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Abstract

We give some remarks on the anticipating approach to insider modelling introduced by the

authors recently. In particular, we define forward integrals by using limits of Riemmann sums.

This definition is well adapted to financial applications.

As an application, we consider a portfolio maximization problem of a large trader with insider

information. We show that the forward integral is a natural tool to handle such problems and

we compute the optimal portfolios for an insider and a small trader.

1 Introduction

In this article, we would like to explain the anticipating approach to insider information. The section
on the forward integrals properties relies on Chapter 3 of Nualart (1995). Nevertheless, as we have
not found a standard reference for this material in the form of the forward integral and its variance
we will do it here in detail. For this we need to introduce the basic tools of differentiation on the
Wiener space.

Consider the interval [0, T ] and a complete probability space (Ω,F , P ) on which a standard
one dimensional Brownian motion W is defined; {Ft}t∈[0,T ] denotes the filtration generated by W ,
augmented with the P−null sets and made right continuous. Since all the results in the paper rely
heavily on Malliavin calculus, we introduce some of its terminology briefly.

We denote by C∞
b (Rn) the set of C∞ bounded functions f from Rn to R, with bounded derivatives

of all orders. If S is the class of real random variables F that can be represented as f(Wt1 , . . . ,Wtn
)

for some n ∈ IN, t1, . . . , tn ∈ [0, T ] and f ∈ C∞
b (Rn), we can complete this space under the Sobolev

norm ‖·‖1,p given by

‖F ‖p
1,p= E(|F |p) +E

(
(

∫ T

0

|DsF |
2ds)

p

2

)
,

where D is defined as DsF =

n∑

i=1

∂f

∂xi
(Wt1 , . . . ,Wtn

)1[0,ti](s), obtaining a Banach space, usually

indicated with ID1,p. Analogously, we can construct the space IDk,p by completing S under the
Sobolev norm

‖F ‖p
k,p= E(|F |p) +

k∑

i=1

E
[
(

∫ T

0

. . .

∫ T

0

|Di
si...s1

F |2ds1 . . . dsi)
p

2

]
,

where Di
si...s1

F = Dsi
. . . Ds1F . Finally, we denote ID∞ =

⋂

p≥1

⋂

k≥1

IDk,p.

∗Keywords: Anticipating Calculus, Information asymmetry, large traders.
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We denote the adjoint of the closable unbounded operator

D : ID1,2 ⊆ L2(Ω) −→ L2([0, T ]× Ω)

by δT
0 . This operator is called the Skorohod integral. The domain of δT

0 is the set of all processes u
in L2([0, T ]× Ω) such that

∣∣∣∣∣E
(∫ T

0

DtFutdt

)∣∣∣∣∣ ≤ C ‖F ‖2 ∀ F ∈ S,

for some constant C possibly depending on u.
If u ∈ Dom(δT

0 ), then δT
0 (u) is the square integrable random variable determined by the duality

relation

E(δT
0 (u)F ) = E(

∫ T

0

DtFutdt) ∀ F ∈ ID1,2.

Note that the above construction can be carried through for any fixed time interval [s, S], in the
space L2([s, S] × Ω). We will also use the notation

δT
0 (u) =

∫ T

0

u(s)δW (s).

2 The forward integral

Consider an insider, that is an agent that has sensible information about the future values of a
stock, who may also have an influence on the evolution of the stock price. This is called a large
trader-insider.

In general one would like to study models of the type

S(t) = S(0) +

∫ t

0

µ(s, π(s))S(s)ds +

∫ t

0

σ(s, π(s))S(s)d−W (s).

Here π represents the insider’s strategy which is adapted to a filtration G, which may be bigger
(or just different) than the filtration generated by the Wiener process W with natural filtration F .
Therefore S is also adapted to G and the above stochastic integral will be an anticipating integral
commonly known as the forward integral of Russo-Vallois.

Next, we define the forward integral. For this, first define for any partition 0 = t0 < ... < tn = T
such that max{ti+1 − ti; i = 0, ..., n− 1} → 0 as n→ ∞

η(s) := max{ti; ti ≤ s}.

Then we can define the forward integral as follows:

Definition 1 Let φ : [0, T ] × Ω → be a measurable continuous process. The forward integral of φ
with respect to W (.) is defined by

T∫

0

φ(t)d−W (t) = lim
n→+∞

n−1∑

i=0

φ(ti)(W (ti+1) −W (ti)), (1)

if the limit exists in probability and is independent of the partition sequence taken.

This definition does not coincide exactly with the original definition of Russo-Vallois, unless we
put some additional assumptions.
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Note that the above definition is local. That is, let φ be forward integrable such that for a

measurable set A ⊂ Ω we have that φ1A = 0, Then
∫ T

0 φ(t)1Ad
−W (t) = 0. In that sense, as in

Nualart, (1995), page 45 we will use the local defintion of all the spaces to appear below.
First let us start proving that the expectation of this integral is not zero and therefore the

usual rules of calculus do not apply. In particular, usual martingale properties are not true, see the
interesting articles of Tudor and Pecatti-Theieullen-Tudor.

