y) := u(t, ỹ)− kx

is a viscosity subsolution of the HJBI equation (4.4) for Problem A.

(ii) Suppose u satisfies (5.5). Then

w(t, y) := u(t, ỹ)− kx

is a viscosity supersolution of the HJBI equation (5.4) of Problem A.

(iii) Suppose u satisfies (5.5) and u is a viscosity subsolution of the HJB
equation (5.1) of Problem B. Then

w(t, y) := u(t, ỹ)− kx

is a viscosity solution of the HJBI equation (5.4) of Problem A.

Proof. It suffices to prove (i) and (ii).

Proof of (i): Suppose u is a viscosity subsolution of (5.1). We want to prove
that

w(t, y) := u(t, ỹ)− kx

is a viscosity subsolution of (5.4). To this end, suppose ϕ ∈ C2 ∩ C, ϕ ≥ w
and ϕ(t0, y0) = w(t0, y0) at some point (t0, y0) ∈ S. Put

ψ(t, y) := ϕ(t, y) + kx; (t, y) ∈ S.

Then
ψ ∈ C2, ψ ≥ u and ψ(t0, y0) = u(t0, y0).

Therefore, since u is a viscosity subsolution of (HJB) we have

(5.6) sup
θ:M(θ)=0

{Aθψ − Λ(θ)} ≥ 0.

But then, by Lemma 3.1,

inf
π

(
sup

θ
{Aθ,πϕ− Λ(θ)}

)
= inf

π

(
sup

θ
{Aθψ − Λ(θ) + k0s0πM(θ)}

)
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≥ inf
π

(
sup

θ:M(θ)=0

{Aθψ − Λ(θ) + k0s0πM(θ)}
)

= sup
θ:M(θ)=0

{Aθψ − Λ(θ)} ≥ 0.

(5.7)

This proves that w is a subsolution of (HJBI).

Proof of part (ii): Suppose u satisfies (5.5). We want to prove that

w(t, y) := u(t, y)− kx

is a viscosity supersolution of (5.4). To this end, let ϕ ∈ C2 ∩ C, ϕ ≤ w and
ϕ(t0, y0) = w(t0, y0). Define

ψ(t, y) = ϕ(t, y) + kx.

Then
ψ ≤ u and ψ(t0, y0) = u(t0, y0).

Therefore, since u satisfies (5.5) we have

ψ(t0, ỹ0) = u(t0, ỹ0) ≥ Et0,ỹ0

[
u(Ỹ θ(τ))−

τ∫
0

Λ(θ)ds
]

≥ Et0,ỹ0

[
ψ(Ỹ θ(τ))−

τ∫
0

Λ(θ)ds
]
.(5.8)

By the Dynkin formula we have

(5.9) Et0,ỹ0 [ψ(Ỹ θ(τ))] = ψ(t0, ỹ0) + Et0,ỹ0

[ τ∫
0

Aθψ(Ỹ θ(s))ds
]
.

Combining (5.7) and (5.8) we get

Et0,ỹ0

[ τ∫
0

{Aθψ(Ỹ θ(s))− Λ(θ(s))}ds
]
≤ 0.

Since this holds for all bounded stopping times τ we conclude that

Aθψ − Λ(θ) ≤ 0 at (t0, ỹ0).
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Hence
sup

θ
{Aθψ − Λ(θ)} ≤ 0.

Therefore
inf
π

(
sup

θ
{Aθψ − Λ(θ)− k0s0πM(θ)}

)
≤ 0.

This proves that w is a supersolution of (HJBI), and hence completes the
proof of (ii). �

Using Theorem 5.2 we can now state the following viscosity solution ver-
sion of Theorem 4.2:

Theorem 5.3 As before let ΦG(t, y) = ΦG(t, k, s, x) and ΨG(t, ỹ) = ΨG(t, k, s)
be the value functions of Problem A and Problem B, respectively. Suppose
that ΦG(t, k, s, x) is the unique viscosity solution of the HJBI equation (5.4)
for Problem A. Then

(5.10) ΦG(t, k, s, x) = ΨG(t, k, s)− kx.