Definition 2 Let φ : [0, T ]×Ω → R be a measurable process such that φ(t) ∈ L1,2. We say that φ ∈
L

1,2
+ if the following stability property is satisfied: for any sequence of partitions 0 = t0 < ... < tn = T

such that its norm tends to zero as n→ ∞, there exists the trace process Ds+φ ∈ L2([0, T ]×Ω) such
that

‖φ(η(·)) − φ(·)‖1,2 + E

[∫ T

0

|Dsφ(η(s)) −Ds+φ|
2
ds

]
→ 0

In such a case we say that φ ∈ L
1,2
+ and we define

‖φ‖
2
1,2,+ := ‖φ‖

2
1,2 +E

[∫ T

0

|Ds+φ|
2
ds

]
.

This norm will serve to control the variance of the forward integral as it is shown in the next
Theorem.

Theorem 3 Suppose that φ ∈ L
1,2
+ . Then the forward integral of φ exists, the limit in definition

being satisfied in L1(Ω) and furthermore

T∫

0

φ(t)d−W (t) =

∫ T

0

φ(t)δW (t) +

∫ T

0

Dt+φdt,

where δ denotes the Skorohod integral. Furthermore,

E



(∫ T

0

φ(t)d−W (t)

)2

 ≤ 2 ‖φ‖2

1,2,+ .

Proof. In order to prove that the integral exists we use the following formula (see formula (1.12)
in page 130 in Nualart (1995a))

φ(ti)(W (ti+1) −W (ti)) =

∫ ti+1

ti

φ(ti)δW (s) +

∫ τi+1

ti

Dsφ(ti)ds.

Then the existence of the forward integral follows from Definition 2. Furthermore we have that each
element in this expression belongs to L2(Ω) and therefore we have that

n−1∑

i=0

E [φ(ti)(W (ti+1) −W (ti))] = E

[∫ T

0

Dsφ(η(s))ds

]

→ E

[∫ T

0

Ds+φds

]
.

The last estimate is obtained similarly. We have

n−1∑

i=0

φ(ti)(W (ti+1) −W (ti)) =

∫ T

0

φ(η(s))δW (s) +

∫ T

0

Dsφ(η(s))ds.
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Therefore,

E



(

n−1∑

i=0

φ(ti)(W (ti+1) −W (ti))

)2

 ≤ 2



E



(∫ T

0

φ(η(s))δW (s)

)2

+E



(∫ T

0

Dsφ(η(s))ds

)2




 .

Then the Riemmann sum sequence is bounded in L2(Ω) and therefore converges in L2(Ω) as it
converges in L1(Ω). Then taking limits in the above inequality we obtained the desired result.

Next we prove that the integral process is a continuous process.

Theorem 4 Suppose that φ ∈ L
1,2
+ , such that E

[∫ T

0

(∫ T

0
|Dsφ(u)|

2
ds
)p/2

du

]
<∞ for some p > 2

then the process {
∫ t

0
φ(s)d−W (s); t ∈ [0, T ]} has a continuous version.

Proof. Use Proposition 5.1.1 in Nualart (1995a).
Now we give the formula for the quadratic variation.

Theorem 5 Given any sequence of partitions of the interval [0, t], πn : 0 = t0 < ... < tn = t such
that max{ti+1 − ti; i = 0, ..., n− 1} → 0 as n→ ∞, we have that

n−1∑

i=0

(∫ ti+1

ti

φ(s)d−W (s)

)2

→

∫ t

0

|φ(s)|
2
ds a.s.

for φ ∈ L
1,2
+ .

Proof. First suppose the simple case that there exists a fixed partition 0 = s0 < ... < sm = t
such that

φ(s) =

m−1∑

i=0

Fi1(si < s ≤ si+1),

where Fi ∈ D1,2. In such a case we obviously have that φ is forward integrable and furthermore

∫ t

0

φ(s)d−W (s) =

m−1∑

i=0

Fi(W (si+1) −W (si)).

We then also have that for the sequence of partitions π′
n = {ti; i = 0, ..., n} ∪ {sj ; j = 0, ...,m} then

∑

ti∈πn

(∫ ti+1

ti

φ(s)d−W (s)

)2

−
∑

sj∈π′
n

(∫ sj+1

sj

φ(s)d−W (s)

)2

→ 0,

as n→ ∞ because the partition {sj ; j = 0, ...,m} is fixed and the forward integrals are L2- continuous
in the time variable. Therefore without loss of generality we will suppose that {sj ; j = 0, ...,m} ⊂ πn.
Then we have that

n−1∑

i=0

(∫ ti+1

ti

φ(s)d−W (s)

)2

=
m−1∑

j=0

F 2
j

∑

sj<ti<sj+1

(W (ti+1) −W (ti))
2.

As the partition {sj ; j = 0, ...,m} is fixed we have that

∑

sj<ti<sj+1

(W (ti+1) −W (ti))
2 → sj+1 − sj
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as n→ ∞. Therefore

n−1∑

i=0

(∫ ti+1

ti

φ(s)d−W (s)

)2

→

m−1∑

j=0

F 2
j (sj+1 − sj) .

Finally the result follows from the following density argument:

E

[∣∣∣∣∣
n−1∑

i=0

(∫ ti+1

ti

φ(s)d−W (s)

)2

−
n−1∑

i=0

(∫ ti+1

ti

ψ(s)d−W (s)

)2
∣∣∣∣∣

]

≤

{
E

[
n−1∑

i=0

(∫ ti+1

ti

(φ− ψ) (s)d−W (s)

)2
]}1/2

×

{
E

[
n−1∑

i=0

(∫ ti+1

ti

(φ+ ψ) (s)d−W (s)

)2
]}1/2

≤ 2 ‖φ− ψ‖1,2,+ ‖φ+ ψ‖1,2,+

Now we give the Itô formula that is necessary for our calculations. Before we need a preliminary
Lemma.

Lemma 6 Suppose that φ ∈ L
1,2
+ ∩L2,4 with Ds+φ ∈ L1,2 and b is a stochastic process with b ∈ L1,2.

Define the process

X(t) = x+

∫ t

0

b(s)ds+

∫ t

0

φ(s)d−W (s).

Then f(·, X)φ ∈ L
1,2
+ for any f ∈ C1,2

b ([0, T ]× R).

Proof. First, note that
∫ t

0 b(s)ds ∈ L
1,2
+ . In fact, Du

∫ t

0 b(s)ds =
∫ t

0 Dub(s)ds. Furthermore, one
clearly has that

E



∫ T

0

∣∣∣∣∣Du

∫ η(u)

0

b(s)ds−

∫ u

0

Dub(s)ds

∣∣∣∣∣

2

du


→ 0.

The other properties being clear the assertion
∫ t

0 b(s)ds ∈ L
1,2
+ follows. Next, consider

Du

(∫ t

0

φ(s)d−W (s)

)
= Du

(∫ t

0

φ(s)δW (s) +

∫ t

0

Ds+φds

)

= φ(u)1(u ≤ η(t)) +

∫ t

0

Duφ(s)δW (s) +

∫ t

0

DuDs+φds.

Therefore we have that

Du+

(∫ ·

0

φ(s)d−W (s)

)
=

∫ u

0

Duφ(s)δW (s) +

∫ u

0

DuDs+φds.

Finally by the chain rule and product rule, we have that

Ds (f(t,X(t))φ(t)) =
∂f

∂x
(t,X(t))DsX(t)φ(t) + f(t,X(t))Dsφ(t)

and

Ds+ (f(·, X)φ) =
∂f

∂x
(·, X)Ds+Xφ+ f(s,X(s))Ds+φ.
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Theorem 7 Suppose that φ ∈ L
1,2
+ ∩ L2,4 with Ds+φ ∈ L1,2 and b is a stochastic process with

b ∈ L1,2 then for any f ∈ C1,2
b ([0, T ]× R) we have that

f(t,X(t)) = f(0, x) +

∫ t

0

∂f

∂t
(s,X(s)) +

∂f

∂x
(s,X(s))b(s) +

1

2

∂2f

∂x2
(s,X(s))φ(s)2ds

+

∫ t

0

∂f

∂x
(s,X(s))φ(s)d−W (s),

for

X(t) = x+

∫ t

0

b(s)ds+

∫ t

0

φ(s)d−W (s).

Proof. In order to prove that the integral exists we find first a smooth approximation of the
process φ of the type

φn(s) =

n−1∑

i=0

Fn
i 1(si < s ≤ si+1)

where Fn
i = φ(si) ∈ D1,2 and 0 = s0 < ... < sn = T is a fixed partition and

‖φn − φ‖1,2,+ → 0

as n→ ∞. Note that in this case one has that

∫ t

0

φn(s)d−W (s) =
n−1∑

i=0

Fn
i (W (si+1) −W (si)).

Now define η1(s) = inf{si; si > s} and η2(s) = sup{si; si ≤ s}. We define similarly the approxima-
tion process

Xn(t) = x+

∫ t

0

1

η1(s) − η2(s)

∫ η1(s)

η2(s)

b(u)duds+

∫ t

0

φn(s)d−W (s).

Consider any partition 0 = t0 < ... < tm = t such that it contains all the points sj , j = 0, ..., n.
Using the Taylor expansion we have

f(t,Xn(t)) = f(0, x) +

m−1∑

i=0

(∂xf(ti, X
n(ti))(X

n(ti+1) −Xn(ti)) + ∂tf(ti, X
n(ti))(ti+1 − ti))

+
1

2

m−1∑

i=0

∂xxf(ti, X
n
(ti))(X

n(ti+1) −Xn(ti))
2.

Here X
n
(ti) denotes a value between Xn(ti) and Xn(ti+1). Obviously, f(t,Xn(t)) converges a.s.

to f(t,X(t)) as n→ ∞. The last term above, as in the previous Theorem 5 converges to

1

2

∫ t

0

∂xxf(s,X(s))φ(s)2ds.

In fact, one can easily reduce the problem to the calculation of the limit of

m−1∑

i=0

∂xxf(ti, X
n
(ti))

(∫ ti+1

ti

φn(s)d−W (s)

)2

.

=

m−1∑

i=0

(
∂xxf(ti, X

n
(ti)) − ∂xxf(η2(ti), X

n(η2(ti)))
)(∫ ti+1

ti

φn(s)d−W (s)

)2

+

n−1∑

i=0

∂xxf(sj , X
n(sj))φ

n(sj)
∑

sj≤ti<sj+1

(W (ti+1) −W (ti))
2
.
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The first term converges to zero as n→ ∞ and the second converges first as m→ ∞ to

∫ t

0

∂xxf(η2(s), X
n(η2(s)))φ

n(η2(s))ds,

and to
∫ t

0
∂xxf(s,X(s))φ(s)2ds as n→ ∞. The other terms converge clearly to

∫ t

0

(
∂f

∂t
(s,X(s)) +

∂f

∂x
(s,X(s))b(s)

)
ds.