Proof. By [P], Theorem 3.1 we know that ΨG(t, k, s) is a viscosity solution
of the HJB equation (5.1) for Problem B. Moreover, ΨG(t, k, s) satisfies the
dynamic programming principle (5.5). Hence by Theorem 5.2 we get that

u(t, k, s, x) := ΨG(t, k, s)− kx

is a viscosity solution of the HJBI equation (4.4) for Problem A. Therefore,
by uniqueness

ΦG(t, k, s, x) = u(t, k, s, x) = ΨG(t, k, s)− kx.
�

Remark 5.4 Sufficient conditions for the uniqueness of the viscosity solu-
tions off the HJBI equation (5.4) are given in [HK] and [P]. For example, it
suffices to assume that the jumps sizes

|∆η(t)| = |η(t)− η(t−)|

are bounded away from 0. See [P], Theorem 4.1, whose proof seems to require
that such a condition holds.
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6 Risk indifference pricing

We now apply Theorem 4.2 or Theorem 5.3 to find the risk indifference price
p = prisk given in Definition 1.1, i.e. given as the solution p of the equation

(6.1) ΦG(t, k, s, x+ p) = Φ0(t, k, s, x)

where ΦG is the solution of Problem A. By Theorem 4.2 or Theorem 5.3 this
equation becomes

ΨG(t, k, s)− k(x+ p) = Ψ0(t, k, s)− kx

which has the solution

(6.2) p = prisk = k−1(ΨG(t, k, s)−Ψ0(t, k, s)).

In particular, choosing k = 1 (i.e. all measures Q ∈ L are probability
measures), we get

Theorem 6.1 (Risk indifference pricing theorem – seller’s price)
Suppose that either the conditions of Theorem 4.2 or the conditions of The-
orem 5.3 hold. Then the seller’s risk indifference price of G, pseller

risk (G) , is
given by

(6.3) pseller
risk (G) = sup

Q∈M
{EQ[G]− ζ(Q)} − sup

Q∈M
{−ζ(Q)},

where M is the set of equivalent martingale measures defined by (3.11)–
(3.13).

Remark 6.2 Note that

pseller
risk (G) ≤ sup

Q∈M
EQ[G] + sup

Q∈M
{−ζ(Q)} − sup

Q∈M
{−ζ(Q)} ≤ sup

Q∈M1

EQ[G]

= pup(G), the upper hedging price of G (see (2.1)),(6.4)

with equality only if ζ(Q) = 0 for all Q.

Similarly we get
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Theorem 6.3 (Risk indifference pricing theorem – buyer’s price)
Suppose that either the conditions of Theorem 4.2 or the conditions of The-
orem 5.3 hold. Then the buyer’s risk indifference price of G, pbuyer

risk (G), is
given by

(6.5) pbuyer
risk (G) = inf

Q∈M
{EQ[G] + ζ(Q)} − inf

Q∈M
ζ(Q).

Remark 6.4 Note that

(6.6) pbuyer
risk (G) ≥ inf

Q∈M
EQ[G] = plow(G),

the lower hedging price of G.
Combining this with (6.4) we get the following chain of inequalities:

Corollary 6.5

(6.7) plow(G) ≤ pbuyer
risk (G) ≤ pseller

risk (G) ≤ pup(G).

Proof. It remains to prove the second inequality, namely that

inf
Q∈M

{EQ[G] + ζ(Q)} − inf
Q∈M

ζ(Q)

≤ sup
Q∈M

{EQ[G]− ζ(Q)}+ inf
Q∈M

ζ(Q).(6.8)

Now

sup
Q∈M

{EQ[G]− ζ(Q)} − inf
Q∈M

{EQ[G] + ζ(Q)}

≥ sup
Q∈M

{EQ[G]− ζ(Q)− (EQ[G] + ζ(Q))}

= sup
Q∈M

{−2ζ(Q)} = −2 inf
Q∈M

ζ(Q),(6.9)

from which (6.8) follows. �

From (6.9) we deduce the following:

Corollary 6.6 Suppose

(6.10) Argmax
Q∈M

{EQ[G]− ζ(Q)} ∩ Argmin
Q∈M

{EQ[G] + ζ(Q)} 6= ∅.

Then
pbuyer

risk (G) = pseller
risk (G).

Note that (6.10) holds trivially if M consists of just one measure, which
corresponds to the case when the market is complete.
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Concluding remarks

In general the gap pup(G) − plow(G) between the upper and lower hedging
prices is too wide to make either of them a good candidate for the trading
price in an incomplete market. Our result (6.7) shows that by using the risk
indifference pricing principle, the gap between the seller’s and the buyer’s
price gets smaller.

Acknowledgments. We are grateful to Martin Schweizer for helpful com-
ments.
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[Sa] K. Sato: Lévy Processes and Infinitely Divisible Distributions. Cam-
bridge Univ. Press 1999.

[ST] A. Sulem and P. Tankov: Utility-based pricing and hedging in models
with jumps. Manuscript 2006.

[X] M. Xu: Risk measure pricing and hedging in incomplete markets. Annals
of Finance 2 (2006), 51–71.

25