So we only have to consider the last term which is
∑m−1

i=0 ∂xf(ti, X
n(ti))

∫ ti+1

ti
φn(s)d−W (s). First,

as m → ∞ this term converges a.s. as all the other terms converge. Therefore this limit is the
forward integral

∫ t

0
∂xf(s,Xn(s))φn(s)d−W (s). The forward integral

∫ t

0
∂xf(s,X(s))φ(s)d−W (s)

exists due to Lemma 6. The rest of the argument follows by a subsequence that converges at a fast
speed. That is, consider a uniform partition of the interval [0, T ], say si = T i/n, then consider the
sequence φn such that supt≤T |X(t)− 6 Xn(t)| ≤ n−ε for ε > 1/2. We will then have that for the
same sequence ti = T i/m

∫ t

0

(∂xf(s,X(s))φ(s) − ∂xf(s,Xn(s))φn(s)) d−W (s)

= lim
m→∞

m−1∑

i=0

(∂xf(ti, X(ti))φ(ti) − ∂xf(ti, X
n(ti))φ

n(ti)) (W (ti+1) −W (ti)).

Now we consider the subsequence for which n = m to obtain that the above limit converges to zero.
Then the result follows.

Remark 8 1.The previous proof also gives a sense to the integral
∫ t

0
∂xf(s,X(s))d−X(s).

2. In fact the original definition of the forward integral by Russo-Vallois is somewhat different to the
one given here. In general, their definition is far more general. Nevertheless, once one wants that
this integral becomes the limit of Riemman sums then one is forced to the above framework. Still,
we remark that the above conditions can be somewhat relaxed but the general idea remains.
3. For example, the above proof is also satisfied in local form. That is, the result is also satisfied if
φ ∈ L

1,2
+,loc∩L

2,4
loc with Ds+φ ∈ L

1,2
loc and b is a stochastic process with b ∈ L

1,2
loc and f ∈ C1,2([0, T ]×R).

For the definition of these spaces see Nualart [25].
4. The fact that the above Itô formula demands an extra condition (Ds+φ ∈ L1,2) in comparison
with its counterpart in Skorohod integral form is well documented in the literature. In particular,
in the case of the Stratonovich-Skorohod integral. Nevertheless as our restriction comes from the
finantial interpretation of the models to be used we accept them as natural.

3 A first toy example

Rather than following the general theory exposed in Kohatsu-Sulem, we will expose the examples
in order to illustrate the theory. In this section, we consider a first toy model where the dynamics
of the prices are given by

dS(t) = S(t)(µ+ bW (T ))dt+ σS(t)d−W (t) (2)

where µ and b are real numbers, σ > 0. We suppose moreover that ρ(t) = ρ = constant. The
interpretation of this model when b ≥ 0 is that the insider introduces a higher appreciation rate
in the stock price if W (T ) > 0. Given the linearity of the equation of S this indicates that the
higher the final stock price the bigger the value of the drift of the equation driving S. Some cases of
negative values for b can also be studied but the practical interpretation of such a study is dubious.

Furthermore we remark that usually in this model we assume that the trades of the insider are
not revealed to the public. This is also an interesting modelling issue which is studied in detail by
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Kyle and Back. They assume that the cumulative trades of the insider plus a Wiener process in
the insider’s filtration are public information. The Wiener process is interpreted as the effect of the
so-called noise traders.

This interpretation can also be applied in any of the cases studied with the enlargement of
filtration approach and as we will see it can also be applied here.

The difference here is that we will introduce large trader-insider models with finite utility where
there can also be small traders that act rationally.

In order to compare with the theory given in our previous article, we decide to first give an
approach which is easier to introduce at this stage but that later will not be possible to apply. This
is the set-up of enlargement of filtration. For this, consider the filtration Gt = Ft ∨ σ(W (T )). In
this filtration it is well known that W is a semimartingale and its semimartingale decomposition is
given by

W (t) = Ŵ (t) +

∫ t

0

W (T ) −W (s)

T − s
ds,

where Ŵ is a Wiener process in G. Therefore in this case, as the forward integral becomes a
semimartingale integral we have that the model for S is

dS(t) = S(t)

(
µ+ bW (T ) + σ

W (T ) −W (t)

T − t

)
dt+ σS(t)dŴ (t).

S(t) = S(0) exp

((
µ−

σ2

2

)
t+ bW (T )t+ σW (t)

)
.

Therefore the optimization of the logarithmic utility for this model is done through classical methods.
Briefly, one has that the wealth process associated with this price process is given by

V (t) = V (0) +

∫ t

0

π(s)V (s)

S(s)
dS(s) +

∫ t

0

(1 − π(s))V (s)rersds.

Then the discounted wealth, V̂ (t) = e−rtV (t) can be written as

V̂ (t) = V (0) +

∫ t

0

(
µ− r + bW (T ) + σ

W (T ) −W (s)

T − s

)
π(s)V̂ (s)ds+

∫ t

0

σπ(s)V̂ (s)dŴ (s).

The solution to the above equation is

V̂ (t) = V (0) exp

(∫ t

0

(
µ− r + bW (T ) + σ

W (T ) −W (s)

T − s

)
π(s) −

σ2

2
π(s)2ds+

∫ t

0

σπ(s)dŴ (s)

)
.

Therefore if we consider the optimization of the logarithmic utility we have the following problem

max
π∈AH

J(π)

where

J(π) ≡ JH(t, π) = E

[∫ t

0

(
µ− r + bW (T ) + σ

W (T ) −W (s)

T − s

)
π(s) −

σ2

2
π(s)2ds+

∫ t

0

σπ(s)dŴ (s)

]
,

and for any filtration H satisfying the usual conditions we define

AH(t) =

{
π is H adapted;

∫ t

0

|π(s)|
2
ds <∞

}
.

We then have the following theorem
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Theorem 9 Assume that H is any filtration included in G. Then the optimal portfolio for the above
problem is given by

π̂(s) =
µ− r

σ2
+E

[
b

σ2
W (T ) + σ−1W (T ) −W (s)

T − s

/
Hs

]

and the optimal value is given by

(µ− r)
2
t

2σ2
+

1

2σ2

∫ t

0

E

[
E

[
bW (T ) + σ

W (T ) −W (s)

T − s

/
Hs

]2]
ds.

In particular,
lim
t→T

JG(t, π̂) = ∞, (3)

while
lim
t→T

JH(t, π̂) <∞

for Ht = σ(S(s); s ≤ t). Furthermore the functions JG(t, π̂) and JH(t, π̂) are increasing in b.

A far more general theorem was given in Kohatsu-Sulem.
Proof. In order to obtain the result first note that given that π ∈ AH(t), we have that

E

[∫ t

0

σπ(s)dŴ (s)

]
= 0.

Next the function

fs(π) =

(
µ− r +E

[
bW (T ) + σ

W (T ) −W (s)

T − s

/
Hs

])
π −

σ2

2
π2

is a strictly convex function adapted to the filtration H. Therefore the maximal value is obtained
for the value π̂ given in the statement of the theorem. The limit wealth for the full insider is infinite
because

E

[
E

[
bW (T ) + σ

W (T ) −W (s)

T − s

/
Gs

]2]
= b2T + +2bσ +

σ2

T − s
.

The last result follows by noting that

Ht = σ (bW (T )s+ σW (s); s ≤ t) .

By using a formula for conditional expectations of Gaussian random variables (see Kohatsu-Sulem)
one obtains that

E[W (T ) −W (t)|Ht] =
b(T − t)

(b2T + 2bσ)t+ σ2
(bW (T )t+ σW (t)),

E[W (T )|Ht] =
(bT + σ)

(b2T + 2bσ)t+ σ2
(bW (T )t+ σW (t)).

Therefore the result follows because

E

[(
E[W (T ) −W (t)|Ht]

T − t

)2
]

=
b2t

(b2T + 2bσ)t+ σ2
.

To finish one only needs to note that

JH(t, π̂) =
(µ− r)

2
t

2σ2
+

1

2σ2

∫ t

0

E

[
E

[
bW (T ) + σ

W (T ) −W (s)

T − s

/
Hs

]2]
ds

=
(µ− r)

2
t

2σ2
+

b2

2σ2

∫ t

0

s
((bT + σ) + σ(T − s))

2

(b2T + 2bσ)s+ σ2
ds.

9



Finally differentiating with respect to b it follows that JH(t, π̂) is increasing.
There are various other interesting remarks that are made in Kohatsu-Sulem with respect to the

interpretation of this result. This result says that in various situations the insider which acts as
a large trader may have effects in the market and the small trader only uses a projection of this
market in order to optimize its utility.

This projection does not transfer the information from the insider to the small investor. This
example also reflects the fact that there is not only one insider but various insiders that may act
depending on the filtration that one takes between Ht = σ(S(s); s ≤ t) and Gt = Ft ∨ σ(W (T )).
Finding examples where the calculations can be done explicitely will be an interesting subject of
future research.

This toy example, which can be solved using the simple technique showed here was solved in
Kohatsu-Sulem using a powerful technique consisting on optimization in an anticipating framework.
We will show in the next section an example which can be considered as a non-trivial application
which cannot be solved using the previous technique.

Before that we will discuss another issue related with (3). In fact with a small modification we
can obtain that the optimal logarithmic utility of the insider is finite.

Theorem 10 Consider the filtration G ′
t = Ft∨σ

(
W (T ) +W ′((T − s)θ); s ≤ t

)
where W ′ is another

Wiener process independent of W and θ ∈ (0, 1). Then we have that

lim
t→T

JG′(t, π̂) <∞.

Proof. First note that the previous Theorem 9. The proof and the result also follow for the
filtration Ḡt = Ft ∨ σ(W (T )) ∨ σ(W ′(s); s ≤ T θ). Therefore we only need to compute

E

(
W (T ) −W (s)

T − s

/
G′

s

)
=
W (T ) −W (s) +W ′((T − s)θ)

T − s+ (T − s)θ
.

From here it follows that the logarithmic utility is finite if θ < 1
To finish we prove a theorem that can be interpreted as the non-existence of arbitrage or the

issue of non-conspicuous insider trader.

Theorem 11 For any filtration H included in G such that S is H-adapted, suppose that there exists
an optimal portfolio in L

1,2
+ which leads to a finite logarithmic utility. Then there exists an H Wiener

process WH such that

log(S(t)/S(0)) =

∫ t

0

r + σ2π̂(s)ds+ σWH(t).

Proof. Just to avoid explicit notation let µs(ω) = µ+bW (T ). If there exists an optimal portfolio
π̂ then it minimizes the logarithmic utility of this trader which is

E

(∫ t

0

(µs − r)π(s) −
σ2

2
π(s)2ds+

∫ t

0

σπ(s)dW (s)

)
.

Applying variational calculus to the above expression we obtain that

E

(∫ t

u

(µs − r) − σ2π̂(s)ds+ σ(W (t) −W (u))

/
Hu

)
= 0.

Furthermore note that

log(S(t)/S(0)) =

∫ t

0

µs −
σ2

2
ds+ σW (t).

Then

E ( log(S(t)/S(u))/Hu) = r(t− u) +

∫ t

u

σ2π̂(s)ds.

10



Therefore by Lévy’s characterization of the Wiener process we have the result.
Note that in the classical Merton model π̂(s) = µ−r

σ2 . Therefore the previous theorem states that
the small trader will not find any anomaly in his trading of the stock even if this is influenced by an
insider.

This result also says that if we interpret WH as the effect of H noise traders then the market
maker will only see the information in the stock price itself.

4 Continuous stream of information

In this section, we consider for δ > T fixed

S(t) = S(0) +

∫ t

0

(µ+ bW (s+ δ))S(s)ds+

∫ t

0

σS(s)d−W (s). (4)

In this model, the insider has an effect on the drift of the diffusion through information that is
δ units of time in the future. This continuous deformation of information may be used to model
streams of information rather than one single piece of information. In this case, it is difficult to see
what is the information held by the insider but his/her effect on the market is known. One first
important remark is the following proposition.

Proposition 12 W is not a semimartingale on the filtration (Ft+δ)t∈[0,T ] .

Proof. Consider the definition of semimartingale as given in Protter page 52. If W is a (Ft+δ)-
semimartingale, then for any partition whose norm tends to zero and always smaller than δ, consider
the process

H(t) =

n−1∑

i=0

(W (ti+1) −W (ti))1(ti,ti+1](t).

This process is then (Ft+δ)-adapted and converges uniformly to zero but its stochastic integral
converges to the quadratic variation of W leading to a contradiction.

This shows that the insider filtration does not even correspond to (Ft+δ)t∈[0,T ]. The definition
for the insider’s filtration in the particular case that δ ≥ T is

Gt = Ft ∨ σ(W (T )) ∨ σ(W (s + δ) −W (T ); s ≤ t).

Then the calculations can be carried out as in the previous section. Nevertheless, we need to be
more precise here in the general case. We do this here.

In such a situation, we have to clearly use the anticipative set-up given in the first section.
Therefore we have to find the solution for the equation of the prices.

Proposition 13

S(t) = S(0) exp

((
µ−

1

2
σ2

)
t+ b

∫ t+δ

δ

W (s)ds+ σW (t)

)
.

is the unique solution of equation (4) in the space L
1,2
+,loc.

The proof of this result follows directly from the Itô formula given in theorem 7. We are interested
in computing the optimal policy of the small investor with iltration Ht = σ(Ss; s ≤ t). From the
previous proposition, we have that

Ht = σ (Y (s); s ≤ t) ,

where Y (s) = b
∫ s+δ

δ
W (r)dr + σW (s). Now we study the wealth process associated with this price

process. The wealth process is defined as the solution of

V (t) = V (0) +

∫ t

0

π(s)V (s)

S(s)
d−S(s) +

∫ t

0

(1 − π(s))V (s)rersds

11



where the interpretation of d−S(t) is as in Definition 1. Note that in order that this equation among
others has a sensible financial interpretation we introduced in Section 2 the forward integral as a
limit of Riemmann sums.

Then the discounted wealth, V̂ (t) = e−rtV (t) can be written as

V̂ (t) = V (0) +

∫ t

0

(µ− r + bW (t+ δ))π(s)V̂ (s)ds +

∫ t

0

σπ(s)V̂ (s)d−W (s).

As before the solution to the above equation is

V̂ (t) = V (0) exp

(∫ t

0

(µ− r + bW (t+ δ))π(s) −
σ2

s
π(s)2ds+

∫ t

0

σπ(s)d−W (s)

)
.

We will later show that the optimal portfolios proposed satisfy the conditions stated in Section
3. With these assumptions, we have that the limit of the logarithmic wealth process can be written
as

J(π) = JH(t, π) := E log(V̂ (t)) − log(V0)

= E

[∫ t

0

(
π(s)(µ− r + bW (s+ δ)) −

1

2
σ2π(s)2

)
ds+ σ

∫ t

0

π(s)d−W (s)

]
.

The class of admissible portfolios is given by

A = {π is H adapted;π ∈ L
1,2
+ }.

Theorem 14 Define the following portfolio

π̂(s) =
µ− r

σ2
+ σ−2E (bW (s+ δ)/H s) + σ−1a(s)

where

a(s) = L1(Ω) − lim
h→0

E

[
W (s+ h) −W (s)

h

/
H s

]
.

If π̂ ∈ L
1,2
+ then π̂ is the optimal portfolio for the above problem for any filtration H and the optimal

value is given by

J(t, π∗) =
σ2

2
E

[∫ t

0

π̂(s)2ds

]

A more general theorem was proved in Kohatsu-Sulem.
Proof. In order to obtain the result we have to prove first that the functional J is strictly

convex. For this, let π0 and π1 ∈ A. Then we have that for any α ∈ (0, 1)

J(απ0 + (1 − α)π1) < αJ(π0) + (1 − α)J(π1).

This property clearly comes from the factor − σ2

2 π(s)2 in the expression for J . Next, we find the
first directional derivative of J .

Consider for π, v ∈ A, then

DπJ(π) := lim
ε→0

J(π + εv) − J(π)

ε
= E

[∫ t

0

(µ− r + bW (s+ δ))v(s) − σ2π(s)v(s)ds +

∫ t

0

σv(s)d−W (s)

]
.

If we set the above equation equal to zero for all v ∈ A and in particular for v = X1[s0,t0] for
X ∈ D1,2 we have by a density argument that

E

[∫ t0

s0

(µ− r + bW (s+ δ))ds− σ2π(s)ds+ σ (W (t0) −W (s0))

/
Hs0

]
= 0.

12



Now note that π̂ satisfies the above equation. In fact, replacing π̂ in the above equation, we have

E

[∫ t0

s0

−σ lim
h→0

E

[
W (s+ h) −W (s)

h

/
H s

]
ds+ σ (W (t0) −W (s0))

/
Hs0

]

= −σ lim
h→0

E

[∫ t0

s0

W (s+ h) −W (s)

h
ds+ (W (t0) −W (s0))

/
Hs0

]
= 0,

by continuity of the paths of the Wiener process. Therefore π̂ has to be optimal. In fact, for all
β ∈ A and ε ∈ (0, 1), we have

J(π̂ + εβ) − J(π̂) = J((1 − ε)
π̂

1 − ε
+ εβ) − J(π̂)

≥ (1 − ε)J(
π̂

1 − ε
) + εJ(β) − J(π̂)

= J(
π̂

1 − ε
) − J(π̂) + ε(J(β) − J(

π̂

1 − ε
)).

Now, with
1

1 − ε
= 1 + η we have

lim
ε→0

1

ε
(J(

π̂

1 − ε
) − J(π̂)) = lim

η→0

1 + η

η
(J(π̂ + ηπ̂) − J(π̂)) = Dπ̂J(π̂).

Then we get

DβJ(π̂) = lim
ε→0

1

ε
(J(π̂ + εβ) − J(π̂)) ≥ Dπ̂J(π̂) + J(β) − J(π̂).

We conclude that
J(β) − J(π̂) ≤ DβJ(π̂) −Dπ̂J(π̂) ; π̂, β ∈ A.

In particular, using that DβJ(π∗) = 0, we get

J(β) − J(π∗) ≤ 0,

which proves that π∗ is optimal.
To find the optimal expression for the utility it is enough to note that

E

[∫ t

0

(µ− r + bW (s+ δ))π̂(s) − σ2π(s)π̂(s)ds+

∫ t

0

σπ̂(s)d−W (s)

]
= 0,

therefore the optimal utility is

E

[∫ t

0

(
π̂(s)(µ− r + bW (s+ δ)) −

1

2
σ2π̂(s)2

)
ds−

∫ t

0

(µ− r + bW (s+ δ))π̂(s) − σ2π(s)π̂(s)ds)

]
.

From here the result follows.
A very useful property is that the optimal portfolios in a smaller filtration is just a projection.

Proposition 15 Let H1 ⊂ H2 ⊂ G be two filtrations satifying the usual conditions such that there
is an optimal portfolio π̂2 in H2 within a class of protfolios AH2 . If AH1 ⊂ AH2 , then there is an
optimal portfolio π̂1 in H1 which satisfies

π̂1(s) = E
[
π̂2(s)/H

1
s

]
,

JH1(t, π̂1) ≤ JH2(t, π̂2).

Therefore in order to prove the existence of the optimal portfolio it is essential to compute a or at
least obtain its existence and some regularity properties. We do this, first in the case that δ ≥ T .
This is done in the next proposition.
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Proposition 16 Suppose that δ ≥ T . The optimal logarithmic utility portfolio in the filtration
H ⊂ G is given by

π̂(s) =
µ− r

σ2
+ σ−2E

[
bW (s+ δ) + σ

W (T ) −W (s)

T − s

/
Hs

]
.

The optimal value is given by

(µ− r)
2
t

2σ2
+

1

2σ2

∫ t

0

E

[
E

[
bW (s+ δ) + σ

W (T ) −W (s)

T − s

/
Hs

]2]
ds.

In particular,
lim
t→T

JG(t, π̂) = ∞,

while
lim
t→T

JH(t, π̂) <∞

for Ht = σ(S(s); s ≤ t).Furthermore the functions JG(t, π̂) and JH(t, π̂) are increasing in b.

Proof. Define Y (t) = b
∫ t+δ

δ
W (r)dr + σW (t). Then for δ ≥ T

lim
s↓t

E

[
W (s) −W (t)

s− t

/
Ht

]
= bM

∫ t

0

g(t, u)dY (u).

E [W (t+ δ)/Ht] = (b(t+ δ) + σ)M

∫ t

0

g(t, u)dY (u)

where M ≡Mt = σ−1
(
(bδ + 2σ)

(
e

2bt
σ − 1

)
+ σ

(
e

2bt
σ + 1

))−1

and g(t, u) = e
b
σ

(2t−u) + e
b
σ

u.

In fact, note that Y is a Gaussian process. Therefore E [W (s)/Ht] =
∫ t

0
h(s, t, u)dY (u) for a

deterministic function h. To compute h we compute the covariances betweenW (s) and the stochastic
integral and Y (v) for some v ≤ t ≤ s ≤ T . First

E [W (s)Y (v)] = bsv + σ(s ∧ v).

Also

E

[∫ t

0

h(s, t, u)dY (u)Y (v)

]
= b2

∫ t

0

∫ v

0

h(s, t, θ1)(θ1 ∧ θ2 + δ)dθ2dθ1

+ 2bσv

∫ t

0

h(s, t, θ)dθ + σ2

∫ v

0

h(s, t, θ)dθ. (5)

Therefore the above two expressions have to be equal. After differentiation of the equality with
respect to v ≤ t three times, we obtain

−b2h(s, t, u) + σ2 ∂
2h

∂u2
(s, t, u) = 0.

Solving this differential equation gives

h(s, t, u) = C1(s, t)e
− b

σ
u + C2(s, t)e

b
σ

u.

Next one verifies that for the following constants, the covariances coincide.

C2(s, t) = σ−1(bs+ σ)
(
(bδ + 2σ)

(
e

2bt
σ − 1

)
+ σ

(
e

2bt
σ + 1

))−1

C1(s, t) = e
2bt
σ C2(s, t).
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Therefore, we have that

E

(
W (s) −W (t)

s− t

/
Ht

)
=

∫ t

0

h(s, t, u) − h(t, t, u)

s− t
dY (u).

Then the result follows.
Next, using Theorem 14, we have that the possible optimal portfolio π∗ is defined by

π∗(t) =
µ− r

σ2
+ bMt

(
b(t+ δ) + 2σ

σ2

)∫ t

0

g(t, u)dY (u).

satisfies that π∗ ∈ L
1,2
+ . In fact, all the properties are obtained through the process Y . We do not

give the details of this verification.
Then the optimal utility is finite as it is given by

J(t, π∗) = log(V0) +
σ2

2
E

[∫ t

0

π∗(s)2ds

]
.

Remark 17 When s ≤ T , we have that

E [W (s)/HT ] =

∫ s

0

h(s, T, u)dY (u) +

∫ t

s

h̄(s, T, u)dY (u),

where

h̄(s, t, u) = C̄1(s, t)e
− b

σ
u + C̄2(s, t)e

b
σ

u

C̄2(s, t) = σ−1 (1 + σh(s, T, s))
(
e

b(2T−s)
σ + e

2bs
σ

)−1

C̄1(s, t) = e
2bt
σ C̄2(s, t).

This shows that even the information on all the prices of the interval [0, T ] does not reveal the
information held by the insider to the small trader.

As before we can also show that the insider’s utility is finite if we use the filtration G ′
t = Ft ∨

σ
(
W (s+ δ) +W ′((T − t)θ); s ≤ t

)
for θ < 1. Similarly we can also obtain a representation theorem

such as Theorem 11. Instead we will take a different shortcut through the anticipating Girsanov’s
theorem. For details and notation we refer to Chapter 4 in [25].

Theorem 18 Consider the case δ < T . Then there is no arbitrage for the filtration Ht = σ (S(s); s ≤ t)
and the logarithmic utility for the optimal portfolio value for this investor is finite.

Proof. We apply Theorem 4.1.2 in [25] in the interval [0, T + δ] with the transformation

T (ω) = ω + b1(· ≤ T )

∫ ·

0

ω(s+ δ)ds,

defined in C[0, T + δ]. Then we have that if T (ω) = 0 then ω(t) = 0 for all t ∈ [T, T + δ]. Therefore

T (ω) = ω + b1(· ≤ T − δ)

∫ ·

0

ω(s+ δ)ds.

That is, by finite induction we have that T is an injection. To prove that it is surjective one follows
a similar pattern.

Next we have that
det2 (I +Du) > 0
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and that under the change of measure

dQ

dP
= det2 (I +Du) exp

(
−

∫ T

0

bW (s+ δ)dW (s) −
b2

2

∫ T

0

W (s+ δ)2ds

)

then Ŵ = T (W ) has the law of a Wiener process under Q. Therefore there exists an equivalent
martingale measure for this problem.

In order to compute the optimal portfolio one uses the dual method. That is, denote m =
σ−2(µ− r) and define

dQ′

dP
= det2 (I +Du) exp

(
−

∫ T

0

(bW (s+ δ) −m) dW (s) −
1

2

∫ T

0

(bW (s+ δ) +m)
2
ds

)
.

Then the optimal portfolio value is

V̂T = V0
dQ′

dP
.

The optimal portfolio value is finite because E
[
log
(

dQ′

dP

)]
<∞.

Although one may consider that the large trader effect is somewhat hidden in this paper through
the process appearing in the drift. We remark that this may be considered as a first learning step
towards more complex models. Some of these models were presented in Kohatsu-Sulem or Kohatsu.
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